
Fermions coupled to the Palatini action in n dimensions

Jorge Romero † and Merced Montesinos *

Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,
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We study minimal and nonminimal couplings of fermions to the Palatini action in n dimensions (n ≥ 3)
from the Lagrangian and Hamiltonian viewpoints. The Lagrangian action considered is not, in general,
equivalent to the Einstein-Dirac action principle. However, by choosing properly the coupling parameters,
it is possible to give a first-order action fully equivalent to the Einstein-Dirac theory in a spacetime of
dimension four. By using a suitable parametrization of the vielbein and the connection, the Hamiltonian
analysis of the general Lagrangian is given, which involves manifestly Lorentz-covariant phase-space
variables, a real noncanonical symplectic structure, and only first-class constraints. Additional Hamiltonian
formulations are obtained via symplectomorphisms, one of them involving half-densitized fermions. To
confront our results with previous approaches, the time gauge is imposed.
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I. INTRODUCTION

General relativity in n dimensions, in the first-order
formalism, is given by the Palatini action principle, which
depends functionally on the vielbein eI and the Lorentz
connection ωI

J, which are the fundamental independent
variables of the theory. This framework is the natural arena
to make the coupling of fermions to gravity, which is not
possible in the metric formalism of general relativity.
When there are no matter fields coupled to gravity, the
equation of motion for the connection ωI

J can be solved to
yield ωI

J as a function of the vielbein and its derivatives,
and substituting it into the Palatini action leads to an
equivalent second-order action principle for general rela-
tivity, which depends only on the vielbein eI. On the other
hand, when a fermion field is minimally coupled to the
Palatini action, the theory is not equivalent to the Einstein-
Dirac theory because of the coupling of the Lorentz
connection to the fermion field (see, for instance,
Refs. [1,2] for a spacetime of dimension four).
In the context of an n-dimensional spacetime, the

Hamiltonian analysis of fermions minimally coupled to

gravity in the first-order formalism has been studied in
Ref. [3]. The Hamiltonian formulation derived there relies
on the time gauge. Such a gauge fixing simplifies the
handling of the second-class constraints that emerge
during the usual Hamiltonian analysis, but it breaks
the local Lorentz symmetry in the process. Since the
local Lorentz symmetry is one of the fundamental
symmetries of nature that is also required to make the
coupling of fermions to gravity at the Lagrangian level, it
is essential to maintain it during the Hamiltonian analysis
to get a deeper understanding of the gravity-fermion
interaction.
Therefore, in this work, we study the coupling of fermions

to the n-dimensional Palatini action (n ≥ 3) in the
Hamiltonian formalism without spoiling the local Lorentz
invariance. Moreover, to avoid the introduction of second-
class constraints in the Hamiltonian analysis—and the
complications they imply [4]—we follow the method
presented in Ref. [5] where authors get the Hamiltonian
formulation of the n-dimensional Palatini action from
scratch by making a suitable parametrization of the vielbein
eI and the connection ωI

J (see also Ref. [6] where the
Hamiltonian analysis of the Holst action is performed
following the same procedure). An advantage of the
approach of Refs. [5,6] is that it naturally allows us to
identify the manifestly Lorentz-covariant phase-space vari-
ables of the theory and, after eliminating the auxiliary fields
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from the action using their own equations of motion, the
Hamiltonian formulation formed solely by first-class con-
straints easily follows, which simplifies considerably the
analysis. This approach has also been used to study the
coupling of fermions to the Holst action [7].
We begin our analysis in Sec. II, where we present the

first-order action principle for a fermion field coupled to the
Palatini action in n dimensions used throughout the manu-
script. The coupling of the fermion field is generically
nonminimal, but it also includes the minimal coupling as a
particular case. We eliminate ωI

J from the action principle
using its equation of motion and obtain the equivalent
second-order action principle, which turns out to be different
from the Einstein-Dirac theory in the generic case. However,
we show that a particular choice of the coupling parameters
in the first-order Lagrangian action in four dimensions is
equivalent to the Einstein-Dirac action principle plus a
boundary term. Next, in Sec. III, the Hamiltonian analysis
of the general Lagrangian is performed straightforwardly. In
Sec. IV, we present two additional Hamiltonian formula-
tions; one of which is obtained through a symplectomor-
phism while the other employs half-densitized fermions,
which simplifies even more the constraints. For the sake of
completeness, we impose the gauge fixing known as time
gauge in Sec. V, and compare some of our results with those
obtained in Ref. [3]. We finish the paper by making some
remarks in Sec. VI. Our notation and conventions are
collected in Appendices A–C. Further details of the
Hamiltonian formulations when the spacetime has dimen-
sions three and four are given in the Appendices D and E,
respectively.

II. LAGRANGIAN ANALYSIS

A. The action principle

The gravitational field is given by the n-dimensional
Palatini—also known as Einstein-Cartan—action

SP½e;ω� ¼ κ

Z
M
½⋆ðeI ∧ eJÞ ∧ FIJ − 2Λρ�; ð1Þ

where κ ¼ ð16πGÞ−1 modulates the strength of gravity, G
is Newton’s gravitational constant, FI

J ≔ dωI
J þ ωI

K ∧
ωK

J is the curvature of the SO (n − 1, 1) connection ωI
J,

ρ ≔ ð1=n!ÞϵI1…Ine
I1 ∧ � � � ∧ eIn is the volume form, Λ is

the cosmological constant, and ⋆ stands for the Hodge dual
(see Appendix A for more details).
The fermion field ψ , coupled to gravity, is given by the

action

SF½e;ω;ψ ; ψ̄ � ≔
Z
M

�
1

2
ðψ̄γIEDψ −DψγIE†ψÞ ∧ ⋆eI

−mψ̄ψρ

�
; ð2Þ

where ψ̄ ¼ iψ†γ0, γI are the Dirac matrices, m is the mass
of ψ , D stands for the covariant derivative with respect to
ωI

J [see (A5a) and (A5b)], and E is the coupling matrix
defined by

E ≔
� ð1þ iθÞ1 − iξΓ; if n is even

ð1þ iθÞ1; if n is odd
; ð3Þ

with θ and ξ being dimensionless real parameters and Γ
being the chirality matrix (A10). The coupling matrix E,
Eþ E† ¼ 21, involves minimal and nonminimal couplings
depending on the values of the parameters. The minimal
coupling is when E ¼ 1, which amounts to set θ ¼ ξ ¼ 0.
Note that if n is odd, then Γ is proportional to 1, and thus it
is already considered in E.
It is remarkable that when gravity is turned off, the action

principle (2) leads to the Dirac equation with m ≠ 0 in an
n-dimensional Minkowski spacetime for any generic form
of the coupling matrix E given by (3) (see Appendix B).
Thus, the action (2) has the correct limit when there is no
gravity.
In this paper we are interested in the coupling of

fermions to general relativity. Therefore, the theory we
are going to study is given by the action principle

S½e;ω;ψ ; ψ̄ � ≔ SP½e;ω� þ SF½e;ω;ψ ; ψ̄ �; ð4Þ

which generalizes the one considered in Ref. [3], where
authors study only the minimal coupling (E ¼ 1).

B. Second-order action

Before performing the Hamiltonian analysis of the first-
order action (4) and to better understand the nature of the
coupling of fermions to gravity, we eliminate the connection
ωI

J from the action principle (4) using its equation of
motion to get the equivalent second-order action principle,
so we can make some remarks regarding the coupling of the
fermion field to gravity in both first-order and second-order
formalisms.
The variation of the action (4) with respect to the

connection ωI
J gives the equations of motion

κD½⋆ðeI ∧ eJÞ� þ 1

4

�
ηK½Iψ̄γJ�ðE − E†Þψ

þ ψ̄fγK; σIJgψ
�
⋆eK ¼ 0; ð5Þ

where we made use of the fact that Eþ E† ¼ 21 and (A6).
The equation of motion (5) can be rewritten in the form

DeI ≔ deI þ ωI
J ∧ eJ ¼ TI; ð6Þ
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where TI is the torsion given by

TI ≔
1

8κ

�
1

n−2
ψ̄γJðE−E†ÞψeI ∧eJ− ψ̄fγI;σJKgψeJ∧eK

�
:

ð7Þ

The solution for ωI
J is

ωI
J ¼ ΩI

J þ CI
J; ð8Þ

where ΩI
J ¼ −ΩJ

I is the torsion-free spin connection
(deI þ ΩI

J ∧ eJ ¼ 0) and CI
J ¼ −CJ

I is the contorsion
1-form

CIJ ≔
1

8κ

�
2

n−2
ψ̄γ½JðE−E†ÞψeI� þ ψ̄fγK;σIJgψeK

�
: ð9Þ

The contorsion and the torsion are related by
TI ¼ CI

J ∧ eJ.
Due to the fact ωI

J has been solved using its equation of
motion, it is an auxiliary field [8]. Next, we substitute the
solution for the connection (8) into the action (4) and

obtain, using (A7) and after some algebra, the equivalent
second-order action principle

Seff ½e;ψ ; ψ̄ � ≔ κ

Z
M
½⋆ðeI ∧ eJÞ ∧ RIJ − 2Λρ�

þ
Z
M

�
1

2
ðψ̄γIDΩψ −DΩψγ

IψÞ ∧ ⋆eI

−mψ̄ψρ

�
þ Sint½e;ψ ; ψ̄ �

−
1

4ðn − 2Þ
Z
∂M

ψ̄γIðE − E†Þψ⋆eI; ð10Þ

where RI
J is the curvature of ΩI

J, RI
J ¼ dΩI

Jþ
ΩI

K ∧ ΩK
J, and the covariant derivatives of ψ and ψ̄

are given by

DΩψ ≔ dψ þ 1

2
ΩIJσ

IJψ ; ð11aÞ

DΩψ ≔ dψ̄ −
1

2
ΩIJψ̄σ

IJ: ð11bÞ

A relevant aspect of the second-order Lagrangian for-
mulation (10) is the presence of the interaction term

Sint½e;ψ ; ψ̄ � ≔
1

64κ

Z
M

��
n − 1

n − 2

�
½ψ̄γIðE − E†Þψ �½ψ̄γIðE − E†Þψ � þ ½ψ̄fγI; σJKgψ �½ψ̄fγI; σJKgψ �

�
ρ: ð12Þ

Therefore, due to the interaction term Sint, the resulting
second-order action (10) is generically different from the
Einstein-Dirac theory, unless the interaction term vanishes.
Note that the last term in (12) corresponds to the well-
known interaction term predicted by the Einstein-Cartan
theory (see, for instance, Ref. [2]).
However, in a four-dimensional spacetime it is possible

to choose the coupling parameters in the first-order action
(4) in such a way that the resulting second-order action (10)
is precisely the Einstein-Dirac theory. This is shown next.

1. Four-dimensional spacetime

If n ¼ 4, then we have the result for the anticommutator
(see Appendix A)

fγI; σJKg ¼ iϵIJKLΓγL: ð13Þ

Using this, the fact that E − E† ¼ 2iðθ1 − ξΓÞ, and taking
into account the definition of the real vector VI and axial AI

currents given by

VI ≔ iψ̄γIψ ; ð14aÞ

AI ≔ iψ̄ΓγIψ ; ð14bÞ

the interaction term (12) acquires the form

Sint ¼
3

32κ

Z
M
½θ2VIVI þ 2θξVIAI þ ðξ2 − 1ÞAIAI�ρ: ð15Þ

It is clear that the interaction term is not invariant under the
parity transformation due to the middle term in (15).
However, for the couplings when θ ¼ 0 or ξ ¼ 0, the
middle term vanishes, and the interaction term is invariant
under parity transformations.1 Note that any of these two
choices is not the Einstein-Dirac theory.
Furthermore, even if we take both θ ¼ 0 ¼ ξ, the

resulting theory is also not the Einstein-Dirac theory
because of the presence of the axial-axial term in (15),
i.e., the minimal coupling (E ¼ 1) in the first-order
formalism (4) is not equivalent to the Einstein-Dirac theory.
Nevertheless, if we consider the particular choice θ ¼ 0

and ξ ¼ �1≕ τ, the interaction term vanishes

Sint ¼ 0: ð16Þ
Thus, in a four-dimensional spacetime, the first-order
action (4) with nonminimal coupling matrix E ¼ 1 − τiΓ

1The same holds for any even dimension. This conclusion
comes from writing (12) in terms of the axial and vector currents
for even dimensions.
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is—eliminating the connection ωI
J from (4) using its

equation of motion—equivalent to the Einstein-Dirac
action plus a boundary term

Seff ¼ κ

Z
M
½⋆ðeI ∧ eJÞ ∧ RIJ − 2Λρ�

þ
Z
M

�
1

2
ðψ̄γIDΩψ −DΩψγ

IψÞ ∧ ⋆eI −mψ̄ψρ

�

−
τ

4

Z
∂M

AI⋆eI: ð17Þ

Therefore, the usual belief that the first-order formalism of
fermions coupled to gravity is intrinsically different from
the second-order formalism given by the Einstein-Dirac
theory is not true. As we have shown, it is possible to make
them equivalent to each other by choosing a particular
nonminimal coupling in the first-order formalism.2

III. HAMILTONIAN ANALYSIS

Dirac’s approach to Hamiltonian systems calls for the
definition of the momenta canonically conjugate to all
configuration variables [9], enlarging in this way the phase
space of the theory under consideration, which is cumber-
some most of the times. The method requires us to also
evolve the primary constraints and find all the constraints,
which must be classified into first class and second class. On
the other hand, in first-order gravity for n > 4, the issue of
the second-class constraints becomes still more complicated
because they are reducible [4], which must be handled
somehow [10]. If, additionally, the coupling of fermions to
general relativity is considered, it is expected that the
analysis becomes worse.
Thus, to avoid these issues, we follow the method

developed in Refs. [5,6], which consists in a three-step
algorithm, to neatly arrive at the Hamiltonian formulations
of the n-dimensional Palatini and Holst actions involving
only first-class constraints and manifestly Lorentz-covariant
phase-space variables. This method has also been success-
fully applied to get the Hamiltonian formulation of fermions
coupled to the Holst action [7].
In the first step of the approach, we parametrize the

orthonormal frame of 1-forms (vielbein) eI, adapting it to
the geometry of the spacetime foliation. In the second step,
we use the parametrization of the connection ωI

J naturally
induced by the parametrization of the vielbein, which leads
to the phase-space variables of the theory. Finally, in the
third step, we get rid off the auxiliary fields that do not play

a dynamical role in the Hamiltonian formulation by elimi-
nating them from the action principle by using their own
equations of motion. All of this is done in what follows.

A. Parametrization of the vielbein

We assume that the spacetime manifold M is diffeo-
morphic to R × Σ, with Σ being a (n − 1)-dimensional
spacelike hypersurface without boundary. Then, we foliate
the spacetime with hypersurfaces Σt for every t ∈ R, and
each Σt is diffeomorphic to Σ. Thus, adapted to the
foliation, the local coordinates ðxμÞ ¼ ðt; xaÞ label the
points on R and Σ, respectively.
Thus, adapted to the foliation, we write the orthonormal

frame of 1-forms and the connection as

eI ¼ e0Idtþ eaIdxa; ð18aÞ

ωI
J ¼ ω0

I
Jdtþ ωa

I
Jdxa: ð18bÞ

We parametrize the n2 components eμI in terms of the
tensor density Π̃aI plus the usual lapse function N and the
shift vector Na as

e0I ¼ NnI þ Nah
1

2ðn−2Þh
≈ abΠ̃bI; ð19aÞ

eaI ¼ h
1

2ðn−2Þh
≈ abΠ̃bI; ð19bÞ

where

nI ≔
1

ðn − 1Þ! ffiffiffi
h

p ϵIJ1…Jn−1η
˜
a1…an−1Π̃

a1J1 � � � Π̃an−1Jn−1 ð20Þ

is an internal vector orthogonal to Σ that satisfies nInI ¼
−1 and nIΠ̃ aI ¼ 0; h

≈ ab is the densitized metric on Σ

whose inverse is given by ˜̃h ab ≔ Π̃aIΠ̃b
I, and h ≔ detð ˜̃h abÞ

is a tensor density of weight 2ðn − 2Þ. The maps (19a) and
(19b) are invertible, see Appendix C for the supplementary
maps.
Continuing with the analysis, we use the decomposition

of eI and ωI
J given in (18a) and (18b) together with the

parametrization (19a) and (19b), and we substitute these
expressions into the action (4) and obtain

S ¼
Z
R×Σ

dtdn−1x

�
−2κΠ̃ aInJ _ωaIJ þ

1

2
h

1
2ðn−2ÞnIψ̄γIE _ψ

−
1

2
h

1
2ðn−2ÞnI _̄ψγIE†ψ þ ω0IJG̃

IJ − NaṼa − N
˜

˜̃S
�
; ð21Þ

where dtdn−1x ≔ dt ∧ dx1 ∧ � � � ∧ dxn−1, the dot over the

corresponding field denotes ∂t, N
˜
≔ h−

1
2ðn−2ÞN, and

2An analogous situation happens for the nonminimal coupling
of fermions to the Holst action. By making the particular
choice of the parameters in the coupling matrix, θ ¼ 0 and
ξ ¼ ð1=γÞð−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
Þ, where γ is the Barbero-Immirzi

parameter, the interaction term, given in Eq. (21) of Ref. [7],
vanishes Sint ¼ 0.
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G̃IJ ≔ 2κ
h
−∂a

	
Π̃a½InJ�



þ ωa

½I
KΠ̃jajJ�nK − ωa

½I
KnJ�Π̃aK

i
þ 1

4
h

1
2ðn−2ÞnKψ̄ðγKσIJEþ σIJγKE†Þψ ; ð22aÞ

Ṽa ≔ −2κΠ̃bInJFabIJ þ
1

2
h

1
2ðn−2ÞnIðψ̄γIEDaψ −Daψγ

IE†ψÞ ð22bÞ

¼ 2κ½−Π̃bInJ∂aωbIJ þ ∂bðωaIJΠ̃bInJÞ� þ 1

2
h

1
2ðn−2ÞnIðψ̄γIE∂aψ − ∂aψ̄γ

IE†ψÞ þ ωaIJG̃
IJ; ð22cÞ

˜̃S ≔ κΠ̃aIΠ̃bJFabIJ þ
1

2
h

1
2ðn−2ÞΠ̃aIðψ̄γIEDaψ −DaψγIE†ψÞ − h

1
n−2ð2κΛþmψ̄ψÞ; ð22dÞ

with

Daψ ≔ ∂aψ þ 1

2
ωaIJσ

IJψ ; ð23Þ

Daψ ≔ ∂aψ̄ −
1

2
ωaIJψ̄σ

IJ; ð24Þ

Fab
I
J ¼ ∂aωb

I
J − ∂bωa

I
J þ ωa

I
Kωb

K
J − ωb

I
Kωa

K
J: ð25Þ

Before making the parametrization of the connection,
we introduce the covariant derivative ∇a compatible
with Π̃aI

∇aΠ̃bI ≔ ∂aΠ̃bI − Γc
acΠ̃bI þ Γb

acΠ̃cI þ Γa
I
JΠ̃bJ ¼ 0:

ð26Þ

This definition is a set of nðn − 1Þ2 equations that uniquely
determine the ð1=2Þnðn − 1Þ2 þ ð1=2Þnðn − 1Þ2 connec-
tion components of Γa

I
J ¼ −ΓaJ

I and Γa
bc ¼ Γa

cb. Also,
we define the curvature of Γa

I
J as Rab

I
J ≔ ∂aΓb

I
J−

∂bΓa
I
J þ Γa

I
KΓb

K
J − Γb

I
KΓa

K
J.

B. Parametrization of the connection

To introduce the suitable parametrization of the con-
nection, we focus our attention on the first term of the
action (21). We rewrite it as

−2Π̃aInJ _ωaIJ ¼ −2Π̃aInJ∂tðωaIJ − ΓaIJ þ ΓaIJÞ
¼ −2Π̃aInJ∂tðωaIJ − ΓaIJÞ − 2∂aðnI∂tΠ̃aIÞ
¼ 2Π̃aI

∂t½Wa
b
IJKðωb

JK − Γb
JKÞ�

− 2∂aðnI∂tΠ̃aIÞ; ð27Þ

where Wa
b
IJK ¼ −Wa

b
IKJ is given by

Wa
b
IJK ≔ −δbaηI½JnK� − h

≈ acnIΠ̃c½JΠ̃b
K�: ð28Þ

Therefore, from (27) it is natural to define the nðn − 1Þ
phase-space variables

QaI ≔ Wa
b
IJKðωb

JK − Γb
JKÞ: ð29Þ

Thus, the projector Wa
b
IJK singles out the dynamic

components of ωa
I
J. Hence, neglecting the boundary term,

the gravitational part of our Hamiltonian formalism is
described by the phase-space variables ðQaI; Π̃aIÞ. To
express the theory in terms of them, we invert (29), which
is a system of nðn − 1Þ linear equations for nðn − 1Þ2=2
unknowns ωa

I
J. Therefore, the solution for ωa

I
J must

involve nðn − 1Þ2=2 − nðn − 1Þ ¼ nðn − 1Þðn − 3Þ=2 free
variables. We call these variables u

≈ abc, and they satisfy

u
≈ abc ¼ −u

≈ acb and the trace condition ˜̃h abu
≈ abc ¼ 0; both

conditions account for the correct number of independent
variables contained in u

≈ abc.

From (29), the solution for ωa
I
J is

ωaIJ ¼ Ma
b
IJKQb

K þ ˜̃Na
bcd

IJu≈ bcd þ ΓaIJ; ð30Þ

where Ma
b
IJK ¼ −Ma

b
JIK and ˜̃Na

bcd
IJ ¼ − ˜̃Na

bcd
JI ¼

− ˜̃Na
bdc

IJ are functions of Π̃aI that are given in (C3) and
(C4), respectively.
Now that we have the parametrization for the spatial

components of the connection, we substitute (30) into the
action (21) and obtain

S¼
Z
R×Σ

dtdn−1x

�
2κΠ̃aI _QaIþ

1

2
h

1
2ðn−2ÞnIðψ̄γIE _ψ − _̄ψγIE†ψÞ

þω0IJG̃
IJ−NaṼa−N

˜

˜̃S
�
; ð31Þ

with

G̃IJ ¼ 2κΠ̃a½IQa
J� þ 1

4
h

1
2ðn−2ÞnKψ̄ðγKσIJEþ σIJγKE†Þψ ;

ð32aÞ
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Ṽa ¼ 2κð2Π̃bI
∂½aQb�I −QaI∂bΠ̃bIÞ þ 1

2
h

1
2ðn−2ÞnIðψ̄γIE∂aψ − ∂aψ̄γ

IE†ψÞ

þ ðMa
b
IJKQb

K þ ˜̃Na
bcd

IJu≈ bcd þ ΓaIJÞG̃IJ; ð32bÞ
˜̃S ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�QaIQbJ þ

1

2
h

1
2ðn−2ÞΠ̃aIðψ̄γI∇aψ −∇aψγIψÞ

þ 1

2
h

1
2ðn−2ÞQaInJΠ̃a

Kψ̄ðγKσIJEþ σIJγKE†Þψ þ ðn − 1Þh 1
n−2

64ðn − 2Þκ qIJ½ψ̄γ
IðE − E†Þψ �½ψ̄γJðE − E†Þψ �

þ u
≈ abc

�
κ ˜̃h

db ˜̃h
cf ˜̃h

ea
u
≈ def þ

1

4
h

1
2ðn−2ÞΠ̃a

IΠ̃b
JΠ̃c

Kψ̄fγI; σJKgψ
�
− h

1
n−2ð2κΛþmψ̄ψÞ

þ 1

κðn − 2Þ G̃IJ

�
ðn − 3ÞnInKG̃JK þ 1

4
h

1
2ðn−2ÞnIψ̄γJðE − E†Þψ

�
þ 2Π̃aInJ∇aG̃IJ; ð32cÞ

where qIJ ≔ ηIJ þ nInJ and the covariant derivatives are given by

∇aψ ≔ ∂aψ þ 1

2
ΓaIJσ

IJψ ; ð33aÞ

∇aψ ≔ ∂aψ̄ −
1

2
ΓaIJψ̄σ

IJ; ð33bÞ

∇aG̃
IJ ≔ ∂aG̃

IJ − Γb
baG̃

IJ þ Γa
I
KG̃

KJ þ Γa
J
KG̃

IK: ð33cÞ

We simplify the expressions by factoring all the terms involving G̃IJ in (31). Thus, after integrating by parts the last term
of (32c), and redefining the Lagrange multiplier ω0IJ as

ω0IJ ≕ − λIJ þ NaðMa
b
IJKQb

K þ ˜̃Na
bcd

IJu≈ bcd þ ΓaIJÞ − 2Π̃a½InJ�∇aN
˜

þ
N
∼

κðn − 2Þ
�
ðn − 3Þn½InKG̃J�K þ 1

4
h

1
2ðn−2Þn½Iψ̄γJ�ðE − E†Þψ

�
; ð34Þ

the action (31) becomes

S ¼
Z
R×Σ

dtdn−1x
�
2κΠ̃aI _QaI þ

1

2
h

1
2ðn−2ÞnIðψ̄γIE _ψ − _̄ψγIE†ψÞ − λIJG̃

IJ − 2NaD̃a − N
˜

˜̃Z
�
; ð35Þ

with

G̃IJ ¼ 2κΠ̃a½IQa
J� þ 1

4
h

1
2ðn−2ÞnKψ̄ðγKσIJEþ σIJγKE†Þψ ; ð36aÞ

D̃a ≔ κð2Π̃bI
∂½aQb�I −QaI∂bΠ̃bIÞ þ 1

4
h

1
2ðn−2ÞnIðψ̄γIE∂aψ − ∂aψ̄γ

IE†ψÞ; ð36bÞ

˜̃Z ≔ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�QaIQbJ þ
1

2
h

1
2ðn−2ÞΠ̃aIðψ̄γI∇aψ −∇aψγIψÞ

þ 1

2
h

1
2ðn−2ÞQaInJΠ̃a

Kψ̄ðγKσIJEþ σIJγKE†Þψ þ ðn − 1Þh 1
n−2

64ðn − 2Þκ qIJ½ψ̄γ
IðE − E†Þψ �½ψ̄γJðE − E†Þψ �

þ u
≈ abc

�
κ ˜̃h

db ˜̃h
cf ˜̃h

ea
u
≈ def þ

1

4
h

1
2ðn−2ÞΠ̃a

IΠ̃b
JΠ̃c

Kψ̄fγI; σJKgψ
�
− h

1
n−2ð2κΛþmψ̄ψÞ: ð36cÞ

Until this point, we have mapped the n2 components of the orthonormal frame of 1-forms ðeμIÞ ↦ ðN;Na; Π̃aIÞ and the
n2ðn − 1Þ=2 components of the connection ðωμ

I
JÞ ↦ ðQaI; u≈ abc; λIJÞ. The parametrization of the connection is obviously

not unique, since we can define other variables (see, for instance, Ref. [5] where alternative variables are induced when no
boundary term is neglected). However, we have chosen the phase-space variables ðQaI; Π̃aIÞ because they have a clear
geometrical meaning; both transform as Lorentz vectors under local SO (n − 1, 1) transformations.
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C. Eliminating the auxiliary fields

Although it appears that we have reached a Hamiltonian
description, this is not so because we still need to handle the
variables u

≈ abc. According to Dirac’s method, the definition

of the momenta canonically conjugate to u
≈ abc is required,

which would introduce second-class constraints and would
enlarge the phase space again. Furthermore, such second-
class constraints must be handled somehow and things
become complicated. Therefore, we circumvent Dirac’s
method, following an alternative way that avoids all of this.
The variables u

≈ abc are auxiliary fields [8]. In fact, from

the variation of the action with respect to u
≈ abc, we get the

equation of motion

N
∼

4
h

1
2ðn−2ÞΠ̃a

IΠ̃½b
JΠ̃c�

Kψ̄fγI; σJKgψ

þ 2κN
˜

˜̃h
d½b ˜̃hc�f ˜̃heau

≈ def ¼ 0; ð37Þ

which can be solved for u
≈ abc:

u
≈ abc ¼

1

8κ
h

1
2ðn−2Þh

≈ adh≈ e½bh≈ c�fΠ̃d
IΠ̃e

JΠ̃f
Kψ̄fγI; σJKgψ :

ð38Þ

Substituting (38) into the action (35) and simplifying, we
obtain

S¼
Z
R×Σ

dtdn−1x

�
2κΠ̃aI _QaIþ

1

2
h

1
2ðn−2ÞnIðψ̄γIE _ψ − _̄ψγIE†ψÞ

−λIJG̃
IJ−2NaD̃a−N

˜

˜̃H
�
; ð39Þ

where the Gauss G̃IJ, diffeomorphism D̃a, and Hamiltonian
˜̃H constraints are given by

G̃IJ ¼ 2κΠ̃a½IQa
J� þ 1

4
h

1
2ðn−2Þ½n½Iψ̄γJ�ðE − E†Þψ þ nKψ̄fγK; σIJgψ �; ð40aÞ

D̃a ¼ κð2Π̃bI
∂½aQb�I −QaI∂bΠ̃bIÞ þ 1

4
h

1
2ðn−2ÞnIðψ̄γIE∂aψ − ∂aψ̄γ

IE†ψÞ; ð40bÞ

˜̃H ≔ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�QaIQbJ þ
1

2
h

1
2ðn−2ÞΠ̃aIðψ̄γI∇aψ −∇aψγIψÞ

þ 1

2
h

1
2ðn−2ÞnIQaJ

�
1

2
Π̃aJψ̄γIðE − E†Þψ − Π̃a

Kψ̄fγI; σJKgψ
�

þ h
1

n−2

64κ

��
n − 1

n − 2

�
qIJ½ψ̄γIðE − E†Þψ �½ψ̄γJðE − E†Þψ � þ ðψ̄fγI; σJKgψÞðψ̄fγI; σJKgψÞ

þ 3nInJðψ̄fγI; σKLgψÞðψ̄fγJ; σKLgψÞ
�
− h

1
n−2ð2κΛþmψ̄ψÞ: ð40cÞ

The constraints G̃IJ, D̃a, and ˜̃H are first class, and
they generate the gauge symmetries of the theory.
The Gauss constraint G̃IJ generates the local Lorentz

transformations, while D̃a and ˜̃H generate space-
time diffeomorphisms. We highlight that in the formu-
lation (39), which comes out after integrating the
auxiliary fields, the remaining field variables are
ðN
˜
; Na; Π̃aI; QaI; λIJ;ψ ; ψ̄Þ, from which ðN

˜
; Na; λIJÞ play

the role of Lagrange multipliers. Furthermore, the phase-
space variables ðQaI; Π̃aIÞ transform as vectors under
local Lorentz transformations and as a 1-form and a
vector density of weight þ1 under spatial diffeomor-
phisms, respectively. It is also worth stressing that
the Hamiltonian formulation maintains manifestly and

completely the Lorentz invariance and that the full
noncanonical symplectic structure is real.
In the case of the minimal coupling (E ¼ 1), all the terms

involving ðE − E†Þ vanish, so this case is easily derived
from the above formulation.
Since we have a different matrix coupling E depending

on the spacetime dimension n [see (3)], we bifurcate our
analysis next and explicitly show the relevance of the
coupling parameters.

1. Even dimensions

In the case when the spacetime dimension is even, the
coupling matrix is

E ¼ ð1þ iθÞ1 − iξΓ: ð41Þ
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Thus, using the definitions (14a) and (14b), the Hamiltonian formalism is defined by the action (39) with the constraints

G̃IJ ¼ 2κΠ̃a½IQa
J� þ 1

2
h

1
2ðn−2Þn½IðθVJ� þ ξAJ�Þ þ 1

4
h

1
2ðn−2ÞnKψ̄fγK; σIJgψ ; ð42aÞ

D̃a ¼ κð2Π̃bI
∂½aQb�I −QaI∂bΠ̃bIÞ þ 1

4
h

1
2ðn−2ÞnI½ψ̄γI∂aψ − ∂aψ̄γ

Iψ þ ∂aðθVI þ ξAIÞ�; ð42bÞ
˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�QaIQbJ þ

1

2
h

1
2ðn−2ÞΠ̃aIðψ̄γI∇aψ −∇aψγIψÞ

þ 1

2
h

1
2ðn−2ÞnIQaJ½Π̃aJðθVI þ ξAIÞ − Π̃a

Kψ̄fγI; σJKgψ �

þ h
1

n−2

64κ

�
4

�
n − 1

n − 2

�
qIJðθ2VIVJ þ ξ2AIAJ þ 2θξVIAJÞ þ ðψ̄fγI; σJKgψÞðψ̄fγI; σJKgψÞ

þ 3nInJðψ̄fγI; σKLgψÞðψ̄fγJ; σKLgψÞ
�
− h

1
n−2ð2κΛþmψ̄ψÞ: ð42cÞ

2. Odd dimensions

When the spacetime dimension is odd, we consider the coupling matrix

E ¼ ð1þ iθÞ1: ð43Þ

Thus, the Hamiltonian formalism is described by the action (39) and the constraints are

G̃IJ ¼ 2κΠ̃a½IQa
J� þ θ

2
h

1
2ðn−2Þn½IVJ� þ 1

4
h

1
2ðn−2ÞnKψ̄fγK; σIJgψ ; ð44aÞ

D̃a ¼ κð2Π̃bI
∂½aQb�I −QaI∂bΠ̃bIÞ þ 1

4
h

1
2ðn−2ÞnIðψ̄γI∂aψ − ∂aψ̄γ

Iψ þ θ∂aVIÞ; ð44bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�QaIQbJ þ
1

2
h

1
2ðn−2ÞΠ̃aIðψ̄γI∇aψ −∇aψγIψÞ

þ 1

2
h

1
2ðn−2ÞnIQaJðθΠ̃aJVI − Π̃a

Kψ̄fγI; σJKgψÞ þ
h

1
n−2

64κ

�
4θ2

�
n − 1

n − 2

�
qIJVIVJ

þ ðψ̄fγI; σJKgψÞðψ̄fγI; σJKgψÞ þ 3nInJðψ̄fγI; σKLgψÞðψ̄fγJ; σKLgψÞ
�
− h

1
n−2ð2κΛþmψ̄ψÞ; ð44cÞ

where the vector current is defined in (14a).

IV. ALTERNATIVE HAMILTONIAN
FORMULATIONS

We present two additional Hamiltonian formulations
of the action (4), which are easily obtained from
the Hamiltonian action (39). The first of these formula-
tions is deduced from a symplectomorphism while
the second is gotten employing half-densitized fermion
fields.3

A. Hamiltonian formulation through
a symplectomorphism

We make a symplectomorphism that only changes the
variable QaI to

QaI ¼ QaI þWa
b
IJKΓb

JK; ð45Þ

leaving Π̃aI, ψ , and ψ̄ unchanged.
Note that in terms of the original connection variables

ωa
I
J, QaI is given by

QaI ≔ Wa
b
IJKωb

JK; ð46Þ
3Although we could explore more Hamiltonian formulations

as in Ref. [7], we just consider the ones already mentioned.
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which can be obtained by simply substituting (29) into the
right-hand side of (45) or, alternatively, from writing the
first term of (21) as

−2Π̃aInJ _ωaIJ ¼ 2Π̃aI
∂tðWa

b
IJKωb

JKÞ
¼ 2Π̃aI _QaI; ð47Þ

which also shows that no boundary term, as in (27), arises if
we had defined these variables from the very beginning in
the Hamiltonian analysis.
In terms of the new variables, the symplectic structure

in (39) becomes

2κΠ̃aI _QaI þ
1

2
h

1
2ðn−2ÞnIðψ̄γIE _ψ − _̄ψγIE†ψÞ

¼ 2κΠ̃aI _QaI þ
1

2
h

1
2ðn−2ÞnIðψ̄γIE _ψ − _̄ψγIE†ψÞ

þ 2∂aðnI∂tΠ̃aIÞ; ð48Þ

which shows that the transformation is indeed a sym-
plectomorphism [note that the boundary term in the last
line is the one that is neglected in (27)].
Therefore, using (48) and neglecting the boundary term,

we get

S¼
Z
R×Σ

dtdn−1x

�
2κΠ̃aI _QaIþ

1

2
h

1
2ðn−2ÞnIðψ̄γIE _ψ − _̄ψγIE†ψÞ

−λIJG̃
IJ−2NaD̃a−N

˜

˜̃H
�
; ð49Þ

where the Gauss, diffeomorphism, and Hamiltonian con-
straints now read

G̃IJ ¼ 2κðΠ̃a½IQa
J� þ Π̃a½IΓa

J�
KnK − Π̃aKn½IΓa

J�
KÞ þ

1

4
h

1
2ðn−2Þ½n½Iψ̄γJ�ðE − E†Þψ þ nKψ̄fγK; σIJgψ �; ð50aÞ

D̃a ¼ κð2Π̃bI
∂½aQb�I −QaI∂bΠ̃bIÞ þ 1

4
h

1
2ðn−2ÞnIðψ̄γIE∂aψ − ∂aψ̄γ

IE†ψÞ; ð50bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ðQaIQbJ þ 2QaIΓbJKnK þ ΓaIKΓbJLnKnLÞ

þ 1

2
h

1
2ðn−2ÞΠ̃aIðψ̄γI∇aψ −∇aψγIψÞ þ

1

2
h

1
2ðn−2ÞnIðQaJ þ ΓaJLnLÞ

�
1

2
Π̃aJψ̄γIðE − E†Þψ − Π̃a

Kψ̄fγI; σJKgψ
�

þ h
1

n−2

64κ

��
n − 1

n − 2

�
qIJ½ψ̄γIðE − E†Þψ �½ψ̄γJðE − E†Þψ � þ ðψ̄fγI; σJKgψÞðψ̄fγI; σJKgψÞ

þ 3nInJðψ̄fγI; σKLgψÞðψ̄fγJ; σKLgψÞ
�
− h

1
n−2ð2κΛþmψ̄ψÞ: ð50cÞ

We emphasize that in the formulation (49), which
comes out after making the symplectomorphism, the field
variables are ðN

˜
; Na; Π̃aI;QaI; λIJ;ψ ; ψ̄Þ, from which

ðN
˜
; Na; λIJÞ play the role of Lagrange multipliers and

ðΠ̃aI;QaI;ψ ; ψ̄Þ are the phase-space variables. Note that
the phase-space variables QaI and Π̃aI transform as a
1-form and as a vector density of weight þ1 under spatial
diffeomorphisms, respectively. However, only Π̃aI trans-
forms as a vector under local Lorentz transformations.
The transformation law for QaI is a little more compli-
cated, so it does not have a clear geometrical interpreta-
tion. Nevertheless, it is worth mentioning that this
Hamiltonian formulation also maintains the Lorentz
invariance intact and no boundary term is neglected when
the definition of QaI is made.

The particular cases when the spacetime dimension n is
even or odd are similar to those already found at the end of
Sec. III, and so we do not give further details.

B. Half-densitized fermions

The use of half-densitized fermions simplifies the
expressions in the Hamiltonian analysis and facilitates
the introduction of fermions in the quantization scheme
[11,12] (see also Refs. [13,7]). Thus, we explore this
alternative and define half-densitized fermion fields by

ϕ ≔ h
1

4ðn−2Þψ ; ð51aÞ

ϕ̄ ≔ h
1

4ðn−2Þψ̄ : ð51bÞ
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Additionally, we rewrite the first term of the
action (39) as

2κΠ̃aI _QaI þ
1

2
h

1
2ðn−2ÞnIðψ̄γIE _ψ − _̄ψγIE†ψÞ

¼ 2κΠ̃aI
∂t

�
QaI þ

1

8κðn − 2Þ h≈ ab½Π̃b
InJ − ðn − 2ÞΠ̃b

JnI�

× ϕ̄γJðE − E†Þϕ
�
þ 1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ

−
1

4ðn − 2Þ ∂t½nIϕ̄γ
IðE − E†Þϕ�: ð52Þ

Therefore, it is natural to identify the gravitational variables
as

ΨaI ≔ QaI þ
1

8κðn − 2Þ h≈ ab½Π̃b
InJ − ðn − 2ÞΠ̃b

JnI�

× ϕ̄γJðE − E†Þϕ: ð53Þ

Note that the boundary term in (52) is real, so neglecting it
does not affect the real character of the symplectic
structure. Note also that in the case of the minimal coupling
of fermions to gravity, E ¼ 1, and then E − E† ¼ 0,
so ΨaI ¼ QaI .
Continuing with the analysis, we use (51a), (51b), and

the new variable (53) to rewrite the Hamiltonian formu-
lation given in (39). After neglecting the boundary term
of (52), we arrive at

S ¼
Z
R×Σ

dtdn−1x

�
2κΠ̃aI _ΨaI þ

1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ

− λIJG̃
IJ − 2NaD̃a − N

˜

˜̃H
�
; ð54Þ

where the first-class constraints are given by

G̃IJ ¼ 2κΠ̃a½IΨa
J� þ 1

4
nKϕ̄fγK; σIJgϕ; ð55aÞ

D̃a ¼ κð2Π̃bI
∂½aΨb�I −ΨaI∂bΠ̃bIÞ þ 1

4
nIðϕ̄γI∂aϕ − ∂aϕ̄γ

IϕÞ; ð55bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

−
1

2
nIΨaJΠ̃a

Kϕ̄fγI; σJKgϕþ 1

64κ

��
n − 1

n − 2

�
½ϕ̄γIðE − E†Þϕ�½ϕ̄γIðE − E†Þϕ�

þ ðϕ̄fγI; σJKgϕÞðϕ̄fγI; σJKgϕÞ þ 3nInJðϕ̄fγI; σKLgϕÞðϕ̄fγJ; σKLgϕÞ
�
− 2h

1
n−2κΛ − h

1
2ðn−2Þmϕ̄ϕ; ð55cÞ

with

∇aϕ ≔ ∂aϕ −
1

2
Γb

baϕþ 1

2
ΓaIJσ

IJϕ; ð56aÞ

∇aϕ ≔ ∂aϕ̄ −
1

2
Γb

baϕ̄ −
1

2
ΓaIJϕ̄σ

IJ: ð56bÞ

Note that if the coupling is minimal, E ¼ 1, then the Hamiltonian constraint simplifies more.
The Hamiltonian formulation (54) can still be rewritten by factoring out a term involving the Gauss constraint in the

Hamiltonian constraint. The term involving the Gauss constraint can be explicitly displayed by using the constraint (55a),
which allows us to rewrite (55c) as

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

þ 1

64κ

��
n − 1

n − 2

�
½ϕ̄γIðE − E†Þϕ�½ϕ̄γIðE − E†Þϕ� þ ðϕ̄fγI; σJKgϕÞðϕ̄fγI; σJKgϕÞ

− nInJðϕ̄fγI; σKLgϕÞðϕ̄fγJ; σKLgϕÞ
�
− 2h

1
n−2κΛ − h

1
2ðn−2Þmϕ̄ϕþ 1

4κ
G̃IJnKϕ̄fγK; σIJgϕ: ð57Þ

Therefore, factoring out the term involving the Gauss constraint, which requires us to redefine the Lagrange multiplier
μIJ ≔ λIJ þ ð1=4Þκ−1N

˜
nKϕ̄fγK; σIJgϕ, we get the Hamiltonian formulation with half-densitized fermion fields
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S ¼
Z
R×Σ

dtdn−1x

�
2κΠ̃aI _ΨaI þ

1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ − μIJG̃

IJ − 2NaD̃a − N
˜

˜̃C
�
; ð58Þ

where the Gauss and diffeomorphism constraints are given by (55a) and (55b), respectively, and the Hamiltonian constraint is

˜̃C ≔ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

þ 1

64κ

��
n − 1

n − 2

�
½ϕ̄γIðE − E†Þϕ�½ϕ̄γIðE − E†Þϕ� þ ðϕ̄fγI; σJKgϕÞðϕ̄fγI; σJKgϕÞ

− nInJðϕ̄fγI; σKLgϕÞðϕ̄fγJ; σKLgϕÞ
�
− 2h

1
n−2κΛ − h

1
2ðn−2Þmϕ̄ϕ: ð59Þ

We stress that in the formulation (58), which comes out
from using of half-densitized fermions, the field variables
are ðN

˜
; Na; Π̃aI;ΨaI; μIJ;ϕ; ϕ̄Þ, from which ðN

˜
; Na; μIJÞ

play the role of Lagrange multipliers and ðΠ̃aI;ΨaI;ϕ; ϕ̄Þ
are the phase-space variables. Note that the phase-space
variables ðΨaI; Π̃aIÞ transform as Lorentz vectors under
local SOðn − 1; 1Þ transformations. Furthermore, this for-
mulation generalizes in two aspects the one presented in

Ref. [3], where authors consider the time gauge from the
very beginning of their analysis and also the Hamiltonian
formulation is restricted to the case of the minimal coupling
of fermions, E ¼ 1. We also explore the time gauge, but in
Sec. V. Regarding the coupling, note that the matrix E
appears only in the scalar constraint, in some of the terms
involving the quartic fermion interaction. In the case where
the spacetime dimension is even, the scalar constraint is

˜̃C ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

þ 1

64κ

�
4

�
n − 1

n − 2

�
ðθ2ṼIṼI þ ξ2ÃIÃ

I þ 2θξṼIÃ
IÞ þ ðϕ̄fγI; σJKgϕÞðϕ̄fγI; σJKgϕÞ

− nInJðϕ̄fγI; σKLgϕÞðϕ̄fγJ; σKLgϕÞ
�
− 2h

1
n−2κΛ − h

1
2ðn−2Þmϕ̄ϕ: ð60Þ

On the other hand, when n is odd, the scalar constraint becomes

˜̃C ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

þ 1

64κ

�
4θ2

�
n − 1

n − 2

�
ṼIṼI þ ðϕ̄fγI; σJKgϕÞðϕ̄fγI; σJKgϕÞ − nInJðϕ̄fγI; σKLgϕÞðϕ̄fγJ; σKLgϕÞ

�

− 2h
1

n−2κΛ − h
1

2ðn−2Þmϕ̄ϕ: ð61Þ

Regardless of the spacetime dimension, the real densitized
fermion currents are defined by

ṼI ≔ iϕ̄γIϕ; ð62aÞ
ÃI ≔ iϕ̄ΓγIϕ: ð62bÞ

V. TIME GAUGE

In Secs. III and IV we have presented several
Hamiltonian formulations involving manifestly Lorentz-
covariant phase-space variables. To make contact with
other Hamiltonian formulations, we impose the time gauge,

fixing the freedom to perform boosts, and reducing the
gauge symmetry to (the double cover of) SOðn − 1Þ.
The time gauge is given by

Π̃a0 ¼ 0; ð63Þ
which is equivalent to ni ¼ 0 [see Eq. (20) and
Appendix A] as long as detðΠ̃aiÞ ≠ 0, which is assumed
throughout this section. The condition (63) together with
G̃i0 are second-class constraints because

fΠ̃a0ðt; xÞ; G̃i0ðt; yÞg ¼ 1

2
Π̃aiδn−1ðx; yÞ: ð64Þ
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Therefore, enforcing the condition (63) requires to solve
the constraints G̃i0 ¼ 0, which depends on each of the
Hamiltonian formulations presented previously. Thus, let
us analyze each of them. Moreover, from the definition
(26), note that (63) also implies Γa0i ¼ 0 and Γaij becomes
the spin connection compatible with the densitized
frame Π̃ai.

A. Time gauge in the Hamiltonian
formulation involving QaI

We impose the time gauge in the Hamiltonian formu-
lation given by the action (39) derived in Sec. III. Thus,
from (40a), the solution of G̃i0 ¼ 0 is

Qa0 ¼
n0
8κ

h
1

2ðn−2ÞΠ̃ aiψ̄γ
iðE − E†Þψ ; ð65Þ

where n0 ¼ sgn½detðΠ̃ aiÞ� is the only nonzero com-
ponent of nI left [see Eq. (20)] with Π̃ ai being the inverse

of Π̃ ai. Using (63) and (65), the action (39) acquires
the form

S ¼
Z
R×Σ

dtdn−1x

�
2κΠ̃ai _Qai þ

1

2
h

1
2ðn−2Þn0ðψ̄γ0E _ψ

− _̄ψγ0E†ψÞ − λijG̃
ij − 2NaD̃a − N

˜

˜̃H
�
; ð66Þ

where the first-class constraints are given by

G̃ij ¼ 2κΠ̃a½iQa
j� þ n0

2
h

1
2ðn−2Þψ̄γ0σijψ ; ð67aÞ

D̃a ¼ κð2Π̃bi
∂½aQb�i −Qai∂bΠ̃biÞ þ n0

4
h

1
2ðn−2Þðψ̄γ0E∂aψ − ∂aψ̄γ

0E†ψÞ; ð67bÞ

˜̃H ¼ κΠ̃aiΠ̃bjRabij þ 2κΠ̃a½iΠ̃jbjj�QaiQbj þ
1

2
h

1
2ðn−2ÞΠ̃aiðψ̄γi∇aψ −∇aψγiψÞ

þ n0h
1

2ðn−2ÞQai

�
1

4
Π̃aiψ̄γ0ðE − E†Þψ − Π̃a

jψ̄γ
0σijψ

�
þ h

1
n−2

64κ

��
n − 1

n − 2

�
½ψ̄γiðE − E†Þψ �½ψ̄γiðE − E†Þψ �

þ ½ψ̄fγi; σjkgψ �½ψ̄fγi; σjkgψ �
�
− h

1
n−2ð2κΛþmψ̄ψÞ: ð67cÞ

This Hamiltonian formulation is also the one obtained imposing the time gauge in the action (49) because in the time
gauge Qai ¼ Qai [see Eq. (45)].

B. Time gauge in the Hamiltonian formulation involving half-densitized fermions

We now impose the time gauge in the Hamiltonian formulation involving half-densitized fermions.We use the formulation
encompassed by the action (58) and the constraints (55a), (55b), and (59). Using (55a) and solving G̃i0 ¼ 0, we get

Ψa0 ¼ 0: ð68Þ
Therefore, the ensuing formulation is described by the action

S ¼
Z
R×Σ

dtdn−1x

�
2κΠ̃ai _Ψai þ

1

2
n0ðϕ̄γ0 _ϕ − _̄ϕγ0ϕÞ − μijG̃

ij − 2NaD̃a − N
˜

˜̃H
�
; ð69Þ

and the first-class constraints are given by

G̃ij ¼ 2κΠ̃a½iΨa
j� þ n0

2
ϕ̄γ0σijϕ; ð70aÞ

D̃a ¼ κð2Π̃bi
∂½aΨb�i −Ψai∂bΠ̃biÞ þ n0

4
ðϕ̄γ0∂aϕ − ∂aϕ̄γ

0ϕÞ; ð70bÞ

˜̃H ¼ κΠ̃aiΠ̃bjRabij þ 2κΠ̃a½iΠ̃jbjj�ΨaiΨbj þ
1

2
Π̃aiðϕ̄γi∇aϕ −∇aϕγiϕÞ

þ 1

64κ

��
n − 1

n − 2

�
½ϕ̄γIðE − E†Þϕ�½ϕ̄γIðE − E†Þϕ� − 16ðϕ̄γ0σijϕÞðϕ̄γ0σijϕÞ

þ ðϕ̄fγi; σjkgϕÞðϕ̄fγi; σjkgϕÞ
�
− 2h

1
n−2κΛ − h

1
2ðn−2Þmϕ̄ϕ: ð70cÞ
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Note that in the case of minimal coupling, E ¼ 1, this
formulation becomes the one derived in Ref. [3]. This is
other way of seeing that the formulation presented in (58)
with the constraints (55a), (55b), and (59) [restricted to the
case E ¼ 1] is indeed a manifestly Lorentz-invariant
generalization of the one of Ref. [3].

VI. CONCLUDING REMARKS

In this paper we have carried out the Lagrangian analysis
of a fermion field minimally and nonminimally coupled to
the Palatini action in n dimensions. A remarkable fact is that
in a spacetime of dimension four, there exists a first-order
Lagrangian action with a particular nonminimal coupling of
the fermion field to the Palatini action that is equivalent to
the Einstein-Dirac action plus a boundary term. This result
is analogous to what happens for the specific nonminimal
coupling of the fermion field to the Holst action studied in
Ref. [7], where the interaction term of the resulting second-
order action also vanishes. Nevertheless, the Lagrangian
action considered in this paper and the one of Ref. [7] have
different coupling matrix (see Sec. II of this paper).
Regarding the Hamiltonian analysis, it is important to

emphasize that all the Hamiltonian formulations presented
in Secs. III and IVof this paper involve manifestly Lorentz-
covariant phase-space variables and that their corresponding
symplectic structures are both Lorentz-invariant and real.
Additionally, the local Lorentz symmetry displays itself in
the first-class constraints through the various coupling terms
present there, which strongly contrasts with the form of the
symplectic structure and the form of the first-class con-
straints of the Hamiltonian formulations when the time
gauge is imposed, which are presented in Sec. V.
It is also important to mention that the Hamiltonian

formulation (69) reduces to the one presented in Ref. [3]
when the coupling of the fermion field is minimal (E ¼ 1).
Consequently, the Hamiltonian formulation (58)—from
which (69) comes from imposing the time gauge—is a
generalization in two aspects of the one reported in Ref. [3].
Finally, it is also important to remark that additional

manifestly Lorentz-covariant Hamiltonian formulations
can be found by making symplectomorphisms along the
lines of the ones considered in Refs. [5–7].
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APPENDIX A: CONVENTIONS AND NOTATION

1. General relativity

We label the points on M with local coordinates
fxμg ¼ ft ≔ x0; xag, where lower case latin indices

a; b; c;… take on the values 1;…; n − 1. In every point
x ∈ M, we have the cotangent space, where we have an
orthonormal frame of 1-forms eI , i.e., g ¼ ηIJeI ⊗ eJ where
g is the metric tensor and ðηIJÞ ¼ diagð−1; 1;…; 1Þ is the
Minkowski metric. Thus, the indices I; J; K;… that take on
the values 0; 1;…; n − 1 are SOðn − 1; 1Þ valued and are
lowered and raised with ηIJ. Similarly, the connection ωI

J is
compatible with ηIJ,DηIJ ≔ dηIJ − ωK

IηKJ − ωK
JηIK ¼ 0,

and so ωIJ ¼ −ωJI. In the first-order formalism of general
relativity, the orthonormal frame of 1-forms (vielbein) eI and
the connection ωI

J are the fundamental independent vari-
ables of the theory. The symbol “⋆” is the Hodge dual
defined by

⋆ðeI1 ∧ � � � ∧ eIkÞ≔
1

ðn− kÞ! ϵI1…IkIkþ1…Ine
Ikþ1 ∧ � � � ∧ eIn ;

ðA1Þ

where the totally antisymmetric Lorentz tensor ϵI1…In is such
that ϵ01…ðn−1Þ ¼ 1. Symmetrization and antisymmetrization
of Lorentz indices are denoted, respectively, by

AðIJÞ ¼
1

2
ðAIJ þ AJIÞ;

A½IJ� ¼
1

2
ðAIJ − AJIÞ: ðA2Þ

Similarly, symmetrization and antisymmetrization of space
indices are denoted, respectively, by

AðabÞ ¼
1

2
ðAab þ AbaÞ;

A½ab� ¼
1

2
ðAab − AbaÞ: ðA3Þ

Moreover, indices inside the vertical bars jj, as in AðajIJcdjbÞ,
are not symmetrized. Also, the indices inside jj in A½ajIJcdjb�
are not antisymmetrized.
Furthermore, η

∼
a1…an−1 is the totally antisymmetric tensor

density of weight −1 on Σ such that η
∼
123…ðn−1Þ ¼ 1.

Similarly, η̃ a1…an−1 is the totally antisymmetric tensor
density of weight þ1 such that η̃ 12…ðn−1Þ ¼ 1. Also, two
tildes above a tensor means it is of weightþ2 and two tildes
below a tensor means it is of weight −2. However, to avoid
a cumbersome notation, sometimes the weight is not
indicated with tildes, but the weight is explicitly mentioned
in the text.
When the time gauge is imposed (Sec. V), the indices

I; J; K;… split into “0” and the spatial internal indices
i; j; k;… that take on the values 1;…; n − 1.
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2. Fermion field

The fermion field ψ is Grassmann-valued and ψ̄ ≔ iψ†γ0

is its Dirac conjugate, where i is the imaginary unit. The
Dirac matrices fγIg ¼ fγ0; γ1;…; γn−1g satisfy the Clifford
algebra

fγI; γJg ≔ γIγJ þ γJγI ¼ 2ηIJ1; ðA4Þ

where 1 is the 2½n=2� × 2½n=2� identity matrix (½n=2� denotes
the integer part of n=2). Note also that ðγIÞ† ≔ γ0γIγ0.
Furthermore, the Lorentz generators in the spin repre-

sentation are the nðn − 1Þ=2 quantities σIJ ¼ −σJI ≔
ð1=4Þ½γI; γJ�. Thus, the covariant derivatives of ψ and ψ̄
with respect ωI

J are

Dψ ≔ dψ þ 1

2
ωIJσ

IJψ ; ðA5aÞ

Dψ ≔ dψ̄ −
1

2
ωIJψ̄σ

IJ: ðA5bÞ

From the definition of σIJ and (A4), we have

½γI; σJK� ¼ γIσJK − σJKγI ¼ 2ηI½JγK�: ðA6Þ

Similarly, the identity

γIγJγK ¼ ηJKγI − ηIKγJ þ ηIJγK þ fγI; σJKg ðA7Þ

holds. Furthermore, we have

fγI; σJKg ¼ Cnϵ
IJKL1���Ln−3ΓγL1

� � � γLn−3
; ðA8Þ

where

Cn ≔ −
ð−1Þn−3
ðn − 3Þ! i

nðn−1Þ−2
2 ; ðA9Þ

and Γ is the chirality matrix:

Γ ≔ i
nðn−1Þ−2

2 γ0 � � � γn−1: ðA10Þ

Defined as such, the chirality matrix satisfies Γ† ¼ Γ and
Γ2 ¼ 1. Also, when n is even, we have γIΓ ¼ −ΓγI .
However, if n is odd, γIΓ ¼ ΓγI. Thus, by Schur’s lemma,
if n is odd, Γ is proportional to the identity matrix 1.
Therefore, we only consider the chirality matrix in the cases
where the spacetime dimension n is even.

APPENDIX B: FERMION FIELD
IN MINKOWSKI SPACETIME

When gravity and the cosmological constant are turned
off, the spacetime M becomes the Minkowski spacetime
Mn. In a Minkowski spacetime, the fermion action (2)
acquires the form

SF½ψ ; ψ̄ � ¼
Z
Mn

dnx

�
1

2
ðψ̄γμE∂μψ − ∂μψ̄γ

μE†ψÞ −mψ̄ψ

�
;

ðB1Þ

where xμ are Minkowski coordinates and γμ are the usual γ
matrices defined in inertial frames. Varying this action
results in the equations of motion

1

2
γμðEþ E†Þ∂μψ −mψ ¼ 0; ðB2aÞ

−
1

2
∂μψ̄γ

μðEþ E†Þ −mψ̄ ¼ 0: ðB2bÞ

Therefore, the action (B1) correctly yields the Dirac
equation only if Eþ E† ¼ 21. This is the reason behind
the definition of E given in (3). A more general coupling
matrix E ¼ ð1þ iθÞ1 − ðλþ iξÞΓ, with λ ∈ R, does not
give the Dirac equation, not even modifying the mass term
mψ̄ψ [14].

APPENDIX C: MAPS AND TRANSFORMATIONS

In Sec. III, it is introduced the map ðN;Na; Π̃aIÞ ↦ ðeμIÞ
given by (19a) and (19b). It is a one-to-one map, whose
inverse is given by

N ¼ −nIe0I; ðC1aÞ

Na ¼ qabe0IebI; ðC1bÞ

Π̃aI ¼ ffiffiffi
q

p
qabebI; ðC1cÞ

where qab ≔ eaIebI is the spatial metric on Σ, qab is its
inverse, and q ¼ detðqabÞ has weight 2. Note that in the
right-hand side of (C1a) nI must be understood as

nI ¼
1

ðn − 1Þ! ffiffiffi
q

p ϵIJ1…Jn−1 η̃
a1…an−1ea1

J1 � � � ean−1Jn−1 ; ðC2Þ

i.e., nI is a function of eaI.
On the other hand, (30) defines the map

ðQaI; u≈ abcÞ ↦ ωa
I
J, where Ma

b
IJK and ˜̃Na

bcd
IJ are

given by
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Ma
b
IJK ≔ −

2

ðn − 2Þ
h
ðn − 2Þδban½IηJ�K þ h

≈ acΠ̃c½IΠ̃b
J�nK

i
;

ðC3Þ

˜̃Na
bcd

IJ ≔
�
δbaδ

½c
e δ

d�
f −

2

n − 2
h
≈ ae

˜̃h
b½c
δd�f

�
Π̃e½IΠ̃f

J�: ðC4Þ

Moreover, defining the object U
≈ abc

dIJ ¼ −U
≈ acb

dIJ ¼
−U

≈ abc
dJI as

U
≈ abc

dIJ ≔
�
δdah≈ e½bh≈ c�f −

2

n − 2
h
≈ a½bh≈ c�fδde

�
Π̃e½IΠ̃jfjJ�;

ðC5Þ

we complete the map ðωa
I
JÞ ↦ ðQaI; u≈ abcÞ, which is given

by (29) and

u
≈ abc ¼ U

≈ abc
dIJðωdIJ − ΓdIJÞ: ðC6Þ

Therefore, the map between ðωa
I
JÞ and ðQaI; u≈ abcÞ is

invertible. Furthermore, the objects Ma
b
IJK ,

˜̃Na
bcd

IJ,
U
≈ abc

dIJ, and Wa
b
IJK satisfy the relations

Wa
cIKLMc

b
KLJ ¼ δbaδ

I
J; ðC7aÞ

U
≈ cde

gIJ ˜̃Ng
fab

IJ ¼ δfcδ
½a
d δ

b�
e −

1

n − 2

× ðh
≈ cd

˜̃h
f½a
δb�e − h

≈ ce
˜̃h
f½a
δb�d Þ; ðC7bÞ

Wa
f
IJK

˜̃Nf
bcdJK ¼ 0; ðC7cÞ

U
≈ abc

dIJMd
e
IJK ¼ 0: ðC7dÞ

The presence of the second term in the right-hand side of

(C7b) is a consequence of the conditions h
≈ bc

˜̃Na
bcd

IJ ¼ 0

and ˜̃h
ab
U
≈ abc

dIJ ¼ 0 imposed such that u
≈ abc has the correct

number of independent fields. Furthermore, we have the
completeness relation

Ma
c
IJMWc

bMKL þ ˜̃Na
cdf

IJU≈ cdf
bKL ¼ δbaδ

K
½Iδ

L
J�: ðC8Þ

APPENDIX D: HAMILTONIAN
FORMULATIONS WHEN n= 3

The parametrization of the vielbein eI and the connection
ωI

J is given in (19a), (19b), (30), and (34) of Sec. III.
However, when n ¼ 3 things become easy because there

are no auxiliary fields u
≈ abc, and the parametrization of ωa

I
J

is just [5]

ωaIJ ¼ Ma
b
IJKQb

K þ ΓaIJ; ðD1Þ
where Ma

b
IJK is given in (C3) and ΓaIJ is the connection

compatible with Π̃aI (26).
Therefore, using the parametrization of eI and the spatial

part of the connection (D1)—together with the correspond-
ent redefinition of the Lagrange multiplier accompanying
the Gauss constraint—the action for the theory in three
dimensions is

S ¼
Z
R×Σ

dtd2x

�
2κΠ̃aI _QaI þ

1

2
h1=2nIðψ̄γIE _ψ − _̄ψγIE†ψÞ

− λIJG̃
IJ − 2NaD̃a − N

˜

˜̃H
�
: ðD2Þ

Here, the coupling matrix is E ¼ ð1þ iθÞ1 and the first-

class constraints G̃IJ, D̃a, and
˜̃H are given by

G̃IJ ¼ 2κΠ̃a½IQa
J� þθ

2
h1=2n½IVJ� þ1

4
h1=2ϵIJKnKψ̄ψ ; ðD3aÞ

D̃a ¼ κð2Π̃bI
∂½aQb�I −QaI∂bΠ̃bIÞ

þ 1

4
h1=2nIðψ̄γI∂aψ − ∂aψ̄γ

Iψ þ θ∂aVIÞ; ðD3bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�QaIQbJ

þ 1

2
h1=2Π̃aIðψ̄γI∇aψ −∇aψγIψÞ

þ 1

2
h1=2nIQaJðθΠ̃aJVI − ϵIJKΠ̃a

Kψ̄ψÞ

þ h
8κ

θ2qIJVIVJ − hð2κΛþmψ̄ψÞ; ðD3cÞ

where VI is defined in (14a), and (A8) for n ¼ 3 is also
used, which amounts to

fγI; σJKg ¼ ϵIJK1; ðD4Þ

because of Γ ¼ −γ0γ1γ2 ¼ 1 (and therefore, ½γI; γJ� ¼
2ϵIJKγ

K).
Note that the Hamiltonian formulation (D2) is the

same one given in (39) by substituting n ¼ 3 and (D4)
in (44a)–(44c). Therefore, all the Hamiltonian formulations
obtained after (39) also hold for a spacetime of dimen-
sion three.
For the sake of completeness, we give two additional

Hamiltonian formulations that are particular of a spacetime
of dimension three.

1. First formulation

The first of them is obtained via a symplectomorphism
that only replaces the variable QaI with the variable
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AaI ¼
1

2
ϵIJKΓa

JK þQaI; ðD5Þ

and leaves Π̃aI, ψ , and ψ̄ unchanged. Since ΓaIJ is a
connection and QaI is a vector, the variable AaI is also a
connection. In terms of the new phase-space variables—
and neglecting a boundary term—the action (D2) becomes

S ¼
Z
R×Σ

dtd2x

�
2κΠ̃aI _AaI þ

1

2
h1=2nIðψ̄γIE _ψ − _̄ψγIE†ψÞ

− λIG̃
I − 2NaD̃a − N

˜

˜̃H
�
; ðD6Þ

where the first-class constraints are given by

G̃I ≔ −
1

2
ϵIJKG̃JK ¼ κ

	
∂aΠ̃aI þ ϵIJKAa

JΠ̃aK



−
θ

4
h1=2ϵIJKnJVK þ 1

4
h1=2nIψ̄ψ ; ðD7aÞ

D̃a ¼ κð2Π̃bI
∂½aAb�I − AaI∂bΠ̃bIÞ

þ 1

4
h1=2nIðψ̄γI∂aψ − ∂aψ̄γ

Iψ þ θ∂aVIÞ; ðD7bÞ

˜̃H ¼ −κϵIJKΠ̃aIΠ̃bJFab
K þ 1

2
h1=2Π̃aIðψ̄γI∇aψ −∇aψγIψÞ

þ 1

2
h1=2nI

�
AaJ −

1

2
ϵJKLΓa

KL

�
ðθΠ̃aJVI

− ϵIJMΠ̃a
Mψ̄ψÞ −

θ

2
h1=2ϵIJKΠ̃aInJ∇aVK

þ h
8κ

θ2qIJVIVJ − hð2κΛþmψ̄ψÞ; ðD7cÞ

with FabI ¼ ∂aAbI − ∂bAaI þ ϵIJKAa
JAb

K being the curva-
ture of AaI , and we have used the identity

2Π̃aI∇aG̃I ¼ −κΠ̃aIΠ̃bJðRabIJ þ ϵIJKFab
KÞ

− 2κΠ̃a½IΠ̃jbjJ�
�
AaI −

1

2
ϵIKLΓa

KL

�

×

�
AbJ −

1

2
ϵJMNΓb

MN

�

−
θ

2
h1=2ϵIJKΠ̃aInJ∇aVK; ðD8Þ

and redefined the Lagrange multiplier by λI ≔
ϵIJKλ

JK þ 2Π̃a
I∇aN

˜
.

2. Second formulation

Similarly to the analysis made in Sec. IV, we define the
half-densitized fermions

ϕ ≔ h1=4ψ ; ðD9aÞ

ϕ̄ ≔ h1=4ψ̄ ; ðD9bÞ

and the variable

AaI ≔ AaI þ
iθ
2κ

h
≈ abΠ̃b½InJ�ϕ̄γJϕ

¼ AaI þ
θ

2κ
h
≈ abΠ̃b½InJ�ṼJ; ðD10Þ

where the densitized vector current ṼI is defined by (62a).
Furthermore, since Π̃aI, nI , and ṼI are Lorentz vectors,
the second term on the right-hand side of (D10) transforms
as a Lorentz tensor. Therefore,AaI is a Lorentz connection.
Then, in terms of these phase-space variables, the
action (D6) acquires the form

S ¼
Z
R×Σ

dtd2x

�
2κΠ̃aI _AaI þ

1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ

− λIG̃
I − 2NaD̃a − N

˜

˜̃H
�
; ðD11Þ

where the first-class constraints are given by

G̃I ¼ κð∂aΠ̃aI þ ϵIJKAa
JΠ̃aKÞ þ 1

4
nIϕ̄ϕ; ðD12aÞ

D̃a¼ κð2Π̃bI
∂½aAb�I−AaI∂bΠ̃bIÞþ1

4
nIðϕ̄γI∂aϕ−∂aϕ̄γ

IϕÞ;
ðD12bÞ

˜̃H ¼ −κϵIJKΠ̃aIΠ̃bJF ab
K þ 1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

−
1

2
ϵIJKnI

�
Aa

J −
1

2
ϵJLMΓaLM

�
Π̃aKϕ̄ϕþ 1

8κ
θ2ṼIṼI

− 2κhΛ − h1=2mϕ̄ϕ; ðD12cÞ

with F abI ¼ ∂aAbI − ∂bAaI þ ϵIJKAa
JAb

K being the cur-
vature of AaI . This Hamiltonian formulation also has the
peculiarity that the coupling parameter θ only appears in
the quartic-fermion interaction. Therefore, if the coupling
of fermions is minimal (and thus θ ¼ 0), there are no
quartic fermion interactions.

APPENDIX E: HAMILTONIAN
FORMULATIONS WHEN n= 4

The Hamiltonian formulations presented in Secs. III
and IV are valid for n ≥ 3. Here, we restrict the analysis to
n ¼ 4 and use (13) to rewrite the formulations given by the
actions (39), (54), and (58).
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1. First formulation

Thus, if n ¼ 4, the first-class constraints of the action (39) acquire the form

G̃IJ ¼ 2κΠ̃a½IQa
J� þ 1

2
h1=4n½IðθVJ� þ ξAJ�Þ þ 1

4
h1=4ϵIJKLnKAL; ðE1aÞ

D̃a ¼ κð2Π̃bI
∂½aQb�I −QaI∂bΠ̃bIÞ þ 1

4
h1=4nI½ψ̄γI∂aψ − ∂aψ̄γ

Iψ þ ∂aðθVI þ ξAIÞ�; ðE1bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�QaIQbJ þ
1

2
h1=4Π̃aIðψ̄γI∇aψ −∇aψγIψÞ

þ 1

2
h1=4nIQaJ½Π̃aJðθVI þ ξAIÞ − ϵIJKLΠ̃a

KAL� þ
3h1=2

32κ
½nInJAIAJ

þ qIJðθ2VIVJ þ ξ2AIAJ þ 2θξVIAJÞ� − h1=2ð2κΛþmψ̄ψÞ; ðE1cÞ

where we have used (13) and the fermion currents VI and AI are defined in (14a) and (14b), respectively.

2. Second formulation

Similarly, if n ¼ 4 the first-class constraints of the Hamiltonian formulation (54) become

G̃IJ ¼ 2κΠ̃a½IΨa
J� þ 1

4
ϵIJKLnKÃL; ðE2aÞ

D̃a ¼ κð2Π̃bI
∂½aΨb�I −ΨaI∂bΠ̃bIÞ þ 1

4
nIðϕ̄γI∂aϕ − ∂aϕ̄γ

IϕÞ; ðE2bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

þ 1

2
ϵIJKLnIΠ̃aJΨa

KÃL þ 3

32κ
½θ2ṼIṼI þ 2θξṼIÃI þ ξ2ÃIÃI þ nInJÃ

IÃJ� − 2h1=2κΛ − h1=4mϕ̄ϕ; ðE2cÞ

where ṼI and ÃI are the densitized fermion currents defined
in (62a) and (62b).
Remark: Note that is possible to perform a sym-

plectomorphism from this formulation and obtain the
Hamiltonian formulation of fermions coupled to the
Holst action reported in the Eq. (64) of Ref. [7].
The symplectomorphism implies to change the gravita-
tional variables ΨaI with

φaI ≔ ΨaI þWa
b
IJK

�
δ½JMδ

K�
N þ 1

2γ
ϵJKMN

�
Γb

MN; ðE3Þ

and leave Π̃aI , ϕ, and ϕ̄ unchanged. By doing so, and also
choosing the parameters involved in this Hamiltonian
formulation as

θ ¼ γffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 1

p ϑ; ðE4aÞ

ξ ¼ γffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 1

p
�
ζ þ 1

γ

�
; ðE4bÞ

where ϑ, ζ ∈ R and γ is the Barbero-Immirzi parameter, we
get precisely the Hamiltonian formulation given in Eq. (64)
of Ref. [7].

3. Third formulation

If n ¼ 4, then the first-class constraints of the
Hamiltonian formulation (58) acquire the form

G̃IJ ¼ 2κΠ̃a½IΨa
J� þ 1

4
ϵIJKLnKÃL; ðE5aÞ

D̃a ¼ κð2Π̃bI
∂½aΨb�I −ΨaI∂bΠ̃bIÞþ1

4
nIðϕ̄γI∂aϕ−∂aϕ̄γ

IϕÞ;
ðE5bÞ
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˜̃C ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

þ 1

32κ
f3½θ2ṼIṼI þ 2θξṼIÃ

I þ ðξ2 − 1ÞÃIÃ
I� − qIJÃ

IÃJg − 2h1=2κΛ − h1=4mϕ̄ϕ: ðE5cÞ

Using the identity

qIJÃ
IÃJ ¼ −4κϵIJKLnIΠ̃aJΨa

KÃL þ 2ϵIJKLG̃
IJnKÃL; ðE6Þ

the Hamiltonian constraint (E5c) acquires the form

˜̃C ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ þ

1

8
ϵIJKLnIΠ̃aJΨa

KÃL

þ 3

32κ
½θ2ṼIṼI þ 2θξṼIÃ

I þ ðξ2 − 1ÞÃIÃ
I� − 2h1=2κΛ − h1=4mϕ̄ϕ −

1

16κ
ϵIJKLG̃

IJnKÃL; ðE7Þ

and, finally, factoring out the Gauss constraint, the Hamiltonian constraint becomes

˜̃H ≔ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ þ

1

8
ϵIJKLnIΠ̃aJΨa

KÃL

þ 3

32κ
½θ2ṼIṼI þ 2θξṼIÃ

I þ ðξ2 − 1ÞÃIÃ
I� − 2h1=2κΛ − h1=4mϕ̄ϕ: ðE8Þ

Therefore, the resulting Hamiltonian formulation is given by the action

S ¼
Z
R×Σ

dtd3x

�
2κΠ̃aI _ΨaI þ

1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ − νIJG̃

IJ − 2NaD̃a − N
˜

˜̃H

�
; ðE9Þ

with the constraints (E5a), (E5b), and (E8). This formulation is relevant because it allows us to see how the Hamiltonian
formulation of the particular Lagrangian action (4) that is equivalent to the Einstein-Dirac theory looks like. We recall the
reader that the Lagrangian action (4) is equivalent to the Einstein-Dirac theory if the parameters in the matrix coupling are
chosen such that E ¼ 1 − τiΓ (which amounts to set θ ¼ 0 and ξ ¼ τ, see Sec. II B 1). Thus, for this particular coupling, the
first-class constraints are given by (E5a), (E5b), and (E8) acquires the form

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

þ 1

8
ϵIJKLnIΠ̃aJΨa

KÃL − 2h1=2κΛ − h1=4mϕ̄ϕ: ðE10aÞ

Note that the resulting Hamiltonian description does not involve any quartic-fermion interactions.
This shows, by the way, that it is also possible to get a Hamiltonian formulation without quartic-fermion interactions for

the Holst action from each one of the half-densitized fermion formulations presented in Ref. [7] using an analogous identity
to (E6) and choosing the appropriate coupling parameters (see footnote 2 of Sec. II).
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