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Current and future B-mode polarization data are the most powerful observables to constrain gravitational
waves from the early Universe. We set conservative constraints on tensor modes when relaxing the
inflationary consistency condition nt ¼ −r=8 between the tensor tilt nt and the tensor-to-scalar ratio r. By
adding a power-law spectrum of tensor perturbations to ΛCDM and parametrizing this tensor contribution
by two independent primordial tensor-to-scalar ratios ðr1; r2Þ at k1 ¼ 0.005 Mpc−1 and k2 ¼ 0.02 Mpc−1,
Planck and BICEP/Keck Array 2018 data (BK18) lead to constraints r0.005 < 0.030 and r0.02 < 0.098 at
95% confidence level. The corresponding upper bound r0.01 < 0.039 is by a factor of 2 tighter than the one
obtained with Planck 2018 and the older BK15 data. We then study the perspectives for future cosmic
microwave background experiments that will measure both the reionization bump and recombination peak
of the B-mode polarization angular power spectrum, such as LiteBIRD. We test the robustness of the results
to the choice of the scales for ðr1; r2Þ in these future perspectives. Whereas distinguishing nt ¼ −r=8 from
exact scale invariance is impossible as expected, we show how radical, theoretically motivated departures
from nt ¼ −r=8, which are consistent with the current data, could be distinguished with LiteBIRD.
Moreover, LiteBIRD will be able to shrink the allowed parameter space area in the ðr0.005; r0.02Þ plane to
less than one hundredth of the currently allowed area by Planck 2018 and BK18.

DOI: 10.1103/PhysRevD.106.083528

I. INTRODUCTION

Primordial gravitational waves generated during infla-
tion [1] have a characteristic shape in the cosmic
microwave background (CMB) angular power spectra of

temperature and polarization anisotropies which distin-
guishes them from scalar curvature perturbations. On top
of temperature (T) and E-mode (E) polarization (also
produced by curvature perturbations), the distinctive
imprint of primordial gravitational waves is B-mode
polarization [2,3]. The increasing sensitivity of CMB
polarization measurements has led to comparable con-
straints on primordial gravitational waves from T, E, and
from B mode separately by the joint analysis of BICEP2/
Keck Array and Planck data [4]. Since then, B-mode
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polarization alone has given a tighter constraint than T, E
for the tensor-to-scalar ratio [5–7],

rðkÞ ¼ PtðkÞ
PRðkÞ

; ð1Þ

where PtðkÞ and PRðkÞ are the tensor and scalar power
spectra, here assumed as power laws,

PtðkÞ ¼ At

�
k
k�

�
nt
; ð2Þ

PRðkÞ ¼ AR

�
k
k�

�
ns−1

: ð3Þ

In the above, nt (ns) is the tensor (scalar) spectral index and
At (As) the tensor (scalar) amplitude at the pivot scale,
typically chosen such that k� ¼ 0.05 Mpc−1.1

The recent release of BICEP-Keck Array data (BK18)
[7] in combination with Planck 2018 data has set a
95% confidence level (CL) upper limit on the tensor-to-
scalar ratio r < 0.035 in the case of a scale-invariant
primordial spectrum of gravitational waves. When the
tensor tilt nt satisfies the so-called consistency condition,
i.e., nt ¼ −r=8, motivated by Bunch-Davies initial con-
ditions for tensor modes during slow-roll inflation driven
by a single real scalar field with a standard kinetic term

(denoted in the following by SSSRI), the limit is
unchanged. This limit leads to the 95% CL upper bound
on the scale of inflation,

V� ¼
3π2As

2
rM4

Pl < ð1.4× 1016 GeVÞ4 ð95% C:L:Þ; ð4Þ

or on the Hubble parameter during inflation.

H�
MPl

< 2.0 × 10−5 ð95% C:L:Þ: ð5Þ

The improvements with BK18 compared to BK15, when
combined with Planck 2018 data [8], in terms of tighter
constraints to slow-roll inflationary models can be seen in
the ðns; r0.002Þ plane in Fig. 1.
The availability of an accurate and precise B-mode

polarization likelihood has also made it possible to derive
data driven constraints when the theoretical prior nt ¼
−r=8 is relaxed [8,9]. This more conservative and phe-
nomenological approach is justified since deviations from
nt ¼ −r=8 are predicted in well-motivated theoretical
inflationary models. These deviations occur, for example,
with a nonstandard kinetic term for a single scalar field [10]
or with a more general Lagrangian [11], with an initial
vacuum state which is not Bunch-Davies [12], when more
than one scalar field is present [13–15] or these are coupled
also through the kinetic terms [16,17], and in Gauge-flation
when a non-Abelian gauge field in a particular isotropic
configuration drives the accelerated stage [18]. The relation
nt ¼ −r=8 is also violated when gravitational waves are not
only amplified by the expansion from quantum fluctuations
but also sourced by spectator fields [19–21] present during

FIG. 1. Marginalized joint 68% and 95% CL regions in the nt ¼ −r=8model for ns and r0.002 from Planck in combination with BK18
and BK15 data compared to the theoretical predictions of selected inflationary models with the uncertainty in the number of e-folds N�
in the range (50, 60).

1We will denote the tensor-to-scalar ratio at this scale simply
by r or occasionally by r0.05 and at any other scale by adding a
subscript indicating the corresponding wavenumber. Integer
subscripts 1 and 2 refer to the scales of our two-scale parameter-
ization, explained in Sec. II.
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inflation, an effect which also leads to significant primor-
dial non-Gaussianity. More radical departures from a nearly
scale-invariant power spectrum are predicted in alternatives
to inflation [22–24].
In this paper, we use the two-scale analysis for tensor

perturbations [8,9,25] in order to present the updated BK18
conservative constraints and the perspectives for future
CMB polarization measurements when the theoretical prior
nt ¼ −r=8 is relaxed. After a review of the two-scale
analysis for tensors in Sec. II, we present the Planck 2018
+BK18 results in Sec. III with a comparison to those
derived with BK15 in [8]. In Sec. IV, we forecast the
capability of future B-mode polarization measurements to
constrain a power-law spectrum of gravitational waves, by
taking as a representative example the specifications of the
LiteBIRD mission [26]. We asses the dependence on the
scales chosen and test how much the constraints would
degrade if the low-multipole B-mode data were missing. In
Sec. V, we draw conclusions.

II. BEYOND CONSISTENCY CONDITION
ON THE TENSOR TILT

In this paper, we relax the condition nt ¼ −r=8 and let
the data (either the real or simulated one) determine both
the amplitude of tensor perturbations and the tilt of their
spectrum nt. These analyses are highly motivated by two
reasons: (1) Without testing for this possibility, one would
not know if there was a better fit than the standard
inflationary prediction somewhere in the parameter space.
(2) If it turns out that the data are consistent with the
standard inflationary prediction, it is important to know
how large a difference from nt ¼ −r=8 one would need
before the data were able to discern it from the standard
inflationary prediction.
We assume the cosmological concordance model, i.e.,

the adiabatic ΛCDM model without tensor perturbations.
On this playground, while varying all the standard ΛCDM
parameters, we test a more complicated model that also has
tensor perturbations. If we assumed the inflationary con-
sistency condition, nt ¼ −r=8, we would have one extra
parameter, r. A single value r ¼ 0 (which automatically
also fixes nt to zero) would mean that we recover the
underlying simpler, tensorless, model. Any positive value
means that the model is the more complicated one that has
tensor perturbations.
However, once we relax the consistency condition, we

cannot choose r and nt as our sampling parameters when
finding parameter constraints against the data, if the data
are consistent with r ¼ 0 or if this model is a relatively
good fit to the data. Here, the problem is that setting r ¼ 0
already reduces our model to the simpler, tensorless, model,
no matter what value nt has. Once we marginalize over the
nt direction of parameter space, e.g., in our Markov Chain
Monte Carlo (MCMC) analysis, we get larger and larger
weight the closer to zero r is, since nt can have here very

large negative or positive values. In essence, how sharp a
peak near zero r in the posterior probability density we find
depends mainly on two things: how wide a prior range we
allow for nt and what bin size we use for plotting 1d
probability density function (pdf) of r. With a fine binning,
doubling the allowed range of nt would roughly double the
weight of the first bins in r. All this would lead to
artificially tight constraints on r (in the case where the
data are consistent with r ¼ 0). As a result, we also would
report an overoptimistic constraining power for future
experiments. We illustrate this nt-prior-range effect in
Fig. 2 using the BK15 data and keeping other than tensor
parameters fixed to the Planck best-fit ΛCDM values. The
wider prior range we allow for nt, the closer to zero the
tensor-to-scalar ratio at k ¼ 0.01 Mpc−1 will be. In addi-
tion, the posterior probability for nt obtained by consid-
ering it as a primary parameter would depend on the pivot
scale chosen.2

Fortunately, these problems with the combination ðr; ntÞ
can be overcome by a well-defined combination ½Ptðk1Þ;
Ptðk2Þ� or ðr1; r2Þ, where the former are the amplitudes of
tensor perturbations at two different wave numbers k1 and
k2, and the latter are the tensor-to-scalar ratios at these two
wave numbers. With either of these parametrizations, the
simpler, tensorless model reduces to one single point (0, 0),
instead of being an infinitely long line as in the ðr; ntÞ case.
The very same problem was identified 20 years ago when
studying scalar isocurvature perturbations with a free
spectral index in [27], and the suggested two-scale solution
was implemented for the first time in [28], there named as
an amplitude parametrization. Since then, the method has

FIG. 2. A demonstration of the volume effect of the prior range
of the tensor tilt on the tensor-to-scalar ratio when the ðr; ntÞ
parametrization is adopted. In order to minimize other effects in
this illustrative figure with the BK15 data, we have fixed other
cosmological parameters to their Planck 2018 best-fit values. We
show the marginalized posterior pdf of r0.01 from three MCMC
runs: fixed nt ¼ −r=8, a flat prior ð−2.5; 2.5Þ, or ð−5; 5Þ. The
95% CL upper bounds on r0.01 are 0.073, 0.065, or 0.061,
respectively. (Note that a fixed nt ¼ 0 leads to a 95% CL upper
bound and a posterior pdf that are indistinguishable from the
nt ¼ −r=8 case.)

2In a similar manner, there is a dependence on the pivot-scale
chosen in fitting the isocurvature spectral index, as demonstrated
in the niso panel of figure 21 of Ref. [27].
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also been applied to tensor perturbations by the Planck
Collaboration in [8,9].
We adopt ðr1; r2Þ to describe the power-law spectrum of

tensor modes,3

PtðkÞ ¼ exp

�
ln k − ln k1
ln k2 − ln k1

ln½r2PRðk2Þ�

−
ln k − ln k2
ln k2 − ln k1

ln½r1PRðk1Þ�
�
: ð6Þ

In order to obtain reasonable constraints on these tensor-to-
scalar ratios at two different scales, the wave numbers k1
and k2 should be chosen in such a way that k1 corresponds
roughly to the largest observable scale and k2 to the
smallest observable scale. The exact best choice could
depend on the fraction of the sky observed and its coverage
in multipoles (and therefore on wave numbers). For this
reason, we study in this paper different choices of the pair
ðk1; k2Þ, in particular, for future experiments.
In case of the tensor perturbations, there are two clearly

observable features in the B-mode polarization at different
ks: the reionization and recombination peaks. Thus, we
pick k1 and k2 near these features, respectively. Once we
have used ðr1; r2Þ as the primary sampling parameters in
our MCMC runs, we can calculate so-called derived
parameters that have nonuniform priors (unlike the primary
parameters). We often report r at some middle scale
between k1 and k2. If we want to show how the results
would look like if the derived parameter had a uniform
prior, we can simply weight our MCMC results by the
inverse of the determinant of the Jacobian transform from
the primary parameters to the derived one(s). In particular,
we compare many of our results by reporting r0.01, i.e., r at
k ¼ 0.01 Mpc−1, which is close to the decorrelation scale
of (r, nt).
However, any fundamental conclusions, such as a

detection or determining whether nt ¼ −r=8 is consistent
with the data, should be drawn from the joint two-dimen-
sional posterior distribution of ðr1; r2Þ. It should be kept in
mind that even if r1 and r2 are drawn independently from a
uniform distribution, i.e., r1 and r2 have flat priors in the
MCMC runs, the individual posterior probability densities
for r1 alone, or for r2 alone, or, in particular, for the derived
parameter r0.01 alone do not encode the full result. Instead,
one should resort to the (marginalized) two-dimensional
posterior of ðr1; r2Þ—either its numerical or graphical
representation. For example, if the best-fit point and the
95% CL contour in the ðr1; r2Þ plane were clearly away
from point (0, 0), but the 99.7% CL contour just reached
(0, 0), then we might claim a weak 3σ detection.

III. PLANCK AND BICEP/KECK ARRAY 2018
CONSTRAINTS

We now derive conservative constraints on primordial
gravitational waves with the current data by adopting the
two-scale parametrization described in the previous sec-
tion. We use the Planck 2018 data [29] and the latest
BICEP/Keck Array data release BK18 [7].
We employ the Planck 2018 baseline likelihood con-

sisting of a Gibbs sampling likelihood based on the
component separated CMB map for temperature at
l ≤ 30, E-mode simulation likelihood at l ≤ 30 based
on the 100 × 143 GHz cross angular power spectrum, and
Plik TTTEEE binned likelihood at high multipoles, i.e.,
l > 30. We also include the lensing likelihood based on
the four-point correlation function of the lensing signal in
the conservative multipole range 8–400. As the BICEP/
Keck likelihood for B-mode polarization, we use the
recently released likelihood which includes BICEP,
Keck Array, and BICEP3 data up to the 2018 observing
season [7]. We use cosmomc [30,31] as the MCMC
sampler and as a Bolzmann solver a modified version of
camb [32,33], which includes the two-scale treatment for
the tensor modes.
In this work, with the real data, we use k1 ¼

0.005 Mpc−1 and k2 ¼ 0.02 Mpc−1, and we also project
our results on r at the scale k ¼ 0.01 Mpc−1. In Planck X
2018 [8], the use of k1 ¼ 0.002 Mpc−1 was motivated by
considering one of the two most-used scales for the tensor-
to-scalar ratio as a primary parameter, but here we instead
prefer to use a slightly smaller scale k1 ¼ 0.005 Mpc−1,
which has a broader overlap with the lowest multipoles
probed by the BICEP/Keck Array likelihood.
The 68% CL and 95% CL posterior constraints on our

primary tensor parameters are shown by the blue shaded
regions in the first panel of Fig. 3. For a comparison, we
also show by blue dotted lines the constraints we obtained
with an older BICEP/Keck Array likelihood from 2015
(BK15) together with the Planck 2018 data. BK18 data are
consistent with no primordial gravitational waves also
when relaxing nt ¼ −r=8 or nt ¼ 0 and improve the
constraints significantly over BK15 in combination with
Planck. As can be seen from the first panel of Fig. 3, the
line nt ¼ −r=8 is within the 68% CL.
Using the same methodology as in Planck X 2018 [8],

we also repeat the analysis by adding the LIGO and Virgo
2016 95%CL upper bound on the energy density parameter
from gravitational waves, ΩGW < 1.7 × 10−7 at k ¼
ð1.3–5.5Þ × 1016 Mpc−1 [34], which is 18 orders larger k
than probed by the CMB B mode. If the tensor power
spectrum followed the strict power law that we assume,
then a large region of positive nt values would lead to a
direct detection of a stochastic primordial gravitational
wave background that LIGO and Virgo has not seen. The
results, when making this huge extrapolation, are indicated
by light gray in Fig. 3.

3Equation (6) specifies a straight line in the ðln k; lnPtÞ plane.
This line goes through points ðln k1; lnPt1Þ and ðln k2; lnPt2Þ,
where Pt1 ¼ Ptðk1Þ ¼ r1PRðk1Þ and Pt2 ¼ Ptðk2Þ ¼ r2PRðk2Þ.
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Finally, we reweigh our Planck+BK18 MCMC chains to
demonstrate that using ðr0.01; ntÞ as primary parameters
would artificially exaggerate the constraining power of the
data by giving a large weight to the models that have r near
to zero (where jntj can be almost arbitrarily large and hence
give extra weight to r ∼ 0 upon marginalization). This case
is indicated by the blue dashed lines in Fig. 3.
The second panel of Fig. 3 is based on the same analysis

as the first panel, but now we show the derived parameters
r0.01 and nt as in [8,9], while the third panel shows the one-
dimensional posterior probability densities (1d pdf) with
peak values normalized to a same constant.
Our main result with the real data is

r0.005 < 0.030

r0.02 < 0.098

� ð95% C:L:; Planck TT;TE;EE

þlowEþ lensingþ BK18Þ: ð7Þ

These constraints improve on the corresponding ones
obtained with BK15, i.e., r0.005 < 0.041 and 0.009 <
r0.02 < 0.23. The constraints on the derived tensor param-
eters are r0.01 < 0.039 and −0.61 < nt < 2.73 at 95% CL,
when using flat priors on the primary parameters. From the
last two panels of Fig. 3, we notice that Planck+BK18 gives
by a factor of two a tighter constraint on r0.01 compared to
Planck+BK15.Thus,BK18 represents a significant improve-
ment also beyond the case of a fixed nt studied in [7].
Naturally, the 95% CL contours on nt do not improve since
BK18 brings the constraint on the actual tensor contribution
closer to zero.
The mean of the posterior at nt ∼ 1 is due to the transfer

function of primordial gravitational waves (that strongly
damps their contribution to CBB

l at l≳ 200 unless the
primordial tilt nt is very large), in combination with the
CMB lensing, noise plus foregrounds, and cosmic variance.

FIG. 3. Posteriors with currently available real data for the tensor parameters when nt is allowed to vary. The primary MCMC
sampling parameters were the standard ΛCDM ones, the nuisance parameters of the likelihoods, and the (independent) tensor-to-scalar
ratios at k1 ¼ 0.005 Mpc−1 and k2 ¼ 0.02 Mpc−1. The first panel shows 68% CL and 95% CL contours for the primary tensor
parameters that have flat priors, except in the case of the blue-dashed curves that are obtained by mapping the MCMC run to indicate the
results if flat priors on nt and r0.01 were employed instead. The second panel shows derived parameters nt and r0.01 that have nonflat
priors, except again in the blue-dashed case. The last panel shows 1d marginalized results.

PLANCK AND BICEP/KECK ARRAY 2018 CONSTRAINTS ON … PHYS. REV. D 106, 083528 (2022)

083528-5



The primordial signal which minimizes the χ2 have (the
amplitude and) a tensor tilt that mimics the effective noise.
This phenomenon is analogous to the apparent preference
of niso ∼ 3 for the CDM isocurvature perturbations in the
lack of a detection of such a component, as explained, e.g.,
in Refs. [27,35,36].
The flat priors on r1 and r2 induce a nonflat prior on nt

[37] with a peak at nt ≈ 0, as shown in the upper panel of
Fig. 4. This might introduce a mild push on nt toward zero,
but in Sec. IV D we show by using simulated r ¼ 0 data
that this push does not outweigh the above-mentioned
natural preference of nt ∼ 1 in the null case when using the
CMB data alone. The symmetric posterior of nt around 1 is
an implication of Planck+BK18 being consistent with no
tensors within the sensitivity of these data. The induced
prior on r0.01 (see the red dotted curve in the lower panel of
Fig. 4) mildly pushes r0.01 away from zero, making our
quoted upper bound a conservative one.4

In Table I, we do not find any statistically significant
shift in the remaining cosmological parameters when the
consistency relation between the tensor-to-scalar ratio and
the tensor tilt is relaxed. We also do not observe major
degeneracy among r0.005, r0.02 and the foreground/nuisance
parameters of the BK18 likelihood in combination with

Planck. When nt is allowed to vary, the low-k constraint,
r0.005 < 0.03, does not degrade compared to the derived
constraint of the nt ¼ −r=8 case. Indeed, as there is more
allowed parameter-space volume at the positive nt, the low-
k constraint is slightly tighter than in the nt ¼ −r=8 model.
Once we pass the recombination bump, the data become
less and less sensitive to the primordial tensor modes as
they are damped by the transfer function. This is reflected
by the fact that the constraint on r0.02 is by a factor of three
weaker than the corresponding bound when keeping nt
fixed. Finally, once projected on the standard pivot scale,
k� ¼ 0.05 Mpc−1, we have r0.05 < 0.71 at 95% CLwhen nt
is allowed to vary, which is by nearly a factor of 20 weaker
than the upper bound 0.035 obtained with a fixed
nt ¼ −r=8.

IV. FORECASTS FOR FUTURE EXPERIMENTS

In the next years, there will be several experiments
devoted to CMB polarization measurements and, in par-
ticular, to the B modes [26,38–40]. In this section, we
compute forecasts when nt is allowed to vary by using the
two-scale parametrization (see also Ref. [25]) and simu-
lated B-mode data representative of the future CMB
measurements, taking as an example the Lite (Light)
satellite for the study of B-mode polarization and
Inflation from cosmic background Radiation Detection
(LiteBIRD) [26], selected by the Japan Aerospace
Exploration Agency (JAXA) as a strategic large class
mission to which, in addition to Japan, also Europe, the
United States, and Canada contribute.

A. Simulated data and methodology

We consider LiteBIRD-like instrumental specifications
given in Table II. We produce simulated data for T, E by
considering the inverse noise weighting of the central
frequency channels and by assuming that the lowest and
highest frequencies are used to separate the foreground

FIG. 4. The induced priors on the derived tensor parameters nt
and r0.01 when sampling r1 and r2 from a flat prior [0, 0.25].
Three different choices of ðk1; k2Þ are shown. The width of the
induced prior for nt depends on k2=k1, being the wider the closer
k1 is to k2: for the first two choices the prior width is σðntÞ ≈ 0.6,
and for the last choice, σðntÞ ≈ 1. Note that these induced priors
do not use any likelihood/data.

TABLE I. 68% CL constraints for the ΛCDM parameters with
Planck+BK18 data. In bold are the 95% CL upper bounds for the
primary tensor parameters, and in parenthesis are the derived
tensor parameters.

Planckþ BK18 Planckþ BK18
Parameters nt ¼ −r=8 free nt

Ωbh2 0.0224� 0.0001 0.0224� 0.0001
Ωch2 0.120� 0.001 0.120� 0.001
100θ 1.0409� 0.0003 1.0409� 0.0003
τ 0.0546þ0.0073

−0.0072 0.0544� 0.0073
lnð1010AsÞ 3.045� 0.014 3.044� 0.014
ns 0.9653� 0.0041 0.9656� 0.0041
r0.005 (<0.032) <0.030
r0.02 (<0.034) <0.098
r0.05 <0.035 (<0.71)

4As the two-dimensional analysis of ðr1; r2Þ does not indicate
any detection of a non-zero tensor contribution, i.e., the best-fit is
very near to (0, 0) and (0, 0) is in the 68% CL region, we report
the conservative 95% CL upper bounds on tensor-to-scalar ratio
by forcing a one-tail analysis in getdist.
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emission as done in [26] (see also Ref. [25]). For the
B-mode polarization (in addition to the instrumental noise),
we include the following two sources of confusion: the
lensing signal and a contribution which mimics the fore-
ground residuals. These inputs are inserted in a Wishart-like
likelihood with an effective sky fraction of 70% (60%) for
T, E (B). With these settings, we obtain for the nt ¼ −r=8
model a σðrÞ ∼ 0.0013, which is 30% larger than the
LiteBIRD value [26] which includes systematic effects.
Our constraints can therefore be seen as a conservative
assessment of the LiteBIRD capabilities.
We create simulated data from three fiducial models. Our

first fiducial model satisfies the inflationary consistency
condition nt ¼ −r=8 (IC) and is motivated by SSSRI with
Bunch-Davies quantum initial condition. As a second case,
we consider a positive value for the tensor tilt (ntþ), as
occurs when the null-energy condition during inflation is
violated [41] or in Galileon inflation [11]. We fix nt ¼ 0.3,
which is allowed by the Planck constraints on primordial
non-Gaussianity [9,42–44] in Galileon inflation [11].
As a third case, we consider nt ¼ −r=ð8csÞ, theoretically
predicted by slow-roll inflation with a noncanonical
kinetic term, which leads to a nontrivial speed of sound
ð0 <Þcs < 1, with cs ¼ ∂pðϕ; XÞ=∂X. Here, p is the
Lagrangian for the inflaton and X ¼ −∂μϕ∂μϕ=2. As a
value for the inflaton speed of sound, we consider the
95% CL lower limit cs ¼ 0.02 obtained by the constraint
on primordial non-Gaussianity [43,44], which is enhanced
by the nontrivial speed of sound. This value leads to a
negative value for the tensor tilt, i.e., nt ¼ −0.3, and we
denote this case by nt−.
We set r ¼ 0.05 (at k ¼ 0.05 Mpc) in all three fiducial

models and assume the underlying ΛCDM cosmology
to be consistent with the Planck 2018 baseline results:
Ωbh2 ¼ 0.02237, Ωch2¼0.120, 100θ ¼ 1.04092, τ ¼
0.0544, ns ¼ 0.9649, and lnð1010AsÞ ¼ 3.044. Figure 5
shows the B-mode angular power spectra for these fiducial

models and, for comparison, the instrumental noise and
lensing signal.
With each of the three simulated data sets, we run three

separate full MCMC runs (i.e., nine runs in total), but
choosing three different pairs k1–k2 for the two-scale
parametrization. As explained in Sec. II, the best choice
depends on the k coverage (multipole coverage) of the data.
In addition, the best choice may depend on the actual
underlying model to be recovered. In this section, our
fiducial models described above are chosen to have a
largish r and/or nt (allowed by the previous BK15 data
release) in order to test/exaggerate the latter effect. In the
next section we repeat the analysis using fiducials that
would be allowed by the current constraints.
We test the sensitivity of parameter estimation to the

choices of k1 and k2 by using the pairs 0.001–0.01, 0.002–
0.02, and 0.005–0.02 Mpc−1. All these scales effectively
correspond to multipoles where the expected tensor signal
is non-negligible, differently from the conventional
k� ¼ 0.05 Mpc−1, where the signal is damped by the
tensor transfer function.
We check the posteriors of the primary tensor sampling

parameters r1 and r2 in Fig. 6. We note that for all three
fiducial models the green case (k1–k2 ¼ 0.002–0.02) per-
forms worst since it leads to a degeneracy between r1 and
r2 for this LiteBIRD-like configuration that we use, which
degrades the determination of both these parameters.
The derived tensor parameters from the same MCMC

runs as above are shown in Fig. 7. We notice that for all
three fiducial models considered, any of our choices of
k1–k2 leads to an excellent recovery of the derived

TABLE II. A LiteBIRD-like configuration of the instrument
central frequency channels, following the characterization given
in [26].

LiteBIRD

Frequency
(GHz)

T-sens
(μK arcmin)

P-sens
(μK arcmin)

FWHM
(arcmin)

78 8.53 12.07 36.9
89 7.99 11.30 33.0
100 4.64 6.56 30.2
119 3.24 4.58 26.3
140 3.39 4.79 23.7
166 3.94 5.57 28.9
195 4.14 5.85 28.0

FIG. 5. The CMB B-mode anisotropy angular power spectra
resulting from the primordial tensor perturbations for three
fiducial models with r0.05 ¼ 0.05 are represented in three differ-
ent colors (blue, green, red). The dotted black curve is the CMB
lensing signal, and the cyan curve is the instrumental noise of a
LiteBIRD-like configuration.
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parameters r0.05, r0.01, and nt in terms of the median of the
posterior. From Fig. 7, we see that distinguishing nt ¼
−r=8 from the exact scale invariance is out of reach as
expected [45]. For the modified sound speed case, nt− in
the darkest colors, we observe significantly better constraints
on the tensor spectral index. This result reflects the fact that
weused a fixed r0.05 ¼ 0.05 as an input fiducial,which, in the
nt− case, translates into a large r at the LiteBIRD sensitivity
region, as is obvious from thevalues of r0.01 in the right panel
of Fig. 7. Having a large r naturally leads to tighter
constraints on nt. This should be kept in mind when
interpreting the results. For the nt ¼ −r=8 case, it does
not make a big qualitative difference on what scale one
quotes r, as nt ≈ 0 (and ns − 1 ≈ −0.04). However, once we
relax the consistency condition, we are required to be careful
and explicit with the scales. What matters is r in the
sensitivity region of the experiment. At the standard pivot
scale, k ¼ 0.05 Mpc−1, the tensor-to-scalar ratio can then be
very large (small) in the ntþ (nt−) case.

B. Forecasts for realistic cases

We now present the forecasts by choosing fiducial models
in such away that r0.01 andnt are inside the 95%CL region of
Planck+BK18posterior. All other aspects of the analysis stay
the same as in the previous section.

FIG. 6. Two-dimensional posterior distributions for r1 and r2, assuming a common r0.05 ¼ 0.05 as a fiducial model for the simulated
data. The panels are from left to right: the inflationary consistency (IC), the positive tensor tilt (ntþ), and the negative tensor tilt (nt−).
Note that with different choices of k1–k2 the tensor-to-scalar ratios r1 and r2 represent r at different scales, and hence, e.g., the areas
covered by the 95% CL posterior are not directly comparable in this figure.

FIG. 7. Two-dimensional posterior distributions for the derived parameters r0.05 and nt and for r0.01 and nt for the three cases assuming
a common r0.05 ¼ 0.05.

TABLE III. 68% CL results for the tensor parameters when
jointly fitting the ΛCDM parameters and r1 and r2 to the
simulated LiteBIRD-like data. In this case, the input model
has r0.05 ¼ 0.036 and nt ¼ −r=8 (i.e., r0.01 ¼ 0.0343 and
nt ¼ −0.0045).

Inflation consistency (IC)

Pars 0.001–0.01 0.002–0.02 0.005–0.02
r1 0.035þ0.006

−0.010 0.040þ0.005
−0.007 0.034� 0.003

r2 0.034� 0.003 0.035þ0.004
−0.005 0.035þ0.004

−0.005
r0.01 0.034� 0.003 0.035� 0.003 0.035� 0.003
nt −0.03� 0.10 −0.02� 0.10 −0.01� 0.10
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1. Inflationary consistency (IC)

We start with the inflationary consistency case where we
assume r0.05 ¼ 0.036 (giving nt ¼ −0.0045), compatible
with the 95% CL region by the Planck+BK18 data. The
constraints for the tensor parameters are presented in
Table III and the posteriors in Fig. 8. Again, the area
covered by the two-dimensional contours for the primary
parameters r1 and r2 apparently depends on the choice of
scales, but this is due to plotting rs at different scales on the
same figure. The dependence disappears when projecting
on an amplitude (r0.01 or r0.05) and tilt in the middle and
last panels. The first panel indicates that the green case
(k1–k2 ¼ 0.002–0.02) has a degeneracy between r1 and r2.
Table III shows that marginally the best recovery of the
input parameters is achieved by k1–k2 ¼ 0.001–0.01. The
measurement precisions in this case are σðr0.001Þ ≈ 0.009
and σðr0.01Þ ≈ 0.003, which imply approximately a 10σ
detection of our nonzero input r0.01 ¼ 0.0343.

2. Positive tensor tilt ðnt + Þ
For the case of a positive tensor tilt nt ¼ 0.3, we set

r0.05 ¼ 0.07 in our fiducial model, again compatible with

95% CL of Planck+BK18. We present the posterior
constraints for the tensor parameters in Table IV and in
Fig. 9. Again the couple k1–k2 ¼ 0.002–0.02 leads to a
degeneracy between r1 and r2, but any of the choices would
recover the input value of r0.01 equally well. The meas-
urement precisions are now σðr0.001Þ ≈ 0.0058 and
σðr0.01Þ ≈ 0.0028, i.e., slightly better compared to the IC
case. As for the IC, also in this case we reach σðntÞ ≈ 0.10.
The measured tensor tilt is clearly positive and differs from
zero by more than 2σ.

FIG. 8. Realistic IC case forecasts for the marginalized ðr1; r2Þ (left panel), ðr0.01; ntÞ (middle panel), ðr0.05; ntÞ (right panel) contours
obtained by a two-scale analysis with three different pairs of scales (in blue, green, and red), using simulated LiteBIRD-like data with
tensor parameters of the fiducial model having the values r0.05 ¼ 0.036 and nt ¼ −0.036=8 ¼ −0.0045. Note that the r axes do not start
from zero in any of the panels.

FIG. 9. Realistic ntþ case forecasts for the marginalized ðr1; r2Þ (left panel), ðr0.01; ntÞ (middle panel), ðr0.05; ntÞ (right panel) contours
obtained by a two-scale analysis with three different pairs of scales (in blue, green, and red), using simulated data based on the fiducial
tensor parameters r0.05 ¼ 0.07 and nt ¼ 0.3.

TABLE IV. The same as Table III, but now simulating the
LiteBIRD-like data by using a fiducial model with r0.05 ¼ 0.07
and nt ¼ 0.3 (i.e., r0.01 ¼ 0.0408).

Positive tensor tilt (ntþ)

Pars 0.001–0.01 0.002–0.02 0.005–0.02
r1 0.021þ0.004

−0.006 0.025þ0.004
−0.005 0.033� 0.003

r2 0.041� 0.003 0.051� 0.005 0.052þ0.005
−0.006

r0.01 0.041� 0.003 0.041� 0.003 0.041� 0.003
nt 0.27� 0.10 0.28� 0.10 0.30� 0.10
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3. Modified sound speed ðnt − Þ
We conclude with a negative tensor tilt due to a modified

sound speed. We use a value compatible with the current
constraints, cs ¼ 0.02, and assume r0.05 ¼ 0.03, which
gives nt ¼ −0.1875. We present the constraints for the
tensor parameters in Table V and in Fig. 10.
Also in this case, k1–k2 ¼ 0.001–0.01 Mpc−1 performs

marginally better than 0.005–0.02 Mpc−1, whereas
0.002–0.02 Mpc−1 leads again to a degeneracy for the
primary tensor parameters. The forecasted measurement
precisions are σðr0.001Þ ≈ 0.0014 and σðr0.01Þ ≈ 0.003. The
measured tensor tilt is clearly negative and differs from zero
at 2σ.

C. The importance of space-based mission

We now study the impact of the lowmultipoles which are
accessible only by observing a sufficiently large fraction of
the sky, one of the main advantages of space missions. In
order to mimic what could happen with a ground-based
instrument, we use the same setup as above but with l ¼
½2; 19� for the B-mode polarization removed. The results for
k1–k2 ¼ 0.001–0.01 Mpc−1 in Fig. 11 show how the
uncertainties on r0.001 more than double for any of the
three models. We observe this degradation of constraints in
r1 also for the other sets of scales. Naturally, r0.01 (as well
as r0.02) stays largely unaffected since k ¼ 0.01 Mpc−1

corresponds to multipoles larger than 20 (indeed l ∼ 70).
Importantly, without the space-based low-multipole data
even the 68% CL posterior regions of our representative
three fiducial models overlap, whereas with the low multi-
poles included the positive tensor tilt is clearly distinguish-
able from the negative tilt, and the IC case only marginally
overlaps with the nt− case at 68% CL.

D. Null case

In addition to the three cases with r ≠ 0, we also test
r ¼ 0, representative of the case that inflation or its
alternatives generate gravitational waves with amplitudes
below the threshold of detection of future B-mode polari-
zation experiments. The results are shown in Fig. 12 (and in
Fig. 13 where we compare to the constraints given by the
real data). We obtain the following 95% CL upper bounds:
r0.001 < 0.0032 and r0.01 < 0.0048 (or r0.005 < 0.0027 and
r0.02 < 0.01), whereas our results with the current Planck+
BK18 data were r0.005 < 0.030 and r0.02 < 0.098. Thus, in

FIG. 10. Realistic nt− case forecasts for the marginalized ðr1; r2Þ (left panel), ðr0.01; ntÞ (middle panel), ðr0.05; ntÞ (right panel)
contours obtained by a two-scale analysis with three different pairs of scales (in blue, green, and red), using simulated data based on
fiducial tensor parameters r0.05 ¼ 0.030 and nt ¼ −0.16.

TABLE V. The same as Table III, but now simulating the
LiteBIRD-like data by using a fiducial model with the modified
sound speed, adopting currently allowed values r0.05 ¼ 0.03 and
nt ¼ −0.1875 (giving r0.01 ¼ 0.0384).

Negative tensor tilt (nt−)

Pars 0.001–0.01 0.002–0.02 0.005–0.02
r1 0.059þ0.010

−0.016 0.050þ0.006
−0.009 0.043þ0.003

−0.004
r2 0.038� 0.003 0.035� 0.004 0.035� 0.004
r0.01 0.038� 0.003 0.039� 0.003 0.039� 0.003
nt −0.22� 0.10 −0.19� 0.10 −0.19� 0.10

FIG. 11. Two-dimensional posterior distributions for the three
realistic fiducial models with simulated LiteBIRD-like data
without the low multipoles l ∈ ½2; 19� (“Cut,” shaded regions)
and with the low multipoles also included (“Full,” dashed lines).
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the possible null case, LiteBIRD would lead to 10 times
tighter constraints on both primary tensor parameters than
achieved by Planck+BK18. As seen in the first panel of
Fig. 13, this means that the area covered by the 95% CL
region in the (r0.005, r0.02) plane shrinks more than by a
factor of 100.
Equally impressively, any point outside of the red region

in the first panel of Fig. 13 can be regarded at least as a 2σ
detection zone of a nonzero tensor contribution. As we
move to the outer limits of the blue region (the currently
allowed 95% CL region), the detection of a nonzero r by a
LiteBIRD-like experiment would be at the 10σ level, as we
have seen in the previous subsections. Let us finally note
that in the case of a fiducial with zero tensor contribution,
the LiteBIRD-like data lead to only a marginally narrower
95% CL range for nt than the current data, and the posterior
peaks again at nt ≈ 1, confirming the explanation of Sec. III
and showing that the effect of the prior peaking around
nt ≈ 0 (see the upper panel of Fig. 4) is negligible.

FIG. 12. Two-dimensional posterior distributions for the case of
simulated LiteBIRD-like data with zero tensor contribution in
the sky.

FIG. 13. Comparison of expected tensor-parameter constraints from future experiments for a null case together with the current
bounds from the Planck+BK18 data, with the same notation as in Fig. 3. The primary sampling parameters were the standard ΛCDM
ones and ðr0.005; r0.02Þ for the tensor contribution (see the first panel). Other parameters shown in the plots are derived ones. Red regions
and lines represent a forecast with LiteBIRD-like specifications, using a fiducial model with r ¼ 0, which highlights the huge discovery
potential of LiteBIRD.

PLANCK AND BICEP/KECK ARRAY 2018 CONSTRAINTS ON … PHYS. REV. D 106, 083528 (2022)

083528-11



V. CONCLUSIONS

We have obtained constraints on the amplitude and tilt of
the primordial tensor mode by the most recent Planck and
BICEP/Keck Array 2018 data, employing a two-scale
analysis where the sampling parameters for the tensor power
spectrum are (independent) tensor-to-scalar ratios at two
different scales. This is a minimal extension of the analysis
with nt fixed with respect to more ambitious reconstructions
of the primordial tensor power spectrum [46,47].
Our 95% CL constraints r0.005 < 0.030 and r0.02 <

0.098 improve by nearly a factor of 2 those obtained from
Planck 2018 data in combination with the previous B-mode
polarization BK15 likelihood in [8]. The Planck+BK18
95% CL constraints on the derived tensor parameters are
r0.01 < 0.039 and −0.6 < nt < 2.7. As in [8], we also
report the results in combination with the upper bound on
the stochastic gravitational wave background at much
smaller scales, provided by the LIGO and Virgo 2016
observing season, which excludes most positive values of
the primordial tensor tilt: r0.01 < 0.039 and −0.8 < nt <
0.5 at 95% CL.
We have then forecasted how a two-scale analysis per-

forms with future B-mode polarization data. As a represen-
tative experiment for future polarization data, we have
considered conservative specifications for a LiteBIRD-like
space-based mission. Given its capability to probe both the
reionization and recombination peaks in the B-mode power
spectrum, we had the possibility to study different choices of
the two scales and to show how the results depend on this
choice.
We have also considered different fiducial values for the

primordial tensor power spectrum, including the tensor-to-
scalar consistency condition and two cases with nt positive

and negative, respectively. Whereas distinguishing nt ¼
−r=8 from the exact scale invariance is out of reach as
expected [45], we have shown howwith these LiteBIRD-like
specifications we could detect at σðntÞ ∼ 0.1, largely inde-
pendent from any reasonable choice of scales, theoretically
motivated departures from nt ¼ −r=8 consistent with the
current bounds. Accessing the low multipoles, virtually
doable only byCMBspacemissions, is essential for reaching
these results, as discussed in Sec. IV C and shown in Fig. 11.
We have also shown in Fig. 13 the huge LiteBIRD-like
discovery space compared to the current bounds when nt is
allowed to vary. We conclude reminding that the results
presented here are conservative with respect to Ref. [26] and
could be further improved by delensing but show that a space
mission, such as LiteBIRD, accessing the low multipoles is
the most suitable for characterizing the primordial tensor
spectrum with the minimal assumptions.
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