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All existing treatments of bimetric MOND (modified Newtonian dynamics) (BIMOND)—a class of
relativistic versions of MOND—have dealt with a rather restricted subclass: The Lagrangian of the
interaction between the gravitational degrees of freedom—the two metrics—is a function of a certain single
scalar argument built from the difference in connections of the two metrics. I show that the scope of
BIMOND is much richer: The two metrics can couple through several scalars to give theories that all have a
“good” nonrelativistic (NR) limit—one that accounts correctly, à la MOND, for the dynamics of galactic
systems, including gravitational lensing. This extended-BIMOND framework exhibits a qualitative
departure from the way we think of MOND at present, as encapsulated, in all its aspects, by one
“interpolating function” of one acceleration variable. After deriving the general field equations, I pinpoint
the subclass of theories that satisfy the pivotal requirement of a good NR limit. These involve three
independent, quadratic scalar variables. In the NR limit these scalars all reduce to the same acceleration
scalar, and the NR theory then does hinge on one function of a single acceleration variable—representing the
NR MOND interpolating function, whose form is largely dictated by the observed NR galactic dynamics.
However, these scalars take different values and behave differently in different relativistic contexts. So, the
full richness of the multivariable Lagrangian, as it enters cosmology, for example, or gravitational-wave
dynamics, is hardly informed by what we learn of MOND from observations of galactic dynamics. In this
paper, I present the formalism, with some generic examples. I also consider some cosmological solutions
where the two metrics are small departures from one Friedmann-Lemaitre-Robertson-Walker metric. This
may offer a framework for describing cosmology within the extended BIMOND.
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I. INTRODUCTION

The modified Newtonian dynamics (MOND) paradigm
[1] extends Newtonian dynamics and general relativity,
so as to account for the dynamics of galactic systems, and
of the Universe at large, without “dark matter.” MOND
proposes that standard dynamics break down in the limit
where accelerations in a system are around or below a
certain acceleration a0—the MOND acceleration constant.
In the “deep-MOND” limit—much below a0—MOND
posits that dynamics become spacetime scale invariant, at
least in the nonrelativistic (NR) limit, and for systems
whose dynamics is governed by gravity [2]. In the high-
acceleration limit, MOND posits a rapid return to standard
dynamics (a “correspondence principle”). Reviews of
MOND can be found in Refs. [3–8].
Already from the above basic axioms, a large number of

“MOND laws” of galactic dynamics follow [9]. As dis-
cussed in detail in the above reviews, these predictions have
been amply tested by observations of galactic systems. The
MOND constant appears in various roles in the MOND
predictions, and so its value could be deduced from several
independent observations, all giving, consistently, a value
of a0 ≈ 1.2 × 10−8 cm s−2.

Quite interestingly (e.g., Refs. [1,10]), this value of a0
may be of cosmological significance, since

ā0 ≡ 2πa0 ≈ aHð0Þ≡ cH0 ≈ aΛ ≡ c2=lΛ; ð1Þ

where H0 is the present-day value of the cosmological
expansion rate and lΛ ¼ ðΛ=3Þ−1=2 is the radius associated
with Λ—the observed equivalent of a cosmological con-
stant. The “MOND length,” lM ≡ c2=a0, is thus of the
order of the present characteristic size of the observable
universe, lU. This numerical “coincidence,” if fundamen-
tal, may have far-reaching ramifications for MOND and for
gravity in general. It would also be exciting if this can be
shown to follow from some fundamental MOND theory, as
discussed in Ref. [10].
At present, we work with two NR Lagrangian formula-

tions of MOND that embody the above basic tenets,
one dubbed AQUAL (for “aquadratic Lagrangian”) [11],
the other, QUMOND (for “quasilinearMOND”) [12]. These
have been applied extensively to study (NR) dynamical
processes in galactic systems, such as the formation and
interactions of galaxies and dynamical friction (e.g.,
Refs. [13–19]).
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The dynamics of galactic systems is highly NR, and
accounting for them within present accuracy does not
require a relativistic theory: The highest mean-field gravi-
tational potentials encountered in such systems (and the
squared velocities virially related to them) are ≲10−5c2.
However, it has been clear from the outset that we must
construct relativistic theories whose NR limit complies
with MOND’s basic tenets. General relativity (GR) reduces
to Newtonian dynamics in the NR limit; so if MOND is to
extend the latter in the NR regime, there must be a
relativistic theory that extends GR and that describes
MOND phenomenology in this limit. To boot, there are
central astrophysical phenomena that do require a relativ-
istic description.
One of these concerns gravitational lensing by galactic

systems and large-scale structure. We are then still in the
weak-field limit of gravity itself—the gravitational field is
produced by slow moving bodies, and the potential is≪c2.
But we are dealing with photon trajectories, and these
probe the theory beyond the NR limit. In a single-metric
theory, such as GR, there is a coordinate frame where the
metric describing the gravitational field of a NR system,
such as a galaxy, can be brought to the form

gμν ≈ ημν − 2c−2diagðϕ;ψ ;ψ ;ψÞ; ð2Þ

with ϕ;ψ ≪ c2. The potential ϕ alone governs the motion
of slow-moving bodies, such as that of galactic constituents
within a galactic system. But the null trajectories of
massless particles (photons) depend also on ψ . In GR,
ψ ¼ ϕ, but this is not necessarily so in other relativistic
theories. We can tell to what extent this equality holds
in nature by comparing the observed motion of slow
particles—e.g., of stars or gas rotating around a galaxy—
with gravitational lensing by the same galaxy, and see if
they are governed by a single potential.
If we want such a comparison to pertain to the MOND-

vs-dark-matter issue, we need to make it in low-acceleration
systems—i.e., where “mass anomalies” prevail according to
MOND—because MOND is posited to coincide very nearly
with GR in the high-acceleration regime.
Comparison of lensing with slow-moving test masses in

galaxy clusters (e.g., Ref. [20]) and of lensing at the very
outskirts of galaxies of all types, compared with their
rotation curves (e.g., Refs. [21–23]), is consistent with this
single-potential NR geometry,1 as one finds in these cases
ψ ≈ ϕ. Given this, construction of relativistic MOND
formulations has concentrated on theories whose NR
dynamics is governed by a single potential ϕ. In such
MOND theories, the NR potential, ϕ, is then not determined
by the Poisson equation, as in GR, but by some other,

MOND, equation, such as those of AQUAL or QUMOND,
mentioned above.
Beyond weak-gravity systems—such as galaxies and

galactic systems—what strong-gravity phenomena
(ϕ=≪c2) fall in the MOND regime? Because of the above
coincidence (1), a system of size R and characteristic
potential ϕ is both in the MOND regime—i.e., having
ϕ=R≲ a0 ∼ c2=lU—and in the strong-gravity regime—
having ϕ ∼ c2—must have R≳ lU, namely, a size compa-
rable to or larger than that of the observable universe. Thus,
the only strong-gravity, MOND system is the Universe at
large and its cosmology. In “cosmology” we also include
such aspects as structure formation and the cosmic micro-
wave background, which are strictly speaking not strong
field, but do require modified dynamics if we want to avoid
dark components. On the other hand, strong-field phenom-
ena, such as the formation and mergers of black holes, and
the emission of gravitational waves in these processes, are
strong-field phenomena, but occur at accelerations much
higher than a0, and can hardly be affected by MOND.
According to a theorem by Lovelock [24], GR is the only

local, generally covariant theory in four-dimensional space-
time, derivable from an action, with a single metric as the
gravitational degree of freedom, whose field equations are
of second order, and that has special relativity as its “no-
gravity” limit. A relativistic extension of MOND, as any
other generalization of GR, must then break with one of
these restrictions.
In MOND, which introduces a fiducial constant with the

dimensions of acceleration, this fact is further brought home
to us for the following reason: In constructing a relativistic
action, we need to identify a quantity constructed from the
degrees of freedom—a scalar, if we want the theory to be
covariant—that has the dimensions of acceleration. The
theory then compares the value of this scalar with a0 for the
system under study and directs us according to whether we
are in the high- or low-acceleration regime.2 In modified
gravity theories, such as the one I deal with here, where we
modify the gravitational action, we need to construct this
quantity from the gravitational degrees of freedom. But, we
cannot construct such a scalar from a single metric and its
first derivatives.
We can, for example, relinquish locality and write

acceleration scalars from nonlocal differential operations
on the metric, as in Refs. [25,26]. Or we can relinquish
general covariance, invoking a preferred frame, as in
Ref. [27], which, however, is equivalent to a covariant
theory with added degrees of freedom—a so-called fðQÞ
theory [27,28].

1Although the accuracy is not very high, there is still room for
some departure from this geometry.

2In analogy with quantum theory, which introduces ℏ of the
dimensions of action, where system attributes of these dimen-
sions are to be compared with ℏ to indicate whether we are in the
quantum or classical regime.
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Or else, we can break off the Lovelock requirements by
introducing additional gravitational degrees of freedom.
For example, the first (toy) relativistic MOND theory [11]
is a scalar-tensor theory, discarded because it does not
produce single-potential lensing in the above sense. The
first relativistic MOND theory with single-potential lensing
was put forth by Sanders in Ref. [29]. But it included a
nondynamical, Lorentz-symmetry-breaking background
vector field. Bekenstein [30] then turned this into a full
fledged MOND theory with single-potential lensing called
TeVeS. TeVeS with its various versions (characterized by
different couplings between the tensor, vector, and scalar
degrees of freedom) has been the most widely studied
relativistic MOND theory.
Particularly noteworthy is the recent advent of a TeVeS

version dubbed RMOND (for relativistic MOND) [31–33]
(see also Ref. [34]). This theory, beyond reproducing NR
MOND phenomenology (including lensing), is said to
imply that the propagation speed of tensor gravitational
waves equals that of light under all circumstances, and it
can also reproduce the observed properties of the micro-
wave background radiation and of the formation of large-
scale structure.
Bimetric MOND (BIMOND) [35]—which is the subject

of this paper—is a class of relativistic MOND formulations
in which the gravitational degrees of freedom are two
metrics: one, gμν, that couples to “matter,” which we
perceive as our world, and another metric, ĝμν, that couples
to “twin matter,” and which is assumed not to interact
directly with matter.
The availability of a second metric enables one to

construct “relative-acceleration” scalars: The affine connec-
tions of the two metrics3 are not themselves tensors, but their
difference,

Cλ
μν ¼ Γλ

μν − Γ̂λ
μν; ð3Þ

is a tensor.4 This relative-acceleration tensor can be used to
construct various “acceleration scalars” by various contrac-
tions of powers of Cλ

μν. From these, one can construct terms
in a BIMOND action that represent interactions between the
two metrics, and one can choose these interactions so as to
give MOND phenomenology in the NR limit.
We also want to retain all the successes of GR in

the high-acceleration regime. To achieve this, BIMOND is
constructed by adding the BIMOND interaction term to
the standard Einstein-Hilbert actions of the two metrics,

and decreeing that this interaction vanishes in the high-
acceleration limit.
The general, schematic form of the BIMOND gravita-

tional action is thus

I ¼ −
1

16πG

Z
d4x½Ajgj1=2Rþ Âjĝj1=2R̂

þ vðg; ĝÞl−2
M MðflMCgÞ�; ð4Þ

where vðg; ĝÞ stands for a volume element constructed from
the two metrics, flMCg in the argument of the interaction
Lagrangian, M, stands for a collection of scalars con-
structed from the dimensionless lMCλ

μν, and lM ¼ a−10 is
the MOND length, where I use units where c ¼ 1, adopted
hereafter.
For some reasons—unjustified as I now realize—all pre-

vious studies of BIMOND’s various aspects [27,28,35–39]
dealt with a BIMOND version that employs essentially a
single scalar, obtained by contracting the tensor

ϒμν ≡ Cγ
μλC

λ
νγ − Cλ

μνCα
λα ð5Þ

with gμν or ĝμν, namely, ϒ≡ gμνϒμν and/or ϒ̂≡ ĝμνϒμν.
These two scalars define in a sense only one variable ofM
because they represent the same basic scalar (see Sec. II).
So in this formulation, the effective BIMOND Lagrangian
is a function of a single variable Zϒ ¼ l2

Mϒ. The form of
MðZÞ is then determined from MOND phenomenology in
the NR limit (it is tantamount to the so-called MOND
interpolating function). Thus in such limited BIMOND
versions, what we know from the NR phenomenology fully
determines the theory also in the relativistic regime.
The main result of this work is that there is a much larger

subclass of BIMOND theories that have a single-potential
NR MOND phenomenology. Instead of one, there are
several independent quadratic scalars (and all their linear
combinations) that yield such a phenomenology. The
interaction Lagrangian may thus be taken as a multivariable
function of these, MðZ1;Z2;…Þ. In the NR limit, how-
ever, all these scalars tend to the same NR scalar accel-
eration variable, Z̄, and the interaction reduces to a function
of this single variable, M̄ðZ̄Þ, yielding the NR, MOND
interpolating function, which is determined by NR phe-
nomenology. As a consequence, knowledge of M̄ðZ̄Þ
constrains the full MðZ1;Z2;…Þ only very poorly. For
example, there are acceleration scalars, Z, that do not
contribute at all in the NR limit, but may be important
beyond it, and so, the dependence of the theory on them
disappears altogether in the NR limit.
Here, I ignore the important questions of stability

properties and the possible existence of ghosts in such
theories. These theories are in any event, at best, effective
theories that clearly do not encapsule the whole story. So
perhaps even theories that on the face of it are unstable may

3Taken here as the metric-compatible, symmetric, Levi-
Civita-Christoffel connections—Γλ

μν and Γ̂λ
μν, respectively.4The tensor Cλ

μν may be thought of as the “relative acceleration
field” of gμν with respect to ĝμν, in the sense that in a frame
where ĝμν is locally flat at some x̂ [i.e., Γ̂μ

αβðx̂Þ ¼ 0], we have
d2xμ=dτ2jx̂ ¼ −Cμ

αβ _x
α _xβ, on a geodesic of gμν through x̂.
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be cured by adding elements. In particular, this may be so in
the context of MOND, where departures from (the stable)
GR are characterized by a MOND length lM ∼ lU and a
MOND time of the order of the Hubble time.
As shown in Ref. [27], BIMOND, with the “auxiliary”

metric constrained to be flat, is equivalent to so-called fðQÞ
formulations of MOND. So the present study also enlarges
the class of MOND fðQÞ theories with a good NR limit.
Even if BIMOND itself turns out to be lacking in some

regards (for example, if it is not able to describe the
observed cosmology in full), it is useful to study it as a
possible guide to better theories.
I note, finally, that all full-fledged, relativistic MOND

theories propounded to date (including the one I discuss
here), might be described as “modified gravity,” in the sense
that they involve a modification of the Einstein-Hilbert
action—the “gravitational,” or the “free” action of gravity in
GR—without modifying the matter actions. The latter
comprise the free (inertial) matter actions and the inter-
actions between matter degrees of freedom. There might be
other routes to a fundamental MOND theory, involving, for
example, modifications of the free matter actions (perhaps
all parts of the action). These go under the name of
“modified inertia.” Only preliminary suggestions in this
vein have been considered so far, and only for the NR regime
(see the recent Ref. [40]).
In Sec. II, I discuss in some detail the scalars that we can

form from powers of Cλ
μν. In Sec. III, I give the detailed

action and derive the general field equations. In Sec. IV,
I derive the NR limit and identify the general quadratic
BIMOND scalars that ensure a single-potential NR limit.
In Sec. V, I discuss a class of cosmological solutions
whereby the two metrics are small departures from a single
Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry.

II. THE BIMOND INTERACTION SCALARS

We are interested in constructing scalars by contracting
products of Cα

βγ (or polynomials of them) with gμν; gμν;
ĝμν; ĝμν, and δμν , and with coefficients that are functions of
the scalars κ ¼ ðg=ĝÞ1=4 and ω̄ ¼ gμνĝμν.
Since the Cλ

μν have three indices, and the contracting
tensors at our disposal have an even number of indices, we
can construct only scalars from an even power of the Cλ

μν.
5

But, for the treatment to be more manageable, we shall
restrict ourselves to scalars that are quadratic in the Cλ

μν.
Since I will consider functions of such scalars, this would
include, in effect, dependence on higher-order scalars that
are products of quadratic ones. But this is still a substantial
restriction, because, clearly, one can construct higher-order
scalars that are not powers of quadratic ones, for exam-
ple, gμνĝαβCλ1

αλ4
Cλ2
βλ1

Cλ3
μλ2

Cλ4
μλ3

.

The general quadratic scalars are of the form

S ¼ Qβγμν
αλ Cα

βγC
λ
μν; ð6Þ

whereQβγμν
αλ is a linear combination of terms built from gμν,

ĝμν; their inverses, δαβ; and the scalars, κ and ω̄. We can
write this as

S ¼ Qðg; ĝÞCC; ð7Þ
where boldface denotes a tensor. In expression (7) all
indices are understood to be contracted.
There are only five independent, basic forms of Qðg; ĝÞ.

Their components can be chosen as

Q1ðg; ĝÞβγμναλ ¼ ½ğβμδ̆ναδ̆γλ�s; Q2ðg; ĝÞβγμναλ ¼ ½ğβγδ̆μαδ̆νλ�s;
Q3ðg; ĝÞβγμναλ ¼ ½ğαλğβγ ğμν�s; Q4ðg; ĝÞβγμναλ ¼ ½ğβμδ̆γαδ̆νλ�s;
Q5ðg; ĝÞβγμναλ ¼ ½ğαλğβμğγν�s; ð8Þ
where ğ stands for either g or ĝ and δ̆αβ stands for one of the
following: δαβ , q

α
β ≡ gασ ĝσβ, or its inverse ĝασgσβ. Also, ½ �s

signifies that the expression is symmetrized under μ ↔ ν,
under β ↔ γ, and under ðα; β; γÞ ↔ ðλ; μ; νÞ. The general
Q is a linear combination of such tensors, with coefficients
that can depend on the scalars κ and ω̄.
Note that in a given expression any of the symbols can

stand for any of their meanings; so, for example, the two
appearances of δ̆αβ in the expression for Q1 can have
different meanings.
As will be discussed below, there are situations in which

the two metrics differ by only a small amount, such that to a
good enough approximation, we can replace both metrics
by a single reference metric, keeping the difference only in
the relative acceleration tensor Cλ

μν and the scalar derived
from it. In this case all the contractions give the same
quantity. This applies, e.g., to the NR limit, and more
generally, to the weak-field limit on a background of double
Minkowski.
Instead of proceeding with the more cumbersome gen-

eral case of arbitrary contraction schemes for the scalar, for
clarity of exposition I shall give subsequent expressions
for the case where only one of the metrics at a time is used
for contractions, namely, I use Qðg;gÞ to form the basic
scalars. This is straightforward to generalize. The basic
scalars can then be taken as

S1 ≡ gμνCγ
μλC

λ
νγ; S2 ≡ C̄γCγ; S3 ≡ gμνC̄μC̄ν;

S4 ≡ gμνCμCν; S5 ≡ gαλgβμgγνCα
βγC

λ
μν; ð9Þ

where C̄γ ≡ gμνCγ
μν and Cγ ≡ Cα

γα are the two traces
of Cλ

μν.
6

5Higher powers can also be contracted with jgj1=2ϵαβγζ , etc.
6Derivatives of the scalars κ and ω̄ are expressible in terms of

Cα
βγ : κ;ν ¼ ð1=2ÞκCν, and ω̄;ν ¼ −2qμαCα

μν.
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A. Symmetrization with respect to metric interchange

There are interesting BIMOND theories that do not treat
the two metrics in a symmetric way. For example, the
MOND theory described in Ref. [27], as well as fðQÞ
formulations of MOND [27,28] are equivalent to a metric-
asymmetric BIMOND, with the auxiliary metric con-
strained to be flat. But, symmetric theories have their
appeal, and restricting ourselves to treating them, as I do
henceforth, reduces the treatment to more manageable
proportions.
Such a symmetry of the theory can be achieved in

different ways. For example, we can employ scalars that
are themselves not necessarily symmetric to metric inter-
change, but symmetrize the theory by taking with each term
in the Lagrangian a term that is gotten from it by metric
interchange. Alternatively, we can construct the Lagrangian
from scalars that have built-in metric-exchange symmetry,
which is how I proceed here, for the sake of concreteness.
Since Cα

βγ is antisymmetric to metric interchange, a
product of an even number of them is interchange sym-
metric. But to form scalars we have to contract the indices
using the two metrics and their inverses. A product of two
C’s cannot be contracted with the metrics in a symmetric
way because it presents two upper and four lower indices to
contract.
Thus, I have in mind linear combinations of the

symmetrized

1

2
½Qðg; ĝÞ þQðĝ;gÞ�; ð10Þ

for example, we can take as symmetrize basic scalars

Qiðg; ĝÞ ¼
1

2
½Qiðg;gÞ þQiðĝ; ĝÞ� ði ¼ 1;…; 5Þ ð11Þ

with Qiðg;gÞ corresponding to the scalars in Eq. (9).
In what follows I shall speak of Si with the under-

standing that they are symmetrized with respect to metric
interchange.
Having said that, in the application of BIMOND I shall

consider in this paper, the two metrics will be small
departures from a common reference metric g̃, and I shall
consider the lowest order in these departures. Cα

βγ vanish
when the metrics are equal and are of first order in their
small difference. Thus, to lowest order onlyQðg̃; g̃Þ will be
used to construct the scalars, and this gives, automatically,
interchange-symmetric scalars. So the whole issue of the
symmetry will not really be brought to bear here.

III. THE THEORY

After all the restrictions described above—made essen-
tially for the sake of concreteness and tractability—I
consider the following BIMOND action, symmetric in
the two metrics, and employing only quadratic scalars:

I ¼ IGðgμν; ĝμνÞ þ IMðgμν;ΨÞ þ ÎMðĝμν; Ψ̂Þ; ð12Þ

where IM and ÎM are, respectively, the matter and “twin
matter” actions, in which the respective metrics are
assumed to couple minimally to the matter degrees of
freedom, schematically denoted Ψ and Ψ̂. The gravitational
action is taken as

IG ¼ −
1

16πG

Z
d4xfjgj1=2Rþ jĝj1=2R̂

þ ðgĝÞ1=4a20½MðZ1;Z2;…Þ þ Zϒ�g; ð13Þ

where the first two terms are the standard Einstein-Hilbert
actions for the two sectors,7 the third term is the interaction
action, and Zm ¼ Sm=a20, where Sm are quadratic scalars.8

Hence, Zm are of the form

Z ¼ a−20 Qβγμν
αλ Cα

βγC
λ
μν: ð14Þ

The scalar Zϒ ≡ ð1=2Þðgμν þ ĝμνÞϒμν=a20—also of the
form (14)—is the symmetrized ϒs=a20 scalar used in the
earlier BIMOND studies; it is added to the Lagrangian
density for later convenience. For concreteness’ sake, I
work with the volume element vðg; ĝÞ ¼ ðgĝÞ1=4.
In constructing a MOND theory we want to retain the

successes of GR in the high-acceleration regimes, as was
done in constructing GR, given the successes of Newtonian
dynamics, and in constructing quantum mechanics, given
the successes of classical mechanics. Thus, a “correspon-
dence principle” is adopted, whereby the Lagrangian density
in square brackets goes to a constant (of order unity) in the
limit a0 → 0. Each sector is then equivalent to GR with a
cosmological constant ∼a20. With our specific choice of
volume element, the two sectors remain somewhat coupled
through the “cosmological-constant” term. For example,
the value of the cosmological constant measured in the
gμν sector is ∼ðĝ=gÞ1=4a20, and that in the twin sector is
∼ðg=ĝÞ1=4a20. The decoupling in the high-acceleration limit
can be made complete by taking, e.g., a volume element
such as vðg; ĝÞ ¼ ðjgj1=2 þ jĝj1=2Þ=2.
Varying over gμν and ĝμν gives, respectively, the field

equations

Gμν þ T μν þ 8πGTμν
M ¼ 0; ð15Þ

Ĝμν þ T̂ μν þ 8πGT̂μν
M ¼ 0; ð16Þ

7It is possible to couple the two metrics also in the Einstein-
Hilbert terms, not through the Zm scalars (such as through the
volume elements) but I avoid such couplings, since I want the
theory to go to GR in the limit a0 → ∞.

8In our units (c ¼ 1), a0 ¼ l−1
M has dimensions of inverse

length.
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where Gμν and Ĝμν are the Einstein tensors of the two
metrics, Tμν

M and T̂μν
M are the matter and twin-matter energy-

momentum tensors (EMTs), and T μν and T̂ μν are those
gotten from varying the BIMOND interaction term. Their
normalization is such that varying the interaction action
with respect to gμν is

δII ¼
1

16πG

Z
d4xð−gÞ1=2T μνδgμν; ð17Þ

and similarly for the other sector.
According to our “correspondence principle,” in the high

acceleration limit T μν and T̂ μν are dark-energy-like con-
tributions of order a20.
The Bianchi identities and the related Cauchy problem

for BIMOND are discussed in Ref. [35]: WhileGμν and Ĝμν

are identically divergenceless (each with its own covariant
divergence), T μν and T̂ μν are not identically divergence-
less. But they are so for solutions of the field equations,
since the matter actions are. There are, however, four
combined Bianchi identities following from the coordinate
covariance of the interaction action. They are

jgj1=2T μν
;ν þ jĝj1=2T̂ μν

∶ν ¼ 0: ð18Þ

Here, “;” denotes the covariant derivative with respect to
gμν and “:” that with respect to ĝμν.

A. Derivation of T μν and T̂ μν

We identify three contributions to T μν, denoted and
discussed separately, because they turn out to play different
roles in the dynamics.
The variation over gμν in the volume element contributes

to T μν,

T ð1Þ
μν ¼ −

1

4
ðĝ=gÞ1=4½a20MðZmÞ þϒs�gμν; ð19Þ

and symmetrically for ĝμν,

T̂ ð1Þ
μν ¼ −

1

4
ðg=ĝÞ1=4½a20MðZmÞ þϒs�ĝμν: ð20Þ

(It is more convenient to use lower indices on the EMT;
indices are lowered in each sector with the corresponding
metric: T μν ¼ gμαgνβT αβ, T̂ μν ¼ ĝμαĝνβT̂

αβ.)
Varying over gμν as it appears in the Qβγμν

αλ gives a
contribution to T μν of the form

T ð2Þ
μν ¼ ðĝ=gÞ1=4

�
−
X
m

∂M
∂Zm

UðmÞ
μν þ 1

2
ϒμν

�
; ð21Þ

where UμνðmÞ are expressions quadratic in Cα
βγ, with two

free indices. Because we want to separate factors that are

explicitly proportional to metric differences, write it sche-
matically as Uμν ¼ ½uðg; ĝÞC2�μν.
Similarly, when varying with respect to ĝμν, we get the

contribution

T̂ ð2Þ
μν ¼ ðg=ĝÞ1=4

�
−
X
m

∂M
∂Zm

ÛðmÞ
μν þ 1

2
ϒμν

�
; ð22Þ

where, from the assumed symmetry to metric inter-
change, Ûμνðg; ĝÞ ¼ ½uðĝ;gÞC2�μν.
When a single metric, say gμν, is used to construct Q

βγμν
αλ ,

we have for the basic scalars themselves

Uð1Þ
βγ ¼ −Cσ

γκCκ
βσ; Uð2Þ

βγ ¼ −Cσ
βγC

α
σα ¼ −Cσ

βγCσ;

Uð3Þ
βγ ¼ gβλgμνgγρgασCλ

μνC
ρ
ασ − 2gαλgμνCλ

μνCα
βγ

¼ gβλgγρC̄λC̄ρ − 2gαλC̄λCα
βγ;

Uð4Þ
βγ ¼ −Cα

βαC
λ
γλ ¼ −CβCγ;

Uð5Þ
βγ ¼ gαλgσρgβηgγδC

η
ασCδ

λρ − 2gαλgσρCα
βσC

λ
γρ: ð23Þ

If we symmetrize the scalar by employing Qðĝ;gÞ ¼
½Qðg;gÞ þQðĝ; ĝÞ�=2, the corresponding Uβγðĝ;gÞ ¼
½Uβγðg;gÞ þ Uβγðĝ; ĝÞ�=2 is a similar symmetrized form

of expressions (23). (Uð1Þ
βγ , Uð2Þ

βγ , and Uð4Þ
βγ involve no

contractions with a metric, so they are the same in the
two sectors, and so is ϒμν.)
The third contribution comes from varying over the

metrics as they appear in the Cα
βγ , which involve both the

metrics and their derivatives. Starting from the M term in
the Lagrangian: Varying over gμν, and concentrating on one
of the variables for clarity,

δIð3Þ ¼−ð16πGÞ−1
Z

d4xðgĝÞ1=4M0ðZÞQβγμν
αλ

× ðCα
βγδC

λ
μνþCλ

μνδCα
βγÞ

¼−ð8πGÞ−1
Z

d4xðgĝÞ1=4M0ðZÞQβγμν
αλ Cλ

μνδΓα
βγ; ð24Þ

where I used the symmetry of Qβγμν
αλ to the interchange

ðα; β; γÞ ↔ ðλ; μ; νÞ. Now,

δΓα
βγ ¼

1

2
δgασðgβσ;γ þ gγσ;β − gβγ;σÞ

þ 1

2
gασðδgβσ;γ þ δgγσ;β − δgβγ;σÞ: ð25Þ

δΓα
βγ is a tensor which equals 1

2
gασðδgβσ;γ þ δgγσ;β − δgβγ;σÞ

in a locally flat system (of gμν, with respect to which the
covariant derivative is taken); so they are equal in
any frame.
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Take the first term, and write the integral as

Z
d4xð−gÞ1=2Aβγ

α gασδgβσ;γ ¼
Z

d4xð−gÞ1=2ðAβγ
α gασδgβσÞ;γ

−
Z

d4xð−gÞ1=2ðAβγ
α gασÞ;γδgβσ;

ð26Þ

where Aβγ
α ¼ ðĝ=gÞ1=4M0ðZÞQβγμν

αλ Cλ
μν. The first integrand

is a divergence of a vector [ð−gÞ1=2ðAβγ
α gασδgβσÞ;γ ¼

ðAβγ
α gασδgβσÞ;γ] and gives a surface integral that vanishes,

as well as similarly for the other terms.
The contribution from the ϒs part of the Lagrangian:

T ð3;ϒÞ
μν ¼ −

1

2

�
ðĝ=gÞ1=4

�
Cλ
λðμδ

γ
νÞ − Cγ

μν

−
1

2
gμνðgγαCλ

αλ − gαβCγ
αβÞ

��
;γ

; ð27Þ

where ðμνÞ indicates symmetrization over μν: Aðμ…νÞ≡
ð1=2ÞðAμ…ν þ Aν…μÞ.
Putting all together, and returning the sum over the

variables, we have

T ð3Þ
μν ¼

�
ðĝ=gÞ1=4

�X
m

∂M
∂Zm

SγμνðmÞ − 1

2
Cλ
λðμδ

γ
νÞ þ

1

2
Cγ
μν

þ 1

4
gμνðgγαCλ

λα − gαβCγ
αβÞ

��
;γ

; ð28Þ

where

Sγμν ¼ ðgαμ½Qγαβσ
νλ �s þ gαν½Qγαβσ

μλ �s − gαγgρμgζν½Qρζβσ
αλ �sÞCλ

βσ:

ð29Þ

The notation ½�s signifies that the Q’s have to be sym-
metrized over the first two upper indices, the second two
upper indices, and the interchange of the first three with the
last three (two upper and one lower).
Similarly, for variation over ĝμν we get, by interchanging

the metrics,

T̂ ð3Þ
μν ¼ −

�
ðg=ĝÞ1=4

�X
m

∂M
∂Zm

ŜγμνðmÞ − 1

2
Cλ
λðμδ

γ
νÞ þ

1

2
Cγ
μν

þ 1

4
ĝμνðĝγαCλ

αλ − ĝαβCγ
αβÞ

��
∶γ
; ð30Þ

where in Ŝγμν, ĝμν replaces gμν. The minus sign in the

expression for T̂ ð3Þ
μν relative to that for T ð3Þ

μν is due to the fact
that Cα

βγ changes sign under metric interchange, while Q is
symmetric.

SγμνðmÞ and ŜγμνðmÞ correspond to the mth scalar variable
Zm and are linear combinations of those for the individual
basic scalars, for which we have, for the case where a single
metric, say gμν, is used to construct Qβγμν

αλ ,

Sð1Þγμν ¼ Cγ
μν; Sð2Þγμν ¼ 1

2
gμνðgαβCγ

αβ − gγαCλ
αλÞ þ δγðμC

λ
νÞλ;

Sð3Þγμν ¼ −gμνgαβC
γ
αβ þ 2δγðμgνÞρg

αβCρ
αβ;

Sð4Þγμν ¼ gμνgγαCλ
αλ; Sð5Þγμν ¼ −Cγ

μν þ 2gγσgλðμCλ
νÞσ: ð31Þ

If both metrics are used in the contraction of a given scalar,
then these expressions need to be somewhat modified.
For example, if symmetrization of a scalar is applied by
defining Qðg; ĝÞ ¼ 1

2
½Qðg; gÞ þQðĝ; ĝÞ�, then expressions

(31) need to be similarly symmetrized only over the explicit
appearance of the metric (not in Cα

βγ).
In the high-acceleration limit, a0 → 0, we have

T μνð2Þ; T̂ μνð2Þ; T μνð3Þ; T̂ μνð3Þ → 0, and T μνð1Þ; T̂ μνð1Þ
is dark energy of order a20, by our correspondence principle.

IV. THE NONRELATIVISTIC LIMIT

The weak-field limit (WFL) of BIMOND, to be dis-
cussed in more detail in Sec. IVA, concerns systems where
the metrics depart only a little from a common Minkowski
metric, in which limit, the departure from Minkowski is
treated to lowest order. In the important special case of the
nonrelativistic (NR) limit, the gravitational field is also
static, or time independent; to wit, the field varies on
timescales much longer than the light crossing time over
the system under study. This means, in particular, that the
sources of gravity in the system are slowly moving—static
in the limit. Their energy-momentum tensor has only a
time-time component equal to the mass density, and the
metric is taken to be time independent.
This situation applies to the dynamics in galactic

systems, including the description of gravitational lensing
by galactic systems.
Following Ref. [35], write for the weak-field limit

gμν ¼ ημν − 2ϕδμνþhμν; ĝμν ¼ ημν− 2ϕ̂δμνþ ĥμν: ð32Þ

Defining ϕ≡ ðη00 − g00Þ=2 and ϕ̂≡ ðη00 − ĝ00Þ=2, we
have h00 ¼ ĥ00 ¼ 0. Also, denote ei ≡ h0i ¼ ĥ0i (Roman
letters are used for space indices).
We denote the differences and sums of the potentials

ϕ� ¼ ϕ− ϕ̂; h�μν ¼ hμν − ĥμν; ϕþ ¼ ϕþ ϕ̂;

hþμν ¼ hμν þ ĥμν: ð33Þ

We wish to solve the field equations to first order in the
potentials ϕ; ϕ̂; hij; ĥij; ei; êi (I call them ψ when I refer to
them collectively).
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The dominant, lowest-order terms in the field equations
are of the order ∂2ψ. A close inspection shows that the T ð1Þ

μν

and T ð2Þ
μν terms can be neglected in our approximation.

They are either of order ð∂ψÞ2, which are of order ψ ≪ 1

relative to the dominant term, or they are of order a20, which
contribute a density of the order of the dark-energy density
[by Eq. (1)], which we neglect in the context of local
systems.
As to the T ð3Þ

μν terms, we can replace in them the metrics
themselves—but not their derivatives—by ημν. We also
replace the covariant derivatives by derivatives, because the
correction to this is also of order ð∂ψÞ2. This leaves us with

−T̂ ð3Þ
μν ≈ T ð3Þ

μν ≈ T̄ ð3Þ
μν ≡

�X
m

∂M
∂Zm

SγμνðmÞ− 1

2
Cλ
λðμδ

γ
νÞ

þ 1

2
Cγ
μν þ 1

4
ημνðηγαCλ

λα − ηαβCγ
αβÞ

�
;γ
;

ð34Þ

where in Zm and SγμνðmÞ all contractions and raising and
lowering indices are done with ημν.
It is useful to consider the sum and the difference of the

field equations for the two sectors. In the WFL we then
have

Gμν þ Ĝμν ¼ −8πGðTM
μν þ T̂M

μνÞ ð35Þ

and

Gμν − Ĝμν þ 2T̄ ð3Þ
μν ¼ −8πGðTM

μν − T̂M
μνÞ: ð36Þ

The WFL, Einstein tensors are linear in ∂ψ ; so the sum
equation of the WFL of BIMOND is equivalent to the WFL
of GR for the potentials ψþ ≡ ψ þ ψ̂ . This sum sector also
enjoys the full gauge freedom; thus its solutions are those
of GR.
As to the difference sector, Gμν − Ĝμν is linear in ∂

2ψ−

(where ψ− ¼ ψ − ψ̂); specifically, to lowest order

δGμν ¼ Gμν − Ĝμν ≈ δRμν −
1

2
ημνη

αβδRαβ

¼
�
Cðμδ

γ
νÞ − Cγ

μν −
1

2
ημνðCγ − C̄γÞ

�
;γ
: ð37Þ

(Cλ
μν are linear in ∂ψ−.)
Substituting this and expression (34) in Eq. (36) gives the

difference equation

�X
m

∂M
∂Zm

SγμνðmÞ
�
;γ
¼ −4πGðTM

μν − T̂M
μνÞ: ð38Þ

All the above is valid in the general WFL.

Specialize now to the NR limit, where all the potentials
are time independent, and the NR matter energy-
momentum tensors are TM

μν ¼ ρδμ0δν0, and similarly for
the hatted one. The sum sector is equivalent to GR for the
sum of potentials and is sourced by ρþ ρ̂. Also, as in GR,
there is a gauge where hþμν ¼ 0, and ϕþ ϕ̂ is the solution of
the Poisson equation sourced by ρþ ρ̂.
For the difference field equation, we have to the desired

order

C0
00 ¼ 0; Ci

00 ¼ C0
0i ¼ C0

i0 ¼ −
1

2
g�00;i ¼ ϕ�

;i;

Ci
0j ¼ Ci

j0 ¼
1

2
ðei;j − ej;iÞ; C0

ij ¼ −
1

2
ðei;j þ ej;iÞ;

Ci
jk ¼

1

2
ðg�ij;k þ g�ik;j − g�jk;iÞ ¼

1

2
ðh�ij;k þ h�ik;j − h�jk;iÞ

þ ϕ�
;iδjk − ϕ�

;jδik − ϕ�
;kδij: ð39Þ

Hence

C̄0¼−∇⃗ ·e; C̄i¼h�ij;j−
1

2
h�;i; C0¼0; Ci¼

1

2
h�;i−2ϕ�

;i

ð40Þ

(h� ¼ P
3
k¼1 h

�
kk is the spatial trace of h

�
ij). All the quadratic

scalars, with all possible contractions, reduce in the NR
limit to linear combinations of the following five basic NR
scalars:

S̄1 ¼ −2ð∇ϕ�Þ2 þ 1

4
h�kj;ið2h�ki;j − h�kj;iÞ

− 2ϕ�
;i

�
h�ik;k −

1

2
h�;i

�
þ 1

2
ð∇ × e�Þ2; ð41Þ

S̄2 ¼
1

2
h�;i

�
h�ik;k −

1

2
h�;i

�
− 2ϕ�

;i

�
h�ik;k −

1

2
h�;i

�
; ð42Þ

S̄3 ¼
�
h�ik;k −

1

2
h�;i

��
h�il;l −

1

2
h�;i

�
− ð∇ · e�Þ2; ð43Þ

S̄4 ¼ 4ð∇ϕ�Þ2 þ 1

4
h�;ih

�
;i − 2ϕ�

;ih
�
;i; ð44Þ

S̄5 ¼ 10ð∇ϕ�Þ2 þ 1

4
h�kj;ið3h�kj;i − 2h�ki;jÞ

þ 2ϕ�
;i

�
h�ik;k −

3

2
h�;i

�
− 2e�i;je

�
j;i: ð45Þ

To get a theory with “correct” lensing, ϕ must be all that
remains in the NR limit, the NR solutions of the difference
field equations (38) must thus have h�μν ¼ 0, resulting in
hμν ¼ ĥμν ¼ 0. I now proceed to determine the subclass of
BIMOND theories for which this is the case.
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The NR field equations can be derived directly from the
NR Lagrangian

L̄ ¼ −
1

8πG

Z
d3x½ð∇⃗ϕÞ2 þ ð∇⃗ ϕ̂Þ2 þ a20MðZ̄1; Z̄2;…Þ

− 2ð∇ϕ�Þ2 − ϕρ − ϕ̂ ρ̂�; ð46Þ

where the variables Z̄i are linear combinations of the five
NR basic scalars in Eqs. (41)–(45) (in units of a20).
This Lagrangian is obtained from the relativistic one by

adhering to the NR approximation. For example, we take
the volume element in the interaction term (not in the
Einstein terms) to be 1 because the ψ corrections to it would
act like a density of order a20 ∼ ρΛ.
The schematic form of all the variable Z̄i is

S̄m ¼ amð∇ϕ�Þ2 þ 2bmϕ�
;ið∂h�Þi þ cmð∂h�Þ2 þ dmð∂e�Þ2;

ð47Þ

with am, bm, cm, dm numerical coefficients.
The μν component of the general field equations is

gotten by variation of the action over gμν and ĝμν. In the NR
case, the ij components are thus gotten by varying over hij
and ĥij, and the 0i components by variation over ei and êi.
However, ϕ and ϕ̂ appear in all the diagonal elements as
ϕδμν; so, varying over ϕ and ϕ̂ gives the sum of the μμ
components of the field equations (not the trace).
Starting with e, we see from Eq. (47) that, since e does

not couple to the other degrees of freedom in any of the NR
scalars, the three 0i components of the difference equation
are of the form

�
∂

�X
m

dm
∂M̄
∂S̄m

∂e�
��

i
¼ 0; ð48Þ

with M̄ðS̄mÞ the reduction of the interaction function to the
NR case and is a function of the NR scalar variables S̄m.
[There are three indices implicit in Eq. (48), two from the
derivatives and one from e�; two are contracted and one, i,
remains free.] Thus, with zero boundary conditions at
infinity, this admits the solution e� ¼ 0.
This is a general result that applies to any choice of

scalars constructed from any power of Cλ
μν. To see why,

note in Eq. (39) that e� appears only in Cλ
μν with one time

component, and that the other nonvanishing components
have an even number of time components. Since we are
contracting with ημν, ∂e� cannot appear in just one Cλ

μν

factor, lest this scalar involves an odd number of time
indices, which cannot be contracted with ημν. But then, the
0i equations will always be at least linear in ∂e�, and e� ¼ 0
obtains. This result is related to the fact that in the NR
limit the sources are taken as static, so the matter

energy-momentum tensor is invariant to time reversal,
under which e� changes sign.
Variation over ϕ; ϕ̂ gives a difference equation of the

schematic form

∂i

�X
m

∂M̄
∂S̄m

½am∂iϕ� þ bmð∂h�Þi�
�

∝ ρ − ρ̂; ð49Þ

with ð∂h�Þi standing for terms with derivatives of h� with a
free index i (such as h�ji;j or h

�
;i). Varying over hij and h�ij

give the ij components of the difference equation in the
schematic form

�
∂

�X
m

∂M̄
∂S̄m

ðbm∂ϕ� þ cm∂h�Þ
��

ij
¼ 0; ð50Þ

where the subscript ij can come from derivatives of ϕ or h,
or from subscripts of h.
Equation (50) tells us that the obstacle to a good NR

theory are the terms with ∂ϕ�, which come from scalars
where ϕ� and h�ij couple: If these terms do not vanish
identically, then h�ij ¼ 0 is not a solution, because it would
imply ∂ϕ� ¼ 0.
A good NR limit is thus gotten if (and only if) the NR

interaction Lagrangian can be written as a function of
scalars that do not contain such mixed terms. Equation (50)
is then satisfied for h�ij ¼ 0, when we impose this as a
boundary condition at infinity, for which all S̄m in Eq. (49)
becomes ∝ ð∇ϕ�Þ2, and it becomes a MOND equation
sourced by ρ − ρ̂ (see details below).
There are two mixed terms that can (and do) appear in

the NR scalars (41)–(45): ϕ�
;ih

�
;i and ϕ�

;ih
�
ik;k. Of the five

independent NR scalars we can thus form three indepen-
dent ones that do not have mixed terms. The most general
such combinations are of the form

Ss;q;p ¼ sS1 − qS2 þ ðq − sÞðS4 − S5Þ þ pS3; ð51Þ

with s, q, and p numbers. The NR limit of such a scalar is

S̄s;q;p¼ð4s−6qÞð∇ϕ�Þ2þ
�
s
2
−
3q
4

�
h�ij;kh

�
ij;kþ

q
2
h�ij;kh

�
ik;j

−
�
pþq

2

�
h�;ih

�
ik;kþ

�
p
4
þq
2
−
s
4

�
h�;ih

�
;iþph�ik;kh

�
ij;j:

ð52Þ

The single scalar variable used in previous work is gotten
with s ¼ q ¼ 1, p ¼ 0.
It is convenient to also work with the combinations

u≡ 4s − 6q; v≡ pþ q
2
; ð53Þ

because they appear often, and in terms of which
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S̄q;u;v ¼ uð∇ϕ�Þ2 þ u
8
h�ij;kh

�
ij;k þ

q
2
h�ij;kh

�
ik;j − vh�;ih

�
ik;k

þ 1

4

�
v −

u
4

�
h�;ih

�
;i þ

�
v −

q
2

�
h�ik;kh

�
ij;j: ð54Þ

We can write

Sq;u;v ¼ qSq þ uSu þ vSv;

Sq ≡ 1

2
ð3S1 − 2S2 − S3 − S4 þ S5Þ;

Su ≡ 1

4
ðS1 − S4 þ S5Þ; Sv ≡ S3: ð55Þ

For scalars with u ¼ 0, ð∇ϕ�Þ2 disappears altogether in
the NR limit. So to get a meaningful theory we need that at
least one of the scalars has u ≠ 0 (and that cancellation does
not occur otherwise).
Alternatively to starting from the NR Lagrangian, we can

calculate Sγμν and substitute in the difference field equa-
tion (38). The only relevant components are Siμν, because of
the time independence. One finds that for the Sq;u;v scalars
Si0j are linear only in ∂e, Sijk only in ∂h�, causing the 0i
and jk equations to yield e�i ¼ h�ij ¼ 0, as desired, while
Si00 ∝ ϕ�

;i.
For solutions of the NR field equations (i.e., those with

h�μν ¼ 0) all the “good” scalars reduce to a single scalar

S̄s;q;p ¼ uð∇ϕ�Þ2: ð56Þ

I shall restrict myself, hereafter, to the subclass of
BIMOND theories where the interaction Lagrangian is a
function of only scalars of this type.
To summarize, if the interaction is a function of scalars of

the Sq;u;v type, the two metrics are of the single-potential
type

gμν ¼ ημν − 2ϕδμν; ĝμν ¼ ημν − 2ϕ̂δμν; ð57Þ

with the two potentials determined by the equations

2Δϕþ ∇⃗ · ½μðj∇⃗ϕ�j=a0Þ∇⃗ϕ�� − Δϕ� ¼ 8πGρ; ð58Þ

2Δϕ̂ − ∇⃗ · ½μðj∇⃗ϕ�j=a0Þ∇⃗ϕ�� þ Δϕ� ¼ 8πGρ̂; ð59Þ

μ ¼
X
m

um
∂M
∂Zm

; ð60Þ

with the variables in MðZmÞ given by Zm ¼ Sm=a20
(Sm ¼ Sqm;um;vm), reducing here to Zm ¼ Z̄m ¼ umð∇ϕ�Þ2=
a20 (um ¼ 4sm − 6qm).
Since all variables become equal up to a numerical

factor, we can write MðZ̄1; Z̄2;…Þ ¼ M̄½ð∇ϕ�Þ2=a20�, a
function of a single variable. Then

μðxÞ ¼ dM̄ðzÞ
dz

����
z¼x2

: ð61Þ

Or, if we express the Lagrangian density as a function of
Sq, Su, Sv, then

μðxÞ ¼ ∂M
∂Zu

����
Zu¼x2;Zq¼Zv¼0

: ð62Þ

Taking the difference of the two field equations yields

∇⃗ · ½μðj∇⃗ϕ�j=a0Þ∇⃗ϕ�� ¼ 4πGðρ − ρ̂Þ; ð63Þ

which epitomizes the MOND phenomenology, with μðxÞ
playing the role of the MOND interpolating function.
The sum of the equations gives

Δϕþ ¼ 4πGðρþ ρ̂Þ; ð64Þ

where ϕþ ≡ ϕþ ϕ̂; so ϕþ equals the Newtonian potential
sourced by ρþ ρ̂.
In the Newtonian limit, μðx → ∞Þ → 1, the two sectors

decouple, with each potential satisfying its own Poisson
equation.
An important lesson from these results is that studying

NR systems informs us in a rather limited way on the
dependence of the interaction on the different scalars.
We can only learn about the behavior of M on a limited
subspace of the variable space through M̄ðzÞ. For example,
if M depends on scalars with u ¼ 0, we can gain no
information on this dependence from the NR behavior.

A. The general weak-field case

For the single-variable case, the WFL of BIMOND and
gravitational waves were discussed in some detail in
Ref. [38]. Much of the discussion there carries mutatis
mutandis to the several-variable case. Here I just briefly
describe the form of good scalars in the WFL.
Write in the general WFL

gμν ¼ ημν þ hμν; ĝμν ¼ ημν þ ĥμν; ð65Þ

and treat the theory to lowest order in hμν and ĥμν. We saw
that the theory decouples for the perturbations h�μν ¼
hμν � ĥμν, where the þ sector is equivalent to GR with
all the gauge freedom.9 For the difference sector, the five
basic scalars with all possible contractions reduce in the
WFL to

9I call the difference here h−μν to distinguish it from h�μν used in
the NR limit.

MORDEHAI MILGROM PHYS. REV. D 106, 084010 (2022)

084010-10



S1 ¼ −
1

4
h−νρ;γh−νρ;γ þ

1

2
h−νρ;γh−νγ;ρ;

S2 ¼
1

2
h−;αh−αμ;μ −

1

4
h−;αh−;α;

S3 ¼ h−αμ;μh−αν;ν þ
1

4
h−;αh−;α − h−;αh−αν;ν

S4 ¼
1

4
h−;αh−;α; S5 ¼

3

4
h−νρ;γh−νρ;γ −

1

2
h−νρ;γh−νγ;ρ; ð66Þ

where for each pair of repeated indices one is understood to
be raised with ημν and the pair summed over. So, the WFL
of the good scalars Ss;q;p is

Ss;q;p¼
�
s
2
−
3q
4

�
h−μν;λh

−
μν;λþ

q
2
h−μν;λh

−
μλ;ν−

�
pþq

2

�
h−;μh−μν;ν

þ
�
p
4
þq
2
−
s
4

�
h−;μh−;μþph−μν;νh−μλ;λ ð67Þ

or

Sq;u;v ¼
u
8

�
h−μν;λh

−
μν;λ −

1

2
h−;μh−;μ

�
þq
2
ðh−μν;λh−μλ;ν −h−μν;νh−μλ;λÞ

þ v

�
h−μν;ν−

1

2
h−;μ

�
2

: ð68Þ

It would be interesting to investigate the properties of
gravitational waves in the theories that employ these
scalars. For example, there might be some particularly
happy choices of s, q, p in the context of gravitational
waves. Such studies are beyond the scope of this paper.
One interesting result is that scalars that disappear from

the NR theory—and so the dependence on which cannot be
deduced from observations of galactic systems—are still
important in the context of gravitational waves. These are
the scalars of the type q ¼ 2s=3 (u ¼ 0), whose WFL is

Sq;0;v ¼ v

�
h−μν;ν−

1

2
h−;μ

�
2

þq
2
ðh−μν;λh−μλ;ν−h−μν;νh−μλ;λÞ: ð69Þ

If, in addition, q ¼ 0, we have

S ∝
�
h−μν;ν −

1

2
h−;μ

�
2

; ð70Þ

which vanishes if h−μν satisfies the harmonic gauge.
Reference [38] discussed the relevance of the harmonic
gauge, even here, where we do not have gauge freedom in
the difference sector.

V. SOME THOUGHTS ON BIMOND COSMOLOGY

Given the underlying relativistic theory, such as some
version of BIMOND, a cosmology does not follow from
first principles. As in GR, construction of a cosmology

requires much observational input from our real universe,
concerning, e.g., the material content and its properties, and
the initial conditions. In GR cosmology, when observations
could not be accommodated unless one invokes dominant
contribution from dark matter, it was invoked even if its
existence is not suggested by any compelling theory. The
introduction of a small cosmological constant (or “dark
energy”) contribution has also been forced by observations,
despite its constituting a great headache for theory. As
regards initial conditions, it was only observations [e.g., of
the thermal CMB (cosmic microwave background)] that
pointed to a beginning in a singularity (as opposed, e.g., to
a steady-state universe), and we are still groping for a
concrete initial scenario (such as various models of
inflation) to account for various observations, such as
the initial injection of (quantum) fluctuations that have
led to the observed structure, and the CMB anisotropies.
In the case of BIMOND, the preceding discussion shows

that we still have much freedom in choosing the specific
version of the theory. This choice concerns whether the
theory is symmetric in the two metrics, to the choice of
scalar arguments, and to the exact form of the interaction
Lagrangian function. And, the need for observational input
in constructing a cosmological model is even more acute
than in GR, mainly because we have to deal with two
sectors, one of which is not even observable at present: Is
the material content of the twin sector similar to that in ours?
Is it distributed in the same way? Such questions arise
naturally.10

Exploring cosmology within the extended BIMOND
framework is far beyond the scope of this paper. This class
of theories must admit a large number of cosmological
solutions that might be of observational interest.
To get a glimpse of how, for example, the different

scalars might enter cosmology in different ways (in the NR
limit they all reduce to the same scalar), I consider briefly a
class of model solutions. In these, the two metrics are very
small departures from some FLRW geometry.

A. Small departures from FLRW

We seek solutions of extended BIMOND for which there
exists a frame in which

gμν ¼ g̃μν þ hμν; ĝμν ¼ g̃μν þ ĥμν; ð71Þ

where g̃μν is of the FLRW form. To simplify the presen-
tation, I specialize to the case where g̃μν has zero spatial
curvature:

10It was shown in Ref. [36] that in the MOND regime, matter
and twin matter repel each other. So structures of the two are
expected to be separated. Twin matter also repels (matter) light in
the MOND regime; so twin-matter bodies constitute diverging
gravitational lenses. We may be able to exploit this to learn about
the distribution of twin matter.
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g̃μν ¼ diagð−1; a2; a2; a2Þ; ð72Þ

with aðtÞ the cosmological scale factor.
We will consider hμν and ĥμν—which are injected as

initial conditions of the Hubble-Lemaitre expansion phase
from an earlier phase, such as an inflation phase—to be
very small, hμν; ĥμν ⋘ 1, uncorrelated, random fluctua-
tions whose time and space averages vanish.11 We also
assume that these potentials vary rapidly and have short
wavelengths, namely, that all during the Hubble-Lemaitre
expansion phase, the frequencies are much smaller than the
expansion rate, and the wavelengths are much shorter than
the horizon size: ð _a=aÞjhμνj ⋘ jhμν;0j; a−1jhμν;xj (x are the
comoving space coordinates). We will thus neglect every-
where terms of order hμν and ĥμν themselves, or higher, but
not in their derivatives, which are not assumed small.12

These potentials constitute then a background of stochastic
gravitational waves, whose propagation properties need to
be deduced separately from the cosmological considera-
tions, by studying the WFL on a double Minkowski
background (because the wavelength and periods are very
small compared with cosmological scales). Because the
derivatives of these fluctuations, which enter the interaction
Lagrangian, are not small, they can contribute appreciably
to the interaction EMT, T μν, and potentially introduce an
extra matterlike contribution, which in turn, affects the
evolution of aðtÞ.
Even within this limited class of cosmologies there is a

wide scope of possibilities. I thus further restrict myself to a
simple ansatz, where the trial stochastic potentials are of the
form

hμν ¼ −2θdiagð1; a2; a2; a2Þ;
ĥμν ¼ −2θ̂diagð1; a2; a2; a2Þ; ð73Þ

similar to the solutions of the NR limit (but the potentials
here are time dependent). For the “relative-acceleration
tensor” we then have

Cλ
μν ¼

1

2
g̃λσðδgμσ;ν þ δgνσ;μ − δgμν;σÞ; ð74Þ

where

δgμν ¼ gμν − ĝμν ¼ −2φdiagð1; a2; a2; a2Þ;
δgμν ¼ gμν − ĝμν ¼ 2φdiagð1; a−2; a−2; a−2Þ; ð75Þ

and φ ¼ θ − θ̂. In expression (74), terms of order φ∂g̃μν and
φ∂φ were neglected.
In making this ansatz, I am inspired by the success of

Skordis and Zlosnik [32] in having propounded, recently, a
relativistic version of MOND that achieves several impor-
tant desiderata. In particular, this theory is said to reproduce
the effects of the putative dark matter in cosmology. In
essence, Skordis and Zlosnik [32] developed a version of
TeVeS using an idea discussed, e.g., in Ref. [41], to the
effect that a scalar field subject to a certain potential that
depends on its gradient can act as cosmological dark matter,
under certain conditions. Reference [32] did not add a new
degree of freedom to TeVeS, but rather employed the scalar
field that is anyhow needed in TeVeS.
This success brings to mind the possibility that the same

idea can be grafted on BIMOND to reproduce cosmologi-
cally viable solutions without new contributions to the
matter actions (and energy-momentum tensor), which
would count as dark matter. We would want the dark
matter-like contribution to come from the modified gravi-
tational action, namely, to be encapsulated in T μν.
In BIMOND, we do not have a scalar per se as a

gravitational degree of freedom. But the hope is that there
might be cosmologically relevant solutions of BIMOND
involving a function that plays the role of the scalar.13 So
here I am only trying one possible ansatz involving a
geometry characterized by a small departure from FLRW,
encapsuled in a single function. There may be other such
ansatzes.
For the above ansatz, I derive here the field equations for

the general choice of scalars, laying the ground for a future
more detailed study of cosmological solutions of this type.
For the metrics of the form (73) we have to lowest order

in φ

C0
00 ¼ φ;0; C0

0i ¼ C0
i0 ¼ φ;i; C0

ij ¼ −δija2φ;0;

Ci
00 ¼ a−2φ;i; Ci

0j ¼ Ci
j0 ¼ −δijφ;0;

Ci
jk ¼ δjkφ;i − δjiφ;k − δkiφ;j; ð76Þ

and the traces

C̄0¼−4φ;0; C̄i¼ 0; C0¼−2φ;0; Ci ¼−2φ;i: ð77Þ

The five basic quadratic scalars (contracted with the
reference metric) are then

S1 ¼ −2g̃μνφ;μφ;ν; S2 ¼ 8φ2
;0; S3 ¼ −16φ2

;0;

S4 ¼ 4g̃μνφ;μφ;ν; S5 ¼ 10g̃μνφ;μφ;ν; ð78Þ

11If indeed our cosmology is of this sort, it would justify our
taking the background for the weak-field limit to be, locally, a
double Minkowski spacetime.

12If we measure j∂hj ¼ υa0 in units of a0, then the wavelength
λ ∼ jhj=j∂hj ∼ ðjhj=υÞlH , where lH is today’s Hubble distance,
and where I used the coincidence (1). So λ ⋘ lH is equivalent to
jhj ⋘ υ.

13Note that our θ, θ̂, and φ are not scalars, as the metrics are
supposed to have the above form in some specific frame.
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where g̃μνφ;μφ;ν ¼ −φ2
;0 þ ð∇⃗φÞ2 and ∇φ is the space

gradient of φ with respect to the proper distances
dl ¼ adx. Thus,

Ss;q;p ¼ −2ð2sþ qþ 8pÞφ2
;0 þ ð4s − 6qÞð∇⃗φÞ2;

Sq;u;v ¼ −ðuþ 16vÞφ2
;0 þ uð∇⃗φÞ2: ð79Þ

We see that scalars with u ¼ 0, which disappear from the
NR limit, can still be important in cosmology (if v ≠ 0).14

So, we may envisage, for example, a BIMOND version
where the interaction depends on two scalars MðS1; S2Þ,
with S1 having u ≠ 0 and S2 having u ¼ 0, with the
dependence of M on them being such that the dependence
on S2 enters cosmology, and that on S1 determines the
NR limit.

1. Field equations

We need to substitute our ansatz (73) in the field
equations and see whether consistent solutions of interest
can be gotten. As before, it is useful to consider separately
the sum and difference of the field equations (15) and (16).
As is done in treating standard cosmology in GR, we

average the field equations (designated hi) over times much
shorter than the (instantaneous) Hubble time but much
larger than the periods in φ, and on scales much smaller
than the horizon, but much larger than the characteristic
wavelengths of φ.15

We consider cosmologies where the two sectors are
the same on average (smoothing over the fluctuations).
Thus the averages of all quantities are the same in the two
sectors, while the fluctuations are uncorrelated.
In the averaged field equations we thus take hTμν

M i ¼
hT̂μν

M i ¼ T̃μν
M .

From expression (19), and since hϒsi ¼ −6hφ2
;0i−

2hð∇⃗φÞ2i, we have

hT̂ ð1Þ
μν i ¼ hT ð1Þ

μν i≡ T̃ ð1Þ
μν ¼ −

1

4
½a20hMi − 6hφ2

;0i

− 2hð∇⃗φÞ2i�g̃μν: ð80Þ
As regards the T ð2Þ

μν and T̂ ð2Þ
μν contributions, we first

calculate Ûμν ¼ Uμν ¼ Ũμν, which appear in them. Their
values for the two sectors are equal because, to our
approximation, we use g̃μν for contraction in both.
Substituting from Eqs. (76) and (77) in expressions (23),
the general forms of the Ũμν for the basic scalars
Sm;m ¼ 1;…; 5, is as follows:

ŨðmÞ
00 ¼ αmφ

2
;0 þ βmð∇⃗φÞ2; ŨðmÞ

0i ¼ ζmφ;0φ;i;

ŨðmÞ
ij ¼ ξmφ;iφ;j þ χmδijð∇⃗φÞ2 þ ωma2δijφ2

;0: ð81Þ

The coefficient values are given in Table I.
In averaging the T ð2Þ

μν contributions, we note [from
Eq. (78)] that the arguments of the derivatives of M (call

them M0 for short here) depend only on φ2
;0 and ð∇⃗φÞ2,

so it is invariant to change of the sign of φ;0 or of any φ;i.
Thus—since opposite values of these derivatives are
equally probable—upon averaging hM0φ;0φ;ii ¼ 0 and
(using also the assumed spatial isotropy) hM0φ;iφ;ji ¼
δijhM0ð∇⃗φÞ2i=3.
Thus the contributions of the five basic scalars to

hT̂ ð2Þ
μν i ¼ hT ð2Þ

μν i≡ T̃ ð2Þ
μν are

hM0ŨðmÞ
00 i¼hM0ðαmφ2

;0þβmð∇⃗φÞ2Þi; hM0ŨðmÞ
0i i¼0;

hM0ŨðmÞ
ij i¼δija2

�	
M0

�
ωmφ

2
;0þ

�
ξm
3
þχm

�
ð∇⃗φÞ2

�
�
:

ð82Þ

Using the coefficient values in Table I, we then get for
the s, q, p scalars

hM0ŨðsqpÞ
00 i ¼ hM0½ð8pþ 2q − 4sÞφ2

;0 − 4qð∇⃗φÞ2�i;
hM0ŨðsqpÞ

0i i ¼ 0;

hM0ŨðsqpÞ
ij i ¼ δija2

	
M0

�
8pφ2

;0 þ
2

3
ðq − 2sÞð∇⃗φÞ2

�

:

ð83Þ

TABLE I. The coefficients for Uμν [Eq. (81)] and for Vμν [Eq. (88)], and their differences, for the five basic scalars.

m αm βm ζm ξm χm ωm ᾱm β̄m ζ̄m ξ̄m χ̄m ω̄m α0m β0m ζ0m ξ0m χ0m ω0
m

1 −4 −2 −2 −6 2 −2 −5 −3 0 −4 1 −1 −1 −1 2 2 −1 1
2 2 2 0 −4 2 −2 −7=2 3 3=2 −2 1 −1 −11=2 1 3=2 2 −1 1
3 8 0 −8 0 0 8 4 0 −4 0 0 4 −4 0 4 0 0 −4
4 −4 0 −4 −4 0 0 4 −4 0 0 0 0 8 −4 4 4 0 0
5 −4 2 −14 −2 −2 2 1 7 −5=2 2 −1 1 5 5 23=2 4 1 −1

14Taking a ¼ 1 and φ time independent reduces to the NR
case.

15There is of course the perennial question—extensively
discussed in the context of GR—of the legitimacy of replacing,
in nonlinear equations, the average of the field equations by the
same equations for the averages.
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Thus, T ð1Þ
μν , T

ð2Þ
μν , and the matter EMTs do not contribute

to the averaged difference field equation and contribute to

the sum equation 2T̃ ð1Þ
μν , 2T̃ ð2Þ

μν , and 2T̃μν
M , respectively.

Similarly, because T ð3Þ
μν and T̂ ð3Þ

μν are gotten from each other
by interchange of the two metrics, their averages are the
same, since we assume full symmetry of the averages. Thus

T ð3Þ
μν do not contribute to the difference equation.
It can also be shown that the averages of the two Einstein

tensors are equal, and equal to that of the reference FLRW
metric. Thus, the difference equation is trivially satisfied.
As an interim result, we can write the sum equation as

G̃μν þ T̃ μν þ 8πGT̃M
μν ¼ 0; ð84Þ

where

T̃ μν ≡ T̃ ð1Þ
μν þ T̃ ð2Þ

μν þ 1

2
hT ð3Þ

μν þ T̂ ð3Þ
μν i; ð85Þ

so ð8πGÞ−1T̃ μν play the role of a “phantom matter”
component additional to the matter EMT. To the above
equation we have to add the (averaged) Bianchi identity
(see Sec. VA 2).
We still need to calculate hT ð3Þ

μν þ T̂ ð3Þ
μν i. From Eq. (28),

the main contribution to this sum is of the form

hðM0SγμνÞ;γ − ðM0ŜγμνÞ∶γi
¼ h½M0ðSγμν − ŜγμνÞ�;γi þ hM0½SαμνðmÞCγ

αγ − SγανðmÞ
× Cα

μγ − SγμαðmÞCα
γν�i: ð86Þ

In the first term, Sγμν and Ŝγμν differ in the contraction metrics
appearing in them (the contractions are symmetric in the
two metrics). So, to our approximation their difference is of
the schematic form φC ∝ φ∂φ. So, the first term is of the
schematic form h∂ðM0φ∂φÞi which can be seen to vanish
in the averaging process.
We thus have

hðM0SγμνÞ;γ − ðM0ŜγμνÞ∶γi≡ 2hM0ṼðmÞ
μν i

where 2ṼðmÞ
μν ≡ SαμνðmÞCγ

αγ − SγανðmÞ
× Cα

μγ − SγμαðmÞCα
γν: ð87Þ

Like the ŨðmÞ
μν , the ṼðmÞ

μν too are quadratic in the Cα
βγ , with

contractions employing the reference metric. They too can
be written in the form

ṼðmÞ
00 ¼ ᾱmφ

2
;0 þ β̄mð∇⃗φÞ2; ṼðmÞ

0i ¼ ζ̄mφ;0φ;i;

ṼðmÞ
ij ¼ ξ̄mφ;iφ;j þ χ̄mδijð∇⃗φÞ2 þ ω̄ma2δijφ2

;0: ð88Þ

So,

hM0ṼðmÞ
00 i ¼ hM0ðᾱmφ2

;0 þ β̄mð∇⃗φÞ2Þi;
hM0ṼðmÞ

0i i ¼ 0;

hM0ṼðmÞ
ij i ¼ δija2

	
M0

�
ω̄mφ

2
;0 þ

�
ξ̄m
3
þ χ̄m

�
ð∇⃗φÞ2

�

:

ð89Þ

The coefficient values are given in Table I.
What enter T μν are W̃μν ≡ −Ũμν þ Ṽμν, whose coeffi-

cients are α0m ¼ ᾱm − αm, etc., also given in Table I.
Collecting all the terms we have, finally,

T̃ μν ¼
X
m

h∂M
∂Zm

W̃ðmÞ
μν i − 1

4
½a20hMi − 6hφ2

;0i

− 2hð∇⃗φÞ2i�g̃μν þ hYμνi; ð90Þ

where

hYμνi ¼
1

2
hϒμνi þ hṼð2Þ

μν − Ṽð1Þ
μν i: ð91Þ

We have

hϒ00i ¼ 6hφ2
;0i þ 4hð∇⃗φÞ2i; hϒ0ii ¼ 0;

hϒiji ¼
2

3
δijhð∇⃗φÞ2i; ð92Þ

and

hṼð2Þ
00 − Ṽð1Þ

00 i ¼
3

2
hφ2

;0i þ 6hð∇⃗φÞ2i;

hṼð2Þ
0i − Ṽð1Þ

0i i ¼ 0; hṼð2Þ
ij − Ṽð1Þ

ij i ¼
2

3
δijhð∇⃗φÞ2i: ð93Þ

So,

hY00i ¼
9

2
hφ2

;0i þ 8hð∇⃗φÞ2i;
hY0ii ¼ 0; hYiji ¼ δijhð∇⃗φÞ2i: ð94Þ

The first term in Eq. (90) is where there is the freedom in
choosing the scalar variables and the dependence of the
interaction function on them. It is where future investiga-
tions of this approach need to concentrate.
The second term, contributed by T̃ ð1Þ

μν , is a dark-energy-
like term. If ∂φ≲ a0 and hMi ∼ 1, it gives a cosmological-
constant-like contribution which satisfies the observed
relation (1). All terms without M in them result from
introducing the ϒs term in the Lagrangian.
The third term is of the same order as the second, it

does not involve M, and is not of the cosmological-
constant form.
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I leave more detailed studies for future work, but only
make the following brief comments here. If the first term is
to stand for cosmological dark matter during the Hubble-
Lemaitre expansion phase, as in the analysis of Ref. [32], it
needs to overwhelmingly dominate the other terms at early
times, and it needs to represent a pressureless fluid. The
first condition is fulfilled in the analysis of Refs. [32,41]
by invoking a potential function (analogous M here) that
has an infinite logarithmic derivative at some value of its
argument (here it is enough that it occurs for one of the
arguments of M), and working near this point. Once we
ensure that this term dominates, the second requirement can

result if hM0W̃ðmÞ
ij i ¼ 0 for the relevant variable. This can

occur in any of several ways: If all the variables inM are of
the sqp type, then, using the coefficient values in Table I,
we see that

hM0W̃ðsqpÞ
00 i ¼

	
M0

��
−4pþ 17q

2
− 4s

�
φ2
;0

þ ð8s − 10qÞð∇⃗φÞ2
�


;

hM0W̃ðsqpÞ
ij i ¼ δija2

	
M0

�
−4pφ2

;0 þ
2

3
ðs − qÞð∇⃗φÞ2

�


ð95Þ

(and hM0W̃ðsqpÞ
0i i ¼ 0). Then, if φ2

;0 and ð∇⃗φÞ2 are inde-
pendent, we need to have s ¼ q, p ¼ 0 to have

hM0W̃ðsqpÞ
ij i ¼ 0. This implies that the relevant scalar is

the original ϒ scalar.
If, however, φ2

;0 and ð∇⃗φÞ2 are not independent, for
example, if the φwaves have a specific velocity c=η, so that

ð∇⃗φÞ2 ¼ η2φ2
;0, we have

hM0W̃ðsqpÞ
ij i ¼ δija2

	
M0

�
2

3
ðs − qÞη2 − 4p

�
φ2
;0



; ð96Þ

with the relevant argument in M0 being φ2
;0. Then there is,

for example, a scalar that does not contribute in the NR
limit (i.e., with s ¼ 3q=2), and p ¼ qη2=12, for which

hM0W̃ðsqpÞ
ij i ¼ 0, and the “density” ∝ hM0ðφ2

;0ÞW̃ðsqpÞ
00 i ∝

hM0ðφ2
;0Þφ2

;0i.
In principle, we could have a non-sqp scalar that might

be useful in cosmology, and have only a small effect on
lensing in the NR limit.

2. The average Bianchi identity

Starting from the general Bianchi identity (18), we can
replace the metric determinants by that of the reference
metric in our approximation, yielding T μν

;ν þ T̂ μν
∶ν ¼ 0.

Write this as

ðT μν þ T̂ μνÞ;ν þ ðT μα þ T̂ μαÞΓ̃ν
αν þ ðT αν þ T̂ ανÞΓ̃μ

αν

þ T μαδΓν
αν þ T ανδΓμ

αν þ T̂ μαδΓ̂ν
αν þ T̂ ανδΓ̂μ

αν ¼ 0; ð97Þ

where δΓα
βγ ¼ Γα

βγ − Γ̃α
βγ , δΓ̂

α
βγ ¼ Γ̂α

βγ − Γ̃α
βγ (Γ̃α

βγ is the con-
nection of the reference FLRW metric).
Averaging this relation as before over scales much

smaller than cosmologically relevant, but much larger than
the wavelengths and periods, the terms with δΓ average
to zero. The terms of the form ðT μα þ T̂ μαÞΓ̃ν

αν average to
hT μα þ T̂ μαiΓ̃ν

αν ¼ T̃ μαΓ̃ν
αν, and similarly for the third

term. The average of the first term can be replaced by
hT μν þ T̂ μνi;ν ¼ T̃ μν

;ν , where the derivative here applies to
the secular, cosmological changes of the average EMTs.16

The spatial derivatives vanish, because, as usual, we
assume spatial homogeneity of the averages. So, in all,
we have for the averaged Bianchi identity

T̃ μν
jν ¼ 0; ð98Þ

where “j” is the covariant derivative with respect to the
reference, FLRW metric. The Bianchi identity thus con-
stitutes the standard cosmological conservation of the
phantom-matter component represented by T̃ μν.
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