
Constraining the stochastic gravitational wave background with
photometric surveys

Yijun Wang ,1,* Kris Pardo ,2 Tzu-Ching Chang,2,1 and Olivier Doré 2,1
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The detection of the stochastic gravitational wave background (SGWB) is essential for understanding
black hole populations, especially for supermassive black hole binaries. The recent promising results from
various pulsar timing array (PTA) collaborations allude to an imminent detection. In this paper, we
investigate the relative astrometric gravitational wave detection method, which can contribute to SGWB
studies in the microhertz range. We consider the Roman Space Telescope and Gaia as candidates and
quantitatively discuss the survey sensitivity in both the frequency and spatial domains. We emphasize the
importance of survey specific constraints on performance estimates by considering mean field of view
(FoV) signal subtraction and angular power spectrum binning. We conclude that if the SGWB is at a similar
level as in PTA estimates, both Roman and Gaia have the potential to detect this frequency-domain power
excess. However, both Roman and Gaia are subject to FoV limitations, and are unlikely to be sensitive to
the spatial pattern of the SGWB.
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I. INTRODUCTION

The successful detections of compact binary coalescence
(CBC) events by the LIGO and Virgo collaborations
have opened the possibility of gravitational wave (GW)
astronomy [see, e.g., [1–4]]. Sensitive to GWs in the 10–
1000-Hz range, the aLIGO network and other proposed
ground-based next-generationGWdetectors are at the prime
frequency range to detect individual mergers between
stellar-mass compact objects [see e.g., [5–7]]. To observe
GW signals from higher-mass systems requires detector
coverage in lower frequency ranges. In the decihertz to
millihertz range, a series of space-based interferometer-type
GW detectors, such as LISA [8], DeciGO [9] and TianQin
[10], will target signals from binaries with masses between
100 ∼ 107 M⊙ [see, e.g., [8,11,12]]. The nanohertz range is
covered by the pulsar timing array (PTA) method, champ-
ioned by several collaborations including the North
American Nanohertz Observatory for Gravitational
Waves (NANOGrav) [13], the European Pulsar Timing
Array (EPTA) [14], and the Parkes Pulsar Timing Array
(PPTA) [15].
In addition to individual CBCs, an important detection

candidate is the stochastic gravitational wave background
(SGWB). A prominent SGWB source is the superposition
of GWs from supermassive black hole binaries (SMBHBs)
throughout cosmic history. While individual GWs can
be too weak to be detectable, the combination can be

sufficiently loud; indeed, it is predicted that PTAs will
detect the SGWB prior to individual GW detections [see,
e.g., [16]]. Other contributing sources to the SGWB have
also been proposed, such as from cosmic strings and phase
transitions in the early universe [17,18].
Recently, the NANOGrav 12.5-yr data analysis detected

a common red noise among the observed pulsars with an
amplitude of 1.92 × 10−15 at the reference frequency 1 yr−1

(3.2 × 10−8 Hz) with high confidence [19]. Shortly after-
wards, analysis of the 24-yr EPTA dataset revealed a
common red noise with an amplitude of 2.95 × 10−15 at
the same reference frequency, in rough agreement with the
NANOGrav result [20]. Similar detection results have since
been published by PPTA [21] and IPTA [22]. While these
studies show insufficient evidence of the signal angular
correlation, famously known as the Hellings-Downs curve
[23], to positively identify the signal as the SGWB, they
suggest the prospect of an imminent detection with further
data collection.
While PTAs are exceptionally suited for detection in the

nanohertz range, there are currently no ongoing or planned
observatories to cover the SGWB in the microhertz band. In
this range, we expect that the SGWB will be produced by
lighter binaries (105–109 M⊙) than those seen by PTAs
[see, e.g., [24]]. Observing the SGWB in this regime would
complement and cross check the PTA observations, as the
SGWB at different frequencies should eventually be con-
sistent with the same population model. Recently, several
potential detection methods have been proposed that target
this uncovered frequency band gap. For example, GW*yijunw@caltech.edu
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could be detected via its modifications to asteroid accel-
erations [25]. It also modulates the phase of continuous
GWs from galactic sources [26], from which the SGWB
can be inferred. Space-based interferometer-type detectors
are also proposed [24].
In this paper, we focus on the detection method using

relative astrometric measurements [27–29]. Analogous to
the periodic pulse arrival time delay in PTA, the sky
position of measured objects oscillates with a passing
GW, from which we infer the source properties [30,31].
In particular, the astrometry method has the advantage of
being flexible in its sensitive frequency range with no
additional instrument cost to the photometric surveys [29].
By specifically referring to photometric surveys, we wish to
emphasize that not only surveys dedicated to astrometry
can achieve this purpose; indeed, a promising candidate,
the Galactic Bulge Time Domain (GBTD) survey of the
Nancy Grace Roman Space Telescope, has the primary
objective to observe microlensing signatures in the galactic
bulge [32].
Several authors have investigated the potential of this

method, both from a theoretical perspective [30,33–36] and
in close connection with specific surveys [27–29]. In
Ref. [29], we investigate the detection prospect of indi-
vidual monochromatic GWs in the case of the Nancy Grace
Roman Space Telescope (Roman) [37] and Gaia [38], both
offering high-precision and high-cadence astrometric
measurements.
In this work, we elaborate on the effect of survey features

on the sensitivity to SGWB. Explicitly, we compare
surveys depending on whether they are sensitive to a
largely uniform displacement of all stars within their field
of view (FoV). We clarify that, although the detection
method itself requires relative astrometry only, the design
for absolute astrometry telescopes contributes to higher
sensitivity. We also discuss detection implications due to
the size of the FoV; we apply an angular power spectrum
binning and compute the recoverable signal power for
given FoV size.
This paper is organized as follows. In Sec. II, we review

the fundamentals of GW-induced astrometric deflections.
We then develop the expected power spectra in both the
frequency domain and the spatial domain. In Sec. III, we
examine the respective survey sensitivities under various
survey features. We conclude in Sec. IV.
The code used for this analysis and the figures is

available at https://github.com/kpardo/estoiles-public.

II. THEORY

In this section, we review the basics of GW-induced
astrometric deflections. We then discuss two different ways
to analyze the deflections produced by the SGWB: the
frequency power spectrum and the angular power spectrum.
We then show the corresponding instrument noise power
spectrum. We emphasize, however, that these signal and

noise prescriptions alone are insufficient to gauge the GW
detection power of a photometric survey; as wewill show in
Sec. III, a more accurate description is contingent on
additional survey features.

A. GW detection with astrometry

Upon the passing of a GW, the propagation path of
photons are perturbed such that the measured star positions
are deflected from their “true” positions. The deflection
vector dn⃗ of the position of a star located at n⃗ on the
celestial sphere is given as [30,31]

dni ¼ ni þ pi

2ð1þ pjnjÞ
hjknjnk −

1

2
hijnj; ð1Þ

where p⃗ is the propagation direction of the GW, hij is the
GW strain tensor evaluated at the observer, and the Latin
index ranges over the three spatial dimensions. We adopt
the Einstein notation, in which repeated upper and lower
indices imply summation. In Eq. (1), we adopt the distant
source limit, where the distance to the GW source and to
the observed stars are much larger than the GW wave-
length. Consequently, the GW perturbations at different star
locations are uncorrelated, and can be treated as a source of
random noise [30,31]. In this work, we are interested in
GWs with frequencies ranging from 10−8–10−5 Hz where
this distant source limit is almost always valid. Given the
observable dn⃗, it is then possible to infer the source
property, i.e., hij.
The astrometry GW detection method has several merits.

Firstly, it is highly versatile in its sensitive frequency range,
given as

fmin ∼
1

Tobs
; fmax ∼

1

Δt
; ð2Þ

where Tobs is the survey lifetime, and Δt is the observa-
tional cadence. Therefore, surveys with the right cadence
can potentially bridge the microhertz GW frequency
spectrum.
In addition, the detection sensitivity is boosted by the

number of observed stars and the number of exposures for
each star. Given suitable surveys, these factors are typically
quite large; for example, in the GBTD of Roman, each
of the ∼108 observed targets has up to 4.1 × 104 expo-
sures [39].
Furthermore, this detection method requires astrometric

measurements only, without additional equipment and
observing time; in this way, the GW scientific output is
serendipitous given existing surveys. Finally, we note that
Eq. (1) suggests that only relative astrometric measure-
ments (i.e., away from some fixed reference location) are
needed; it is not necessary that we know the absolute
astrometric coordinates. We discuss this point in detail in
Sec. III. In the following sections, unless explicitly stated,
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the astrometric measurements are to be interpreted as
relative ones.

B. Frequency power spectrum

One way to analyze the astrometric data is to compute
the signal magnitude correlation across time, which can be
represented by its Fourier transform, i.e., the SGWB
frequency-domain power spectrum [see, e.g., [40,41]].
The SGWB follows the assumption that the time-domain

strain amplitude follows a stationary zero-mean Gaussian
distribution, and its Fourier transform is a sum of Gaussian
modes with frequency-dependent variance, i.e.,

hhðtÞhðt0Þi ¼ δDðt − t0Þσ2t
hh̃ðfÞh̃�ðf0Þi ¼ δDðf − f0ÞShðfÞ; ð3Þ

where δD is the Dirac delta and σt is the constant standard
deviation of the strain. The double-sided signal power
spectrum, ShðfÞ, can be expressed as the GW energy
density per logarithmic frequency interval, ΩgwðfÞ, or
the characteristic strain amplitude, hcðfÞ, with the relation-
ship given as [40]

ρcc2ΩgwðfÞ ¼
πc2

4G
f2h2cðfÞ ¼ 2

πc2

4G
f3ShðfÞ; ð4Þ

and the critical density today is given by

ρc ¼
3H2

0

8πG
; ð5Þ

where H0 is the Hubble constant today.
The above formulas are independent from the specific

form of the characteristic strain amplitude (or equivalent
quantities). A generic phenomenological model for a
source-agnostic SGWB is a power law,

hcðfÞ ∼ A

�
f
fref

�
α

; ð6Þ

completely specified by the spectral slope α and the
spectrum amplitude, A, at a reference frequency fref.
The slope, in particular, is determined by the nature of
the SGWB source. For example, the SGWB from inspiral-
ing black hole binaries has a spectral slope of−2=3 [40,42];
for primordial background (e.g., inflation) and cosmic
strings, the spectral slopes are −1 and −7=6, respectively
[43–45].
For a survey taking Nm exposures of Ns stars, the

effective single-exposure single-star noise variance is given
by an ensemble average as

hnIJnI0J0 i ¼
σ2ssδ

K
II0;JJ0

NsNm
; ð7Þ

where I, J are indices for the exposure and the star and σss
is the single-star single-exposure astrometric noise standard
deviation. The symbol δK is the Kronecker delta. We
assume the measurement noise is both spatially and
temporally uncorrelated. In analogy to the GW power
spectrum, we define the noise power spectrum as

hnIJnI0J0 i≡ δDðtI − tI0 ÞPnδ
K
JJ0 : ð8Þ

For a finite observation time, the discrete version of the
Dirac delta is given by

δDðtI − tI0 Þ →
1

Δt
δKII0 ; ð9Þ

where Δt is the (constant) time interval between exposures.
It follows that

Pn ¼ Δt
σ2ss

NsNm
: ð10Þ

Since the deflection signal jdn⃗j and the GW amplitude
jhðtÞj differ only by anOð1Þ geometric factor, we make the
approximation that jdn⃗j ∼ jhðtÞj, and Eq. (10) is approxi-
mately the strain noise power spectrum. The corresponding
characteristic amplitude is given by

hnðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2fPn

p
¼ σss

ffiffiffiffiffiffiffiffiffiffiffiffi
2fΔt
NsNm

s
; ð11Þ

where we insert a factor of 2 to convert from a double-sided
power spectrum to single sided. For a survey with fixed
cadence, hnðfÞ scales as 1=

ffiffiffiffiffiffiffiffi
Tobs

p
, consistent with

Ref. [46].

C. Angular power spectrum

Aside from looking at time-stream data, we may take any
exposure and concentrate on the angular correlations
between deflection signals at different sky locations at a
given time. This method has been very broadly applied; for
example, in the PTA search for SGWB, this spatial
correlation is expressed in the form of the Hellings and
Downs curve [23]. A similar strategy has been applied to
studies of the cosmic microwave background (CMB),
galaxy distributions and dark matter distributions [see,
e.g., [47–51]]. We note that the most commonly analyzed
signals are spin-0 scalar signals, (e.g., CMB temperature
map, galaxy counts) and spin-2 tensor signals, (e.g., CMB
polarization, weak lensing distortion map). The GW-
induced astrometric deflection is a spin-1 vector signal,
and will be decomposed with vector spherical harmonics as
[33,35,36,47,50]
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ðdnÞa ¼
X
lm

½ElmYE
ðlmÞ;aðn⃗Þ þ BlmYB

ðlmÞ;aðn⃗Þ�; ð12Þ

where a indicates two orthogonal unit vectors tangential to
the celestial sphere. The E,B basis is chosen such that the
coefficients ElmðBlmÞ transform as scalars (pseudoscalars)
under a local rotation [52].
We assume that the complex coefficients Elm, Blm are

drawn from zero-mean normal distributions, with the
variance given by

hElmE�
l0m0 i ¼ CE

lδll0;mm0

hBlmB�
l0m0 i ¼ CB

lδll0;mm0 : ð13Þ

Just as the characteristic strain amplitude, hcðfÞ, indi-
cates the SGWB source, CE;B

l depends on the nature of GW
radiation itself, such as its propagation speed and polari-
zation content [33–35]. In this work, we assume the GW
travels at the speed of light and contains only tensor modes.
The angular power spectrum is then given as [33]

CE
l ¼ CB

l ¼ 12H2
0N

−2
l

πlðlþ 1Þ
Z

df
ΩgwðfÞ

f3
jWðfÞj2

¼ 8πN−2
l

lðlþ 1Þ
Z

d ln fh2cðfÞ

Nl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
2ðl − 2Þ!

s
: ð14Þ

The window function WðfÞ accounts for the phase differ-
ence between two exposures. This factor arises as the
model in Ref. [33] assumes two exposures only, and the
“deflection” must be calculated using one of the two
exposures as the baseline. In our model, we assume that
a true baseline is established by averaging the measure-
ments over the entire observational period. In this way,
WðfÞ is not necessary. We observe that the angular power
spectrum is sharply peaked at small l and rapidly drops off
as l−6 at large l.
From an observational perspective, the angular power

spectraCE;B
l ðtIÞ at each time slice tI can be extracted via the

inverse of Eq. (12). Since this angular power spectrum is
stationary, the final estimated angular power spectrum can
be averaged over the exposures,

CE;B
l ¼ 1

Nm

X
I

CE;B
l ðtIÞ: ð15Þ

This formula can also be understood from the definition of
CE;B
l as the ensemble average of E; Blm; for a single

exposure the average runs over the m modes, and for
multiple exposures it also runs over the (independent)
realizations of the angular power spectrum.

The spatial measurement noise is modeled as vectors on
the two-sphere with random orientations, with magnitude
drawn from a normal distribution as in Eq. (7). Applying a
harmonic transform, we obtain the noise power spectrum as

CE;B
n ¼ 2πσ2ss

NmNs
; ð16Þ

where the factor of 2π reflects the angular normalization
and that the power is split evenly between the E, B
modes [33].

III. ANALYSIS

While Sec. II provides the theoretical signal power
spectra, they are not necessarily representative of what
can be recovered from observational data. In this section,
we clarify necessary modifications to the power spectra
such that they are applicable for specific types of photo-
metric surveys. Firstly, we describe our reference surveys,
the Roman GBTD survey and the Gaia astrometric survey.
We then discuss the role of absolute and relative astrometry
in GW detection. We discuss in depth the effect of
subtracting the FoV mean signal and the resulting survey
performance. Lastly we introduce angular power binning
and explain the implication of limited FoV on GW
detection.

A. Survey summary

The Nancy Grace Roman Space Telescope1 is NASA’s
next flagship observatory after the James Webb Space
Telescope. Among other science goals, it aims to probe
the evolution of dark energy and large-scale structure by
observing billions of galaxies and thousands of supernovae
[53]. In terms of probing GWs, the GBTD survey is
particularly relevant, where it visits a ∼1.97 deg2 patch
of sky towards the galactic center. This pointing direction
implies large stellar density, and the near-infrared sensi-
tive wavelength also leads to less extinction; thanks to
these factors, Roman is expected to observe 108 stars
(W145AB < 23) [54] with the GBTD survey, with a single-
exposure, single-star astrometric uncertainty of 1.1 mas
(estimated for HAB ¼ 21.6 stars) [39]. The survey com-
prises 6 observing seasons, each 72 days long. During each
season, each star is visited every 15 min, giving a total of
41,000 exposures per star.
Another promising mission as a potential GW probe is

the all-sky astrometric survey with Gaia2 [38]. Gaia
observes on the order of 109 stars [55], with a single-
exposure, single-star astrometric uncertainty of 0.7 mas for
G ∼ 20 stars in Gaia Data Release 2 [56]. In the recent
Gaia Early Data Release 3, the typical uncertainty for

1https://roman.gsfc.nasa.gov/.
2https://sci.esa.int/web/gaia.
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six-parameter astrometry (position) is 0.4 mas at G ¼ 20
[57]. Gaia Data Release 4, which will be based on data
during the entire nominal mission lifetime and part of the
extendedmission, expects a parallax uncertainty of 0.46mas
at G ¼ 20 [58]. Gaia also expects to achieve a 10-yr total
lifetime in the extended mission [59]; the ultimate Data
Release 5 expects to have a parallax uncertainty of 0.33 mas
for objects of the same magnitude [58] (the astrometric
position uncertainty generally has a small difference invalue
with parallax uncertainty [see, e.g., [57]]). Since the differ-
ence is within an order of magnitude, we do not update the
estimates accordingly, and the general conclusion remains
the same. On average, each star is visited 70 times through-
out the 5-yr observing time [38]. For simplicity, we assume
these exposures to be evenly spaced.

B. Absolute/relative astrometry and mean subtraction

As is evident from Eq. (3), the SGWB inference relies
solely on the deflection vectors and not on the true position
vector; indeed, if we observe cycles of a single continuous
wave, or a significant period of the stochastic process, the
true position can be immediately computed. Therefore, it is
not required to have absolute astrometric measurements (as
Gaia provides), consisting of the absolute star coordinates
in, e.g., the extragalactic International Celestial Reference
System [60].
What is required, on the other hand, is that the entire

deflection vectors should be recovered from the time-
stream data. This is particularly challenging; since the
GW deflection pattern is a large-scale signal [see Eq. (14)],
deflections within a small FoV appear almost uniform. We
shall refer to this almost uniform motion as the FoV mean
signal.
For telescopes with a single viewing direction, the mean

signal is recoverable under two possibilities. Evidently, a
telescope that is in free fall during data collection qualifies,
since an inertial frame cannot “absorb” periodic motion.
For a “point-and-stare”-type telescope like Roman, its
reaction wheels are constantly engaged through the fine
guidance system for pointing self-calibration [39]. As the
mean signal mimics instrument noises such as pointing
error and jitter, it may then be corrected in situ or get fitted
out during the astrometric solution process. In this case, it is
in principle possible to reconstruct the mean signal (or part
of it) if the pointing system actions are recorded.
In the worst case scenario, we ignore the mean signal and

use only the differential deflections across each exposures,
which we refer to as the mean-subtracted case. In Ref. [29],
we considered this case for individual continuous wave
detection and showed that the differential deflections are
roughly two orders of magnitude smaller than the mean
signal. The sensitivity loss can be approximated by scaling
down the signal characteristic strain amplitudeproportionally.
For telescopes with two almost orthogonal viewing

directions, such as Gaia, the GW signature is typically

towards two distinctive directions in the two viewing
directions. In this case, the signal is less likely to be
absorbed as pointing error. Although the Gaia viewing
directions were not specifically designed for this purpose, it
incidentally satisfies the favoring conditions.
In the following, we consider the signal-to-noise ratio

(SNR) defined as [see, e.g., [27]]

ρ2 ¼
Z

d ln f

�
λhcðfÞ
hnðfÞ

�
2

; ð17Þ

where hc is the SGWB characteristic strain amplitude and
hn is the characteristic noise amplitude in Eq. (11), and the
sensitivity threshold is fixed to have ρ ¼ 1. The scaling
factor λ accounts for the signal loss due to mean sub-
traction. For Gaia, we assume λ ¼ 1, i.e., lossless. As the
Roman telescope and system design is still in planning, we
do not quote a specific value; instead, we show the range
λ ¼ 0.01 ∼ 1, which corresponds to the mean-subtracted
case and the full signal case, respectively [29].
We show the sensitivity threshold in Fig. 1, where we do

not restrict to the SMBHB SGWB, but rather assume a
source-agnostic search [46]. For reference, we also plot the
sensitivity curves of IPTA [61,62] and LISA [63] in gray
using phenomenological models. The solid red line shows
the best estimate of the common process measured from
IPTA DR2 (over 10−9 − 4 × 10−8 Hz, consistent with
Fig. 1 of Ref. [22]),

hc;IPTA ∼ 2.8 × 10−15
�

f
1 yr−1

�
−2=3

: ð18Þ

We note that the population details of potential SMBHBs
emitting GWs from 10−7 Hz to 10−4 Hz are highly

FIG. 1. Survey sensitivity for a source-agnostic SGWB search.
The survey sensitivity of IPTA and LISA are shown in gray
curves. The solid black line shows sensitivity of Gaia. The range
of sensitivity of Roman GBTD survey is shown with the blue
solid block, with λ ¼ 0.01 ∼ 1. The solid red line shows the best
amplitude estimate from IPTA DR2, with the same frequency
range as in Fig. 1 of Ref. [22]. The dashed red line shows the
extrapolated SGWB level in the Roman frequency range.
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uncertain and poorly constrained by observation, if at all.
As a heuristic example, we simply extrapolate the SGWB
from the nanohertz range (red dashed line). While this
treatment is valid until some of the more massive GW
sources go near coalescence, it suffices in this work as an
example to possible SGWB signals across the wide
frequency ranges.
We reiterate that the frequency band difference between

Roman and Gaia results from the observational cadence
[see Eq. (2)]. The sensitivity, in addition to the cadence, is
affected by the astrometric accuracy and the number of
observed stars. Specifically, we observe that within shared
frequency ranges, Roman offers better sensitivity than
Gaia, even in the mean-subtracted scenario. This is
primarily due to its high cadence and larger span in its
sensitive frequency. We note that if the SMBHB SGWB is
indeed at a similar level as the current best estimate from
IPTA, both Gaia and Roman can detect its power excess.
Given a fixed redshift distribution, the SGWB amplitude

directly implies the local SMBHB remnant density,ΦBHB;0,
defined as the number of SMBHB remnant per comoving
volume in the local universe. Assuming the same SMBHB
population model as in Refs. [22,64], we can also express
the Roman and Gaia sensitivity in terms of an upper limit
on the local SMBHB number density (in the case of null
detection), since A ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦBHB;0

p
in Eq. (6). For Roman, the

upper limit is 1.0×10−5∼1.0×10−9Mpc−3 for λ¼0.01∼1.
For Gaia, the upper limit is 2.3 × 10−6 Mpc−3.

C. Angular power binning

In this section, we discuss the effect of telescope FoV
size on the angular power spectrum sensitivity. Firstly, we
note that the currently planned telescopes with sufficient
astrometric precision for GW measurement are all space-
based telescopes with FoV less than 1 deg2; e.g., Roman
(0.26 deg2) [39], Gaia (0.5 deg2) [65], James Webb Space
Telescope (∼8 arcmin2),3,4 Hubble Space Telescope
(WFC3 NIR, ∼4 arcmin2).5 Therefore, it is not likely that
we can capture GW deflections with significant spatial
variation within one exposure. We further discuss in turn
the point-and-stare type surveys (e.g., Roman) and all-sky
scanning surveys (e.g., Gaia).
In the case of Roman GBTD survey, which only visits

fields close to the galactic center, the measurements are
insensitive to angular powers with a scale larger than the
FoV size.6 Moreover, different ðl; mÞ modes of the
spherical harmonic decomposition coefficients can be

highly coupled. While the exact coupling depends on
the FoV geometry, modes with larger difference in value
than π=θfov have much smaller coupling, where θfov is the
(angular) sidelength of the FoV.
Although Gaia offers complete sky coverage after each

full-sky scan, it is unclear if it will not suffer the same
angular power loss. In the case of the SGWB, the spatial
deflection patterns at different times are, by assumption,
independent realizations ofCE;B

l . The images of the FoVare
also independent, as a consequence. In this way, measure-
ments from different exposures cannot be consistently
combined to produce a full-sky map, and Gaia suffers
the same large-scale power mean-signal loss as Roman.
In the case of individual continuous GW signals, the

signal coherence allows, in principle, the construction of a
temporal-spatial template, which depends on the GW
source property and the attitude history of the telescope
[60]. A thorough investigation of such a possibility is
beyond the scope of this work. In the following analysis,
we shall assume that the large-scale powers cannot be
recovered from Gaia measurements.
To account for the large-scale power loss and mode

mixing, we bin the theoretical angular power spectrum and
impose a minimum l. The maximum l roughly corre-
sponds to pixel scale, which is much larger than any l
modes contributing significantly to the SGWB, i.e., l ∼ 2.
The binned, predicted angular power spectrum can be
obtained via the exact mode-coupling matrix of the FoV
(i.e., the window) [66–68]; however, to simplify the
calculation and to keep the estimate applicable to generic
FoV shapes, we approximate the binning process by
directly averaging the theoretical CE;B

l within each bin
[see, e.g., [67]]. Given sufficiently wide bins, different bins
have negligible coupling.
We consider a square FoV, where the bins are defined as

CE;B
q ¼ 1

Δq

X
li∈flqg

CE;B
li

; Δq ¼
�
π

θfov

�
;

flqg ¼
�
li;

�
q −

1

2

�
Δq ≤ i <

�
qþ 1

2

�
Δq

�
; ð19Þ

where ½·� denotes taking the nearest integer and θfov is the
angular sidelength of the square FoV.
Since the survey is not sensitive to modes larger than the

FoV, we discard the first bin when calculating the SNR.
With these two steps, the log likelihood is summed over the
binned modes as [see, e.g., [47]]

ρ2E;B ¼
X
q

�
CE;B
q

ΔCE;B
q

�
2

ρ2 ¼ ρ2E þ ρ2B: ð20Þ

In the weak signal limit, the diagonal elements of the
covariance matrix, 1=ΔCE;B

q , are dominated by the noise,

3https://www.jwst.nasa.gov/.
4https://svs.gsfc.nasa.gov/13583.
5https://hubblesite.org/.
6In principle, measurements from the several field Roman

visits may be combined on particular timescales (e.g., much
shorter than the typical SGWB period of interest). Such
reconstruction would require careful modeling of the telescope
motion during field switching; for simplicity, we restrict to scales
smaller than the FoV.
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instead of cosmic variance. The inverse of the covariance
for each bin is given by [69]

ΔCE;B
q ¼ 1

Δq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð2lq þ 1Þfsky

s
CE;B
n ; ð21Þ

where lq is the mode in the center of each bin. The factor
fsky if the fraction of sky covered by the FoV, and it
accounts for the loss of mode power due to partial sky
coverage.
It is clear that the SNR loss due to limited FoV is also

sensitive to the signal spectral slope; signal concentrated at
large scales suffers a higher loss of SNR compared with
signals that have a flatter spectral profile. As Eq. (14)
shows, the angular power spectrum of SGWB decays
roughly as l−6, which strongly penalizes the detecting
power of limited-FoV surveys.
Figure 2 shows the SNR, normalized to the full-sky case,

given various FoV sizes. The bar plot corresponds to the
left axis, showing the SNR contribution from each bin [see
Eq. (19); for ease of presentation, we have normalized all
three cases by dividing out the fsky factor]. The black solid
line shows the full-sky scenario. The right axis and the
same black solid line give the accumulated SNR given
various threshold l. We observe that the SNR drops sharply
with limited FoV; in the case of Roman with
θfov¼ 0.53 deg, the fractional SNR is smaller than 10−14

compared to the SNR of the full-sky case.
Therefore, only full-sky or nearly full-sky surveys are

likely to be sensitive to the angular power spectrum of
SGWB. If the SNR is sufficiently large, this method can in
principle become a probe for modified gravity theories, as
is discussed in Refs. [33–36]. Just as this method comple-
ments PTAs in the frequency domain, it would also cross

check the non-GR effect with the timing residual measure-
ments. To accomplish this goal, it requires a survey with a
nearly all-sky FoV, in addition to sufficient cadence and
astrometric accuracy.
Lastly, we comment on the detection prospect difference

in frequency domain and angular domain. Since h̃ðfÞ and
CE;B
l are decomposition of the same signal, the total signal

power, i.e.,
R
d ln fh2cðfÞ,

P
l C

E
l þ CB

l , matches [see
Eq. (14)]. However, the achievable SNRs are limited
differently for these two domains; the frequency domain
is limited by observational cadence and the angular
sensitivity is limited by sky coverage. In particular, the
poor angular domain SNR is attributed to the mismatch
between the large-scale nature of GW signal and the limited
FoV scale.

IV. CONCLUSION

In this work, we examine the SGWB detection prospects
using astrometric measurements, with discussion of the
effects of telescope features on the sensitivity. We consider
two especially promising and representative surveys, the
Roman GBTD survey and the Gaia all-sky astrometric
survey, for in-depth discussions and concrete performance
forecasts.
We highlight that whether a uniform deflection signal

can be extracted from observational data has a high impact
on detector sensitivity. Although absolute astrometry is not
required for GW detection, the dedicated telescope design
(i.e., two viewing directions) is beneficial for keeping the
mean GW signal. For single viewing angle telescopes, it is
more likely that we can only use differential deflection data.
Thanks to its high cadence of observations, we found that
Roman GBTD survey is sensitive to the SGWB with an
SNR of 1.2–120 for frequency power spectrum analysis,
depending on whether the mean signal can be captured, if
the background is indeed at the level estimated by current
PTA efforts. We found that Gaia is able to detect the same
signal with an SNR of 2.5.
We explain the signal loss due to FoV size by binning the

power spectrum and disregarding inaccessible bin powers.
As the GW signal is intrinsically a large-scale (quadrupole,
in particular) signal, and telescopes with the required
astrometric accuracy typically have small FoVs, it is
unlikely that this detection method is sensitive to the
GWangular patterns. To probe the angular power spectrum
and potentially observe non-GR signatures, the future
candidates should have significant sky coverage.
As the next generation of photometric telescopes start to

go online or go into detailed planning, the possibility of
using astrometric measurements to complement existing
GW detection strategies is ever more promising. As is
shown, Roman and Gaia can offer supporting evidence for
PTA measurements of the SGWB and probe a comple-
mentary SMBHB population in a previously inaccessible
frequency range.

FIG. 2. The fractional SNR for various FoV size compared with
the full sky case. The bar plot corresponds to the left axis and
shows the SNR contribution from each bin, normalized by fsky.
The black solid line shows the full-sky scenario. Using the right
axis, the same line shows the total SNR with various threshold
l ¼ π=θfov as a fraction of the full-sky scenario.
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