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We study background dynamics and the growth of matter perturbations in the extended quasidilaton
setup of massive gravity. For the analysis of perturbations, we first choose a scalar field matter component
and obtain the conditions under which all scalar perturbations are stable. We work in unitary gauge for the
matter field, which allows us to directly map to known results in the limit of general relativity. By
performing a parameter search, we find that the perturbations are unstable in general, while a particular
choice of potential, where the scalar field effectively behaves like pressureless matter, allows for stable
perturbations. We next consider the growth of matter perturbations in a cold dark matter-dominated
Universe. Working in conformal Newtonian gauge, we obtain evolution equations for various observables
including the growth factor and growth rate, and find scale-independent growth in the quasistatic and
subhorizon approximations. We finally show how the Hubble parameter and matter perturbations evolve in
massive gravity for a specific choice of parameter values, and how this evolution compares to the standard
cosmological model consisting of a cosmological constant and cold dark matter.
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I. INTRODUCTION

The origin of the current accelerated expansion of the
Universe is a mystery of modern cosmology. While one
possibility is to have an additional source of energy,
commonly called dark energy and well fit by a cosmo-
logical constant, another equally compelling possibility is
that the theory of gravity differs from general relativity
(GR) on large scales. Along the lines of the latter, an
interesting question is whether the graviton can be massive,
with a mass of the order of the Hubble constant today. Early
attempts to make the graviton massive were restricted to a
linear theory of massive gravity [1], and a nonlinear theory,
commonly called the de Rham-Gabadadze-Tolley (dRGT)
theory, was successfully constructed relatively recently in
[2,3]; see [4,5] for detailed reviews.
The dRGT theory is free of the Boulware-Deser ghost

[6], but does not admit a viable Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmology [7]. One potential
resolution of this problem is to add to the theory a
quasidilaton field that realizes a new global symmetry
[8], the cosmological implications of which were studied

in [9]. However, this modification was also found to have
unstable perturbations around a self-accelerating back-
ground [10]. A further extension, where one also allows
for a new type of coupling between the massive graviton
and the quasidilaton [11], on the other hand, does allow for
a stable self-accelerated solution.
Background dynamics in the extended quasidilaton setup

with a kinetic term for the quasidilaton field were studied in
[11,12] and the evolution of perturbations has been studied
in, for example, [13–15]. It turns out that the Boulware-
Deser ghost is not guaranteed to be absent away from the
self-accelerating attractor in this case [16–19], with one
possible resolution being to remove the quasidilaton kinetic
term. The resulting model without the kinetic term was
shown to pass all perturbative stability tests with a self-
accelerating background solution in the absence of matter
in [20]. In this paper, we are interested in understanding
how scalar perturbations evolve in this model of massive
gravity in the presence of matter.
We first find the conditions for stable scalar perturbations

in the presence of a scalar field matter component. We
perform this calculation in unitary gauge for the matter
field, which we find to be the most convenient choice and
also allows us to directly map our result to the action for
inflationary perturbations in the limit of GR. We next find
the equations of motion for all propagating scalar pertur-
bations in the presence of cold dark matter (CDM). We
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perform this calculation in the commonly used conformal
Newtonian gauge and finally obtain equations for various
observables including the growth factor and growth rate.
Growth of structure has been explored in different models
of massive gravity in earlier works as well, for example,
bimetric massive gravity [21], generalized massive gravity
[22], projected massive gravity [23], and the minimal
theory of massive gravity [24]. We find scale-independent
growth in the quasistatic and subhorizon approximations, in
agreement with the latter two references that also had a
single dynamical metric. While the complexity of this
theory limits us from going beyond the study of linear
perturbations, this scale-independent growth is an impor-
tant difference from fðRÞ theories of gravity, where one
finds a scale-dependent growth of structure [25,26].
We lastly solve the evolution equations for the back-

ground and perturbations numerically. We find that the
stability conditions are not satisfied in general, but can be
satisfied for a particular choice of potential where the scalar
field effectively behaves like pressureless matter. Choosing
parameter values that provide a reasonable fit (not the
best fit, which would require a more detailed analysis)
to background and growth of structure data, we show how
the Hubble parameter and matter perturbations evolve in
massive gravity compared to the standard ΛCDMmodel, Λ
being a cosmological constant. For the parameter values
that we consider, we find good agreement with the back-
ground evolution in ΛCDM but differences in the growth of
matter perturbations at late times.
The paper is organized as follows. We start with an

overview of the extended quasidilaton setup of massive
gravity in Sec. II. In Sec. III, we obtain evolution equations
for the background in the presence of matter and show that
the evolution is restricted to one of two branches, identical
to what one finds in the absence of matter. We introduce
scalar perturbations in Sec. IV, and check for the stability
of propagating perturbations in each branch in Sec. V.
In Sec. VI, we solve the equations of motion for the
perturbations to find how CDM perturbations grow in each
branch. We present numerical solutions to the equations of
motion and compare the resulting evolution of the Hubble
parameter and matter perturbations to ΛCDM in Sec. VII.
We end with a summary and discussion of our results in
Sec. VIII. The first appendix shows that the two gauge
choices made in the paper are valid and the second
appendix contains expressions for certain quantities that
appear in Sec. VI.
A note on our notation: Greek indices indicate time and

space coordinates and take the values 0-3, Latin indices
indicate space coordinates and take the values 1-3, and our
metric signature is mostly plus.

II. EXTENDED QUASIDILATON THEORY

The dRGT theory introduces the graviton mass in a
covariant way by means of the Stückelberg mechanism.

The four Stückelberg fields ϕα together generate the
nondynamical metric

fμν ¼ ηαβ∂μϕ
α
∂νϕ

β; ð1Þ

where ηαβ is the Minkowski metric and the derivative is

with respect to xμ ¼ ðt; x⃗Þ. The tensor ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þμν forms the

basic building block of the mass term, gαβ being the
dynamical spacetime metric. Since the dRGT theory does
not admit a viable FLRW cosmology [7], as mentioned in
the Introduction, we focus here on its quasidilaton exten-
sion, where a quasidilaton field σ [8] is coupled to the
Stückelberg fields through an extended fiducial metric [11],

f̃μν ¼ ηαβ∂μϕ
α
∂νϕ

β −
ασ
m2

∂μðe−σÞ∂νðe−σÞ; ð2Þ

m being the mass of the graviton and σ the dimensionless
field σ=MPl. This transforms as f̃μν → e−2σ0 f̃μν under the
global transformations σ → σ þ σ0 and ϕα → e−σ0ϕα, with
σ0 an arbitrary constant. Following [20], we also remove
the canonical kinetic term for the quasidilaton field.
In this paper, we are interested in the growth of matter

perturbations in the setup described above. The final action
that we consider is thus

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ 2m2ðL2 þ α3L3 þ α4L4Þ�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmatter; ð3Þ

where R is the 4D Ricci scalar. The mass term is generated
by the Lagrangian densities

L2 ¼
1

2!
ð½K�2 − ½K2�Þ; ð4Þ

L3 ¼
1

3!
ð½K�3 − 3½K�½K2� þ 2½K3�Þ; ð5Þ

L4 ¼
1

4!
ð½K�4 − 6½K�2½K2� þ 3½K2�2 þ 8½K�½K3� − 6½K4�Þ;

ð6Þ
where square brackets denote the trace, and

Kμ
ν ¼ δμν − eσð

ffiffiffiffiffiffiffiffiffiffi
g−1f̃

q
Þμν: ð7Þ

The matter Lagrangian density Lmatter, on the other hand,
gives the energy-momentum tensor in the standard way,

Tμν ¼ −
2ffiffiffiffiffiffi−gp δ

δgμν
ð ffiffiffiffiffiffi

−g
p

LmatterÞ: ð8Þ

We can now use the action in Eq. (3) to find both the
background evolution, which we review in the next section,
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and the evolution of perturbations, which we study in the
remainder of the paper.

III. BACKGROUND EVOLUTION

Let us first consider the Einstein-Hilbert part of the
action. For this, we choose to work in the Arnowitt-Deser-
Misner (ADM) formalism, since this allows us to easily
identify the boundary term, as explained further below. In
this formalism, spacetime is foliated into spacelike hyper-
surfaces and is described in terms of a spatial metric hij,
lapse function N, and shift vector Ni, with the spacetime
interval written as

ds2 ¼ −N2dt2 þ hijðNidtþ dxiÞðNjdtþ dxjÞ: ð9Þ

The functions here are related to components of the original
metric gμν as

gμν ¼
�−N2 þ NkNk Nj

Ni hij

�
; ð10Þ

while for the inverse metric, we have

gμν ¼ 1

N2

�
1 Nj

Ni N2hij − NiNj

�
: ð11Þ

We can now use the Gauss-Codazzi equation to relate the
4D Ricci scalar to the 3D Ricci scalar Rð3Þ,

R ¼ Rð3Þ þ Ki
jK

j
i − ½K�2 þ 2∇μð½K�nμ − nν∇νnμÞ; ð12Þ

where ∇μ is the covariant derivative with respect to the

metric gμν, Kij ¼ 1
2N ð _hij −DiNj −DjNiÞ is the extrinsic

curvature, with the dot denoting a derivative with respect to
t and Di being the covariant derivative with respect to the
induced metric hij, and nμ ¼ 1

N ð1;−NiÞ is the normal to the
spatial slice. The boundary term is now easily identified
as the last term in Eq. (12) and is removed by adding
an appropriate Gibbons-Hawking-York boundary term. We
find this identification convenient to unambiguously con-
struct the second-order action in the perturbations later in
the paper. As for the background, we choose an FLRW
cosmology with Ni set to zero and hij ¼ a2ðtÞδij, where
aðtÞ is the scale factor.
Let us next consider the massive gravity part of the

action. Consistent with a homogeneous and isotropic
background cosmology, we choose the background
Stückelberg fields to be

ϕα ¼ δα0ϕðtÞ þ δαi x
i; ð13Þ

where ϕðtÞ is some function of t. Note that wewill not work
in unitary gauge for the Stückelberg fields and will thus

allow their perturbations to be functions of spacetime later
in the paper. The background quasidilaton field is similarly
chosen to be a function of t only. Using this in Eq. (2) gives
the following fiducial spacetime interval,

ds2
f̃
¼ −r2ðN2=a2Þdt2 þ δijdxidxj; ð14Þ

where

r2
N2

a2
¼ _ϕ2 þ ασ

m2
e−2σ _σ2 ð15Þ

is the effective lapse function.
We can now obtain the zeroth order action from Eq. (3).

We define X ¼ eσ=a and the following combinations of
background quantities as in [20],

J ¼ ð3 − 2XÞ þ ðX − 3ÞðX − 1Þα3 þ ðX − 1Þ2α4; ð16Þ

Q ¼ ðX − 1Þ½3 − 3ðX − 1Þα3 þ ðX − 1Þ2α4�; ð17Þ

in terms of which the zeroth order action is given by

Sð0Þ ¼ M2
Pl

Z
dtd3xa3N½−3H2 þm2ðrQX − ρXÞ� þ Smatter;

ð18Þ

where H ¼ _a=ðaNÞ is the Hubble parameter and

ρX ¼ 1

X
½Qþ JðX − 1Þ2 − XðX − 1Þ2� ð19Þ

can be interpreted as the contribution to the energy density
from massive gravitons. The background equations of
motion are obtained by varying Sð0Þ with respect to the
background fields fNðtÞ; aðtÞ;ϕðtÞ; σðtÞg,

δSð0Þ ¼
Z

d4x
X
i

�
δSð0Þ

δΦi δΦ
i

�
; ð20Þ

and setting the variation δSð0Þ to zero. (The summation here
is over the four fields mentioned above and not a spatial
index.) After the variation, we can either set N to unity, so
that the time coordinate corresponds to physical time t, or
to aðτÞ, so that the time coordinate corresponds to con-
formal time τ. We will work in conformal time below.
Assuming that matter is a perfect fluid so that its energy-

momentum tensor is given by T̄μ
ν ¼ diagð−ρ̄; p̄; p̄; p̄Þ,

where a bar denotes background quantities, the resulting
four independent equations describing the background
evolution are

H2

a2
¼ m2ρX

3
þ ρ̄

3M2
Pl

; ð21Þ
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2

�
H0 −H2

a2

�
¼ m2JXðr − 1Þ − ρ̄þ p̄

M2
Pl

; ð22Þ

d
dτ

�
a4QXϕ0

r

�
¼ 0; ð23Þ

ασ
Xa5

d
dτ

�
a3Qσ0

r

�
¼ m2X½3Jðr − 1Þ þ 4rQ�; ð24Þ

where H ¼ aH is the conformal Hubble parameter and a
prime denotes a derivative with respect to τ. Combining the
first and second Friedmann equations (21) and (22) and
using the relationships ρ̄0 þ 3Hðρ̄þ p̄Þ ¼ 0, ρ0X ¼ 3JX0,
and X0 ¼ ðσ0 −HÞX yields the constraint

m2JXðσ0 −HrÞ ¼ 0: ð25Þ

This restricts the background evolution to two branches:
σ0 ¼ Hr (branch 1) and J ¼ 0 (branch 2); these are
identical to the two branches found in [20] in the absence
of matter. The first branch condition leads to the evolution
equation X0 ¼ ðr − 1ÞHX for X. In the second branch, on
the other hand, X is constant, so that X0 ¼ 0 and σ0 ¼ H.

IV. SCALAR PERTURBATIONS

We next consider how scalar perturbations evolve in
massive gravity. We have a total of eight perturbations
before making use of the gauge freedom in the theory. Four
of the perturbations come from the dynamical metric,

ds2 ¼ a2ðτÞ
�
−ð1þ 2ΦÞdτ2 þ 2∂iBdxidτ

þ
�
ð1 − 2ΨÞδij þ 2

�
∂i∂j −

δij
3
∂
2

�
E

�
dxidxj

�
;

ð26Þ

where Φ, B, Ψ, and E are all functions of ðτ; x⃗Þ. Another
two come from the Stückelberg fields,

δϕ0 ¼ Π0; ð27Þ

δϕi ¼ Πi þ ∂
iΠL: ð28Þ

whereΠ0 andΠL are scalars and also functions of ðτ; x⃗Þ. Πi

is the vector part of the perturbation, that we will ignore in
this paper. The next scalar perturbation is in the quasidi-
laton field, δσðτ; x⃗Þ. And the last one is in the matter

component, that we consider in the next two sections. We
show how the perturbations transform under a coordinate
transformation in Appendix A and identify two gauge
choices that are convenient for our calculations in the
following sections.

V. KINETIC MATRIX

In this section, we obtain the conditions under which the
scalar perturbations that we introduce are stable. For this,
we check the signs of the kinetic terms of all propagating
scalars and demand that the theory does not propagate any
ghosts. We choose a scalar field matter component for
simplicity, denoted χðτ; x⃗Þ, with a Lagrangian density of the
form

Lmatter ¼ −
1

2
ð∂μχÞ2 − VðχÞ; ð29Þ

where ð∂μχÞ2 ¼ gμνð∂μχÞð∂νχÞ and V is some potential. We
perturb the scalar field as χðτ; x⃗Þ ¼ χ̄ðτÞ þ δχðτ; x⃗Þ, χ̄ðτÞ
being the background field. The Friedmann equations
describing the background evolution of the Universe are
then given by Eqs. (21) and (22) with ρ̄ ¼ χ̄02=ð2a2Þ þ V
and p̄ ¼ χ̄02=ð2a2Þ − V. We use the resulting equations to
substitute for the background V and a00 in the remainder of
this section.
Let us next consider the choice of gauge for the

perturbations. We find it simplest to work in unitary gauge
for the matter field for the analysis in this section, and so
make the gauge choice E ¼ 0 and δχ ¼ 0; we show that
this is a valid gauge choice in Appendix A. Note that this is
also the typical gauge choice for calculating the spectrum
of perturbations in single-field inflation. We thus expect our
Lagrangian density to reduce to that for the primordial
curvature perturbation ζðτ; x⃗Þ in the limit of “turning off”
massive gravity, and show that this is indeed true later in the
section.
With the gauge choice that we have made, we are left

with six scalar perturbations: Φ, B, Ψ, Π0, ΠL, and δσ. We
introduce these perturbations at the level of the action in
Eq. (3) and write the resulting second-order action in
Fourier space, using the convention that fðτ; x⃗Þ ¼R

d3k
ð2πÞ3 e

ik⃗·x⃗fðτ; k⃗Þ. As is usual with the lapse and shift,

the perturbations Φ and B turn out not to have any time
derivatives and lead to constraint equations. They can thus
be written in terms of other perturbations and we find the
solutions

Φ ¼ −
aM2

Pl

Xf2a2H2M2
Pl½3a2Jm2X þ 2k2ðrþ 1Þ� − a4Jm2Xðχ̄0Þ2g fa

5J2m4X3½3ðδσ þ ΨÞ − k2ΠL�

þ2a3Jm2X2Hð−k2Π0
L þ k2Π0ϕ

0 þ 3Ψ0Þ þ 2a3Jk2m2X2Ψþ 2ak2H½δσJασσ0 þ 2ðrþ 1ÞXΨ0�g; ð30Þ
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B ¼ 1

Xf2H2M2
Pl½3a2Jm2X þ 2k2ðrþ 1Þ� − a2Jm2Xðχ̄0Þ2g f2HM2

Pl½−a2Jk2m2ðrþ 1ÞX2ΠL

þXððrþ 1Þð3a2Jm2Xðδσ þ ΨÞ þ 2k2ΨÞ þ 3a2Jm2XHΠ0
L − 3a2Jm2Π0XHϕ0Þ − 3δσJHασσ

0�
þ ðχ̄0Þ2½Xð−a2Jm2XΠ0

L þ a2Jm2Π0Xϕ0 þ 2ðrþ 1ÞΨ0Þ þ δσJασσ0�g; ð31Þ

which reduce to the corresponding equations of [20] in the
absence of matter on using the gauge freedom to set δσ to
zero instead.
Substituting the solutions for Φ and B back into the

second-order action, thus integrating them out, yields an
action of the form

Sð2Þ ¼M2
Pl

2

Z
dτd3ka2ðY 0TKY 0þY 0TMY−YTMY 0−YTΩ2YÞ;

ð32Þ

where Y denotes the column vector ðΨ; δσ; mΠ0; m2ΠLÞ, K
is the kinetic matrix, M is the mixing matrix, and Ω2 is the
frequency matrix. Perturbations to the Stückelberg fields,
Π0 and ΠL, are dimensionful, and we thus multiply them
with factors of m to convert to dimensionless variables.
This also yields a dimensionless kinetic matrix. In doing
so, we are implicitly assuming the following scaling for
the perturbations: Ψ ∼ δσ ∼mΠ0 ∼m2ΠL, which will be
important when we consider the subhorizon approximation
later in the paper. We will motivate this scaling when we
look closely at the equations of motion in Sec. VI.
The 4 × 4 matrix K in Eq. (32) is actually a block

diagonal matrix of the form

K ¼
�
K2×2ðΨ;ΠLÞ 0

0 K2×2ðδσ;Π0Þ

�
; ð33Þ

where K2×2ðΨ;ΠLÞ, and K2×2ðδσ;Π0Þ are the 2 × 2 kinetic
matrices of ðΨ;ΠLÞ and ðδσ;Π0Þ respectively. Components
of the first block are given by

KΨΨ ¼−
2ðχ̄0Þ2ð3a2Jm2Xþ 2k2ðrþ 1ÞÞ

a2Jm2Xðχ̄0Þ2− 2H2M2
Plð3a2Jm2Xþ 2k2ðrþ 1ÞÞ ;

ð34Þ

KΨΠL
¼ 2a2Jk2Xðχ̄0Þ2

a2Jm2Xðχ̄0Þ2 − 2H2M2
Plð3a2Jm2Xþ 2k2ðrþ 1ÞÞ ;

ð35Þ

KΠLΠL

¼ 4a2Jk4XH2M2
Pl

2m2H2M2
Plð3a2Jm2X þ 2k2ðrþ 1ÞÞ − a2Jm4Xðχ̄0Þ2 ;

ð36Þ

while those of the second block are given by

Kδσδσ ¼
Qασða2m2r2X2 − ασðσ0Þ2Þ

a2m2r3X3
; ð37Þ

KδσΠ0
¼ −

Qασσ
0ϕ0

mr3X
; ð38Þ

KΠ0Π0
¼ a2QXðr2 − ðϕ0Þ2Þ

r3
: ð39Þ

In the absence of matter, KΨΨ and all cross-terms of Ψ
vanish. Therefore, Ψ is identified as the Boulware-Deser
degree, in agreement with [20].
As another check, we can obtain the limit of GR with a

scalar field matter component by first setting ασ → 0 and
then m → 0. Only Ψ remains on doing so and, after
integrating a Ψ0Ψ ¼ 1

2
d
dτΨ

2 term by parts, the second-order
action becomes

Sð2Þ ¼ 1

2

Z
dτd3k

�
a4χ̄02

a02

�
ðΨ02 − k2Ψ2Þ: ð40Þ

This is in exact agreement with what one finds for the
comoving curvature perturbation ζ on perturbing the action
for the inflaton field. Our second-order action thus has the
correct GR limit in the presence of matter.
We do not show explicit expressions for the remaining

matrices in Eq. (32) as they are quite big, but they can be
found in our Mathematica supplement [27]. In the follow-
ing two subsections, we analyze the kinetic matrix in the
two branches of solutions that the background equation (25)
had yielded.

A. Branch 1: σ0 =Hr

Since the 4 × 4 matrix K is a block diagonal matrix, the
eigenvectors and eigenvalues of K are simply those of each
block combined. With the branch condition, we find that
the 2 × 2 submatrix K2×2ðδσ;Π0Þ has an extra vanishing
eigenvalue, implying that a linear combination of δσ and
Π0 is nondynamical. Since we expect to find a Boulware-
Deger degree, this nondynamical field is indeed what we
are looking for. To find this nondynamical perturbation, we
diagonalize the 2 × 2 submatrix K2×2ðδσ;Π0Þ and use its
eigenvectors to define two new perturbations ð eδσ; Π̃0Þ as

LINEAR GROWTH OF STRUCTURE IN MASSIVE GRAVITY PHYS. REV. D 106, 083527 (2022)

083527-5



δσ ¼ rH eδσ −m2ϕ0Π̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðϕ0Þ2 þ r2H2

p ; ð41Þ

Π0 ¼
ϕ0 eδσ þ rHΠ̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðϕ0Þ2 þ r2H2

p : ð42Þ

With these (time-dependent) field redefinitions, the new
perturbation eδσ has no kinetic term and is therefore
nondynamical.
The equation of motion for eδσ is a constraint equation of

the form

eδσ ¼ c1Ψþ c2Π̃0 þ c3ΠL þ c4Ψ0 þ c5Π̃0
0 þ c6Π0

L; ð43Þ

where the coefficients ci are functions of background
quantities. We substitute this solution back into the sec-
ond-order action, whose form was shown in Eq. (32), after
integrating a eδσ0 eδσ ¼ 1

2
d
dτ ð eδσÞ2 term by parts and after

integrating by parts cross-terms of the form eδσ0Ψ, eδσ0Π̃0,
and eδσ0ΠL. This results in a 3 × 3 kinetic matrix for the
perturbations ðΨ; mΠ̃0; m2ΠLÞ. We again do not show the
resulting matrix explicitly here given its complexity, but it
can be found in our Mathematica supplement [27].
In the subhorizon approximation (k=H ≫ 1), it suffices

to check that the final kinetic matrix has positive eigen-
values for the perturbations to be stable. It turns out to
be easier to check equivalently that the kinetic matrix is
positive definite, which is what we demand here. This
implies that the determinants of all n × n upper-left sub-
matrices must be positive. In the subhorizon approxima-
tion, this yields the following three conditions,

0 <
ðχ̄0Þ2

2a2m6rX4H2M2
Pl

½a6ð−m6ÞX5ðJQασð−3Jr − 4Qðr − 1ÞÞ þ 2rXð3J þ 4QÞ2Þ

− a6m4X5H2ðJQασð−3Jr − 4Qðr − 1ÞÞ þ 2rXð3J þ 4QÞ2Þ
þ a4m4X3H2ασðJQασðJð6 − 9rÞ − 11Qðr − 1ÞÞ þ 2Xð3J þ 4QÞð6Jð2r − 1Þ þ 14QrþQÞÞ
þ a4m2X3H4ασðJQ2ðr − 1Þασ þ 2Xð3J þ 4QÞð3Jrþ 2QrþQÞÞ
− a2m2XH4α2σð2Xð9J2ð3r − 2Þ þ 9JQð7r − 2Þ þQ2ð37rþ 11ÞÞ − JQ2ðr − 1ÞασÞ
þ2a2QX2H6α2σð3Jðr − 1Þ þ 3QrþQÞ þ 2QH6α3σð3Jðr − 1Þ þ 3QrþQÞ�

−
Qασðχ̄0Þ4

2a2m6rX4H2M4
Pl

½a4m2X4ð3J þ 4QÞðm2 þH2Þ þ a2X2H2ασðQðH2 − 11m2Þ − 9Jm2Þ þQH4α2σ�; ð44Þ

0 <
Qασðχ̄0Þ2ða2X2ðm2 þH2Þ −H2ασÞ

a2m2rX3H2M2
Pl

; ð45Þ

0 <
ðχ̄0Þ2
H2M2

Pl

: ð46Þ

These inequalities are the Higuchi-type bounds for this
specific theory in branch 1. Our bounds are more compli-
cated than the original Higuchi bound [28], m2 ≥ 2H2, or a
similar bound for the dRGT theory [29], due to the
extended structure that now includes ασ, the quasidilaton
field σ, and a specific type of matter field. We check
whether these conditions can be satisfied in Sec. VII.

B. Branch 2: J = 0

In branch 2, the equations are simple to solve and we do
not need to make a subhorizon approximation. We find that
the kinetic matrix has two vanishing eigenvalues rather than
one. There is no kinetic term for ΠL, and its equation of

motion thus leads to a constraint. Using the background
equation (22), specialized to this branch, in fact yields the
simple condition that

δσ ¼ −Ψ: ð47Þ
On substituting this constraint back into the action, using
the background equations in this branch, and integrating by
parts, the terms with ΠL can be completely removed. The
final 2 × 2 kinetic matrix in the perturbations ðΨ; mΠ0Þ
becomes

K ¼

0
B@− QH2α2σ

a2m2r3X3 þ ðχ̄0Þ2
H2M2

Pl
þ Qασ

rX
QHασϕ

0

mr3X

QHασϕ
0

mr3X
QH2ασ
m2r3X

1
CA; ð48Þ

which leads to the following two positivity conditions,

Qασðχ̄0Þ2
m2r3XM2

Pl

> 0; ð49Þ
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QH2ασ
m2r3X

> 0: ð50Þ

These inequalities are the Higuchi-type bounds in branch 2
and are likely easier to satisfy, but we do not consider them
in Sec. VII, as explained there.

VI. GROWTH RATE

In this section, we find how matter perturbations grow
in massive gravity. We specifically consider a CDM-
dominated Universe, thus restricting to pressureless matter.
The only nonvanishing component of the background
energy-momentum tensor is then T̄0

0 ¼ −ρ̄ and the
Friedmann equations describing the background evolution
of the Universe are given by Eqs. (21) and (22) with
ρ̄ ¼ Ωm0=a3, Ωm0 being the total matter density today, and
p̄ ¼ 0. Components of the energy-momentum tensor at
first order in the matter perturbation, on the other hand, are
given by

T0
0 ¼ −ρ̄ð1þ δÞ; ð51Þ

T0
i ¼ ρ̄vi; ð52Þ

Ti
0 ¼ −ρ̄vi; ð53Þ

Ti
j ¼ 0; ð54Þ

where vi ¼ dxi=dτ is the peculiar velocity and is first order
in the perturbation. We are interested in the equation of
motion for the matter perturbation δðτ; x⃗Þ. Unlike the
previous section, we find it simplest to work in conformal
Newtonian gauge for the calculation here, so that B ¼ 0
and E ¼ 0; we again show that this is a valid gauge choice
in Appendix A.
Since the energy-momentum tensor is defined with

respect to the physical metric, it satisfies the usual con-
servation equation ∇μT

μ
ν ¼ 0. The background piece of the

ν ¼ 0 component yields the background continuity equa-
tion ρ̄0 þ 3Hρ̄ ¼ 0, while the first order piece and the ν ¼ i
component yield the first order continuity equation and
Euler equation respectively,

δ0 − 3Ψ0 þ ∂ivi ¼ 0; ð55Þ

vi0 þHvi ¼ −∂iΦ: ð56Þ

Taking the conformal time derivative of Eq. (55) and using
both equations in the result gives

δ00 þHδ0 − 3Ψ00 − 3HΨ0 − ∂
2Φ ¼ 0: ð57Þ

In Fourier space, the last term above becomes k2Φ. We will
focus on the linear growth rate in the quasistatic and

subhorizon approximations, under which we can take Y 00 ∼
HY 0 ∼H2Y ≪ k2Y for any perturbation Y in Fourier space
and with wave number k, that are expected to be reasonable
approximations [30]; also see [31]. We will also assume
that Φ and Ψ are of a similar order of magnitude.
Equation (57) then becomes

δ00 þHδ0 þ k2Φ ¼ 0: ð58Þ

The calculation up till this point is exactly the same as that
in GR. To parametrize the departure from GR, we introduce
two functions of time (or scale factor) and wave number,
ηða; kÞ and μða; kÞ, following the notation of [32],

Φ ¼ ηða; kÞΨ; ð59Þ

k2Ψ ¼ −4πGa2μða; kÞρ̄δ: ð60Þ

Both η and μ reduce to unity in GR. We are now left with
obtaining and solving the equations of motion for η and μ in
terms of background quantities. As shown below, we find
that both are in fact independent of k under the approx-
imations that we have made, consistent with the generalized
massive gravity [22], projected massive gravity [23], and
minimal theory of massive gravity [24] frameworks. This is
in contrast to what one finds in bimetric massive gravity
[21] and, for example, fðRÞ theories of gravity [25,26].
In order to derive the equations of motion for various

perturbations, we first obtain the second-order action and
then set its variation to zero. This is similar to how we
obtained the background equations of motion by setting
δSð0Þ to zero in Eq. (20), except that we now set δSð2Þ to
zero, with the variation taken with respect to all first-order
perturbations. Note that while writing the second-order

matter action Sð2Þmatter can be tricky, its variation can be
obtained directly from the definition of the energy-momen-
tum tensor in Eq. (8),

δSmatter ¼
Z

d4x
δ

δgμν
ð ffiffiffiffiffiffi

−g
p

LmatterÞδgμν

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Tμ
λg

λνδgμν; ð61Þ

where we used δgμν ¼ −gμρgνσδgρσ. The variation δgμν is
first order in the perturbations and contains the variation of
metric perturbations: δΦ, δB, δΨ, and δE. Expanding out
all other pieces in Eq. (61) to first order in the perturbations
then yields the variation of the second-order matter

action δSð2Þmatter.
We do not show explicit expressions for δSð2Þ and the

equations of motion before approximations as they are
quite big, but they can be found in our Mathematica
supplement [27]. In the following two subsections, we
analyze how matter perturbations grow under the
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quasistatic and subhorizon approximations in each of the
two branches of solutions found earlier.

A. Branch 1: σ0 =Hr

We find it simpler to impose the conformal Newtonian
gauge condition (B ¼ 0 and E ¼ 0) at the level of the

equations of motion rather than the action. This allows us to
obtain an equation for E, equivalent to the ijði ≠ jÞ
component of the field equations, which informs us of
the scaling of ΠL. We find that the E equation of motion,
before imposing the branch condition or making any
approximations, but after setting the gauge condition, is

Φ −Ψþ a2m2XðJðX − 1ÞðrðX þ 1Þ − 2Þ − ðr − 1ÞðQ − X3 þ X2ÞÞ
ðX − 1Þ2 ΠL ¼ 0: ð62Þ

This suggests that the dimensionful perturbation ΠL

scales as m2ΠL ∼Φ;Ψ. We similarly use m to scale Π0, so
that mΠ0 ∼Φ;Ψ as well. Lastly, we assume that δσ is also
of similar order asΦ andΨ, thus ending up with the scaling
used earlier in Sec. V.
With these scaling relationships and assuming that

ma≲H, the Φ equation of motion in branch 1, under
the quasistatic and subhorizon approximations, and after

setting the gauge condition, is

k2
�
Jm2XΠL −

2Ψ
a2

�
−

ρ̄

M2
Pl

δ ¼ 0: ð63Þ

Under the same set of conditions, the equations of motion
for δσ and Π0, after substituting the background equations
of motion, are given respectively by

0 ¼ ða2m2ðJ2ðX − 1Þ2ασðrX2 − 2X þ 1Þ þ JðX − 1ÞðQðX − 1ÞασðrX2 − 2X þ 2Þ þ 2X3ðrð2 − 6XÞ þ 3X þ 1Þ
− XðX − 1Þ3ασÞ þQ2ðX − 1Þ2ασ −QXð4X2ðrð2X2 − 4X þ 1Þ þ 1Þ þ ðX − 1Þ4ασÞ − 4ðr − 1ÞðX − 1ÞX5Þ
þ XH2ασðJðX − 1Þð2rð5X − 1Þ − 5X − 3Þ þQð2rð3X2 − 6X þ 1Þ − X2 þ 2X þ 3Þ þ 4ðr − 1ÞðX − 1ÞX2ÞÞ

×
1

2ðX − 1Þ2Xασ
ΠL þ

�
rH2ασðJrþQðrþ 1ÞÞ

a2m2ðrþ 1ÞX2
− Jðr − 1Þ −Qr

�
δσ þ JH

rþ 1
Π0

L þHϕ0ðJrþQðrþ 1ÞÞ
rþ 1

Π0; ð64Þ

0 ¼ −
a2m2ðr − 1ÞX2Hϕ0ð3J2ðX − 1Þ2 þ JQðX2 − 6X þ 5Þ þ 2QðQ − X3 þ X2ÞÞ

QðX − 1Þ2 ΠL þ a2Jm2X2ϕ0

rþ 1
Π0

L

þ rða4Jm2X2 − a2rH2ασðJrþQðrþ 1ÞÞÞ
a2ðrþ 1Þ Π0 þ

rHασϕ
0ðJrþQðrþ 1ÞÞ
rþ 1

δσ: ð65Þ

These two equations can be solved simultaneously for δσ and Π0 to obtain solutions of the form

δσ ¼ c1ΠL −HΠ0
L; ð66Þ

Π0 ¼ c2ΠL −
ϕ0

r
Π0

L; ð67Þ

where the coefficients c1 and c2 are functions of background quantities. Lastly, the ΠL equation of motion under the same
set of conditions is given by

0 ¼ ½Qrðασððrþ 1Þða2m2ðX − 1Þ2ðJ2rðrX2 − 2X þ 1Þ þ JQðr2X2 þ rðX2 − 2X þ 2Þ − 2X þ 1Þ
−JrðX − 1Þ2X þQðrþ 1ÞðQ − ðX − 1Þ2XÞÞ þ XH2ðJðX − 1Þð2r2ð5X − 1Þ þ rð3X − 11Þ − 6X þ 6Þ
þQð2r2ð3X2 − 6X þ 1Þ þ rð5X2 − 10X þ 9Þ − ðX − 1Þ2Þ þ 4ðr − 1ÞrðX − 1ÞX2ÞÞ þ 2JXðX − 1Þ2Hr0Þ
−2a2m2ðrþ 1Þ2X3ðJðX − 1Þðrð6X − 2Þ − 3X − 1Þ þ 2ðQð2rX2 − 4rX þ rþ 1Þ þ ðr − 1ÞðX − 1ÞX2ÞÞÞ�δσ
þ 2a2m2X3ϕ0½JQðX − 1Þ2r0 − rðr2 − 1ÞHð3J2ðX − 1Þ2 þ JQðX2 − 6X þ 5Þ þ 2QðQ − X3 þ X2ÞÞ�Π0

þ 2a2m2QrX3½JðX − 1Þ2r0 − ðrþ 1ÞHðJðX − 1Þð3rX þ rþ X − 5Þ − 2ðr − 1ÞðQ − X3 þ X2ÞÞ�Π0
L

− 2a2Jm2Qrðrþ 1ÞðX − 1Þ2X3Π00
L − 2a2Jm2Qðrþ 1ÞðX − 1Þ2X3ϕ0Π0

0 þ 2a2Jm2Qrðrþ 1Þ2ðX − 1Þ2X3Φ

− 4a2m2Qrðrþ 1Þ2X3ðJðX − 1ÞðrX þ r − 2Þ − ðr − 1ÞðQ − X3 þ X2ÞÞΨ − 2JQrðrþ 1ÞðX − 1Þ2XHασδσ
0: ð68Þ

EKAPOB KULCHOAKRUNGSUN et al. PHYS. REV. D 106, 083527 (2022)

083527-8



We now have five equations in six perturbations: Φ, Ψ,
δσ, Π0, ΠL, and δ. We next solve them to obtain the
functions η and μ defined in Eqs. (59) and (60).
We first take a conformal time derivative of δσ and Π0 in

Eqs. (66) and (67), and substitute for both perturbations and
their conformal time derivatives into the ΠL equation of
motion in Eq. (68). On doing so, the terms with Π00

L cancel
out. We next eliminate Π0

L by taking a time derivative of the
E equation of motion in Eq. (62) and substituting it into
Eq. (68) as well. In the quasistatic and subhorizon approx-
imations, the resultingΠL equation of motion then becomes
a linear equation of the form Φ ¼ ηða; kÞΨ. Finally, using
the Φ equation of motion in Eq. (63), gives us a modified
Poisson equation k2Ψ ¼ −4πGa2μða; kÞρ̄δ. The resulting
expressions for η and μ can be written in a simple form as

η ¼ cη1a4m2 − cημH2

cη2a4m2 − cημH2
⟶
m→0

1; ð69Þ

μ ¼ cμ1a4m2 − cημH2

cμ2a4m2 − cημH2
⟶
m→0

1: ð70Þ

Since this is one of our main results, we show explicit
expressions for the coefficients fcη1; cη2; cημ; cμ1; cμ2g in
Appendix B. As can be seen from these equations, η and μ
are both independent of k.
The resulting expression for Φ can now be plugged into

Eq. (58) to obtain a second-order differential equation in
the matter perturbation δ,

δ00 þHδ0 − 4πGa2μηρ̄δ ¼ 0: ð71Þ

Making use of the fact that η and μ are independent of k, the
above equation suggests that δ can be factorized as
δðτ; k⃗Þ ¼ DðτÞδðk⃗Þ, which is similar to what one finds in
GR, with DðτÞ being the growth factor. The evolution of
DðτÞ is described by

D00 þHD0 − 4πGa2μηρ̄D ¼ 0; ð72Þ

and directly gives us the growth rate as well using
f ¼ d lnD=d ln a. We solve for η, μ, D, and f numerically
in the next section.

B. Branch 2: J = 0

On using the branch 2 condition that J ¼ 0 and the
background equations in this branch, the ΠL equation of
motion simplifies significantly to give

δσ ¼ −Ψ; ð73Þ

in agreement with what we found in the previous section in
Eq. (47). From the gauge transformations in Appendix A,

along with the background constraint that σ0 ¼ H in branch
2, we see that the combination δσ þΨ − ð1=3Þk2E is
gauge-invariant in this branch. Since we set E ¼ 0 in both
gauge choices that we have made, that in the previous
section and in the current section, it is not surprising that we
find the same δσ þΨ in both cases.
Now on substituting δσ ¼ −Ψ into the δσ and Π0

equations of motion in this branch, we can solve them
simultaneously to find that ΠL vanishes. Using this, and
that J ¼ 0, in turn in Eq. (62), that was valid in both
branches, yields Φ ¼ Ψ. Note that this coincides with what
one finds in GR. Lastly, substituting Φ ¼ Ψ in the Φ
equation of motion in this branch and working under the
quasistatic and subhorizon approximations gives us the
Poisson equation k2Ψ ¼ −4πGa2ρ̄δ, which again coin-
cides with what one finds in GR.
Both η and μ are thus unity in this branch and there is no

departure from GR at the level of first-order perturbations.
Further, the differential equation for the matter perturbation
δ also coincides with that in GR,

δ00 þHδ0 − 4πGa2ρ̄δ ¼ 0: ð74Þ

The growth factor D satisfies the same equation, as noted
before. Note, however, that at the background level, the
Friedmann equations do contain contributions from mas-
sive gravity.

VII. NUMERICAL SOLUTIONS

We are next interested in solving the equations obtained
in the previous sections to understand whether the results
can match cosmological observations. Our goal here is not
to perform a detailed Markov-chain Monte-Carlo (MCMC)
analysis over the parameters of the theory, but rather to
demonstrate how various observables evolve in massive
gravity, compared to a ΛCDM universe. We therefore
choose a set of parameter values that provides a reasonable
fit to the data solely for illustration; best-fit parameter
values would likely be different. We further restrict to
branch 1 for the analysis in this section. This choice is
motivated by the fact that, in the absence of matter, vector
modes in branch 2 become infinitely strongly coupled [20],
although we have not checked whether this issue persists in
the presence of matter. If branch 2 can be stabilized, then, as
shown in Sec. VI, the growth factor evolution could match
that in standard cosmology with the massive gravity piece
in the Friedmann equation (21) acting as an effective
cosmological constant.
We first perform a search over the four parameters of the

theory fm; α3; α4; ασg and Ωm0. For a given set of param-
eter values, we choose X today, that we denote X0, by
solving the Friedmann equation (21) with the Hubble
parameter set to h ¼ 0.6751, consistent with the Planck
2015 TT;TE;EEþ lowPþ lensing result [33]. We set the
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radiation density today to zero, which is a good approxi-
mation at the redshifts that we are interested in. This yields
three roots for X0, of which we choose any one to proceed
with. With this initial condition, we evolve X by solving an

equation in dX=d ln a that we obtain by combining the
background equation for σ, Eq. (24), with the branch 1
condition, σ0 ¼ Hr, and the evolution equation X0 ¼
ðr − 1ÞHX for X, which gives

dX
d ln a

¼ −
Qða4m2ðJðX − 1Þ2ασ þQασ − Xð8X2 þ ðX − 1Þ2ασÞÞ þ 5a2XH2ασÞ

a4m2XðJðQασ − 6XÞ − 8QXÞ þ 6a2H2ασðJ þQÞ : ð75Þ

We then demand that the evolution of X remains smooth
up to a redshift of z ¼ 30 so that X does not jump between
different roots, discarding any set of parameter values that
do not satisfy this condition.
We also demand that the positivity conditions in

Eqs. (44)–(46) are satisfied up to z ¼ 30, although these
conditions were derived for a scalar field matter component
rather than CDM. To do so, we first need to specify a
potential Vðχ̄Þ and find χ̄02 by numerically solving the
Klein-Gordon equation,

χ̄00 þ 2Hχ̄0 þ a2∂χ̄Vðχ̄Þ ¼ 0: ð76Þ

Since our end goal is to compare observables in massive
gravity with those in ΛCDM, we are specifically interested
in the case that the scalar field χ̄ behaves like dark matter
(see, for example, [34,35] for a review on scalar field dark
matter models). We consider a potential of the form Vðχ̄Þ ¼
ð1=2Þm2

χ χ̄
2 in the limit that mχ ≫ H, where the oscillation

period of the field χ̄ is much smaller than the rate of Hubble
expansion. χ̄02 can then be replaced by its average value
over the oscillation period, in which case the field χ̄
behaves like nonrelativistic matter, with vanishing average
pressure [36].1 In this regime, the average value of χ̄02
equals the energy density ρ̄. We can thus simply solve the
first Friedmann equation (21) for χ̄02, which we then
substitute in the positivity conditions. We again discard
any set of parameter values that does not satisfy the
resulting positivity conditions at any time between z ¼
30 and today. Lastly, we also demand that the functions η
and μ given in Eqs. (69) and (70) remain positive between
z ¼ 30 and today.
For a set of parameter values that satisfies the above

constraints, the solution for XðzÞ allows us to find the
Hubble parameter at any redshift, which we compare
against 580 distance modulus measurements from the
Supernova Cosmology Project [37]. We also calculate
how the growth rate evolves in branch 1, setting the initial
condition DðaÞ ¼ a for the growth factor deep within the
matter dominated era, at a redshift of z ¼ 30, and compare
it against 30 growth rate measurements compiled in, for

example, [38]. We demand that the χ2 of the fits to these
two data sets is less than a thousand, and choose one set of
parameter values that satisfies this condition to make the
figures below. The values that we use arem=H0 ¼ 10−1.410,
α3¼−3.265, α4¼3.267, ασ ¼10−0.4200, andΩm0¼0.3721,
with X0 ¼ 14.30. These yield a χ2 of approximately 805.
For comparison, a two-parameter fit over fΩm0;ΩΛ0g for a
ΛCDM cosmology within GR gives a best-fit χ2 ≈ 579
with the same datasets. We note again that the parameter
values that we choose are not the best-fit parameter values
that would result from an MCMC analysis.
For the parameter values mentioned above, we show how

the Hubble parameter HðzÞ evolves in massive gravity
compared to ΛCDM in Fig. 1. We also show HðzÞ for
two slightly different values of m=H0, 0.5 × 10−1.410 and
1.5 × 10−1.410, keeping all other parameters except for X0

fixed to their previous values. For X0, we solve the
Friedmann equation again so that the Hubble parameter
today is still H0. In Fig. 2, we show the evolution of the
functions ηðzÞ and μðzÞ, both of which, as noted earlier, are
independent of the wave number under the quasistatic and
subhorizon approximations, and are unity in GR. Lastly, we
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FIG. 1. The Hubble parameter HðzÞ=H0 in massive gravity
(black, solid) and ΛCDM (blue, dashed) for the parameter values
mentioned in the text. Also shown are graphs for m=H0 being 0.5
times its central value (red, dotted) and 1.5 times its central value
(green, dot-dashed). The three massive gravity curves are almost
indistinguishable, and the inset zooms into a part of the figure to
distinguish the different curves.

1Also see [15] for a discussion of issues that may arise in the
pressureless scalar field scenario.
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show how the linear growth factor DðzÞ and growth rate
fðzÞ evolve in massive gravity and ΛCDM in Fig. 3. The
figures show good agreement with the evolution of HðzÞ in
ΛCDM but differences with ηðzÞ, μðzÞ, DðzÞ, and fðzÞ at
late times. We find a similar evolution for all five
observables when we vary α3, α4, or ασ instead, while
keeping other parameters (except for X0) fixed to their
previous values. We also need to keep α3 ≈ −α4, however,
which we find is required for ηðzÞ and μðzÞ to not diverge.
There are two subtle points worth mentioning before we

close this section. First, we found that the positivity
condition in Eq. (44) is sensitive to the form of the potential
Vðχ̄Þ. For example, if we consider a potential in the limit
that χ̄02 ≫ Vðχ̄Þ, then the field behaves like a fluid with
p̄ ¼ ρ̄, and the expression on the right-hand side in Eq. (44)
becomes negative. In general, the condition in Eq. (44)
seems to be satisfied only when we fine-tune parameter

values and/or the potential such that the χ̄04 term is smaller
than the χ̄02 one. This is in agreement with the suggestion
that the theory is pathological in the presence of matter,
leading either to an instability or decelerated expansion.2

We note, however, that a pressureless scalar field, as
considered earlier in this section, appears to resolve the
problem.
Second, we found that for values of Ωm0 close to its

observed mean value of 0.3121 [33] and for certain choices
of other parameter values, μ diverges at some time between
z ¼ 30 and z ¼ 0. This arises from a vanishing denomi-
nator of μ, which Eq. (60) suggests is indicative of the
matter overdensity δ passing through zero. A similar
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FIG. 2. The functions ηðzÞ (left panel) and μðzÞ (right panel) in massive gravity (black, solid) and ΛCDM (blue, dashed) for the
parameter values mentioned in the text. Also shown are graphs for m=H0 being 0.5 times its central value (red, dotted) and 1.5 times its
central value (green, dot-dashed).
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FIG. 3. The linear growth factor DðzÞ (left panel) and growth rate of structure fðzÞ (right panel) in massive gravity (black, solid) and
ΛCDM (blue, dashed) for the parameter values mentioned in the text. Also shown are graphs for m=H0 being 0.5 times its central value
(red, dotted) and 1.5 times its central value (green, dot-dashed). The insets zoom into a part of the figure to distinguish the different curves.

2We thank Emir Gümrükçüoğlu for pointing out that even in
the presence of a cosmological constant, one finds either an
instability or that the cosmological constant must be negative.
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zeroing of δ was observed for fðRÞ gravity in [25], and was
attributed to the quasistatic approximation in [26]. We thus
suspect that the quasistatic approximation may be the
reason for the divergence of μ that we find for some sets
of parameter values as well. We resolved this issue by
allowing Ωm0 to be a free parameter in our parameter
search, and in fact found that a slightly higher matter
content (we used Ωm0 ¼ 0.3721 as mentioned earlier)
prevented δ from passing through zero.

VIII. SUMMARY AND DISCUSSION

Growth of structure is a promising probe of GR and its
modifications. In this paper, we were interested in the
growth of CDM perturbations in a model of massive gravity
that allowed for a self-accelerated solution without the need
for a cosmological constant and was stable under scalar
perturbations. We specifically considered the extended
quasidilaton setup of massive gravity without a kinetic
term for the quasidilaton field, that was shown to admit a
stable solution in the absence of matter in [20]. We first
obtained the background equations in the presence of
matter and found two branches of solutions, denoted
branches 1 and 2, in agreement with what one finds in
the absence of matter. We next considered two scalar
perturbation calculations, one with matter modeled as a
scalar field and one with CDM, that we summarize below.
In order to check whether scalar perturbations are stable

in the presence of matter, we considered a scalar field
matter component. We obtained the second-order action
while working in unitary gauge for the matter field and,
after integrating out nonpropagating degrees of freedom,
found the kinetic matrix in the remaining perturbations. In
branch 1, demanding that the resulting kinetic matrix is
positive definite led to three conditions. By performing a
parameter search, we found that one of the three conditions
is not satisfied in general, but is satisfied for a particular
choice of potential where the scalar field effectively
behaves like pressureless matter. In branch 2, on the other
hand, we found two conditions, which are likely easier to
satisfy, but we did not consider in detail since vector
perturbations become infinitely strongly coupled in the
absence of matter in this branch [20].
We next studied the growth of CDM perturbations and

obtained the equations of motion for various perturbations
while working in conformal Newtonian gauge. We
obtained expressions for the observables η and μ, that
are commonly used to parametrize any deviation from GR,
and equations for the growth factor and growth rate in both
branches. Focusing again on branch 1, and for a choice of
parameter values and potential that lead to a positive
definite kinetic matrix and provide a reasonable fit to
background and growth of structure data, we showed how
the background Hubble parameter and perturbations evolve
between z ¼ 0 and z ¼ 5, compared to ΛCDM. The
parameter values that we chose were not the best-fit values

resulting from a full MCMC analysis, but we expect the
evolution of observables to be qualitatively similar for other
parameter values.
We found, for example, that the Hubble parameter can be

close to that in ΛCDM, even though we have not added a
cosmological constant. We also found that η and μ are
independent of k in the quasistatic and subhorizon approx-
imations, which is in contrast with fðRÞ theories of gravity,
where one finds that both η and μ are scale-dependent under
the subhorizon and quasistatic approximations [25,26].
Therefore, while observing a k-dependence would rule
out GR, not observing one would not immediately rule out
massive gravity. Both observables, however, do differ from
their GR values of unity at late times, and smoothly go to
unity at high redshifts. The growth factor and growth rate
similarly show deviations from their ΛCDM values at late
times. By varying the graviton mass slightly around the
central value that we considered, we further found that all
observables only shift by a small amount, and it may thus
be hard to find parameters that match the evolution of
perturbations in ΛCDM.
In conclusion, the model of massive gravity that we

studied can potentially agree with the background expan-
sion in ΛCDM and background data, but shows deviations
from ΛCDM in the growth of matter perturbations at late
times. Scalar perturbations are further stable only for fine-
tuned parameter values and a specific choice of potential.
Alternative mechanisms for stabilizing perturbations to the
Stückelberg fields may thus be a promising direction to
pursue in the future. Recent investigations include, for
example, a generalized matter coupling [39], generalized
massive gravity [22], projected massive gravity [23], the
minimal theory of bigravity [40], massive gravity with
nonminimal coupling [41], Gauss-Bonnet massive gravity
[42], and the minimal theory of massive gravity [24].
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APPENDIX A: CHOICE OF GAUGE

In this appendix, we construct two sets of gauge-
invariant scalar perturbations, to show that nonzero per-
turbations coincide with gauge-invariant ones in each of the
two gauge choices made in the main text, in Secs. Vand VI.
We will consider an infinitesimal coordinate transformation
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of the form xα → x̃αðt; x⃗Þ ¼ xα þ ξαðt; x⃗Þ, with
ξμ ¼ ðξ0; ξi þ ∂

iξLÞ, ξ0 and ξL being scalars. ξi is the
vector part of the coordinate transformation that we ignore
in this paper. Under this, and going to Fourier space, the
four scalar perturbations in the dynamical metric, two in the
Stückelberg fields, and one in the quasidilaton field trans-
form as

Φ̃ ¼ Φ −
1

a
ðaξ0Þ0; ðA1Þ

B̃ ¼ Bþ ξ0 − ξ0L; ðA2Þ

Ψ̃ ¼ ΨþHξ0 −
1

3
k2ξL; ðA3Þ

Ẽ ¼ E − ξL; ðA4Þ

Π̃0 ¼ Π0 − ϕ0ξ0; ðA5Þ

Π̃L ¼ ΠL − ξL; ðA6Þ

eδσ ¼ δσ − σ0ξ0: ðA7Þ

Lastly, the perturbation δχðτ; k⃗Þ in a matter component
consisting of a scalar field χ and the CDM perturbation
δðτ; k⃗Þ transform as

eδχ ¼ δχ −
a2ρ̄ð1þ wÞ

χ̄0
ξ0; ðA8Þ

δ̃ ¼ δþ 3Hξ0; ðA9Þ

where w ¼ p̄=ρ̄ is the equation of state for the scalar field
and we have used the background continuity equation to
simplify the second equation above.
With the transformation equations in hand, we can

construct different sets of gauge-invariant perturbations.
The first set that we consider is obtained by solving for ξ0

from the eδχ equation and ξL from the Ẽ one, which leads to
the following gauge-invariant quantities,

ΦG:I: ¼ Φ −
1

a

�
χ̄0

aρ̄ð1þ wÞ δχ
�0
; ðA10Þ

BG:I: ¼ Bþ χ̄0

a2ρ̄ð1þ wÞ δχ − E0; ðA11Þ

ΨG:I: ¼ Ψþ Hχ̄0

a2ρ̄ð1þ wÞ δχ −
1

3
k2E; ðA12Þ

Π0
G:I: ¼ Π0 −

ϕ0χ̄0

a2ρ̄ð1þ wÞ δχ; ðA13Þ

ΠL;G:I: ¼ ΠL − E; ðA14Þ

δσG:I: ¼ δσ −
σ0χ̄0

a2ρ̄ð1þ wÞ δχ: ðA15Þ

Under the gauge choice E ¼ 0 and δχ ¼ 0 that we made in
Sec. V, therefore, the perturbationsΦ, B,Ψ, Π0, ΠL, and δσ
coincide with their gauge-invariant counterparts.
The second set of gauge-invariant perturbations that we

consider is obtained by solving for ξ0 from the B̃ equation
and ξL from the Ẽ one, which gives

ΦG:I: ¼ Φþ 1

a
½aðB − E0Þ�0; ðA16Þ

ΨG:I: ¼ Ψ −HðB − E0Þ − 1

3
k2E; ðA17Þ

Π0
G:I: ¼ Π0 þ ϕ0ðB − E0Þ; ðA18Þ

ΠL;G:I: ¼ ΠL − E; ðA19Þ

δσG:I: ¼ δσ þ σ0ðB − E0Þ; ðA20Þ

δG:I: ¼ δ − 3HðB − E0Þ: ðA21Þ

Under the gauge choice B ¼ 0 and E ¼ 0 that we made in
Sec. VI, therefore, the perturbationsΦ,Ψ,Π0,ΠL, δσ, and δ
coincide with their gauge-invariant counterparts.

APPENDIX B: COEFFICIENTS
IN EQS. (69) AND (70)

In this appendix, we show explicit expressions for the
coefficients fcη1; cη2; cημ; cμ1; cμ2g that appeared in
Eqs. (69) and (70) for η and μ. Details of the calculation
can be found in ourMathematica supplement [27]. The five
coefficients are given by
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cη1 ¼ 9ðr − 1Þ2ðX − 1Þ4ðrX2 − 2X þ 1ÞJ5 − 3ðr − 1ÞðX − 1Þ2ð3ðr − 1ÞXðX − 1Þ4 þQð4X2ðX þ 1Þ2r3
−X2ð7X2 þ 10X þ 31Þr2 þ ðX4 þ 12X3 þ 7X2 þ 42X − 14Þr − 2ðX3 − 4X2 þ 17X − 6ÞÞÞJ4
−QðX − 1Þð3ðr − 1ÞðX − 1ÞXð−X4 þ 8r3ðX þ 1ÞX3 − 12r2ðX þ 3ÞX3 þ 4X3 − 42X2 þ 32X

þrð7X4 þ 16X3 þ 54X2 − 40X þ 11Þ − 9Þ þQð4X2ð7X3 þ 7X2 − 13X − 13Þr4
− 4X2ð9X3 þ 27X2 − 8X − 76Þr3 þ ð7X5 þ 99X4 þ 52X3 − 292X2 − 231X þ 77Þr2
þð−14X4 − 39X3 þ 9X2 þ 367X − 131Þr − 3X3 þ 41X2 − 141X þ 55ÞÞJ3
þQð−12ðr − 1Þ2ðX − 1Þ2ððr − 2ÞrX3 þ 3X2 − 3X þ 1ÞX3 −QðX − 1Þð8X3ð7X2 − 10Þr4
− 4X3ð27X2 þ 34X − 85Þr3 þ 4ð15X5 þ 52X4 − 64X3 − 75X2 þ 47X − 11Þr2
−ð7X5 þ 77X4 þ 42X3 − 446X2 þ 295X − 71Þrþ 4ð12X3 − 39X2 þ 28X − 7ÞÞX
−Q2ð4X2ð4X4 − 22X2 þ 21Þr4 − 4X2ðX4 þ 12X3 − 37X2 − 54X þ 90Þr3
þ 4ð2X5 − 8X4 − 70X3 þ 61X2 þ 50X − 17Þr2 þ ð7X4 þ 84X3 þ 30X2 − 276X þ 107Þr − 48X2 þ 104X

− 44ÞÞJ2 þ 4Q2ð−ððr − 1ÞðX − 1Þ2ð7r3X3 − 15r2X3 − 6X2 þ 9X þ rð7X3 þ 9X2 − 12X þ 5Þ − 4ÞX3Þ
−QðX − 1Þðð8X5 − 22X3Þr4 − 4X3ð2X2 þ 4X − 17Þr3 þ ðX5 þ 11X4 − 50X3 − 27X2 þ 23X − 6Þr2
þð14X3 þ 29X2 − 32X þ 9Þr − 2ð6X2 − 7X þ 2ÞÞX þQ2ðX2ð8X2 − 15Þr4 − 2X2ð4X2 þ 8X − 23Þr3
þðX4 þ 12X3 − 32X2 − 12X þ 7Þr2 þ ð7X2 þ 14X − 11Þr − 6X þ 5ÞÞJ
− 4Q2ðr − 1Þ2ð−X3 þ X2 þQÞ2ðXðX − 1Þ2 þQð4r2X2 − 1ÞÞ; ðB1Þ

cη2 ¼ 9J5ðr − 1Þ2ðX − 1Þ4ðrX2 − 2X þ 1Þ þ 3J4ðr − 1ÞðX − 1Þ3ðQðr2ðX − 13ÞX2 þ rðX3 þ 9X2 þ 28X − 14Þ
−2ðX2 þ 11X − 6ÞÞ − 3ðr − 1ÞðX − 1Þ3XÞ − J3QðX − 1Þ2ðQð2r3X2ð3X2 þ 12X − 32Þ
þr2ð−7X4 − 34X3 þ 66X2 þ 154X − 77Þ þ rð14X3 − 11X2 − 236X þ 131Þ þ 3X2 þ 86X − 55Þ
þ3ðr − 1ÞðX − 1ÞXð6r2X3 − rð5X3 þ 25X2 − 29X þ 11Þ þ X3 þ 19X2 − 23X þ 9ÞÞ
þ J2QðX − 1ÞðQ2ð−2r3X2ð2X3 þ 2X2 − 19X þ 23Þ þ 4r2ð2X4 − 7X3 þ X2 þ 33X − 17Þ
þrð7X3 þ 7X2 − 169X þ 107Þ þ 60X − 44Þ −QXðX − 1Þð2r3ð9X − 17ÞX3

−4r2ð6X4 − 4X3 − 39X2 þ 36X − 11Þ þ rð7X4 þ 14X3 − 222X2 þ 224X − 71Þ þ 72X2 − 84X þ 28Þ
þ12ðr − 1Þ2X3ðX − 1Þ4Þ þ 4JQ2ðQ2ðr3X2ð2X2 − 4X þ 3Þ − r2ðX4 − 3X2 þ 12X − 7Þ
þrð14X − 11Þ − 6X þ 5Þ −QðX − 1ÞXð2r3ðX2 − 2X þ 2ÞX3 − r2ðX5 þ X4 − 6X3 þ 27X2 − 23X þ 6Þ
þrð29X2 − 32X þ 9Þ − 2ð6X2 − 7X þ 2ÞÞ þ ðr − 1ÞðX − 1Þ2X3ðr2X3 þ rð−9X2 þ 12X − 5Þ
þ6X2 − 9X þ 4ÞÞ þ 4Q2ðr − 1Þ2ðQ − ðX − 1Þ2XÞðQ − X3 þ X2Þ2; ðB2Þ

cημ ¼ a2Xð9J4ðr − 1Þ2ð2rþ 1ÞðX − 1Þ4 − 3J3Qðr − 1ÞðX − 1Þ3ð24r2 − rð7X þ 17Þ þ X − 1Þ
− J2QðX − 1Þ2ðQð2r3ð13X2 þ 10X − 57Þ − 12r2ð3X2 þ 4X − 17Þ þ rð7X2 þ 34X − 77Þ − 16Þ
þ36ðr − 1Þ2rðX − 1ÞX2Þ − 4JQ2ðX − 1ÞðQðr3ð4X3 − 4X2 − 13X þ 21Þ − r2ðX3 þ 5X2 − 28X þ 34Þ
−6rðX − 1Þ þ 4Þ þ ðr − 1ÞðX − 1ÞX2ðr2ð9X − 17Þ þ rð10 − 6XÞ þ 4ÞÞ
þ4Q2ðr − 1ÞððX − 1ÞX2 −QÞðQðr2ð−4X2 þ 8X − 6Þ þ rþ 1Þ þ ð2r2 − r − 1ÞðX − 1ÞX2ÞÞ; ðB3Þ
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cμ1 ¼ 9J5ðr − 1Þ2ðX − 1Þ4ðrX2 − 2X þ 1Þ þ 3J4ðr − 1ÞðX − 1Þ3ðQðr2ðX − 13ÞX2 þ rðX3 þ 9X2 þ 28X − 14Þ
−2ðX2 þ 11X − 6ÞÞ − 3ðr − 1ÞðX − 1Þ3XÞ − J3QðX − 1Þ2ðQð2r3X2ð3X2 þ 12X − 32Þ
þr2ð−7X4 − 34X3 þ 66X2 þ 154X − 77Þ þ rð14X3 − 11X2 − 236X þ 131Þ þ 3X2 þ 86X − 55Þ
þ3ðr − 1ÞðX − 1ÞXð6r2X3 − rð5X3 þ 25X2 − 29X þ 11Þ þ X3 þ 19X2 − 23X þ 9ÞÞ
þ J2QðX − 1ÞðQ2ð−2r3X2ð2X3 þ 2X2 − 19X þ 23Þ þ 4r2ð2X4 − 7X3 þ X2 þ 33X − 17Þ
þrð7X3 þ 7X2 − 169X þ 107Þ þ 60X − 44Þ −QXðX − 1Þð2r3ð9X − 17ÞX3

−4r2ð6X4 − 4X3 − 39X2 þ 36X − 11Þ þ rð7X4 þ 14X3 − 222X2 þ 224X − 71Þ þ 72X2 − 84X þ 28Þ
þ12ðr − 1Þ2X3ðX − 1Þ4Þ þ 4JQ2ðQ2ðr3X2ð2X2 − 4X þ 3Þ − r2ðX4 − 3X2 þ 12X − 7Þ þ rð14X − 11Þ
−6X þ 5Þ −QðX − 1ÞXð2r3ðX2 − 2X þ 2ÞX3 − r2ðX5 þ X4 − 6X3 þ 27X2 − 23X þ 6Þ
þrð29X2 − 32X þ 9Þ − 2ð6X2 − 7X þ 2ÞÞ þ ðr − 1ÞðX − 1Þ2X3ðr2X3 þ rð−9X2 þ 12X − 5Þ
þ6X2 − 9X þ 4ÞÞ þ 4Q2ðr − 1Þ2ðQ − ðX − 1Þ2XÞðQ − X3 þ X2Þ2; ðB4Þ

cμ2 ¼ 9J5ðr − 1Þ2ðX − 1Þ4ðrX2 − 2X þ 1Þ − 3J4ðr − 1ÞðX − 1Þ3ðQðr2ðX þ 15ÞX2 − 2rð2X3 þ 7X2 þ 14X − 7Þ
þX3 þ 5X2 þ 22X − 12Þ þ 3ðr − 1ÞXðX − 1Þ3Þ − J3QðX − 1Þ2ðQð4r3X2ð5X2 þ 6X − 21Þ
þr2ð−28X4 − 48X3 þ 119X2 þ 154X − 77Þ þ rð7X4 þ 28X3 − 50X2 − 236X þ 131Þ þ 9X2 þ 86X − 55Þ
þ3ðr − 1ÞðX − 1ÞXð8r2X3 − rð9X3 þ 25X2 − 29X þ 11Þ þ 3X3 þ 19X2 − 23X þ 9ÞÞ
þ J2QðX − 1ÞðQ2ð4r3X2ð−3X3 þ X2 þ 15X − 17Þ þ 4r2ðX5 þ 3X4 − 19X3 þ 11X2 þ 33X − 17Þ
þrð21X3 − 7X2 − 169X þ 107Þ þ 60X − 44Þ −QXðX − 1Þð16r3ð2X − 3ÞX3 þ r2ð−52X4 þ 44X3 þ 156X2

−144X þ 44Þ þ rð21X4 − 222X2 þ 224X − 71Þ þ 72X2 − 84X þ 28Þ þ 12ðr − 1Þ2X3ðX − 1Þ4Þ
þ 4JQ2ðQ2ðr3X2ð4X2 − 8X þ 5Þ þ r2ð−3X4 þ 4X3 þ X2 − 12X þ 7Þ þ rð14X − 11Þ − 6X þ 5Þ
−QðX − 1ÞXð2r3ð2X2 − 4X þ 3ÞX3 þ r2ð−3X5 þ 3X4 þ 4X3 − 27X2 þ 23X − 6Þ þ rð29X2 − 32X þ 9Þ
−2ð6X2 − 7X þ 2ÞÞ þ ðr − 1ÞðX − 1Þ2X3ðr2X3 þ rð−9X2 þ 12X − 5Þ þ 6X2 − 9X þ 4ÞÞ
þ 4Q2ðr − 1Þ2ðQ − ðX − 1Þ2XÞðQ − X3 þ X2Þ2: ðB5Þ
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