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I.N.F.N. Sezione di Perugia, Via Pascoli, I-06123 Perugia, Italy

(Received 30 June 2022; accepted 19 September 2022; published 11 October 2022)

We analyze the formation and evolution of the event horizon of a black hole binary merger when the
black holes are charged. We find that the presence of charge influences the properties of the merger and can
be useful for investigating the validity of various theories of modified gravity and several proposals for dark
matter candidates. It can moreover give insights into various aspects of astrophysical phenomena involving
black holes, such as degeneracies in the gravitational wave parameter determination. We perform our
analysis both analytically and numerically, in D ¼ 4 dimensions, in the extreme mass ratio (EMR) limit
and compare the results. The development of analytical results in the EMR limit is of uttermost importance
in view of the upcoming observations of the LISA interferometer. We then use our analysis to describe how
the horizon evolves in time during the merger and to investigate the growth in the area of the event horizon
and the duration of the merger. We moreover provide a numerical solution valid in arbitrary dimensions
D ≥ 4 which could be of interest in the context of the AdS=CFT correspondence or for examining possible
extensions of general relativity.
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I. INTRODUCTION

One of the greatest achievements in physics of recent years
is the detection, by the LIGO-Virgo-KAGRA collaboration,
of gravitational wave signals emitted by binary systems of
two black holes [1], two neutron stars [2], and a black hole
and a neutron star [3]. The study of the physics and of the
dynamics of binary systems has thus become of paramount
importance. In this context, one of the properties which is
interesting to study and from which one could extract
relevant information about the merger of a black hole binary
system is the formation and evolution of the event horizon of
the binary system itself. A step forward in this direction has
been made in [4] for the case of neutral spherically
symmetric black holes, subsequently generalized in [5] to
rotating neutral black holes. Moreover, the event horizon
formation and properties during the merger of a neutron star-
black hole binary system have been studied in [6].
Recently (see for example [7–14]) there has been some

interest in including the presence of charge in the study of
various properties of black holes and, in particular, of black

hole binary systems. This could in fact be relevant not only
for constructing waveform models that could be used to
describe gravitational wave signals in sensible and realistic
astrophysical situations [11,12], but it could also provide
essential information for investigating the validity of certain
theories of modified gravity [15] and various dark matter
scenarios [16]. This is in contrast with the fact that, even
though they might posses a small amount of electric charge,
astrophysical black holes are typically considered neutral
(See, e.g., [17–19]) and therefore all information one
extrapolates from analyzing physical phenomena, such as
gravitational radiation emitted during the merger of a binary
black hole system, is obtained using the Kerr metric.
Nonetheless, as already mentioned, allowing for the pres-
ence of this extra parameter could be relevant in providing
further tests on how the presence of (a small amount of)
electric charge would affect the processes involving black
holes, as well as being important for investigating the
validity of various exoticmodels of minicharged darkmatter
[16], where the charge is due to primordial magnetic
monopoles [15,20], and other possible scenarios.
Therefore, in this paper we use the term charge to refer to
electric or magnetic charge [21,22], something more exotic
such as minicharged dark matter [23,24] or a new scalar or
vector field in the theory of gravity [25,26].
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With this motivation in mind, we study the merger of a
binary system of two black holes where at least one of them
is a charged black hole described by the Reissner-
Nordström (RN) solution of vacuum Einstein’s equations
[27]. Our aim is to investigate the formation and evolution
of the event horizon of such a binary system, and we will
perform our analysis both analytically and numerically.
Obtaining an analytical description of the formation of

the event horizon in a binary system merger is typically a
very challenging task. However, as shown in [4], things
simplify considerably in the so-called extreme-mass-ratio
(EMR) limit where one of the two black holes is much
smaller than the other. If m is the mass of the small black
hole and M is the one of the large black hole, this
limit consists in sending the ratio m=M → 0. This is
observationally tied to the merger of supermassive black
holes (SMBH) and stellar-mass black holes, and detecting
them is one of the core goals of the upcoming LISA
mission [28].
The EMR limit is usually realized in gravitational wave

astrophysics by sending the mass m of the small black hole
to zero while keeping the mass M of the large black hole
fixed. This approach is then used to extract the gravitational
wave signal emitted during the merger of the binary system.
In this realization of the EMR limit, the small black hole
can be regarded as a test particle, and one can then calculate
the gravitational wave emitted by the system using e.g.,
a multipolar Regge-Wheeler-Zerilli perturbative approach
[29,30] or an effective one body approach [31–36].
However, as pointed out in [4], sending m to zero while
keeping M fixed is not suitable if one wants to study the
evolution in time of the event horizon of a binary black hole
merger. In fact, by sending the mass of the small black hole
to zero, and thus treating it as a pointlike object, one loses
all information about the physics at the scale m, making it
not appropriate for studying the evolution of the event
horizon during the merger. When the small black hole is
treated as a pointlike object we are in fact not able to study
its geometrical structure. This means that we are no longer
able to find the null hypersurface that identifies the event
horizon.
To overcome this problem, we have to find an alternative

way of taking the EMR limit such that we preserve the
information about the event horizon of the small black hole.
To do this, it is instead convenient to send M → ∞ while
keeping m fixed [4]. This has the advantage that, in the rest
frame of the small black hole, we can neglect the curvature
of spacetime over distances ≪ M. This means that, when
the small black hole is very close to the large black hole,
namely it is at a distance from the event horizon of the large
black hole much smaller than the size M of the large black
hole, the curvature of the large black hole becomes
negligible but, at the same time, it is still possible to
identify its event horizon, which becomes an infinite
acceleration horizon (i.e., a Rindler horizon) [4].

In this paper, the small black hole is a charged, non-
spinning black hole, so the space-time around it is well
described by the RN solution. The presence of the charge
introduces an extra parameter, compared to the case of the
merger between two neutral black holes, which influences
the properties of the merger and which can be used to
investigate in an alternative way the event horizon for-
mation and evolution.
The procedure we will use to find the event horizon in the

early time of the merger of a charged black hole binary
system in the EMR limit is quite simple. We start by
considering the situation just before the merger, from the
rest frame of the small black hole, where the small black
hole is very close (at distances ≪ M) to the large one. In
this way one can ignore the curvature of the large black
hole and one can describe the spacetime around the small
black hole using the RN solution [see Eq. (1)]. Using that
the event horizon of the large black hole in the limit
m=M → 0 becomes an infinite acceleration horizon, we
construct the event horizon of the binary system starting
from the configuration of the event horizon on Iþ, which is
a congruence of light rays that forms a planar surface at
asymptotic null infinity, and then following back in time a
congruence of null geodesics that, starting from the small,
charged black hole, reaches a planar horizon at large
distance [4].
This approach allows us to extract the most relevant

features of the event horizon of a black hole binary merger,
such as the duration of the merger, the growth of the area of
the small black hole and the presence of a line of
caustics [37].
The paper is organized as follows. In Sec. II we study

analytically the evolution of the event horizon of a black
hole binary system in D ¼ 4 dimensions in the EMR limit,
when the smaller object is a charged black hole. We
describe the procedure used in order to extract some of
the most interesting features of the evolution of the event
horizon, such as the presence of a line of caustics, the
growth of the area of the event horizon and the duration of
the merger. We moreover argue that our results are valid for
the merger of a small charged black hole with any type of
large black hole, in the EMR limit, independently of the
spin or charge of the large black hole. In Sec. III, we study
the same problem using a different procedure, which uses
the Hamiltonian form of the geodesics equations and which
is particularly useful for numerically solving the differential
equations at hand. This procedure has also the advantage
that can be easily generalized to arbitrary dimensions
D > 4. We do this in Sec. IV where we apply it to the
specific case of D ¼ 5.
We moreover show the similarities and the main

differences with the computation in D ¼ 4 dimensions.
Section V contains a summary of our results and some
concluding remarks. Throughout the paper we use units
where G ¼ c ¼ ϵ0 ¼ μ0 ¼ 1, unless otherwise specified.
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II. ANALYTICAL SOLUTION IN D= 4

In this section we study analytically the merger of two
black holes when at least one of them is charged, in the
EMR limit. This analysis allows us to describe the
evolution in time of the event horizon of the system and
to study the growth in the area of the event horizon and the
duration of the merger.
Charged black holes are described by the generalization

of the RN solution which, in D ¼ 4 dimensions and using
Schwarzschild quasispherical coordinates, can be written as

ds2 ¼ −ΔðrÞdt2 þ ΔðrÞ−1dr2 þ r2dΩ2; ð1Þ

with

ΔðrÞ ¼ 1 −
2m
r

þQ2

r2
: ð2Þ

Here, Q denotes the electric or magnetic charge, a combi-
nation of the two or, in general, any type of parameter with
the same coupling of the charge in the Einstein-Maxwell
theory. Moreover, dΩ2 ¼ dθ2 þ sin2θdϕ2 and m is the
mass of the black hole.
The location of the event horizon is obtained by solving

ΔðrÞ ¼ 0, which yields rþ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −Q2

p
. [38] Here

we are only interested in examining situations where
jQj ≤ m, as only in this case there is an event horizon.
The limiting case jQj ¼ m identifies an extremal Reissner-
Nordström black hole, where the event horizon is located at
rEH ¼ m. This case represents a black hole with the
maximum amount of charge, equal to it mass. Since the
mass of a black hole gives also its dimension, this means
that an extremal black hole is the smallest possible
configuration. This type of black holes corresponds to
an unstable (and not physical) situation and, as such, they
are not found in Nature. Nonetheless, extremal black holes
are very interesting from a purely theoretical and analytical
point of view. They typically play a crucial role in the
context of supersymmetric theories where they often
represent stable solutions and are used as a valuable tool
to investigate important problems such as, for example,
obtaining a microscopic description of the Bekenstein
Hawking entropy formula for black holes in terms of D-
branes configurations [39]. Given their interest from a
theoretical perspective, in this paper we will also consider
the extremal case jQj ¼ m.

A. Derivation of the characteristic
equations: Case jQj < m

We start by considering a regular RN black hole with
jQj < m. The extremal case jQj ¼ m can be easily obtained
by taking the limit jQj → m in the results obtained here and
it will be discussed separately in Sec. II B.

We want to study the merger of a charged binary black
hole system in the EMR limit, which we take by sending
the massM of the large black hole to infinity while keeping
the mass m of the small black hole fixed. As already
explained, this is the correct way of employing the EMR
limit in order to being able to retain information about the
event horizon of the small black hole [4]. We investigate
this system from the point of view of the rest frame of the
small black hole, when the small black hole is a RN black
hole and is very close to the large black hole, namely at
distances ≪ M. This provides a set up where the merger of
the two black holes can be studied in a simple way, as
already explained in [4] for the neutral case (see also [5] for
the case of rotating black holes). In fact, in this description,
it can be shown that the symmetries of spacetime are
exactly the ones of the RN background, namely spherical
symmetry together with a timelike Killing vector ∂t. This is
true only in the exact limit m=M → 0. When taking into
account corrections of order m=M the symmetries are not
exact anymore and the study of the merger becomes much
more complicated. When the small black hole is at
distances ≪ M from the large black hole and the geometry
is given by the metric (1), the event horizon of the large
black hole becomes an acceleration horizon with the
geometry of a null plane. Therefore, to study the merger
between the two black holes, we need a null surface that
reaches Iþ with the geometry of an acceleration horizon at
a finite retarded time and that represents the configuration
of the event horizon of the large black hole in the
limit M → ∞.
This procedure allows us to study the properties of the

event horizon of the binary system in the early time of the
merger, starting from the situation when the two event
horizons are infinitely separated.
Our aim is to describe how the two event horizons

change due to gravitational attraction from being two
separated surfaces until they merge forming a single
smooth surface. Since we are studying the problem in
the EMR limit M → ∞, strictly speaking there is no
gravitational attraction. What we really mean here is that
the large black hole causes an acceleration effect on the
small black hole (as a consequence of the equivalence
principle) which results in a deformation of the two
separated horizons. See below for a graphic representation
of this process.
Event horizons are null hypersurfaces, which can be

thought of as a congruence of null geodesics, called
generators. We know that at future null infinity, Iþ, the
generators of the event horizon form a planar horizon. The
idea is then to trace back these null geodesics from Iþ until
they reach a so-called line of caustics, which is the set of
points where null geodesics focus as they enter the event
horizon [40–43]. One can then follow the null geodesics
back until they reach these points because, once at the
horizon, a null generator can never propagate off it, nor it can
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ever cross another null generator. In other words, the event
horizon is defined by null geodesics passing through each
point of the null hypersurface and these generators continue
along the horizon forever into the future (in agreement with
the cosmic censorship conjecture). The event horizon begins
where these generators meet in the past.
Our goal is now to follow back in time the generators of

the event horizon from Iþ until they meet at the caustic
points. To do this, we need to consider the geodesic
equations followed by a specific set of light-rays in the
RN background. In particular since the event horizon at Iþ
is a planar horizon, we are looking for a congruence of
generators that, in the RN geometry, approach a planar
horizon at future null infinity. We have already mentioned
that, in the limit m=M → 0, the spacetime geometry we are
considering in the rest frame of the small black hole has the
same symmetries as the RN background. Thanks to the
spherical symmetry of this background, we can set θ ¼ π=2
without loss of generality. The equations that we want to
solve read

_t ¼ 1

1 − 2m
r þ Q2

r2

; ð3Þ

_ϕ ¼ −
q
r2

; ð4Þ

_r ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − q2

�
1 −

2m
r

þQ2

r2

�s
; ð5Þ

where q represents the ratio between the conserved angular
momentum and the energy of the light-ray trajectory and it
is called impact parameter. Moreover _t ¼ dt

dλ,
_ϕ ¼ dϕ

dλ and
_r ¼ dr

dλ with λ the affine parameter.
In order to better understand the meaning of the impact

parameter q, we can define the Cartesian-like coordinates

x ¼ r sinðϕÞ; z ¼ r cosðϕÞ: ð6Þ

In the ðx; zÞ coordinates, asymptotically, all light rays move
with dx ¼ 0,

xjr→∞ ¼ qþOðr−3Þ; ð7Þ

zjr→∞ ¼ rþOðr−1Þ ð8Þ

and the horizon is identified by

dt − dz ¼ Oðr−3Þ: ð9Þ

As we can see from Fig. 1, the ratio between the angular
momentum and the energy of the null geodesics, i.e., the
impact parameter q, represents the distance at future null
infinity between the geodesics and the z axis. The distance
between the geodesics and the center of the small black

hole, which we consider to be the center of our reference
system, is denoted by r. Furthermore, studying the geo-
desics on the plane θ ¼ π=2 allows us to choose the ϕ axis
as the axis along which the collision between the two black
holes takes place. To be more exhaustive, ϕ ¼ 0 and ϕ ¼ π
are segments in the plane θ ¼ π=2. These two segments
define the collision axis along which the collision takes
place. Specifically, placing ourselves in the rest frame of
the small black hole, the segment ϕ ¼ 0 points in the
direction away from the large black hole, while ϕ ¼ π
points in the direction toward the large black hole.
Instead of using λ, it is convenient to use r as the

parameter along the geodesics. With this choice, the
equations that we need to solve are

ϕqðrÞ ¼
Z

dr
_ϕ

_r
; tqðrÞ ¼

Z
dr

_t
_r
: ð10Þ

The next step is to fix the integration constants in
Eq. (10) by requiring that the null surface which defines
the event horizon at Iþ becomes a planar horizon. For
r → ∞, we get

ϕqðr → ∞Þ ¼
Z

dr
_ϕ

_r

����
r→∞

¼ αq þ
q
r
þOðr−3Þ; ð11Þ

and

tqðr → ∞Þ ¼ rþ 2m log

�
r
2m

�
þ βq þOðr−1Þ: ð12Þ

We must set αq and βq to q-independent values. This is
because we want that the light rays asymptotically move all
in the same direction and that they arrive at Iþ at the same
retarded time. We choose

FIG. 1. Projection of null generators of the event horizon on the
spatial plane ðx; zÞ. The black lines are the light rays that move
toward Iþ. At late times, they move along the z direction as the
generators of a Rindler horizon ðdt ¼ dzÞ. They are labelled by
the impact parameter q at future infinity. This graphic represen-
tation is the same of Fig. 1 from [4], which we reproduce here for
convenience.
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αq ¼ 0; βq ¼ 0: ð13Þ

Evaluating Eq. (10) at q ¼ 0 defines the so-called central
geodesics which, going back in time, represents a light ray
which starts at r ¼ rþ at t → −∞ and moves toward
infinity in the direction ϕ ¼ 0.
We find

ϕq¼0ðrÞ ¼ 0; ð14Þ

tq¼0ðrÞ ¼ m logðQ2 þ r2 − 2mrÞ

þ
ð2m2 −Q2Þtan−1

�
r−mffiffiffiffiffiffiffiffiffiffiffi
Q2−m2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −m2

p þ r ð15Þ

The general, q-dependent integrals in Eq. (10) have
instead the following explicit expressions

ϕqðrÞ ¼ −
Z

qdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − q2r2 þ 2mq2r − q2Q2

p ; ð16Þ

tqðrÞ ¼
Z

r4dr

ðr2 − 2mrþQ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − q2r2 þ 2mq2r − q2Q2

p :

ð17Þ

We need to solve Eqs. (16) and (17) choosing carefully
the values for the integration constants so that the correct
asymptotic behavior given in Eqs. (11) and (12) is
reproduced. In order to do so, we begin by rewriting the
integrals as

ϕqðrÞ ¼ −
Z

qdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x1Þðr − x2Þðr − x3Þðr − x4Þ
p ; ð18Þ

tqðrÞ¼
Z

r4dr

ðr−r1Þðr−r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr−x1Þðr−x2Þðr−x3Þðr−x4Þ

p ;

ð19Þ

where x1, x2, x3, x4 are the solutions of the quartic equation
r4 − q2r2 þ 2mq2r − q2Q2 ¼ 0, and r1;2 are the solutions
of the quadratic equation r2 − 2mrþQ2 ¼ 0. We have

x1;2 ¼
1

2
ffiffiffi
6

p ðξ1
2

1 ∓ ξ
1
2

2Þ; ð20Þ

x3;4 ¼ −
1

2
ffiffiffi
6

p ðξ1
2

1 � ξ
1
2

3Þ; ð21Þ

r1;2 ¼ m ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −Q2

p
; ð22Þ

where

ξ1 ¼
2

ffiffiffi
23

p
γ

p
þ 22=3pþ 4q2; ð23Þ

ξ2 ¼ −
24

ffiffiffi
6

p
q2m

ð2
ffiffi
23

p
γ

p þ 22=3pþ 4q2Þ12
−
2

ffiffiffi
23

p
γ

p
− 22=3pþ 8q2;

ð24Þ

ξ3 ¼
24

ffiffiffi
6

p
q2m

ð2
ffiffi
23

p
γ

p þ 22=3pþ 4q2Þ12
−
2

ffiffiffi
23

p
γ

p
− 22=3pþ 8q2; ð25Þ

p ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q8ð2q2 þ 72Q2 − 108m2Þ2 − 4ðq4 − 12q2Q2Þ3

q
− q2ð2q2 þ 72Q2 − 108m2ÞÞ13; ð26Þ

γ ¼ q4 − 12q2Q2: ð27Þ

Since r1 and r2 satisfy r1 þ r2 ¼ 2m, we will use this
relation to eliminate r2 in favor of r1 when convenient. We
will use also the relation x1 þ x2 þ x3 þ x4 ¼ 0 to simplify
the expressions in the integrals.
The results of the integrals can then be express in terms

of incomplete elliptic integrals of the first, second, and third
kind, defined as

Fðxjm̄Þ ¼
Z

x

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄sin2θ

p ; ð28Þ

Eðxjm̄Þ ¼
Z

x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄sin2θ

p
dθ; ð29Þ

Πðn; xjm̄Þ ¼
Z

x

0

dθ

ð1 − nsin2θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄sin2θ

p : ð30Þ

When evaluating these expressions one must be careful
with the prescription for square root of complex numbers
and with the branch cuts in the elliptic functions. Our
prescriptions are those implemented in Mathematica 12,
which we have used for these calculations.
In order to fix the integration constants to the desired

values of Eq. (13), it is convenient to use the following
relation for elliptic integrals [44]

Πðn;φjαÞ ¼ −ΠðN;φjαÞþFðφ;αÞ

þ 1

2p
log½ðΔðφÞþp tanφÞðΔðφÞ−p tanφÞ−1�;

ð31Þ

where

N ¼ n−1sin2α ð32Þ

p ¼ ½ðn − 1Þð1 − n−1sin2αÞ�12 ð33Þ
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ΔðφÞ ¼ ð1 − sin2α sinφÞ12 ð34Þ

To use this identity in Eq. (30), we should clarify that
sin2 α ¼ m̄ and φ ¼ x, according to the prescriptions of
Mathematica 12. After using this identity and fixing the
integration constants to the values required in Eq. (13), we get

ϕqðrÞ ¼
2qffiffiffiffiffiffi
bf

p ðFðy1jsÞ − Fðy2jsÞÞ; ð35Þ

and

tqðrÞ ¼
1

ðx2 − r1Þðx2 − r2Þ
ffiffiffiffiffiffi
bf

p ðFðy2jsÞð2maðr1 − x2Þð2r2 þ x1 þ x3Þ − r21af − x22ðx3x2 þ x1x4ÞÞ

þ x2ð2maðr1 − x2Þ − ar21 þ x22ðx1 þ x2ÞÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − x1Þðr − x3Þðr − x4Þ

r − x2

s
−

ffiffiffiffiffiffi
bf

p
Eðy2jsÞ

þ a
ðm − r1Þ

ffiffiffiffiffiffi
bf

p
�r41Πððr1−x2Þcðr1−x1Þf ; y2jsÞ
ðr1 − x1Þðr1 − x2Þ

−
r42Πððx2−r2Þcðx1−r2Þf ; y2jsÞ
ðr2 − x1Þðr2 − x2Þ

�

þ 2m
�
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x1Þðr − x2Þ
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x3Þðr − x4Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x3Þðr − x4Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x1Þðr − x2Þ
p �

− 2
aΠðdb ; y2jsÞffiffiffiffiffiffi

bf
p

�
− cq; ð36Þ

where

cq ¼
Fðy1jsÞ

ðx2 − r1Þðx2 − r2Þ
ffiffiffiffiffiffi
bf

p ð2maðr1 − x2Þð2r2 þ x1 þ x3Þ − r21af − x22ðx3x2 þ x1x4ÞÞ

þ x2

�
2maðr1 − x2Þ − ar21 þ x22ðx1 þ x2Þ

ðx2 − r1Þðx2 − r2Þ
ffiffiffiffiffiffi
bf

p þ 1

�
−

ffiffiffiffiffiffi
bf

p
Eðy1jsÞ þ 2m

�
log

�
2

x1 þ x2

�
− 2

aΠðdb ; y1jsÞffiffiffiffiffiffi
bf

p
�

þ a
ðm − r1Þ

ffiffiffiffiffiffi
bf

p
�r41Πððr1−x2Þcðr1−x1Þf ; y1jsÞ
ðr1 − x1Þðr1 − x2Þ

−
r42Πððx2−r2Þcðx1−r2Þf ; y1jsÞ
ðr2 − x1Þðr2 − x2Þ

�
ð37Þ

and where we introduced the notation

a ¼ x1 − x2; b ¼ x1 − x3; c ¼ x1 − x4; ð38Þ

d ¼ x2 − x3; f ¼ x2 − x4; s ¼ cd
bf

; ð39Þ

y1 ¼ sin−1
ffiffiffi
f
c

r
; y2 ¼ sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − x1Þf
ðr − x2Þc

s
: ð40Þ

One can show that these expressions for tqðrÞ and ϕqðrÞ
satisfy the desired asymptotic behavior, namely, for r → ∞,
we have

ϕqðrÞ⟶
r→∞

q
r
þOðr−3Þ; ð41Þ

and

tqðrÞ⟶
r→∞

rþ 2m log

�
r
2m

�
þOðr−1Þ: ð42Þ

1. Parameters of the binary merger

We are now ready to determine the numerical value of
the relevant parameters that characterize the event horizon
of the merger of a charged binary black hole system in the
EMR limit. To find the numerical value of the parameters
we fix the charge to a specific value, which we choose to be
Q ¼ 4

5
m. This is later generalized to an arbitraryQ=m ratio.

In order to proceed with our analysis, we distinguish
between two classes of generators: the noncaustic gener-
ators and the caustic generators, which are separated by
the impact parameter q ¼ qc. The noncaustic generators are
the ones characterized by q ≤ qc. These are the generators
which do not have past endpoints, which means that going
back in time, starting from Iþ, they will not leave the
horizon at a caustic point. On the other hand, caustic
generators are the ones with q > qc. These are the ones that
enter the horizon at the line of caustics. Among them, we
can identify the ones with q ¼ q�, which are the last to
enter the event horizon through the caustic line. See Fig. 2
for a graphic representation.
The value q ¼ qc plays a fundamental role in our

computation. It corresponds to the rays that originate from
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the horizon of the small black hole (i.e., at r ¼ rþ) and
move in the direction of the large black hole (i.e., ϕ ¼ π).
This is similar to the case of the central geodesic, where the
light rays start at r ¼ rþ and move in the direction ϕ ¼ 0.
The light rays we are interested in here also start at r ¼ rþ,
but this time they have past endpoints since they do not
extend back to infinitely early times. This is possible only if
they are moving in the direction of the large black hole, i.e.,
ϕ ¼ π. Therefore, to determine qc, we need to solve the
following equation

ϕqcðrþÞ ¼ π: ð43Þ

We do so numerically and obtain the following value

qc ¼ 3.73166m: ð44Þ

As stated above, the noncaustic generators are the ones
with q ≤ qc. We can estimate the growth in the area of
the event horizon of the RN black hole considering that
its initial area is Ain ¼ 4πr2þ and the noncaustic gen-
erators contribute at future null infinity with a disk of

area πq2c [45]. The growth in the area of this part of the
event horizon is

ΔAnoncaustic ¼
��

qc
2rþ

�
2

− 1

�
4πr2þ: ð45Þ

Using this, we obtain

ΔAnoncaustic ¼ 0.35989Ain: ð46Þ

It is worth mentioning that in this part of the event
horizon no new generators are added. This means that we
are considering the growth in the area of the event
horizon due to the null geodesics that defined the RN
horizon at early times.
As above, the generators with qc < q < ∞ are called

caustic generators. All these generators enter the event
horizon at a caustic point at finite time. Among them, the
ones with q ¼ q� are the last to enter the event horizon. The
value q ¼ q�, along with t ¼ t� and r ¼ r�, characterizes
the pinch-on instant at which the two horizons merge. To
find these values, we follow the light rays with q ¼ q� back
in time from future null infinity. We see that once we arrive
at the caustic line they do not approach the small black hole
but they also do not leave it. This means that they are “still”
on the collision axis ϕ ¼ π. Thus we have _rjϕ¼π ¼ 0. The
null geodesics with q > q� are instead able to escape the
gravitational attraction generated by the small black hole.
This means that these light rays will not contribute to the
evolution of the event horizon of the RN black hole. On the
other hand, the generators with q < q� cannot escape
the gravitational attraction and are forced to move toward
the small black hole. With this in mind, it is clear that the
last generators to take part in the evolution of the event
horizon of the RN black hole are the ones that are unable to
escape its gravitational attraction but are not forced to move
toward it.
Since in the EMR limit we send M → ∞, the event

horizon of the large black hole becomes infinite. This
means that the actual number of null geodesics that define
the event horizon at Iþ is infinite. One could then ask what
happens to the generators with q > q�, given that the null
geodesics with q ¼ q� are the last to enter the horizon of
the small black hole. In this case, it is found that the
generators with q > q� simply enter the final horizon
through the large black hole [46].
According to Eq. (5), the values of r� and q� can be

found by solving

r4� − q2�r2� þ 2q2�mr� − q2�Q2 ¼ 0; ϕq�ðr�Þ ¼ π: ð47Þ

Once again we solve these equations numerically and we
get

r� ¼ 3.0643m; q� ¼ 4.75396m: ð48Þ

FIG. 2. Representation in the ðx; zÞ plane of the event horizon.
The gray circle is the RN black hole, the red lines represent the
noncaustic generators, the purple ones are the generators with
q ¼ qc and the blue curves are the null geodesics with q ¼ q�.
The light rays with qc < q < q� enter the event horizon through
the small black hole while the generators with q > q� are able to
move away from it. The last generators enter the event horizon
through the large black hole. All the curves move toward positive
z direction. Note that this representation is analogous to the one
obtained for the neutral case studied in [4] (see Fig. 5 therein).
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We can now use these values in the expression for tqðrÞ [see
Eq. (36)] to find t�:

t� ¼ −8.10602m: ð49Þ

It is interesting to compare the results (44), (48), (49) with
the ones of the neutral case analyzed in [4]. In the charged
case these values are smaller, meaning that the pinch-on
happens closer to the center of the small black hole in the
EMR limit. Furthermore, r� can be taken as a measure of
how strongly the small black hole is distorted during the
merger. Given that the presence of the charge leads to a
smaller r� than in the neutral case, one can see that a
charged black hole is less distorted than a neutral one
during the merger.
Another interesting aspect to examine is the duration of

the merger. To estimate this, we need to consider the
difference Δ� between the retarded time at Iþ of the event
horizon in the direction ϕ ¼ 0 and the retarded time
associated to the light rays emitted when the two black
holes merge in the direction of the large black hole (ϕ ¼ π).
The latter is simply t�, the former is given by the central
generator inEq. (15) evaluated in r ¼ r� [4].WedefineΔ� as

Δ� ¼ tq¼0ðr�Þ − t�: ð50Þ

Inserting in this expression the values of r� and t� previously
determined, we get

Δ� ¼ 10.4669m: ð51Þ

The value of Δ� in the neutral case is Δ� ¼ 11.89352m [4].
Using the interpretation ofΔ� as a duration timescale for the
merger, it follows that mergers with a charged small black
hole are shorter. This comes with no surprise since it was
already pointed out in [47–49] that electric and magnetic
charges can significantly suppress merger times of charged
black hole binaries in both circular and elliptical orbits
(furthermore, see [50] for a discussion on the effect of this in
themerger rate). This could be explainedwithin our work by
recalling that a charged black hole is smaller than a neutral
one and thus it will be absorbed more quickly by the large
black hole.
Although the above parameters qc, r�, q�, t�, and Δ� are

calculated in an illustrative manner for a fixed value of the
charge Q ¼ 4

5
m, it is possible to obtain them in a general

case as functions ofQ by fixing an arbitrary length scalem.
These are plotted in Figs. 3–7, respectively. From these
figures one can see that the magnitude of the parameters of
the merger becomes smaller as the charge grows, which
means that the merger happens closer to the center of the
small black hole when more charged is added. Figure 4 tells
us that the more charge is present in the merger, the less
distorted the small black hole becomes, while fromFig. 7we
can see that the presence of charge speeds up the merger.

We can now quantify the change in the area of the small
black hole including also the generators with qc < q < q�.
We have

ΔAsmallbh ¼
��

q�
2rþ

�
2

− 1

�
4πr2þ; ð52Þ

and substituting in the values of q� we obtain

ΔAsmallbh ¼ 1.20705Ain: ð53Þ

Once again, it is interesting to compare the results of the
charged case with the ones of the neutral case obtained in
[4]. As we can see from (46) and (53), the growth in the
area of the event horizon of a charged black hole is much
bigger than the growth in the area of the neutral black hole.
As we mention in Sec. II, the more charge is added, the

FIG. 3. Threshold impact parameter qc that separates the
caustic generators q > qc and the noncaustic generators
q ≤ qc, as a function of Q. The axes are measured in units of m.

FIG. 4. Value of the radial coordinate r� at which the pinch-on
happens, as a function of Q. The value of r� can be taken as a
measure of the distorsion of the small black hole during the
merger. The axes are measured in units of m.
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smaller the black hole becomes. This means that the initial
area of a RN black hole of massm is much smaller than the
initial area of a Schwarzschild black hole of the same mass
and thus the contribution of the generators (in the growth of
the area) is more significant in the charged case. Also note
that, compared to the case in (46), we now need to take into
account also the generators with qc < q < q�. This
explains why the results (46) and (53) are different. It is
also interesting to mention that both (46) and (53) show a

positive growth in the area of the event horizon, satisfying
the second law of black hole mechanics.

B. Extremal case: jQj=m
The extremal case can be easily studied by taking the

limit Q → m in the expressions (14)–(17) or, equivalently,
directly in the results given in (35)–(37) derived in the
previous section. The expression that we obtain for tqðrÞ in
this case reads [51]

tqðrÞ ¼ 2m log

�
q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x1Þðr − x2Þ
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x3Þðr − x4Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x3Þðr − x4Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x1Þðr − x2Þ
p �

− x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − x1Þðr − x3Þðr − x4Þ

r − x2

s

þ am4ffiffiffiffiffiffi
bf

p ðm − x1Þ2ðm − x2Þ2
��

x1x3f − 2qm2 þ x2x4b
ðm − x4Þðm − x3Þ

− 2ðm − qÞ
�
Π
�
cðm − x2Þ
fðm − x1Þ

; y2js
�

þ
�
2ðm − qÞðm − x3Þ þ

bcðm − x2Þ2 − dfðm − x1Þ2
2aðm − x4Þ

�
Π
�
cðm − x2Þ
fðm − x1Þ

; y1js
�

þ bðm − x1Þðm − x2Þ
aðm − x3Þðm − x4Þ

�
f

�
Eðy1jsÞ

2
− Eðy2jsÞ

�
þ cðm − x2Þffiffiffiffiffiffi

ab
p

�
4 sinð2y1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − x3Þðr − x2Þ
p

2ðm − rÞ sinð2y2Þ
���

þ maffiffiffiffiffiffi
bf

p
�

m3f
ðm − x1Þðm − x2Þ2ðm − x4Þ

�
Fðy2jsÞ −

Fðy1jsÞ
2

�
þ 4

�
Π
�
d
b
; y1js

�
− Π

�
d
b
; y2js

���

þ ððx1x4 þ x2x3Þx22 − amð4m2 þ ðx1 − 6x2 þ x3Þmþ 2x2ðx1 þ x3ÞÞÞffiffiffiffiffiffi
bf

p ðm − x2Þ2
ðFðy1jsÞ − Fðy2jsÞÞ

þ m4

ðm − x1Þ2ðm − x2Þ2
�
að2mþ qÞffiffiffiffiffiffi

bf
p þ ðx1x3f − 2m2qþ x2x4bÞ

2ðm − x3Þðm − x4Þ
�
Π
�
cðm − x2Þ
fðm − x1Þ

; y1js
�

þ m4

2ðm − x1Þðm − x4Þ
�

b
aðm − x3Þ

�
fEðy1jsÞ
m − x2

þ c sinð2y1Þ
2

ffiffiffiffiffiffi
ab

p
�
−

fFðy1jsÞ
ðm − x2Þ2

�
þ

ffiffiffiffiffiffi
bf

p
ðEðy1jsÞ − Eðy2jsÞÞ ð54Þ

FIG. 6. Value of the time coordinate t� of the pinch-on
[according to the time origin imposed by (42)], as a function
of Q. The axes are measured in units of m.

FIG. 5. Impact parameter q� of the last generator to enter the
horizon at the caustic line as a function of the charge Q of the
small black hole. The axes are measured in units of m.
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where we now have that

x1;2 ¼
1

2
ðq ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðq − 4mÞ
p

Þ;

x3;4 ¼
1

2
ð−q ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðqþ 4mÞ
p

Þ; ð55Þ

and we used the definitions in (38). For the central
generator, in the extremal case, we obtain

tq¼0ðrÞ ¼ rþQ2 − 2m2

r −m
þm logðQ2 þ r2 − 2mrÞ: ð56Þ

Note that the expression for ϕqðrÞ has the same form as in
Eq. (35) but where x1, x2, x3 and x4 are instead the ones
defined in Eq. (55). We can now use the expressions for
tqðrÞ, tq¼0ðrÞ and ϕqðrÞ to compute the same parameters
we extracted in the case jQj < m discussed in Sec. II A.
The geometry of the problem is of course the same
therefore, also in the extremal case, we need to solve
Eq. (43) to determine the value of qc and Eq. (47) to
determine r� and q�. Inserting these last two values in the
expression for tqðrÞ, we get the numerical value of t�,
which we can use together with the central generator in
Eq. (56) (evaluated at r ¼ r� and for Q ¼ m) to extract the
duration of the merger Δ�, according to Eq. (50). The
parameters that we obtain in the extremal case are

qc ¼ 2.69128m; r� ¼ 2.72454m; q� ¼ 4.30440m;

t� ¼ −7.54738m; Δ� ¼ 9.39568m: ð57Þ

We can use the values of qc and q� to evaluate the growth in
the area of the event horizon of the small black hole due to
noncaustic generators and the caustic ones, solving
Eqs. (46) and (52) in the extremal case. We get

ΔAnoncaustic ¼ 0.81075Ain;

ΔAcaustic ¼ 3.63196Ain: ð58Þ

By comparing these results with the ones of Sec. II A, it is
clear that in the extremal case the parameters of the merger,
i.e., qc, q�, r�, t�, are smaller than the ones obtained in the
Q < m case. This means that the small black hole, in the
extremal case, is less distorted during the merger [52] and
also that the pinch-on happens closer to its center.
From (57) we can also see that the duration of the merger

is smaller in this case. This can be explained recalling that
an extremal RN black hole is the smallest possible charged
black hole, thus it is absorbed quicker by the large black
hole during the merger.
Finally we can compare the growth in the area of the

event horizon of the small black hole in both cases. From
Eqs. (58), (45), and (52) it is clear that the contribution of
the generators to the area of the event horizon is more
significant in the extremal case. Once again this can be
explained thanks to the smaller dimension of an extremal
black hole compared to a regular RN black hole.

C. Orbit, spin, and charge of the large black hole

In the previous derivations we have obtained the char-
acteristic equations for the merger without referencing the
orbital properties of the binary system nor the charge or
spin of the large black hole, which are not necessarily
negligible. We will now argue that the results obtained for
the radial infall in a noncharged, nonspinning large black
hole are valid for any possible merger in the EMR limit.
Considering first the dynamical parameters, we can

immediately see that any relative motion between the black
holes in the EMR limit is a linear combination of parallel
and perpendicular movement with respect to the event
horizon of the large black hole. The invariance under boosts
of the asymptotic surface from which the horizon of the
large black hole is traced back guarantees the invariance
under perpendicular motion; for parallel motion, a similar
argument allows us to fix it to zero without loss of
generality [5]. It is also direct to see that the charge of
the large black hole is irrelevant in this limit, as the charge
term in the RN metric (1) scales as r−2, whereas the mass
term scales as r−1. The steeper r-dependence of the charge
term implies that its contribution becomes irrelevant out-
side the event horizon of the large black hole in theM → ∞
limit, even if the large black hole was near-extremal.

III. NUMERICAL SOLUTION IN D= 4

The approach we use for the numerical computation of
the event horizon of a charged binary black hole system is
slightly different from the analytical case, as we will now
work with the Hamiltonian form of the geodesic equations,
i.e., using the coordinates xμ and the canonical conjugate
momenta pμ. This formalism has the advantage that the

FIG. 7. Difference Δ� between the retarded time at Iþ of the
event horizon in the direction ϕ ¼ 0 and the retarded time
associated to the light rays emitted when the two black holes
merge in the direction of the large black hole (ϕ ¼ π), as a
function of Q. The value of Δ� can be taken as a measure of the
duration of the merger. The axes are measured in units of m.
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FIG. 8. Event horizon in a merger of a supermassive black hole with a charged black hole of jQj ¼ 4=5m. The red curve represents the
caustic line. The axes are measured in units of m.

FIG. 9. Event horizon in a merger of a supermassive black hole with a near extremal charged black hole of m ¼ jQj. The red curve
represents the caustic line. The axes are measured in units of m.
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FIG. 10. Constant-time slices of the event horizon in a merger of a supermassive black hole (down) with a charged black hole of
jQj ¼ 4=5m (center) in the latter’s centre-of-mass reference frame. The event horizon is plotted with a black line, the gray area
represents the inside of the black holes. The axes are measured in units of m. The time slices are taken at regular time intervals. An
animation of these slices can be found in [54].
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resulting differential equations become much easier to
solve numerically, mainly because it avoids the problems
in the change of signs of the square roots (see [5]). We will
use the equations derived in [6], which we reproduce here
for convenience.[53]

dt
dλ

¼ ΔðrÞ−1 ð59Þ

dr
dλ

¼ ΔðrÞpr ð60Þ

dϕ
dλ

¼ q
r2

ð61Þ

dpr

dλ
¼ −

Δ0ðrÞ
2ΔðrÞ2 −

Δ0ðrÞ
2

p2
r þ

q2

r3
ð62Þ

where, as above, we use λ as the affine parameter, q as
the impact parameter at infinity, ΔðrÞ ¼ 1 − 2m

r þ Q2

r2

and Δ0ðrÞ ¼ dΔðrÞ
dr .

In order to solve these differential equations, we need a
set of integration constants, which we obtain by requiring
that the null surface which defines the event horizon at Iþ
(i.e., r → ∞) becomes a planar horizon. First, we need to
obtain an explicit expression for prðrÞ (i.e., by evaluating
pμpμ ¼ 0)

pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − 2m

r þ Q2

r2 Þ q
2

r2

q
1 − 2m

r þ Q2

r2

ð63Þ

This expression can be used to decouple the inverse
equation dλ=dr. Working with the inverse equation allows
us to perform a series expansion around r → ∞, integrate
and invert the series. The result yields

rðλÞ¼ r∞þλþq2

2λ
−
mq2

2λ2
þð4Q2−3q2Þq2

24λ3
þOðλ−4Þ ð64Þ

Here, r∞ is the integration constant, which we can set to
zero by λ reparametrization. We can then use Eq. (64) to
solve (60), (61), and (63) around Iþ. We get

tðλÞ ¼ t∞ þ λþ 2m log
λ

2m
þQ2 − 4m2

λ

−
mð8m2 − q2 − 4Q2Þ

2λ2

−
16m4 þQ2ðq2 þQ2Þ − 3m2ðq2 þ 4Q2Þ

3λ3

þOðλ−4Þ ð65Þ

ϕðλÞ ¼ ϕ∞ −
q
λ
þ q3

3λ3
þOðλ−4Þ ð66Þ

prðλÞ ¼ 1þ 2m
λ

þ 8m2 − q2 − 2Q2

2λ2

þmð8m2 − q2 − 4Q2Þ
λ3

þOðλ−4Þ ð67Þ

where the integration constants t∞ and ϕ∞ can be set to
zero without loss of generality by shifting the time origin
and orientation of the null plane.
Having determined all the integration constants, we

proceed by numerically solving the coupled differential
equations (59)–(62). From these, we obtain only three
independent functions: tðλÞ, rðλÞ, and ϕðλÞ [as prðλÞ can be
computed from rðλÞ via (63)]. Therefore, and since the
parameter λ is physically irrelevant, all the nontrivial
information about the merger can be summarized in a
three-dimensional plot. In order to generate such plots, we
use again the Cartesian-like coordinates defined in (6) and
plot the results in ðx; z; tÞ space. The obtained plots are
shown in Figs. 8 and 9. It is also worthwhile to generate
constant-time slices of these plots, effectively making a
movie of the event horizon during the merger. These
constant-time slices are shown in Fig. 10.
The final step is to prove the agreement between the

analytical and numerical methods. In order to do so, we will
recompute the merger parameters in Eqs. (44), (48), (49),
and (57) using the approach of this section, then check that
the values agree. For a regular charged black hole with
Q ¼ 4

5
m (Sec. II A 1), we obtain

qc ¼ 3.73m; r� ¼ 3.07m;

q� ¼ 4.76m; t� ¼ −8.12m; ð68Þ

whereas for an extremal black hole (Sec. II B)

qc ¼ 2.71m; r� ¼ 2.71m;

q� ¼ 4.30m; t� ¼ −7.57m: ð69Þ
The two methods agree as expected, with very small
discrepancies of the order Oð0.01mÞ.

IV. GENERALIZATION TO D > 4 DIMENSIONS

The strength of the numerical computation presented in
the previous section is that it can be easily extended to
handle more general setups. In this section, we will
consider the case of an arbitrary number D of space-time
dimensions. Note that this problem is only well defined
for D ≥ 4, as lower-dimensional extensions of general
relativity without a cosmological constant do not admit
black holes. The study of the event horizon in higher
dimensionality is motivated by the fact that in string
theory and in holographic models, such as the AdS=CFT
correspondence (See [55] and references therein for an
introduction to the AdS=CFT correspondence), one typ-
ically deals with dimensions higher than 4. Furthermore,
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FIG. 11. Constant-time slices of the event horizon in a merger of a supermassive black hole (down) with a charged black hole of
jQj ¼ 4=5m (centre) in the latter’s centre-of-mass reference frame and in D ¼ 5 dimensions. The event horizon is plotted with a black
line, the gray area represents the inside of the black holes. The axes are measured in units of m. The time slices are taken at regular time
intervals. An animation of these slices can be found in [54].
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the inclusion of the extra adjustable parameterD allows us
to probe which properties of general relativity are inherent
to the theory and which are instead artifacts of set-
ting D ¼ 4.
To generalise our numerical computation, we redefine

the function ΔðrÞ appearing in the metric as

ΔðrÞ ¼ 1 −
2m
rD−3 þ

Q2

r2ðD−3Þ ð70Þ

For this general case, though, it will not be possible to
obtain explicit, D-dependent asymptotic conditions.
Instead, one would need to perform the asymptotic expan-
sion for each fixed value ofD. As an example, we will now
work in D ¼ 5 dimensions, for which we obtain the
following conditions at Iþ

rðλÞ ¼ λþ q2

2λ
−
mq2

2λ2
þ ð4Q2 − 3q2Þq2

24λ3
þOðλ−4Þ ð71Þ

tðλÞ ¼ λþQ2

λ
−
2mþQ2ðq2 þQ2Þ

3λ3
þOðλ−4Þ ð72Þ

ϕðλÞ ¼ −
q
λ
þ q3

3λ3
þOðλ−4Þ ð73Þ

prðλÞ ¼ 1þ 4m − q2

2λ2
þOðλ−4Þ ð74Þ

Similarly as above, we proceed by numerically solving
the differential equations (59)–(62), but now making use of

the generalized definition of ΔðrÞ (70). As in Sec. II A 1,
we choose Q ¼ 4

5
m, but we will now work in D ¼ 5

dimensions, obtaining the following results, as well as
Figs. 11 and 12.

qDc ¼ 2.50m; rD� ¼ 1.98m;

qD� ¼ 2.72m; ΔD� ¼ 6.26m: ð75Þ

The most notable difference with the D ¼ 4 case is that
the horizon is much less distorted during the merger
(rD� < r�) and the merger is shorter (ΔD� < Δ�). This is
an expected result, as an increase in D implies a steeper
r-dependence of ΔðrÞ, so that the characteristic timescale
and the length scale for decaying are much shorter. A
similar argument explains the relations qD� < q� and
qDc < qc. In general, one would find that r�, Δ�, q�, and
qc are monotonously decreasing functions of the number of
dimensions, asymptotically approaching zero as D → ∞.

V. CONCLUSION

In this paper we studied the evolution of the event
horizon of a charged black hole binary merger. To do so, we
have used the EMR limit, where m=M → 0. This limit is a
very powerful analytical tool which has numerous appli-
cations in physics. Usually, it is realized by considering one
of the two black holes as a pointlike object (m → 0) while
keeping the mass of the other one fixed. In that case,
though, the geometrical structure of the small black hole
(which defines the event horizon) would vanish, thus

FIG. 12. Event horizon in a merger of a supermassive black hole with a charged black hole of jQj ¼ 4=5m in D ¼ 5 dimensions. The
red curve represents the caustic line. The axes are measured in units of m.
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making it impossible to study the evolution and the
properties of the boundary of the small black hole.
Therefore, in the situation we analyse in this paper, the
point-particle limit is instead obtained in the complemen-
tary case, namely by sending M → ∞ while keeping
m fixed.
The importance of examining the merger of two black

holes in the EMR limit is related to the fact that these
mergers do indeed occur in Nature when a small compact
object such as a stellar-mass black hole is captured by a
super-massive black hole. In the coming years this will be
of outmost relevance, since one of the main scientific goals
of the upcoming space-based detector LISA is the detection
of the gravitational wave signals produced by these mergers
[26,56]. Moreover, EMR mergers are important in the
investigation of possible extensions of general relativity
and the standard model (see, e.g., [57] for a status report).
We performed our analysis of the evolution of the event

horizon during the merger both analytically (in Sec. II) and
numerically (in Sec. III and IV). The procedure we used,
i.e., integrating back in time the null geodesics that define
the event horizon at Iþ, is completely general and can be
used to extract the properties of the event horizon in the
merger of any type of black hole. From this, we extracted
some of the most relevant features of the merger, such as
the presence of a line of caustics, which is general in black
hole mergers and allows us to separate the generators of the
event horizon in two different classes, caustic and non-
caustic generators. We also computed the growth in the area
of the event horizon of the small black hole and the duration
of the merger. As we can see from Eqs. (44), (48), (49),
(68), and (69), the analytical and numerical approaches
agree as expected, with a small discrepancies of
order Oð0.01mÞ.
In order to see how the presence of charge changes the

parameters of the merger, it is interesting to compare the
results of this paper with the ones of Ref. [4], which studies
the analogous situation for the merger between two neutral
black holes in the EMR limit. In particular, we found that
the values of qc, q�, r�, and t� in our case are smaller than
those in the neutral case. The decrease in the radial
component can easily be explained as follows: since the
event horizon is at rþ < r0 (where r0 ¼ 2m indicates the
position of the event horizon of a Schwarzschild black
hole), the smaller black hole gets less distorted and the

pinch-on happens closer to its center. Moreover, in Sec. II
we estimated only the growth in the area of the small black
hole, neglecting the growth of the horizon of the large black
hole. As it is pointed out in [4], this is a consequence of
taking the EMR limit with M → ∞: in this viewpoint, the
size of the event horizon of the large black hole becomes
infinite, which means that in order to evaluate the growth in
its area we should consider all the infinite number of
generators with qc < q < ∞, thing which is highly non-
trivial to do in this limit.
The analysis presented in this paper can be extended to

include more general scenarios, as for example illustrated
in Sec. IV for the case of an arbitrary number of
dimensions. A possible extension of our results to a more
realistic and generic situation could consider the case of an
EMR binary where the small black hole is a charged
rotating black hole described by the Kerr-Newmann sol-
ution [58]. In this case, the analysis of the evolution of the
event horizon is more complicated due to the spin of the
small black hole. A step forward in this direction has been
done in [5] for a binary merger in the EMR limit where the
small black hole is a neutral, rotating black hole, described
by the Kerr metric. The result of this paper could be used as
a starting point to study the more difficult general case
where the small black hole is described by the Kerr-
Newmann metric. As explained in the Introduction, even
though black holes are generically considered neutral
objects, the inclusion of charge could be relevant in order
to investigate how the dynamics of black holes is influ-
enced by its presence and for testing the validity of various
exotic models [15,16,20].
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