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We study minimal and nonminimal couplings of fermions to the Palatini action in n dimensions (n > 3)
from the Lagrangian and Hamiltonian viewpoints. The Lagrangian action considered is not, in general,
equivalent to the Einstein-Dirac action principle. However, by choosing properly the coupling parameters,
it is possible to give a first-order action fully equivalent to the Einstein-Dirac theory in a spacetime of
dimension four. By using a suitable parametrization of the vielbein and the connection, the Hamiltonian
analysis of the general Lagrangian is given, which involves manifestly Lorentz-covariant phase-space
variables, a real noncanonical symplectic structure, and only first-class constraints. Additional Hamiltonian
formulations are obtained via symplectomorphisms, one of them involving half-densitized fermions. To

confront our results with previous approaches, the time gauge is imposed.
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I. INTRODUCTION

General relativity in n dimensions, in the first-order
formalism, is given by the Palatini action principle, which
depends functionally on the vielbein e/ and the Lorentz
connection @!;, which are the fundamental independent
variables of the theory. This framework is the natural arena
to make the coupling of fermions to gravity, which is not
possible in the metric formalism of general relativity.
When there are no matter fields coupled to gravity, the
equation of motion for the connection @’;; can be solved to
yield ', as a function of the vielbein and its derivatives,
and substituting it into the Palatini action leads to an
equivalent second-order action principle for general rela-
tivity, which depends only on the vielbein e’. On the other
hand, when a fermion field is minimally coupled to the
Palatini action, the theory is not equivalent to the Einstein-
Dirac theory because of the coupling of the Lorentz
connection to the fermion field (see, for instance,
Refs. [1,2] for a spacetime of dimension four).

In the context of an n-dimensional spacetime, the
Hamiltonian analysis of fermions minimally coupled to
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gravity in the first-order formalism has been studied in
Ref. [3]. The Hamiltonian formulation derived there relies
on the time gauge. Such a gauge fixing simplifies the
handling of the second-class constraints that emerge
during the usual Hamiltonian analysis, but it breaks
the local Lorentz symmetry in the process. Since the
local Lorentz symmetry is one of the fundamental
symmetries of nature that is also required to make the
coupling of fermions to gravity at the Lagrangian level, it
is essential to maintain it during the Hamiltonian analysis
to get a deeper understanding of the gravity-fermion
interaction.

Therefore, in this work, we study the coupling of fermions
to the n-dimensional Palatini action (n > 3) in the
Hamiltonian formalism without spoiling the local Lorentz
invariance. Moreover, to avoid the introduction of second-
class constraints in the Hamiltonian analysis—and the
complications they imply [4]—we follow the method
presented in Ref. [5] where authors get the Hamiltonian
formulation of the n-dimensional Palatini action from
scratch by making a suitable parametrization of the vielbein
e! and the connection w’; (see also Ref. [6] where the
Hamiltonian analysis of the Holst action is performed
following the same procedure). An advantage of the
approach of Refs. [5,6] is that it naturally allows us to
identify the manifestly Lorentz-covariant phase-space vari-
ables of the theory and, after eliminating the auxiliary fields

© 2022 American Physical Society
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from the action using their own equations of motion, the
Hamiltonian formulation formed solely by first-class con-
straints easily follows, which simplifies considerably the
analysis. This approach has also been used to study the
coupling of fermions to the Holst action [7].

We begin our analysis in Sec. II, where we present the
first-order action principle for a fermion field coupled to the
Palatini action in n dimensions used throughout the manu-
script. The coupling of the fermion field is generically
nonminimal, but it also includes the minimal coupling as a
particular case. We eliminate ’; from the action principle
using its equation of motion and obtain the equivalent
second-order action principle, which turns out to be different
from the Einstein-Dirac theory in the generic case. However,
we show that a particular choice of the coupling parameters
in the first-order Lagrangian action in four dimensions is
equivalent to the Einstein-Dirac action principle plus a
boundary term. Next, in Sec. III, the Hamiltonian analysis
of the general Lagrangian is performed straightforwardly. In
Sec. IV, we present two additional Hamiltonian formula-
tions; one of which is obtained through a symplectomor-
phism while the other employs half-densitized fermions,
which simplifies even more the constraints. For the sake of
completeness, we impose the gauge fixing known as time
gauge in Sec. V, and compare some of our results with those
obtained in Ref. [3]. We finish the paper by making some
remarks in Sec. VI. Our notation and conventions are
collected in Appendices A—C. Further details of the
Hamiltonian formulations when the spacetime has dimen-
sions three and four are given in the Appendices D and E,
respectively.

II. LAGRANGIAN ANALYSIS

A. The action principle

The gravitational field is given by the n-dimensional
Palatini—also known as Einstein-Cartan—action

Sple, 0] = KL[*(EI NeT)YAF=20p), (1)

where k = (162G)~! modulates the strength of gravity, G
is Newton’s gravitational constant, F’; := dw';, + o'x A
¥ is the curvature of the SO (n — 1, 1) connection '},
p=(1/nYe; ;e A---Aelnis the volume form, A is
the cosmological constant, and * stands for the Hodge dual
(see Appendix A for more details).

The fermion field y, coupled to gravity, is given by the
action

_ 1 .
Sple,w.y. ] = A [i(w’EDw—DW’E’W) A xe;

- ml/‘/l//p] , (2)

where 7 = iy )0, y! are the Dirac matrices, m is the mass
of y, D stands for the covariant derivative with respect to
o', [see (A5a) and (A5b)], and E is the coupling matrix
defined by

if nis even

1+10)1 —iéT,
E=={( O =i, ifmiseven =)
if nis odd

(1+i60)1,

with € and & being dimensionless real parameters and I
being the chirality matrix (A10). The coupling matrix E,
E + E' = 21, involves minimal and nonminimal couplings
depending on the values of the parameters. The minimal
coupling is when £ = 1, which amounts to set § = £ = 0.
Note that if n is odd, then I" is proportional to 1, and thus it
is already considered in E.

It is remarkable that when gravity is turned off, the action
principle (2) leads to the Dirac equation with m # 0 in an
n-dimensional Minkowski spacetime for any generic form
of the coupling matrix E given by (3) (see Appendix B).
Thus, the action (2) has the correct limit when there is no
gravity.

In this paper we are interested in the coupling of
fermions to general relativity. Therefore, the theory we
are going to study is given by the action principle

S[e’ w,y, I,_U} = SP[e’ Cl)] + SF[e’ w,y, l/_/]’ (4)

which generalizes the one considered in Ref. [3], where
authors study only the minimal coupling (E = 1).

B. Second-order action

Before performing the Hamiltonian analysis of the first-
order action (4) and to better understand the nature of the
coupling of fermions to gravity, we eliminate the connection
w!; from the action principle (4) using its equation of
motion to get the equivalent second-order action principle,
so we can make some remarks regarding the coupling of the
fermion field to gravity in both first-order and second-order
formalisms.

The variation of the action (4) with respect to the
connection @', gives the equations of motion

1
Dls(e! A )]+ |1 (B = B
s, a"}w} — (5)

where we made use of the fact that E + E* = 21 and (A6).
The equation of motion (5) can be rewritten in the form

Del :=de' + o'y A e/ =T, (6)
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where 7' is the torsion given by

;1 1

- EW}’J(E—ET)’//EI/\61—117{717511(]’11/6!/\@1( :
(7)

The solution for @'} is
o'y =Q,+ 1, (8)

where Q/; = —Q,! is the torsion-free spin connection
(de' +Ql; A e’/ =0) and C'; = —C, is the contorsion
1-form

1

2 _
=g EV/}’[J(E_ET)V/Q]+V/{VK’011}V/€K G

The contorsion and the torsion are

Due to the fact @’ has been solved using its equation of
motion, it is an auxiliary field [8]. Next, we substitute the
solution for the connection (8) into the action (4) and

related by

sleratl = gy [ {(523) 0 (B = BB = 0 + 0o Wl o o o

Therefore, due to the interaction term S;,, the resulting
second-order action (10) is generically different from the
Einstein-Dirac theory, unless the interaction term vanishes.
Note that the last term in (12) corresponds to the well-
known interaction term predicted by the Einstein-Cartan
theory (see, for instance, Ref. [2]).

However, in a four-dimensional spacetime it is possible
to choose the coupling parameters in the first-order action
(4) in such a way that the resulting second-order action (10)
is precisely the Einstein-Dirac theory. This is shown next.

1. Four-dimensional spacetime

If n = 4, then we have the result for the anticommutator
(see Appendix A)

{1 o'k} = ieKLTy, (13)
Using this, the fact that E — ET = 2i(01 — ¢I), and taking
into account the definition of the real vector V/ and axial A’
currents given by

V= igyy, (14a)

Al = ipTyly, (14b)

obtain, using (A7) and after some algebra, the equivalent
second-order action principle

Sale.) = [ [+(e! A &) A Ry = 20)

l—ID -D I
+ Mz(w oy — Douy'y) A xe;

- ml/‘/l///)} + Sintle, w, ]
- ¥/ gy (E - ENyrxe;
4(n=2) Jom

where R/, is the curvature of Q;,, R, =dQ!,+
Q' A QK and the covariant derivatives of w and
are given by

(10)

1
Doy = dy + 5 Q 0y, (11a)
_ 1
Doy = dy — EQIJ‘/_/UU' (11b)

A relevant aspect of the second-order Lagrangian for-
mulation (10) is the presence of the interaction term

(12)
|
the interaction term (12) acquires the form
3
S, = / 02V, V! 4+ 206V,Al + (2 — DAAp. (15)
32](' M

It is clear that the interaction term is not invariant under the
parity transformation due to the middle term in (15).
However, for the couplings when 8 =0 or £ =0, the
middle term vanishes, and the interaction term is invariant
under parity transformations.’ Note that any of these two
choices is not the Einstein-Dirac theory.

Furthermore, even if we take both 8 =0 =¢&, the
resulting theory is also not the Einstein-Dirac theory
because of the presence of the axial-axial term in (15),
i.e., the minimal coupling (E = 1) in the first-order
formalism (4) is not equivalent to the Einstein-Dirac theory.

Nevertheless, if we consider the particular choice 8 = 0
and &£ = £1 =:7, the interaction term vanishes

Sine = 0. (16)

Thus, in a four-dimensional spacetime, the first-order
action (4) with nonminimal coupling matrix £ = 1 —zil’

1 . . . .

The same holds for any even dimension. This conclusion
comes from writing (12) in terms of the axial and vector currents
for even dimensions.
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is—eliminating the connection ’; from (4) using its
equation of motion—equivalent to the FEinstein-Dirac
action plus a boundary term

Setr = K/ [x(e! A e) ARy = 2Ap]
M

1,_ S _
+ Al [5 (@Y Doy — Doyy'w) A xe; — mijnyp

T

= Alxe,. 17
4AM (17)

Therefore, the usual belief that the first-order formalism of
fermions coupled to gravity is intrinsically different from
the second-order formalism given by the Einstein-Dirac
theory is not true. As we have shown, it is possible to make
them equivalent to each other by choosing a particular
nonminimal coupling in the first-order formalism.”

III. HAMILTONIAN ANALYSIS

Dirac’s approach to Hamiltonian systems calls for the
definition of the momenta canonically conjugate to all
configuration variables [9], enlarging in this way the phase
space of the theory under consideration, which is cumber-
some most of the times. The method requires us to also
evolve the primary constraints and find all the constraints,
which must be classified into first class and second class. On
the other hand, in first-order gravity for n > 4, the issue of
the second-class constraints becomes still more complicated
because they are reducible [4], which must be handled
somehow [10]. If, additionally, the coupling of fermions to
general relativity is considered, it is expected that the
analysis becomes worse.

Thus, to avoid these issues, we follow the method
developed in Refs. [5,6], which consists in a three-step
algorithm, to neatly arrive at the Hamiltonian formulations
of the n-dimensional Palatini and Holst actions involving
only first-class constraints and manifestly Lorentz-covariant
phase-space variables. This method has also been success-
fully applied to get the Hamiltonian formulation of fermions
coupled to the Holst action [7].

In the first step of the approach, we parametrize the
orthonormal frame of 1-forms (vielbein) e/, adapting it to
the geometry of the spacetime foliation. In the second step,
we use the parametrization of the connection @’ naturally
induced by the parametrization of the vielbein, which leads
to the phase-space variables of the theory. Finally, in the
third step, we get rid off the auxiliary fields that do not play

*An analogous situation happens for the nonminimal coupling
of fermions to the Holst action. By making the particular
choice of the parameters in the coupling matrix, 8 =0 and
E=(1/y)(=1 £/1+y?), where y is the Barbero-Immirzi
parameter, the interaction term, given in Eq. (21) of Ref. [7],
vanishes S, = 0.

a dynamical role in the Hamiltonian formulation by elimi-
nating them from the action principle by using their own
equations of motion. All of this is done in what follows.

A. Parametrization of the vielbein

We assume that the spacetime manifold M is diffeo-
morphic to R x X, with X being a (n — 1)-dimensional
spacelike hypersurface without boundary. Then, we foliate
the spacetime with hypersurfaces %, for every ¢t € R, and
each X, is diffeomorphic to X. Thus, adapted to the
foliation, the local coordinates (x*) = (7,x“) label the
points on R and Z, respectively.

Thus, adapted to the foliation, we write the orthonormal
frame of 1-forms and the connection as

el = eyldt + e, dx?, (18a)

o'y = wy! ,dt + o, ;dx°. (18b)

I in terms of the

We parametrize the n?> components e,
tensor density I1¢/ plus the usual lapse function N and the

shift vector N“ as

eo = Nn' -+ NeW#h ,, 1, (19a)
I — )y TIbl
ea = W Th g, 17, (19b)
where
1 . .
ny = _lHalJl R O (20)

VA EE

is an internal vector orthogonal to X that satisfies n;n! =
—1 and n, 01 =0; h,, is the densitized metric on X

whose inverse is given by /1 := T1/[1?;, and h := det(h ")
is a tensor density of weight 2(n — 2). The maps (19a) and
(19b) are invertible, see Appendix C for the supplementary
maps.

Continuing with the analysis, we use the decomposition
of e/ and ', given in (18a) and (18b) together with the
parametrization (19a) and (19b), and we substitute these
expressions into the action (4) and obtain

- | .
S = A . dtd"'x [—ZKH Ut o,y + 3 W ey Evjr
X
1, 1 . ~ ~ z
- ihz(nl_z)”ﬂl_/J’IETW + wor, G = NV, - NS, (21)

where dtd"'x = dt A dx' A -+ A dx"L, the dot over the

corresponding field denotes d;, N = hoTIN , and
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G = 2 [—Oa (ﬁa[an]) + o, ! Tl K —
V, =

= 2k[-11""n? 0,015 + Oy (w,1, 117" 0")] + th

z ~ ~ 1 1~ —_ +
S = kYT F 4y + 3 W= (@ry | ED oy — Doyry E'yr)

with

1
Dal// = aaw + E waIJGUI//’ (23)
DR o1 - 1]
Dal// = aal// - Ewalﬂlla ’ (24)
Fo'y = 0,04y = 0p0," ) + 0,/ k0, ; — 0 g0, X ;. (25)

Before making the parametrization of the connection,
we introduce the covariant derivative V, compatible
with 1%

vaﬁbl = aaﬁbl _ Fcacﬁbl + Fbacl:[cl + Falll:[hJ = 0.

(26)

This definition is a set of n(n — 1)? equations that uniquely
determine the (1/2)n(n—1)*+ (1/2)n(n —1)? connec-
tion components of I',/; = —I",,/ and I'?,. = T"“_,. Also,
we define the curvature of I',/; as R, =09,/ ,—
0Ly + T k0,5, =T k5

B. Parametrization of the connection

To introduce the suitable parametrization of the con-
nection, we focus our attention on the first term of the
action (21). We rewrite it as

=201 n’ o,y = =200’ 0,(wary = Tary + Tary)
= —Zﬁalnjat(a’au — L) — 2554(”10:1:1”])
= Zﬁalaz[WubuK(thK - FbJK)}
—20,(n;0,11¢), (27)
where W,?,,x = =Wk, is given by
WabIJK = —52771[1”1(] - Qacnlﬁcuﬁbm- (28)

w ! en’! ﬁaK}

. 1 DR
~2kT1n Fapry + 5 W= (fry' EDay = Dayry'E'y)

1

* W (K6l E + oM yKE )y, (22a)
(22b)

iy (fry' Eow — 0,07 Etw) + w,1,G" . (22¢)
— W= (2kA + mpny), (22d)

Therefore, from (27) it is natural to define the n(n —1)
phase-space variables
_ FbJ K ) .

W, IJK (waK (29)

Qul -

Thus, the projector W,?,,x singles out the dynamic
components of @, ;. Hence, neglecting the boundary term,
the gravitational part of our Hamiltonian formalism is
described by the phase-space variables (Q,;.T1%). To
express the theory in terms of them, we invert (29), which
is a system of n(n — 1) linear equations for n(n —1)>/2
unknowns ,!;. Therefore, the solution for w,’; must
involve n(n —1)2/2—n(n—=1) =n(n—1)(n - 3)/2 free
variables. We call these variables U apes and they satisfy

U ach and the trace condition /% U gpe = 0; both

abc

condltlons account for the correct number of independent
variables contained in u ...

From (29), the solution for ,’; is

= hed
Wary = M0 + N, 174 bed + Ty, (30)

= b !
WheI’e MabIJK - _MabJIK and Na IJ — —N “

—Nabdc ;; are functions of I1¥ that are given in (C3) and
(C4), respectively.

Now that we have the parametrization for the spatial
components of the connection, we substitute (30) into the
action (21) and obtain

1
S:/ dtd"'x |:2KH“IQ —l— ey In, (py! By =y ETy)
RxXZ
+wOIJG”_Na9a_]y§:|’ (31)
with

g _ZK.HaIQ J] + l’lz" n l/j( IJE+61‘]]/KET>I//

(32a)
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- . - |
Va = 2K(2Hbla[th]I - Qalabnbl) + E hz(nl_z)nl(l/_/ylEaaw - aul/_/ylETl//)
= bed =
+ (M, Qp* + N, 174 bed + L.)G". (32b)
z -~ - - 1 - _
§ = k1T Ry + 26TV Q 0y + 5 T (ry Ny = V )

(n— l)hn 2

1 S _ "
+ Ehz(”‘z)QaanHaKV/(YKGHE + o yKE )y + m%] [oy' (E — EV)wlly’ (E — ET)y]

FdbFcfFea | R U 1
+ U g (Kh““’h TRt oy + 5 WO T T i {7 dK}w) — ht(2&A + mipy)

1 ~ ~ | ~ ~
+ mgu [(" —3)n'ngG'* + th("]’””lll_/}’J(E - ET)W] + 2111’V G, (32¢)

where q;; :=n;; + nyny; and the covariant derivatives are given by

1
val// = aal// + EFaUUUW’ (3321)
- 1
val// = aal/_/ - Eraljl/_lo-”’ (33b)
V.G = 0,G" — T, G" +T,1kG* + 1,7k G'". (33¢)

We simplify the expressions by factoring all the terms involving G in (31). Thus, after integrating by parts the last term
of (32¢), and redefining the Lagrange multiplier wg;; as

= h wd ~
woy =t — Ay + N M QX + N, 1% pea + Lary) =211y VN

+%[( 3)nyn gj + h“z ny ) (E — ET) ] (34)
the action (31) becomes
S = sz dtd"'x [ZKIZ[“’Q“, + %hﬁn,(y‘/ylﬂ/’/ — ' Ety) — 2,,G" = 2N“D, = N fﬁ’] , (35)
with
GV =2kl g, + h“ Ingw(y e E + 6 yKE )y, (36a)
D, = k(201700 — Qur9p11") + %hﬁnz(w’&?aw — 0,7 E'y), (36b)

z -~ o 1 - _
Z o= 1T R 4y + 26 14UTTPVIQ 1 Qg + Ehﬁnal(ll_/}’lva‘// = Vayry)
1 ol 17, K (n— 1)k T f
+§h2(”’2)Q i (Y56 E + 6"y E )y +m‘]ll[‘l/7 (E = ENwllwy’ (E - ENy]
Sdbccf s |
+ U gpe Khdbhcfheakt def + thtnlfﬂl'[“ll'[hjl'[",(y"/{y’, /Ky | — b2 (2kA + mipy). (36¢)

Until this point, we have mapped the n*> components of the orthonormal frame of 1-forms (e,) > (N, N¢,11*') and the
n*(n — 1)/2 components of the connection (,”,) > (Q,;. u U ape, Ary)- The parametrization of the connection is obviously

not unique, since we can define other variables (see, for instance, Ref. [5] where alternative variables are induced when no
boundary term is neglected). However, we have chosen the phase-space variables (Q,,;, g ) because they have a clear
geometrical meaning; both transform as Lorentz vectors under local SO (n — 1, 1) transformations.
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C. Eliminating the auxiliary fields

Although it appears that we have reached a Hamiltonian
description, this is not so because we still need to handle the
variables u ,;,.. According to Dirac’s method, the definition

of the momenta canonically conjugate to u . is required,

which would introduce second-class constraints and would
enlarge the phase space again. Furthermore, such second-
class constraints must be handled somehow and things
become complicated. Therefore, we circumvent Dirac’s
method, following an alternative way that avoids all of this.

The variables U gpe Are auxiliary fields [8]. In fact, from

the variation of the action with respect to u ., we get the

equation of motion

N 1
STy Yy
+ 2 NR R R oy = 0, (37)

3 ) 1o
GV = 2xf1 Q-+ L Il (E = ENyr + nipr{r*. o' Yy,

- . . | R _
Dy = k(2117104 Qpy1 = Qui0pT1"') + 7 h=my (§ry Eduyy — 0y E'w),

which can be solved for u ,,.:

~

| L
Uape = g TR aalt el o TV gy o .

(38)

Substituting (38) into the action (35) and simplifying, we
obtain

U 1 1 .. "
S:A Edl‘d”_lx {ZKH“IQM —|—§h2<"]*2>n1(1/7}/1E1//—q?y’E‘y/)
X

— 2,5 —2N“D, —zyfi] : (39)

where the Gauss G/, diffeomorphism D,,, and Hamiltonian

 constraints are given by

(40a)

(40b)

X [ 1 1 - _
H = k9T R 4y + 2c11UTTVI 0, 0,5 + 5 hz("l’z)nal(l/_/hvallf - Vo)

) 1~ S
+ §h2<”_2)leaJ {5 0y (E — ENy — T xyr{y/, UJK}W}

64k n—2

3 G o) 0 ) | = A + )

The constraints G, @a, and H are first class, and
they generate the gauge symmetries of the theory.
The Gauss constraint Q” generates the local Lorentz

transformations, while D, and 7 generate space-
time diffeomorphisms. We highlight that in the formu-
lation (39), which comes out after integrating the
auxiliary fields, the remaining field variables are
(N, N T, Qup, gy, 97, 1), from which (N, N“, 2;;) play

the role of Lagrange multipliers. Furthermore, the phase-
space variables (Qal,l:I“I ) transform as vectors under
local Lorentz transformations and as a l-form and a
vector density of weight +1 under spatial diffeomor-
phisms, respectively. It is also worth stressing that
the Hamiltonian formulation maintains manifestly and

* i { (E> qu iy (E = ENylloy’ (E = ENyl + ({r'. o ) (0 {rr. o0 )

(40¢)

completely the Lorentz invariance and that the full
noncanonical symplectic structure is real.

In the case of the minimal coupling (E = 1), all the terms
involving (E — E") vanish, so this case is easily derived
from the above formulation.

Since we have a different matrix coupling E depending
on the spacetime dimension n [see (3)], we bifurcate our
analysis next and explicitly show the relevance of the
coupling parameters.

1. Even dimensions

In the case when the spacetime dimension is even, the
coupling matrix is

E=(1+i6)1 —if. (41)
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Thus, using the definitions (14a) and (14b), the Hamiltonian formalism is defined by the action (39) with the constraints

o - 1 1
G = 211 Q7+ J Tl (OV!) 4 EA) + L T K. ol Yy (42a)
- . . |
Da = K(2Hbla[a Qb]l - QalabHM) + Z h2(1172>n1 [l/_/ylaal// - aal/_/yll// + aa (QVI + fAI)]’ (42b)
= Lo R | R =
H = kU Ry -+ 26T, @y 5 P T1 (ry N o = V)
) ~ -
5 17, Oy [0 (OV! + €AT) = T1ip ' " Y]
hiz n—1 _ _
+ e {4 (n - 2) qu (Vv + ZATAT 1+ 206VIAY) + (g {r". o 3w) iy ok )
+ 3nn? (5 {7 oK Yy ) (0 {y . ok Yw) | — W2 (2kA + mipy). (42¢)
2. O0dd dimensions
When the spacetime dimension is odd, we consider the coupling matrix
E=(1+i0)1. (43)
Thus, the Hamiltonian formalism is described by the action (39) and the constraints are
>1] Frall 1]64[11]14-1(”
G =211"Q, M + §h2<"-2>n v+ Zh2<"-2>nKl;/{y ,o by, (44a)
- . - |
Da = K<2Hb10[a Qb]l - Qalabnbl) + th(ﬂ_z)nl (l/_/ylaal// - aa‘/_/yll// + gaa Vl)v (44b)
= . L 1 1~ N
H = k1T R g + 26T 0 Oy + 5 P (g Vo = Vapry i)
1 Fral I _ Fia o {1 ~JK hia (=1 17
+ o P Qg (O V! =11 {r'. % 1) teae |45 JaVY
+ @y " ) (i {rr o bw) + 3nn” (9 {r" o hy) ({1 GKL}W)] — B (26 + miy), (44c)

where the vector current is defined in (14a).

IV. ALTERNATIVE HAMILTONIAN
FORMULATIONS

We present two additional Hamiltonian formulations
of the action (4), which are easily obtained from
the Hamiltonian action (39). The first of these formula-
tions is deduced from a symplectomorphism while
the second is gotten employing half-densitized fermion
fields.’

3Although we could explore more Hamiltonian formulations
as in Ref. [7], we just consider the ones already mentioned.

A. Hamiltonian formulation through
a symplectomorphism

We make a symplectomorphism that only changes the
variable Q,; to

Qut = Qur + WL x5, (45)
leaving 1, y, and  unchanged.
Note that in terms of the original connection variables

w,';, Qu is given by

Qur = WabIJKC’)bJKv (46)
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which can be obtained by simply substituting (29) into the
right-hand side of (45) or, alternatively, from writing the
first term of (21) as

—2ﬁaln1d)au = 2ﬁalat(WabIJwaJK)
=209, (47)

which also shows that no boundary term, as in (27), arises if
we had defined these variables from the very beginning in
the Hamiltonian analysis.

In terms of the new variables, the symplectic structure
in (39) becomes

Lo | L
26117 Q y + 2 W, (wy' Eyr —wy'E'w)

Lo | R N .o
= 2T Qyp + 5 H Ty (" By =y E'w)

+ 20, (n,0,1147), (48)
|

- - - - |
G = 2k(1 Q7 + TV, e — 1K nlT ) 2 o ) (E = EN)yr + ngipr (¥, 0 Y,

- . ~ |
Dy = k(20104 Qpjy = Qur0y 1) + 7 120my (§ry' EOyr = 07 E'w),

which shows that the transformation is indeed a sym-
plectomorphism [note that the boundary term in the last
line is the one that is neglected in (27)].

Therefore, using (48) and neglecting the boundary term,
we get

Lo | .o .
S= A i dtd"'x [ZKH“I Q. _|_§hz(nl-z)n1 (wy' Eyr —wy' ETy)
X

—2,,G" —2ND, —Nﬁ} , (49)

where the Gauss, diffeomorphism, and Hamiltonian con-
straints now read

(50a)

(50b)

H= KﬁalﬁbJRubIJ + 21l TTIoV] (Qu] Qpy + 2Qa1FbJK"K + FaIKFbJLnKnL)

| RN = | R | I -
+3 R (ry NV w = Vowrw) + 51 (Quy + Ln®) 1 Ty (E - ENy —11xp {y", 6’5}y

64k | \n—-2

3! (. ) . m}w} EpE T —

We emphasize that in the formulation (49), which
comes out after making the symplectomorphism, the field
variables are (N,N¢ 1%, Q. A, w. ), from which
(N,N“, A;;) play the role of Lagrange multipliers and

(11, Q. w, ) are the phase-space variables. Note that
the phase-space variables Q,; and IT% transform as a
1-form and as a vector density of weight 41 under spatial
diffeomorphisms, respectively. However, only 1 trans-
forms as a vector under local Lorentz transformations.
The transformation law for Q,; is a little more compli-
cated, so it does not have a clear geometrical interpreta-
tion. Nevertheless, it is worth mentioning that this
Hamiltonian formulation also maintains the Lorentz
invariance intact and no boundary term is neglected when
the definition of Q,; is made.

+ i { <"_—I> qulwy'(E = ENwlwy’ (E — ENy] + (@ {y". o’ }w) @iy osx Jw)

(50c)

|

The particular cases when the spacetime dimension 7 is
even or odd are similar to those already found at the end of
Sec. 111, and so we do not give further details.

B. Half-densitized fermions

The use of half-densitized fermions simplifies the
expressions in the Hamiltonian analysis and facilitates
the introduction of fermions in the quantization scheme
[11,12] (see also Refs. [13,7]). Thus, we explore this
alternative and define half-densitized fermion fields by

¢ = Wy, (51a)

d = oy, (51b)
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Additionally, we rewrite the first term of the  Note that the boundary term in (52) is real, so neglecting it
action (39) as does not affect the real character of the symplectic
structure. Note also that in the case of the minimal coupling

_ Lo of fermions to gravity, E =1, and then E—E' =0,
K1 Qp + 5 20 m, (py' Eyy — iy E'y) 50 W1 = Qur.
~ B B Continuing with the analysis, we use (51a), (51b), and
= 2«14 6,{Qal + m@ab [1%,n; = (n — 2)[1%ny] the new variable (53) to rewrite the Hamiltonian formu-
an - lation given in (39). After neglecting the boundary term
y Lo s 3 f (52 ive at
< ' (E - ET)¢} +3m(@r' - dr') o (32), we armive a
1 - L. 1 _ . .
- 9,[ni¢y' (E — E")g]. (52) §= / drd"'x | 2k11" o + Sy (@r' o — v ¢)
4(n—2) RxZ 2
Therefore, it is natural to identify the gravitational variables —41yG"” = 2N“D, - N 7:(} , (54)
as
1 where the first-class constraints are given by
War = 0u + mg [Py = (n = 2)T1° ] |
x gy’ (E - EV). (53) G = 21 o nep{r o (55a)
|
~ . . 1 - _
Da = K<2Hbla[ale]1 - lI’alabrlbl> + an (¢y10a¢ - 0a¢}/’¢), (SSb)
= o~ ~ ~ 1~ _ _
H = kTP R gy + 20T W, + EH“’(d)y,Va(j) - V1)
N oY o () B — BNl (B~ )]
S FallUKPAY SO 64 |\ =2 ) 9 Vi
+ (&5{7’” GJK}QI’)(C]’{YI, oik}p) + 3”1"](€;5{J’]v 0KL}¢)(‘7’{717 0KL}¢)} — 2hKA — W Zmee, (55¢)
with
1 1 17
V=0, - EF ba® + Erallg b, (56a)
v 45 - Ly 5 1 7 1]
va¢ = aa¢ - EF ba¢ - EFaIquG . (56b)

Note that if the coupling is minimal, £ = T, then the Hamiltonian constraint simplifies more.

The Hamiltonian formulation (54) can still be rewritten by factoring out a term involving the Gauss constraint in the
Hamiltonian constraint. The term involving the Gauss constraint can be explicitly displayed by using the constraint (55a),
which allows us to rewrite (55¢) as

= X o a 1~ _ _
H= KHaIHhJRabIJ + 2’<Ha[lnlh|J]‘Pa1‘PbJ =+ EH“I((/by,Vagb - Va¢71¢)

b d (153) (B = BV (B~ E6] + B0 1) @)

) ) 1 L 1.
—nn! (p{y'. 6% ) (Pl UKL}¢)} = 2hi2k A — BPeImepp + @gljanﬁ{}’K» o'} . (57)

Therefore, factoring out the term involving the Gauss constraint, which requires us to redefine the Lagrange multiplier
wry = Ay + (1/8)x 'NnXp{y, 0., ¢, we get the Hamiltonian formulation with half-densitized fermion fields
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PO 1 _ . - - ~ z
S= / dtd"'x |:2KHaITaI + 5”1(¢71¢ —dr'e) - G = 2N“D, — NC|, (58)
RxZ

where the Gauss and diffeomorphism constraints are given by (55a) and (55b), respectively, and the Hamiltonian constraint is

Toa =2

o~ - - 1~ _ _
C = kT R,y + 261U TPV, 9, 4 Enal(@’lvaqﬁ - V. r19)

i (223) (6 - BVl & - £+ 0.V @)

! (B K ) B, m}qs)} _ 2 — T, (59)

We stress that in the formulation (58), which comes out
from using of half-densitized fermions, the field variables
are (N,N T, ¥or, puyy, ¢, ), from which (N, N, ;)
play the role of Lagrange multipliers and (11, ¥,;, ¢, ¢)
are the phase-space variables. Note that the phase-space
variables (W,;,T1¢) transform as Lorentz vectors under
local SO(n — 1, 1) transformations. Furthermore, this for-
mulation generalizes in two aspects the one presented in

64k n—2

Ref. [3], where authors consider the time gauge from the
very beginning of their analysis and also the Hamiltonian
formulation is restricted to the case of the minimal coupling
of fermions, £ = 1. We also explore the time gauge, but in
Sec. V. Regarding the coupling, note that the matrix E
appears only in the scalar constraint, in some of the terms
involving the quartic fermion interaction. In the case where
the spacetime dimension is even, the scalar constraint is

~ o~ ~ - 1~ _
C = KH“IHhJRa/,IJ + 2KHu[[H|hmlPallPh1 + Enal(d)hvaqﬁ - va¢71¢)

L {4 ( - l) (0,71 + 2, 1 2067,A1) + (B ")) Bl onc) D)

— ! (B{r oY) (B ok }b) | — 20N — T mebep. (60)

On the other hand, when 7 is odd, the scalar constraint becomes

n—

L Y 1. - o
C = kTP Ry + 211401V, 4 S(PriVag = Vadrid)

;L [492 (—1) V4 (B o)) Dl osc} ) — min B F1) ) B 0k} 6)

64k n—2
—2h5KA — T mgp.

Regardless of the spacetime dimension, the real densitized
fermion currents are defined by

V= igy'e,
Al == igy! .

(62a)
(62b)

V. TIME GAUGE

In Secs. III and IV we have presented several
Hamiltonian formulations involving manifestly Lorentz-
covariant phase-space variables. To make contact with
other Hamiltonian formulations, we impose the time gauge,

(61)

fixing the freedom to perform boosts, and reducing the
gauge symmetry to (the double cover of) SO(n —1).
The time gauge is given by

[ = 0, (63)

which is equivalent to n; =0 [see Eq. (20) and
Appendix A] as long as det(I1) # 0, which is assumed
throughout this section. The condition (63) together with

G are second-class constraints because

{0(.2,8°( )} = 30 (). (64)
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Therefore, enforcing the condition (63) requires to solve
the constraints Gio = 0, which depends on each of the
Hamiltonian formulations presented previously. Thus, let
us analyze each of them. Moreover, from the definition

where ny = sgn[det(TT*)] is the only nonzero com-
ponent of n; left [see Eq. (20)] with II ,; being the inverse

of 4. Using (63) and (65), the action (39) acquires

(26), note that (63) also implies I',p; = 0 and I',;;; becomes the form

the spin connection compatible with the densitized

oy Lo I 1 .

frame IT1%. S = / dtd"_lx |:2KHalQai + E hz(”l’z)l’lo (l/_/}’OEl//
RxX

A. Time gauge in the Hamiltonian - ot i - =

formulation involving Q,; - Yy E'y) — 4;;G" =2N“D, - N'H|, (66)

We impose the time gauge in the Hamiltonian formu-

lation given by the action (39) derived in Sec. III. Thus,

] %10 ) where the first-class constraints are given by
from (40a), the solution of G = 0 is

Ouo = WM i (B~ ENy, (69) G =210, + 2T oty (67a)
K
|
T)a = K(2ﬁbia[aQb]i - Qaiabﬁbi) + %hﬁ(lpyoEaaw - aalpyoETW)’ (67b)
= ~ o~ ~ e~ . 1 o~ —_
H = k1T R 5+ 26T 00y + 5 W (17, V iy = Vayry i)
] leio o t fa -0 i Wi (n—1 i WIS T
+noh? Q| 1y (E — EN)y — 11 jpry 0" yr | + [y (E = Eylwyi(E - Ey]
4 64k n—2
Wl vl - A+ i), (67¢)

This Hamiltonian formulation is also the one obtained imposing the time gauge in the action (49) because in the time
gauge Qui = Qai [see Eq. (45)].

B. Time gauge in the Hamiltonian formulation involving half-densitized fermions

We now impose the time gauge in the Hamiltonian formulation involving half-densitized fermions. We use the formulation
encompassed by the action (58) and the constraints (55a), (55b), and (59). Using (55a) and solving G = 0, we get

‘Pao = 0 (68)
Therefore, the ensuing formulation is described by the action
- s 1 _ . B .. - =
S = / dtd"'x {ZKH“"I’M + Eno(gbyoqﬁ — ') — uijG7 = 2N“D, — N'H|, (69)
RxX

and the first-class constraints are given by

G = 2109 1 42 3y, (70a)
T)tl = K(zﬁb[a[a‘yb]i - ‘Paiabﬁbi) + % (é’)yoaagb - aa‘?’)’()f/’)s (70b)
7:1 = KﬁaiﬁbjRabij + ZKﬁa[iﬁ‘b‘j]‘Pm‘Ph,j + %ﬁai(éﬁyivuqﬁ - Ww/))

1 -1\ - . - o
e (223 (B B0l (& - £ - 16 o) )
+ (riﬁ{y’} ij}d’)(ﬁ;ﬁ{?’i, ij}fls)} — 2hakA — hﬁméﬁrﬁ- (70c)
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Note that in the case of minimal coupling, E = T, this
formulation becomes the one derived in Ref. [3]. This is
other way of seeing that the formulation presented in (58)
with the constraints (55a), (55b), and (59) [restricted to the
case E = 1] is indeed a manifestly Lorentz-invariant
generalization of the one of Ref. [3].

VI. CONCLUDING REMARKS

In this paper we have carried out the Lagrangian analysis
of a fermion field minimally and nonminimally coupled to
the Palatini action in n dimensions. A remarkable fact is that
in a spacetime of dimension four, there exists a first-order
Lagrangian action with a particular nonminimal coupling of
the fermion field to the Palatini action that is equivalent to
the Einstein-Dirac action plus a boundary term. This result
is analogous to what happens for the specific nonminimal
coupling of the fermion field to the Holst action studied in
Ref. [7], where the interaction term of the resulting second-
order action also vanishes. Nevertheless, the Lagrangian
action considered in this paper and the one of Ref. [7] have
different coupling matrix (see Sec. II of this paper).

Regarding the Hamiltonian analysis, it is important to
emphasize that all the Hamiltonian formulations presented
in Secs. III and IV of this paper involve manifestly Lorentz-
covariant phase-space variables and that their corresponding
symplectic structures are both Lorentz-invariant and real.
Additionally, the local Lorentz symmetry displays itself in
the first-class constraints through the various coupling terms
present there, which strongly contrasts with the form of the
symplectic structure and the form of the first-class con-
straints of the Hamiltonian formulations when the time
gauge is imposed, which are presented in Sec. V.

It is also important to mention that the Hamiltonian
formulation (69) reduces to the one presented in Ref. [3]
when the coupling of the fermion field is minimal (£ = 1).
Consequently, the Hamiltonian formulation (58)—from
which (69) comes from imposing the time gauge—is a
generalization in two aspects of the one reported in Ref. [3].

Finally, it is also important to remark that additional
manifestly Lorentz-covariant Hamiltonian formulations
can be found by making symplectomorphisms along the
lines of the ones considered in Refs. [5-7].
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APPENDIX A: CONVENTIONS AND NOTATION

1. General relativity

We label the points on M with local coordinates
{x#} = {t:=x%x%}, where lower case latin indices

a,b,c,... take on the values 1,...,n — 1. In every point
x € M, we have the cotangent space, where we have an
orthonormal frame of 1-forms €/, i.e., g = 1;,¢! ® e’ where
g is the metric tensor and (r;;) = diag(—1,1,...,1) is the
Minkowski metric. Thus, the indices 7, J, K, ... that take on
the values 0,1,...,n—1 are SO(n—1,1) valued and are
lowered and raised with #,;. Similarly, the connection @’ is
compatible with ;;, Dy == dyy — 0% gy — @y = 0,
and so w;; = —wj;. In the first-order formalism of general
relativity, the orthonormal frame of 1-forms (vielbein) e’ and
the connection @, are the fundamental independent vari-
ables of the theory. The symbol “x” is the Hodge dual
defined by

*(e AN Aé¢€ );: 1 € elk+1/\.../\eln
I, I V€1 Ly, )

(n—k)
(A1)

where the totally antisymmetric Lorentz tensor €;, ; is such
that €y, (,—1) = 1. Symmetrization and antisymmetrization
of Lorentz indices are denoted, respectively, by

Aupy =5Ay +An),

N — N —

Ay =5(Ay —Apnp). (A2)

Similarly, symmetrization and antisymmetrization of space
indices are denoted, respectively, by

—_—

Aap) = 5 (Aap + Apa)s

— N

A[ab] -5 (Aab - Aba)' (A3)

[\

Moreover, indices inside the vertical bars

> a8 1N Agi17¢a)p)s
are not symmetrized. Also, the indices inside || in A |ycq1p)

are not antisymmetrized.
Furthermore, n ,, , _, is the totally antisymmetric tensor

density of weight —1 on X such that 73 (,—1) = 1.

Similarly, 77%“-1 is the totally antisymmetric tensor
density of weight +1 such that 77 '>("~1) = 1. Also, two
tildes above a tensor means it is of weight +2 and two tildes
below a tensor means it is of weight —2. However, to avoid
a cumbersome notation, sometimes the weight is not
indicated with tildes, but the weight is explicitly mentioned
in the text.

When the time gauge is imposed (Sec. V), the indices
I,J,K, ... split into “0” and the spatial internal indices
i,j,k, ... that take on the values 1,...,n — 1.
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2. Fermion field

The fermion field y is Grassmann-valued and i := iy "y°
is its Dirac conjugate, where i is the imaginary unit. The
Dirac matrices {y'} = {y°, 7!, ..., y""!} satisfy the Clifford
algebra

{r'. v} =yl vy =21, (A4)
where 1 is the 2["/2 x 2["/?] identity matrix ([n/2] denotes
the integer part of n/2). Note also that (y!)" := y0y!y°.
Furthermore, the Lorentz generators in the spin repre-
sentation are the n(n—1)/2 quantities ¢!/ = —¢/! =
(1/4)[y',y’]. Thus, the covariant derivatives of y and

with respect ' are

1
Dy :=dy + EwUGUV/v (AS5a)
. o1 _
Dy = dy — S @Lo (A5b)
From the definition of ¢/’ and (A4), we have
. /K] = ylo’K — oKyl = 2K, (A6)
Similarly, the identity
Yyl yK = Kyl — Ky 4 glyK 4y 67K} (A7)
holds. Furthermore, we have
{r o} = CpeKbr by oy (AB)
where
(_1)”—3 n(n—1)-2
C,:= _(n—3)'1 , (A9)
and I' is the chirality matrix:
= 25200 n—1
=1 2z Y.yt (A10)

Defined as such, the chirality matrix satisfies I'' =T and
I> = 1. Also, when n is even, we have y'T' = —I})/.
However, if n is odd, y'T" = I'y!. Thus, by Schur’s lemma,
if n is odd, I' is proportional to the identity matrix 1.
Therefore, we only consider the chirality matrix in the cases
where the spacetime dimension 7 is even.

APPENDIX B: FERMION FIELD
IN MINKOWSKI SPACETIME

When gravity and the cosmological constant are turned
off, the spacetime M becomes the Minkowski spacetime
M". In a Minkowski spacetime, the fermion action (2)
acquires the form

_ 1, _ _ _
Sely.w] = / nd"x[i (pr*Edy — 0,y  ETyr) — mipy |,
(B1)

where x# are Minkowski coordinates and y# are the usual y
matrices defined in inertial frames. Varying this action
results in the equations of motion

1
Ey”(E + ENp —my =0, (B2a)

—% L W7H(E+ EY) —my = 0. (B2b)
Therefore, the action (B1) correctly yields the Dirac
equation only if E + ET = 21. This is the reason behind
the definition of E given in (3). A more general coupling
matrix E = (1+1i0)1 — (A +i&)I", with 1 € R, does not
give the Dirac equation, not even modifying the mass term
mijry [14].

APPENDIX C: MAPS AND TRANSFORMATIONS

In Sec. I11, it is introduced the map (N, N, [1) > (e,’)
given by (19a) and (19b). It is a one-to-one map, whose
inverse is given by

N = —nyeq!, (Cla)
N = g eyley,, (Clb)
e — \/C_]qabebl, (CIC)

where ¢, := e,'e,; is the spatial metric on X, ¢’ is its
inverse, and ¢ = det(q,,) has weight 2. Note that in the
right-hand side of (Cla) n; must be understood as

1 .

— sy J Je
n[_ nleal l...ea”_1 nl’ (C2)

i.e., n; is a function of e,’.
On the other hand, (30)

I b = bed
(Qal,bjabc)'—’a’a s> where M.%;;x and N, are

defines the map

given by
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2 L
Mk =~ (n—2) [(” - 2)52”[1’11]K + 2 acll 1T J]nl(}’
(C3)
= bed c 2 Zblc =
NS = <535L 5 ———5hah [ 5;‘!>n AV (C4)
Moreover, defining the object U " = =U 10" =

—U %" as

~

2 o~
U gy = (522 ewhar =+ —5haph c]f5?> felmr,

~

(C5)

we complete the map (w,’;) = (Q,;, U 4pc ), Which is given
by (29) and

Zabc = gabcdlj(wdl.l - 1—‘011.1)' (C6)

Therefore, the map between (w,’;) and (Qurs U ape) 18

. . . = bed
invertible. Furthermore, the objects M,%,x, N,

U ™, and Wb, ¢ satisfy the relations

W, KM Py = 8,85, (C7a)
= fab of Jla bl 1
gcdey”N!J I 60651 O — n—2
x (a8t = o8], (C70)
= bedJK
W/ 1k Ny =0, (C7c)
Uabcd”MdEIJK =0. (C7d)

The presence of the second term in the right-hand side of

(C7b) is a consequence of the conditions / bcﬁade, ;=0

Zab .
and AU .. = 0 imposed such that u ., has the correct

number of independent fields. Furthermore, we have the
completeness relation

= cdf
Mgy W MEE + N IlgcdfbKL = 5,546%

Ksh.  (C8)

APPENDIX D: HAMILTONIAN
FORMULATIONS WHEN n=3

The parametrization of the vielbein e’ and the connection
o', is given in (19a), (19b), (30), and (34) of Sec. IIL
However, when n = 3 things become easy because there

are no auxiliary fields u .., and the parametrization of w,’;

is just [5]

Wary =M 1k OpX + Ty, (D1)

where M,?;,x is given in (C3) and I, is the connection
compatible with I1% (26).

Therefore, using the parametrization of e/ and the spatial
part of the connection (D1)—together with the correspond-
ent redefinition of the Lagrange multiplier accompanying
the Gauss constraint—the action for the theory in three
dimensions is

oo 1 )
S = / dtd’x [2KH”1Qa1 + §h1/2n1(l/_/}/1Elj/ -y ETy)
RxX
—2,GY —2N“D, — NH} . (D2)

Here, the coupling matrix is £ = (1 +1i6)1 and the first-

class constraints G/, D,, and H are given by
~ . 0 1
gIJZZK'Ha[IQaJ] +5h1/2n[lv‘l]+Zh1/2€IJKVlKl/_/l//, (D3a)

D, = «(211"0,,04) — Q10,11"")

* %hl/znz(w’ O = 0yry'w + 00, V"), (D3b)
H = KT Ry, + 26190 TPV Q L, 0,
- % RO @y Vaw = Vayy )
+ % W21, Q, (01197 V! — VKT )
g2, vV~ n(k + mp), (D3c)

8k

where V! is defined in (14a), and (A8) for n = 3 is also
used, which amounts to

{yl. 'K} = VK1, (D4)
because of I'=—y%!y> =1 (and therefore, [y/,y’] =
2eM gy,

Note that the Hamiltonian formulation (D2) is the
same one given in (39) by substituting n = 3 and (D4)
in (44a)—(44c). Therefore, all the Hamiltonian formulations
obtained after (39) also hold for a spacetime of dimen-
sion three.

For the sake of completeness, we give two additional

Hamiltonian formulations that are particular of a spacetime
of dimension three.

1. First formulation

The first of them is obtained via a symplectomorphism
that only replaces the variable Q,; with the variable
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1
Ay = §€IJKFaJK + Qur (Ds)

and leaves I1%, w, and y unchanged. Since I'y; is a
connection and Q,; is a vector, the variable A,; is also a
connection. In terms of the new phase-space variables—
and neglecting a boundary term—the action (D2) becomes

U 1 .
S = / dtd’x [ZKH‘”AM + 5 R\, (@ry! Eyr — yry' ETy)
RxZ

— 4G —2N“D, — N H] , (D6)

where the first-class constraints are given by

- 1 ~ - -
G = _Eean”( _ K(@aH’” n €IJKAaJHaK)

0 1
- Z h1/2€IJKnJVK + Zhl/znll/_/lp, (D7a)

T)a = K(Zﬁbld[aAb], —Aaldbﬁbl)

1
+7 R 20 (' 0y — 07" w + 60, V"), (D7b)

H = —xer YT F K + %h'/zﬁal W7 Vo = Vawrw)
+ % h'/*n, (Aaj - %ejKLFaKL> (o' v?
— ML ) — g W2ep, TRV, VK
+ %ezun’VJ — h(2kA + mypy), (D7c)

with F o = 0,4, — 0pA 4 + €175 A, ALK being the curva-
ture of A,;, and we have used the identity

201V, G = = 1T (Ryps + €15k F ™)
— 2kT1eU TPV (Aul - %elKLFaKL>
X (Abj - %ejMNFbMN>
(D8)

0 -
_ Ehl/ze,JKH“’n’VgVK,

and redefined the
€I]K/1JK + Zﬁalvaly.

Lagrange multiplier by A;:=

2. Second formulation

Similarly to the analysis made in Sec. IV, we define the
half-densitized fermions

¢ =h'ty, (D9a)
¢ =h""*p, (D9b)
and the variable
Aot = A+ h Xy
=Au+ 4 h alPny V7, (D10)

2K

where the densitized vector current V/ is defined by (62a).
Furthermore, since 1%, n ;> and V! are Lorentz vectors,
the second term on the right-hand side of (D10) transforms
as a Lorentz tensor. Therefore, A,; is a Lorentz connection.
Then, in terms of these phase-space variables, the
action (D6) acquires the form

S — / dtd?x [2z<r”1”’,llu, + ln,((i)y’qb - (?)y’qb)
RxX 2

— 4G = 2ND, —zyﬁ], (D11)
where the first-class constraints are given by
~ . . 1 -
G = k(0,01 + € ;A TIK) +- 1 n'ggp, (D12a)

~ - - 1 — —
Da = K(znbla[a-Ab]I - Aalabnh]) + an (¢y10a¢ - aa¢y1¢) s
(D12b)

= O | R =
H = —K€[JKHa[HbeabK + Enal(¢y1va¢ - va¢yl¢)
1 1 R (.
_ €[]Kn] AaJ _ GJLMraLM HaK¢¢ + _92vl VI
2 2 8k

— 2khA — h'2meg, (D12c)
with F .y = 0, Ap; — 0, Ay + €17 A’ ALK being the cur-
vature of A,;. This Hamiltonian formulation also has the
peculiarity that the coupling parameter @ only appears in
the quartic-fermion interaction. Therefore, if the coupling
of fermions is minimal (and thus 6 = 0), there are no
quartic fermion interactions.

APPENDIX E: HAMILTONIAN
FORMULATIONS WHEN r =4

The Hamiltonian formulations presented in Secs. III
and IV are valid for n > 3. Here, we restrict the analysis to
n = 4 and use (13) to rewrite the formulations given by the
actions (39), (54), and (58).
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1. First formulation

Thus, if n = 4, the first-class constraints of the action (39) acquire the form

G = 2610010,/ JWonll OV 4 EAT) 4Rl En A,

3 3 _ 1
D, = k(211" 0,0y = Qus0,11"") + Zhl/ “nyly! 0w — 0y w 4 0,(0V 4 EAT)],

1 - . 3h
3 Y Qg1 (OV! + EAT) — e RLTL kAL ) +

+ g (PVIV) + EATAT +206VIAT)] — h'2(2kA + miny),

(Ela)

(E1b)

L S 1 Lo S
H = k1T Ry + 26TV Q0 Qg o+ 5 W (Vo = Vay )

1/2

[nanAIAJ

(Elc)

where we have used (13) and the fermion currents V! and A’ are defined in (14a) and (14b), respectively.

2. Second formulation

Similarly, if n = 4 the first-class constraints of the Hamiltonian formulation (54) become

N . 1 .
G = oxd1ely I + €7 kAL,

~ - - 1 - -
Da = K<2tha[alpb]1 - lI“alabrlhl) + an(gbylaa(ﬁ - aa¢y1¢),

(E2a)

(E2b)

= o~ - - 1 ~ _ _
H= KHalanRabu =+ 2Kl—la[lrﬂbmlPalleJ + Enal (¢71va¢ - va¢}’1¢)

1 . . 3 e - - o -
+5e Jx W YW KAL o [>VIV, +20EVIA, + EATA; + nin,ATA) — 212k — W' A meg,
K

where V! and A’ are the densitized fermion currents defined
in (62a) and (62b).

Remark: Note that is possible to perform a sym-
plectomorphism from this formulation and obtain the
Hamiltonian formulation of fermions coupled to the
Holst action reported in the Eq. (64) of Ref. [7].
The symplectomorphism implies to change the gravita-
tional variables W,; with

1
Par =Yar + W, 1k <51[1{15f/] + 2]/€JKMN> I,MN, (E3)

and leave 1%/, ¢, and ¢ unchanged. By doing so, and also
choosing the parameters involved in this Hamiltonian
formulation as

=——9, (E4a)

(E2c)

__r 1
5_\/y2+1(C+7>’

where 9, { € R and y is the Barbero-Immirzi parameter, we
get precisely the Hamiltonian formulation given in Eq. (64)
of Ref. [7].

(E4b)

3. Third formulation

If n=4, then the first-class constraints of the
Hamiltonian formulation (58) acquire the form

~ - 1 -
GV = Il 1 4+ ZeleLnKAL, (ESa)

- . . 1 _ _
Da = K(2Hbla[a‘Pb]l - lI"alabl—lbl) + an(¢ylaa¢ - aa¢y1¢)’
(ESb)
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z -~ " 1~ _ _
C = kl1TIP Ry + 2c1UTTPVIW W, + EH“’(gl)y,Vaq’) = Vubri9)
1 . . -~ -~ -
LET {3167V, V! 4+ 206V, A + (&2 — 1)A,Al) — q,ATA} = 20" 2k A — W' *mep. (E5c)
K
Using the identity

quAIAJ = —4K€[JKLn[I:IaijaKAL + 2€]JKLG1JI/1KAL, (E6)

the Hamiltonian constraint (E5c) acquires the form

L L | = 1 - -
C = k1" TIP Ry + 20U TIPHIW W, ) 4 5““’(¢Y1va¢ = Vadyi9) + §€11KLn'HaJ‘PaKAL

3 o - - - -1 e
+ 35 [PVIV! 206V, AT + (& = DAAT] = 212k — 1 imp - Fe,,KLg”nKAL, (E7)
K K

and, finally, factoring out the Gauss constraint, the Hamiltonian constraint becomes

N Lo 1o - S 1 8 N
H := KHaIHbJRabIJ + 2k 11PV] Yo ¥ + EH“[(cﬁy,VaqS - va¢}’1¢) + §€IJKLn1HahPaKAL
+35x [0>V, VI +20EV,AT + (82 — 1)A,AT] = 212k A — hY 4 mepgp. (ES8)

Therefore, the resulting Hamiltonian formulation is given by the action
- . 1 . - ~ ~ =
S = / did’x [2:<H““Pa1 +5m(@r'd = dr'p) v, G —2N“D, - N . (E9)
RxXZ

with the constraints (E5a), (E5b), and (E8). This formulation is relevant because it allows us to see how the Hamiltonian
formulation of the particular Lagrangian action (4) that is equivalent to the Einstein-Dirac theory looks like. We recall the
reader that the Lagrangian action (4) is equivalent to the Einstein-Dirac theory if the parameters in the matrix coupling are
chosen such that £ = 1 — zil" (which amounts to set @ = 0 and £ = z, see Sec. II B 1). Thus, for this particular coupling, the
first-class constraints are given by (E5a), (ESb), and (E8) acquires the form

z O I 1~ - _
H = k1T R 4y + 21U 1P V¥ + EH“’(gby,Vaqb = Vadyi9)
1 - ~ -
+ ge,JKLn’H‘”‘PaKAL — 212k = W A megp. (E10a)
Note that the resulting Hamiltonian description does not involve any quartic-fermion interactions.

This shows, by the way, that it is also possible to get a Hamiltonian formulation without quartic-fermion interactions for
the Holst action from each one of the half-densitized fermion formulations presented in Ref. [7] using an analogous identity

to (E6) and choosing the appropriate coupling parameters (see footnote 2 of Sec. II).
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