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Inflation models based on scalar-tensor theories of gravity are formulated in the Jordan frame, but are
most often analyzed in the Einstein frame. The transformation between the frames is not always desirable.
In this work, we formulate slow-roll conditions in the Jordan frame. This is achieved by comparing
different background quantities and approximations on the same spatial slice in both frames. We use these
approximations to derive simple equations that can be applied to compute inflation model observables in
terms of Jordan frame quantities only. Finally, we apply some of the results to analyze generalized induced
gravity models and compare them with the latest observations.

DOI: 10.1103/PhysRevD.106.083526

I. INTRODUCTION

The use of modified gravity theories to build inflation
models is as old as the paradigm of inflation itself [1]. In
particular, scalar-tensor theories are very popular stages on
which to construct such models [2–8]. Initially the work
within these theories was concentrated on finding inflating
solutions. It was realized that the scale factor in the Jordan
frame does not have to be accelerating to realize inflation
[9,10]. This is in contrast to the requirement in the Einstein
frame. The Jordan frame is distinguished by the Planck
length lPl being time dependent. Therefore, it is not the
scale factor aðtÞ itself that is required to be accelerating, but
the ratio of the scale factor to the Planck length must be
accelerating, ½aðtÞ=lPlðtÞ�:: > 0.1

Since the introduction of those early models, the
precision of cosmological measurements increased dras-
tically. It is no longer enough to construct a modified
gravity model that solely provides inflation, one needs to
make sure that it satisfies tight observational constraints
derived from the properties of the primordial curvature
perturbation.
Given a model of inflation in the Einstein frame, very

simple methods have been developed to compute the
properties of the curvature perturbation. These methods
provide relations between the evolution of the homo-
geneous mode and the perturbations. In particular, for
single field models of slow-roll inflation, which are the
main interest of the current work, those relations can be
written as (see, e.g., [11])

As ¼
U

24π2ϵU
; ð1Þ

ns − 1 ¼ 2ηU − 6ϵU; ð2Þ

r ¼ 16ϵU: ð3Þ

The quantities on the lhs of the above equations specify
spectral properties of the primordial perturbation: the
amplitude and the spectral index of scalar perturbations
as well as the tensor-to-scalar ratio, respectively. On the rhs,
we have only homogeneous quantities related to the shape
of the potential U. They are expressed in terms of slow-roll
parameters defined by

ϵU ≡ 1

2

�
U;φ

U

�
2

; ð4Þ

ηU ≡U;φφ

U
; ð5Þ

where φ is the inflaton with the potential UðφÞ and the
subindices “,φ” denote derivatives with respect to the
homogeneous field φ.
To compare with observations, these quantities are

evaluated at the time when the pivot scale exits the horizon.
Typically, this happens in the range of N̂ ¼ 45–70e-folds
before the end of inflation, depending on the process of
reheating [11].2

Instead of using “potential slow-roll parameters” ϵU
and ηU as above, we can write analogous relations in

1To make this expression concise, the spacetime slicing is
assumed in which the lapse function in the Einstein frame is
N̂ ¼ 1. This is opposite from what is used in the rest of this work.

2We use hats to denote geometric quantities in the Einstein
frame.
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terms of the Hubble-flow functions [12–14]. The latter
being defined as

ϵ̂1 ≡ −
dĤ=dτ̂

Ĥ2
; ϵ̂iþ1 ≡ dϵ̂i=dτ̂

ϵ̂iĤ
; ð6Þ

where τ̂ is the proper time and Ĥ is the Hubble parameter,
both to be defined later.
Observations constrain the first few parameters to be

very small at the time the observable Universe exits the
horizon, ϵ̂1, ϵ̂2 ≪ 1 [15]. In this limit and at the lowest
order in small parameters, the two sets of these parameters
can be related by

ϵ̂1 ≃ ϵU; ð7Þ

ϵ̂2 ≃ 4ϵU − 2ηU: ð8Þ

We can therefore write Eqs. (1)–(3) also in terms of
the Hubble-flow functions. Plugging Eqs. (7) and (8) into
Eqs. (1)–(3), the lowest order result is3

As ¼
U

24π2ϵ̂1
; ð9Þ

ns − 1 ¼ −2ϵ̂1 − ϵ̂2; ð10Þ

r ¼ 16ϵ̂1: ð11Þ

The above expressions can be applied to models for-
mulated in the Einstein frame. However, when dealing with
inflation models in the context of scalar-tensor theories of
gravity, they are usually formulated in the Jordan frame. In
that frame, we cannot apply the above results directly. In
many cases, this does not present any problems. One can
conformally transform the metric and rewrite the same
model in the Einstein frame, where the gravitational part of
the action reduces to the Einstein-Hilbert form. In this
frame, the above results can be readily applied.
However, such a transformation is not always desirable

(see, for example, Ref. [17]). One attractive feature of the
Jordan frame expressions is that, typically, matter degrees
of freedom are minimally coupled to the gravitational ones.
The matter Lagrangian takes the standard form, which is
familiar from quantum field theories in flat spacetime with
constant coupling constants. Once we transform the action
into the Einstein frame, the gravitational degrees of free-
dom get mixed with the matter degrees of freedom and the
simple expressions are lost. Moreover, it is sometimes the
case that the dynamical analysis of the system is much
simpler in the Jordan frame too.

In all those cases, it would be very convenient to have
Jordan frame analogous expressions to Eqs. (1)–(3) and
(9)–(11) in order to be able to compute inflation observ-
ables without ever transforming the model into the Einstein
frame. The goal of this work is to derive such relations.
In this paper, we consider only the simplest case: scalar-

tensor theories with a single scalar field and the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½FðϕÞRþ LðϕÞ þ…�; ð12Þ

where the nonminimal function F is positive and dots
represent matter fields. In the current investigation, we
assume that matter fields are negligible and do not affect the
dynamics in the regime with which we are concerned. One
can, of course, construct models where such fields deter-
mine the evolution of the system significantly [18]. In
addition, such fields do play the crucial role in the process
of reheating. However, we are concerned with the dynamics
prior to reheating and assume the matter part of the action is
such that the inflationary dynamics are solely determined
by the scalar field ϕ. Such restrictions are made in order to
limit ourselves to a class of models where the conformal
transformation can be easily performed, so that our results
can be easily checked. We hope to extend the present
analysis to more generic setups in the future.
There have already been a number of works that study

cosmological perturbations in the Jordan frame [19–23]
and study the equivalence between the curvature perturba-
tion in the two frames [24–28]. A frame-independent
formulation of some late Universe processes is developed
in [18,29–31] and analogous computations related to
inflation and its observables in [18,32–34].
Our approach is different from the mentioned references.

Instead of computing the curvature perturbation in the
Jordan frame and analyzing its relation with the analogous
quantities in the Einstein frame, we are only interested in
how homogeneous quantities, which are needed to compute
inflation observables [such as in Eqs. (1)–(3) and (9)–(11)],
map from the Einstein frame to the Jordan frame under the
conformal transformation. By doing so, we are able to
apply observational constraints to models that are formu-
lated and analyzed solely using homogeneous equations in
the Jordan frame. Our method allows for a systematic
investigation of these issues and generalizes similar analy-
sis done, for example, in Refs. [35–39] and dynamical
analysis in Ref. [40].
Whenever discussing modified gravity theories of this

type, there is always a question of equivalence of the
Einstein and Jordan frames. Although some disagreement
remains in regard to systems dominated by the quantum
contributions, in regard to our setup, where the classical
homogeneous mode dominates over small quantum fluc-
tuations, the equivalence between the frames is well
established [26,41,42].4

3The higher order expressions can be found, for example,
in [16]. 4See, however, Ref. [43] for a differing view.
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In this work, we use geometrical units where c ¼ ℏ ¼
mPl ¼ 1, mPl ¼ ð8πGÞ−1=2 and G is Newton’s gravitational
constant. We also adopt the “mostly positive” signature of
the metric.

II. CONFORMAL FRAMES AND THE
CONFORMAL TRANSFORMATION

We start by adopting a coordinate time t that is being
used to slice the four-dimensional spacetime into the
t ¼ const spacelike hypersurfaces (the foliation of space-
time) [44] such that they coincide with the constant energy
density ones. As we are only interested in Friedmann-
Lemaître-Robertson-Walker (FLRW) spacetimes, these
slices are also homogeneous and isotropic. Otherwise,
the choice of t is arbitrary. However, once it is chosen,
we keep t fixed.5

The proper time τ, on the other hand, depends on the
metric, such that

δτ ¼ N δt; ð13Þ

where N is the lapse function given by

N ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν∇μt∇νt

q
; ð14Þ

and ∇μt is the gradient of t.6 Furthermore, to simplify
expressions, we can fix spatial coordinates such that the
shift vector vanishes, as is the standard practice.
With this choice of spacetime slicing and threading, the

flat FLRW metric can be written as

ds2 ¼ −N 2dt2 þ a2ðtÞδijdxidxj: ð15Þ

In the rest of the paper, we will use an overdot to denote
derivatives with respect to the coordinate time t, for
example, _ϕ≡ dϕ=dt. As the spacetime slicing is fixed
throughout, we use the same notation for both Einstein and
Jordan frame quantities.
One of the roles the metric plays is to define the units of

measure [45]. The transformation of the metric results in
the transformation of those units. A particular transforma-
tion, which is the subject of this work, is the conformal one
(or Weyl transformation). It is often denoted by Ω and
written as [46]

ĝμνðxÞ ¼ Ω2ðxÞgμνðxÞ: ð16Þ

It is obvious from Eqs. (14) and (15) that the conformal

transformation rescales the lapse functionN and the spatial
metric. However, this does not imply any change in
physical observables, only in their interpretation [47,48].
For example, applying the conformal transformation to a
FLRWmetric, we can map all the dynamical equations into
the Universe, which is static. This procedure does not
change physical observables such as the redshift. In a static
frame, the redshift is caused by the time dependence of
particle masses. The relation between the emitted and
observed photon wavelengths is exactly the same in both
frames.
The natural application that conformal transformation

lends to is the scalar-tensor theory of gravity [10]. Most
commonly, in these theories one modifies the gravity
sector, as compared to general relativity, leaving the matter
sector untouched (see, however, [47] for different models).
It is said that in this form the model is expressed in the
Jordan frame. Such a frame is convenient because the
matter sector is minimally coupled to gravity. However,
modifications of the gravity sector render Newton’s gravi-
tational constant time dependent, which might lead to some
counterintuitive behavior.
To avoid such a behavior and possible mistakes asso-

ciated with it, one can apply Eq. (16) to rewrite the action in
a way that the gravity sector of the model is described by
the Einstein-Hilbert action. This is called the Einstein
frame, where Newton’s gravitational constant does not
change with time. The price to pay for simplifying the
gravity sector of the action in this way is the complication
of the matter sector. The latter becomes directly coupled to
the new degree of freedom, often in a complicated way.
Therefore, the transformation into the Einstein frame is not
always desirable. In those cases, one would like to develop
methods of computing the relevant observable quantities
solely within the Jordan frame. In the following sections,
we will derive a method to perform such computations.

III. INFLATION IN THE EINSTEIN FRAME

In this section, we review the general principles of
Einstein frame single field inflation with a noncanonical
kinetic term. Normally, one would canonically normalize
the field before doing the analysis. However, we keep the
noncanonical function explicit. Additionally, to simplify
the expressions, one would choose such a spacetime slicing
that the proper time coincides with the coordinate time. In
practice, that means setting the lapse function to N̂ ¼ 1.
However, to aid our discussion about inflation observables
in the Jordan frame, we do not perform any of these
simplifications. The complications introduced in this sec-
tion will pay off in the later ones.
To make the distinction between the frames clearer we

use the caret for Einstein frame geometric quantities. For
example, the Einstein frame FLRW metric in Eq. (15) is
written as

5Eventually we choose the slicing that simplifies the expres-
sions in the Jordan frame.

6More precisely, ∇μt are the coordinate components of the
timelike vector field which is the metric dual to the gradient of t,
the latter being a 1-form quantity.
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dŝ2 ¼ −N̂ 2dt2 þ â2ðtÞδijdxidxj: ð17Þ

With every constant time hypersurface, one can associate
the intrinsic 3R̂μν, as well as the extrinsic K̂μν, curvature
tensors. The trace of the latter determines the volume
expansion rate [49]

K̂ ¼ −
1

δV̂

dδV̂
dτ̂

; ð18Þ

where K̂ ≡ K̂μ
μ, τ̂ is the proper time, and δV̂ ∝ â3 is the

proper volume element. However, instead of K̂, it is
conventional to use the Hubble parameter given by

Ĥ ≡ −
1

3
K̂: ð19Þ

In terms of the coordinate time t, we can write the above
expression as

Ĥ ¼
_̂a

N̂ â
: ð20Þ

Inflation is defined as the period in the history of the
Universe when the expansion rate of the spacelike slices is
accelerating, that is

d2â
dτ̂2

> 0: ð21Þ

We can relate this condition to the time evolution of the
Hubble parameter in Eq. (20). If we define the first Hubble-
flow function as in Eq. (6), the above condition is
equivalent to

ϵ̂1 < 1: ð22Þ
That is, the Hubble parameter must be changing slowly.
Once this condition is broken, inflation ends

ϵ̂1 end ≡ 1: ð23Þ
Observable scales exit the horizon somewhere between

N̂ ¼ 45 and 70e-folds before the end of inflation [11]. The
current constraints on the Hubble-flow functions at horizon
exit are ϵ̂1� < 0.0052 (95% C.L.), ϵ̂2� ¼ 0.034� 0.008
(68% C.L.), and ϵ̂3� ¼ 0.13þ0.40

−0.45 (95% C.L.) [15], where
ϵ̂i are defined in Eq. (6). That is, all these parameters are
much smaller than unity,

jϵ̂ij� ≪ 1; ð24Þ

where i ¼ 1, 2, 3 and the asterisk denotes the moment when
cosmological scales exit the horizon. We will use this fact
later to approximate many equations.
In the above discussion, we considered only geometric

quantities, without any reference to the matter content.

Next, we specify the general action for the single field
inflation models, which can be written as

S ¼
Z ffiffiffiffiffiffi

−ĝ
p �

1

2
R̂ −

1

2
KðϕÞĝμν∂μϕ∂νϕ − UðϕÞ

�
; ð25Þ

where ĝ≡ detðĝμνÞ, R̂ is the Ricci curvature scalar, and
UðϕÞ is the potential. Variation of the action in Eq. (25)
with respect to the field ϕ gives the Klein-Gordon equation

ϕ00 þ 3Ĥϕ0 þK;ϕ

K
1

2
ðϕ0Þ2 þ U;ϕ

K
¼ 0; ð26Þ

where the primes denote derivatives with respect to the
proper time τ̂.
The variation of the same action with respect to the

metric tensor leads to the Einstein equation with the energy-
momentum tensor given by

Tμν ¼KðϕÞ∇μϕ∇νϕ−gμν

�
1

2
KðϕÞ∇σϕ∇σϕþUðϕÞ

�
: ð27Þ

From the above expression follows that the energy density
and pressure of the scalar field can be written as

ρ ¼ −T0
0 ¼

1

2
Kϕ02 þ UðϕÞ; ð28Þ

P ¼ 1

3
Ti
i ¼

1

2
Kϕ02 −UðϕÞ: ð29Þ

Taking the “00” and “ii” components of the Einstein
equation, one arrives at Friedmann equations

Ĥ2 ¼
1
2
Kϕ02 þ UðϕÞ

3
; ð30Þ

Ĥ0 ¼ −
1

2
Kϕ02; ð31Þ

where we used the expressions for ρ and P given in
Eqs. (28) and (29), respectively.
Using the conditions in Eq. (24) and the equation of

motion in Eq. (26) it is easy to show that Eqs. (30) and (31)
imply7

7The condition jϵ̂2j ≪ 1 implies

���� ϕ00

ϕ0Ĥ
þ 1

2

K;ϕ

K
ϕ0

Ĥ

���� ≪ 1;

and Eq. (26) can be written as

−
�

ϕ00

Ĥϕ0 þ
K;ϕϕ

0

2KĤ

�
¼ 3þ U;ϕ

Ĥϕ0K
:

The result in Eq. (33) follows from these two relations above.

KARČIAUSKAS and TERENTE DÍAZ PHYS. REV. D 106, 083526 (2022)

083526-4



1

2
Kϕ02 ≪ UðϕÞ; ð32Þ

���� ϕ00

ϕ0Ĥ
þK;ϕ

2K
ϕ0

Ĥ

���� ≪ 3≃
���� U;ϕ

ĤKϕ0

����: ð33Þ

One can immediately notice from the last expression that,
in contrast to the case of the canonically normalized field,
ϕ00=ðϕ0ĤÞ does not have to be small if KðϕÞ is a function
that makes the two terms on the lhs in Eq. (33) cancel out.
Applying the above conditions to the Friedman equa-

tion (30) we find

Ĥ2 ≃
UðϕÞ
3

: ð34Þ

Similarly, the condition in Eq. (33) applied to Eq. (26)
yields a simplified equation of motion

3ĤKϕ0 ≃ −U;ϕ: ð35Þ

Both Eqs. (34) and (35) are called slow-roll equations.
Slow-roll approximation also contains the assumption

that the derivative of the above expression holds [11]. This
leads to the expression

ϕ00

Ĥϕ0 þ
K;ϕ

2K
ϕ0

Ĥ
≃

1

K

�
1

2

�
U;ϕ

U

�
2

þK;ϕ

2K
U;ϕ

U
−
U;ϕϕ

U

�
; ð36Þ

where the condition in Eq. (32) was applied to the
Friedmann equation (30).
As one can see from Eq. (33), the slow-roll condition

implies that the rhs of (36) is small. This can be conven-
iently expressed using slow-roll parameters defined as

ϵU ≡ 1

2K

�
U;ϕ

U

�
2

; ð37Þ

ηU ≡ 1

K

�
U;ϕϕ

U
−
K;ϕ

2K
U;ϕ

U

�
: ð38Þ

The above definitions are equivalent to the definitions in
Eqs. (4) and (5). This can be easily confirmed if we
canonically normalize the field, such that dφ≡ ffiffiffiffi

K
p

dϕ. The
normalization leads to slow-roll parameters as they are
written in those equations.
The slow-roll relations in Eqs. (34) and (35) and the

condition in Eq. (32) lead to

ϵU ≪ 1: ð39Þ

Similarly, applying the condition in Eq. (33) to the
expression in Eq. (36) we find

jηUj ≪ 1: ð40Þ

Notice that the second condition does not necessarily imply
jU;ϕϕj=U ≪ 1, as would be the case if the derivatives are
taken with respect to the canonically normalized field. The
terms in the parentheses of Eq. (38) can approximately
cancel out, even if each of them is not small separately.
Using the slow-roll equation of motion in Eq. (35) and

the approximate Hubble parameter in Eq. (34) we can
readily show that

ϵ̂1 ≃ ϵU: ð41Þ

For later use, it is convenient to rewrite all of the above
expressions in terms of the coordinate time t. For example,
taking δτ̂ ¼ N̂ δt, the formulas for the Hubble-flow param-
eters in Eq. (6) become

ϵ̂1 ¼ −
_̂H

N̂ Ĥ2
; ð42Þ

ϵ̂iþ1 ¼
_̂ϵi

N̂ Ĥ ϵ̂i
; ð43Þ

the scalar field equation of motion (26) transforms to

ϕ̈þ
�
3
_̂a
â
−

_̂
N

N̂

�
_ϕþK;ϕ

2K
_ϕ2 þ N̂ 2U;ϕ

K
¼ 0; ð44Þ

and the Friedman and continuity equations (30) and (31)
can be written as

�
_̂a
â

�2

¼
1
2
K _ϕ2 þ N̂ 2UðϕÞ

3
; ð45Þ

�
_̂a
â

�·

¼
_̂
N

N̂

_̂a
â
−
1

2
K _ϕ2: ð46Þ

Notice that _̂a=â is not equal to the Hubble parameter, as the
derivative is taken with respect to the coordinate time t and
not the proper time τ̂.
Similarly, we can rewrite the slow-roll conditions in

Eqs. (32) and (33) as

1

2
KðϕÞ _ϕ2 ≪ N̂ 2UðϕÞ; ð47Þ

1

2ĤK _ϕ2

���� ddt
�
K _ϕ2

N̂ 2

����� ≪ 3

N̂
≃
���� U;ϕ

ĤK _ϕ

����: ð48Þ

If these conditions are satisfied, the slow-roll approximate
dynamical equations (34) and (35) are given by

3
_̂a
â
_ϕ ≃ −

N̂ 2U;ϕ

K
; ð49Þ
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�
_̂a
â

�2

≃
N̂ 2UðϕÞ

3
: ð50Þ

The other utility of slow-roll parameters is that they
enable us to write the observable inflation parameters in
such a compact form as in Eqs. (1)–(3). However, to
compute numerical values of those expressions, we are
missing one more component. Equations (1)–(3) are
supposed to be evaluated at the time when observable
scales (or the pivot scale, more precisely) exit the horizon.
The exact time when this happens depends on the specifics
of the reheating scenario. For the purpose of this work, the
precise value is not important. However, for concreteness,
when comparing our results with observations, we will take
that to be N̂ ¼ 50–60 e-folds before the end of inflation, in
line with the choice of the Planck team [15].
The number of e-folds of inflation N̂ is defined as

N̂ ≡ ln
âend
â

¼
Ztend
t

N̂ Ĥ dt; ð51Þ

where values with the label “end” correspond to the end of
inflation, the latter being defined in Eq. (23). Within the
slow-roll approximation, this formula can be simplified as

N̂ ≃
Zϕ
ϕend

ffiffiffiffiffiffiffiffi
K
2ϵU

s
dϕ: ð52Þ

Therefore, the computation of inflation observables (at
least for these simple models) can be summarized as
follows. First, using (52), compute the value of the inflaton
ϕ� that corresponds to a given number of e-folds before the
end of inflation. Once ϕ� is known, it is very easy to
compute Uðϕ�Þ, ϵUðϕ�Þ, and ηUðϕ�Þ (and higher order
parameters if needed). Then, plugging this result into
Eqs. (1)–(3), we get numerical values of inflation observ-
ables that can be compared with observational constraints.

IV. INFLATION IN SCALAR-TENSOR THEORIES

Having summarized the procedure of computing the
observables of slow-roll inflation in the Einstein frame, we
next discuss a method of performing the same computation
in the Jordan frame.

A. The exact expressions in the Jordan frame

Consider a typical action used in the scalar-tensor
theories of gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðϕÞR −

1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð53Þ

This action also includes models where the scalar field ϕ
has a noncanonical kinetic term. This can be shown
by performing a field redefinition χ ≡ FðϕÞ. Defining
ωðχÞ≡ F=ðFϕÞ2 leads to

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
χR −

ωðχÞ
2χ

gμν∂μχ∂νχ − VðχÞ
�
: ð54Þ

By setting ω ¼ const, which corresponds to F ∝ ϕ2, and
VðχÞ ¼ 0 one obtains the Brans-Dicke action [50,51]. For
the rest of the paper, we will only use the form of the action
in Eq. (53).
As in the previous section, we are only interested in the

homogeneous, flat FLRW spacetime. However, in contrast
to that section, now we do fix the spacetime slicing.
Constant time hypersurfaces are chosen such that the
coordinate time equals the proper time in the Jordan frame.
That is, in this frame we can write the metric as

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð55Þ

where the lapse function N ¼ 1.
Next, we can define analogous geometric quantities

as in Sec. III. The Hubble parameter is given by the trace
of the extrinsic curvature as in Eq. (19) (this time without
the hats),

H ¼ _a
a
: ð56Þ

The dynamical equations can be derived in two ways.
Oneway is to vary the action with respect to the field and its
derivative. The Euler equation then leads to the equation of
motion for the ϕ field. Varying the same action with respect
to the metric leads to the gravitational equations, which can
be used to find the Friedman equations.
On the other hand, one can arrive at the same result by

using the expressions in Sec. III. To do that, notice that the
action in Eq. (53) is transformed into the Einstein frame by
plugging Ω ¼ ffiffiffiffi

F
p

into Eq. (16). This leads to the action in
Eq. (25) where the kinetic function and the potential are
equal to

KðϕÞ ¼ 1

F
þ 3

2

�
F;ϕ

F

�
2

; ð57Þ

and

UðϕÞ ¼ VðϕÞ
F2

; ð58Þ

respectively. As we keep the spacetime slicing fixed even
when changing the frame, the lapse function and the scale
factor in the Einstein frame are functions of F,
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N̂ ¼
ffiffiffiffi
F

p
; ð59Þ

â ¼
ffiffiffiffi
F

p
a; ð60Þ

where aðtÞ and âðtÞ are Jordan and Einstein frame scale
factors respectively [see Eqs. (55) and (17)]. Plugging these
expressions into Eqs. (26), (45), and (46) leads to the
equation of motion, Friedman equation, and the continuity
equation in terms of Jordan frame quantities, respectively,

ϕ̈þ 3H _ϕþ V;ϕ ¼ 3F;ϕð2H2 þ _HÞ; ð61Þ

and

H2 ¼
1
2
_ϕ2 þ V − 3H _F

3F
; ð62Þ

_H ¼ −
_ϕ2 −H _F þ F̈

2F
: ð63Þ

Note, that due to the forcing term on the rhs of Eq. (61)
we can no longer assume that starting from initial con-
ditions at rest the field always rolls down toward the
minimum of the potential V. In contrast to the Einstein
frame intuition, the field can also climb up the potential. It
is straightforward to understand this behavior, if we look at
the Einstein frame potential in Eq. (58). Taking the
derivative with respect to ϕ, we find

U;ϕ ¼ U

�
V;ϕ

V
− 2

F;ϕ

F

�
: ð64Þ

The gradient of U determines the direction of the gravi-
tational force. The Jordan frame potential V does not have
the same significance, and the gravitational force is not
uniquely determined by the gradient of V. Depending on
the gradient of F, the gravitational force can be directed in
the uphill direction of V. This is due to Newton’s
gravitational “constant” being the function of the field ϕ.8

B. Slow-roll approximations

The advantage of computing Jordan frame relations by
the above procedure is that the same substitutions can be
used to find unambiguously slow-roll conditions and
equations in this frame.
To discuss slow-roll inflation, we found it to be of great

use to introduce the following set of parameters. First,
similar to the Einstein frame Hubble-flow parameters, we
introduce analogous ones in the Jordan frame,

ϵ1 ≡ −
_H
H2

; ϵiþ1 ≡ _ϵi
ϵiH

: ð65Þ

The time evolution of the nonminimal function F can be
also conveniently parametrized by the following hierarchy
of parameters:

θ1 ≡
_F

2HF
; θiþ1 ≡

_θi
Hθi

: ð66Þ

In principle, these two sets of parameters are sufficient to
describe the system. However, we find that equations are
more compact and slow-roll approximations are made
clearer if we trade Hubble-flow parameters ϵi in favor of
γi defined as

γ2 ≡K _ϕ2

2H2
; γiþ1 ≡ _γi

Hγi
; ð67Þ

where γ1 ≡ γ and K is defined in Eq. (57). One can readily
demonstrate the relation between the three sets to be

γ2 ¼ ðϵ1 þ θ1Þð1þ θ1Þ − θ1θ2; ð68Þ

at the lowest order. Taking time derivatives would give
relations between higher order parameters. For conven-
ience, we call these three sets the Jordan frame flow
parameters. As demonstrated below, ϵ1, θ1, and γ2 all have
to be small in slow roll.
Let us first consider theHubble-flow parameter in Eq. (42)

and the condition for inflation in Eq. (22). Plugging first
Eqs. (59) and (60) into Eq. (20), we find

Ĥ ¼ Hffiffiffiffi
F

p ð1þ θ1Þ: ð69Þ

Taking the time derivative on both sides and plugging the
result into Eq. (42), we can express ϵ̂1 in terms of the Jordan
frame quantities

ϵ̂1 ¼
ϵ̂1 þ θ1
1þ θ1

−
θ1θ2

ð1þ θ1Þ2
: ð70Þ

Imposing the bound in Eq. (22) leads to the condition for
inflation in the Jordan frame

ϵ1 < 1þ θ1θ2
1þ θ1

: ð71Þ

This result demonstrates explicitly a known fact: the
Universe can be inflating even if the first Hubble-flow
function is larger than unity in the Jordan frame.
To make this point even stronger, we can find the relation

between the second time derivative of the scale factor in the
two frames,

â00 ¼ 1ffiffiffiffi
F

p ½äð1þ θ1Þ þ aH2θ1θ2�: ð72Þ
8See Ref. [52] for a similar discussion.
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Applying the definition of inflation in Eq. (21) to the above
expression, we find

ä
aH2

> −
θ1θ2
1þ θ1

: ð73Þ

In the Einstein frame, the acceleration of the scale factor is
the requirement for inflation. However, as can be seen from
the above condition, the Jordan frame scale factor does not
have to be accelerating in order to have inflation [9,10],
as was already mentioned in the Introduction. In other
words, even if the acceleration of the Einstein frame scale
factor on a given spacetime slice is positive, the accel-
eration of the Jordan frame scale factor on that same slice
can be negative.
The condition in Eq. (71) is the necessary condition

for the Universe to be inflating. However, when cosmo-
logical scales exit the horizon, observations impose
much stronger constraints. Generically, one must fulfil the
slow-roll conditions in Eqs. (47) and (48). Plugging
Eqs. (57)–(60) into Eq. (47) leads to the first slow-roll
relation in the Jordan frame,

FK _ϕ2 ≪ 2V; ð74Þ

or equivalently,

γ2 ≪
V

H2F
: ð75Þ

Plugging, next, those same equations into Eq. (48), we find
the second slow-roll relation,

1

2

����ðK _ϕ2Þ•
K _ϕ2

−
_F
F

����≪ 3

�
_F
2F

þH

�
≃

V

FK _ϕ2

���� _VV−2
_F
F

����: ð76Þ

In terms of the ϵ1, θ1, and γ2 parameters, this condition can
also be written as

jγ2 − ϵ1 − θ1j ≪ 3ð1þ θ1Þ ≃
V

2H2Fγ2

���� _V
HV

− 4θ1

����: ð77Þ

The above relations are obtained by the direct mapping
of the Einstein frame slow-roll conditions into the Jordan
frame. We proceed next to investigate their implications for
the Jordan frame dynamical equations.
First, we rewrite Eq. (74) as _ϕ2 þ 3

2

_F2

F ≪ 2V. As both
terms on the lhs of this expression are positive, the
condition has to be satisfied for each of the terms
separately. That is,

1

2
_ϕ2 ≪ V; ð78Þ

1

2
θ21 ≪

V
3H2F

: ð79Þ

We can next rewrite the Friedmann equation (62) as

1þ 2θ1 ¼
V þ 1

2
_ϕ2

3FH2
: ð80Þ

The second term on the rhs of this expression can be
dropped due to the slow-roll condition in Eq. (78). And the
condition in Eq. (79) leads to

1

2
θ21 ≪ 1þ 2θ1 ≃

V
3FH2

: ð81Þ

The inequality can be satisfied only in the case of

jθ1j ≪ 1: ð82Þ

Therefore, the slow-roll approximated Friedmann equation
in the Jordan frame is given by

H2 ≃
V
3F

: ð83Þ

To derive the slow-roll equation of motion, we make use
of its expression in the Einstein frame in Eq. (49) and use
the same substitutions as above. This leads to

3H _ϕ ≃
2VF;ϕ − FV;ϕ

F2Kð1þ θ1Þ
; ð84Þ

which can be simplified after imposing the slow-roll
condition in Eq. (82),

3H _ϕ ≃
2VF;ϕ − FV;ϕ

F2K
: ð85Þ

It is worth noticing here, as is it pointed out in Ref. [39],
that one can find a very similar slow-roll expression used in
the literature: 3H _ϕ ≃ ð2VF;ϕ − FV;ϕÞ=F (see, for example,
Refs. [35,37,38]). It is obtained by applying, what is
sometimes called “generalized slow-roll” approximation
[35,39,53]. Comparing with Eq. (85), we can see that this
expression is equivalent to neglecting the F2

;ϕ=F term.
However, generally neglecting this term is not justified. As
we show in Sec. V, the generalized induced gravity model is
compatible with observations only in the region where
precisely F2

;ϕ ≫ F. Moreover, by performing computer
simulations, the authors of Ref. [40] demonstrate that,
indeed, Eq. (85) is the slow-roll attractor. In Ref. [39], one
can find an analysis of some implications resulting from the
two different expressions.
Having shown that slow-roll inflation requires the time

derivative of F to be small, we can do the same for other
functions. First, we make use of the rhs relation of the slow-
roll expression in Eq. (77). As θ1 is slow-roll suppressed
and V=H2Fγ2 ≫ 1, according to Eq. (75), the relation
3 ≃ ðV=2H2Fγ2Þj _V=HV − 4θ1j [cf. Eq. (77)] leads to

KARČIAUSKAS and TERENTE DÍAZ PHYS. REV. D 106, 083526 (2022)

083526-8



_V
HV

≪ 1: ð86Þ

Another set of slow-roll conditions can be found from the
lhs of Eq. (77). Neglecting again θ1, one finds

jγ2 − ϵ1j ≪ 1: ð87Þ

By itself, this slow-roll condition does not require either γ2
or ϵ1 to be small if they are tuned to cancel out. As we will
see shortly, if both of these terms are larger than 1, such a
cancellation also requires one more cancellation with a
large θ2 value. To stay generic, we assume no such
cancellations and write

jγ2j ≪ 1; ð88Þ

jϵ1j ≪ 1: ð89Þ

To derive other implications of the slow-roll condition,
we can use Eqs. (31) and (69) to write

ϵ̂1 ¼
γ2

ð1þ θ1Þ2
: ð90Þ

Therefore, applying slow-roll conditions in Eqs. (82) and
(24), we find

_ϕ2

2H2F
≪ 1; ð91Þ

and

ϵ̂1 ≃ γ2: ð92Þ

Higher order smallness parameters can be derived by
taking higher derivatives of Eq. (92). For example, the
second Hubble-flow parameter in the Einstein frame can be
related to the Jordan frame flow parameters by

ϵ̂2 ¼
2

1þ θ1

�
γ2 −

θ1θ2
1þ θ1

�
: ð93Þ

Up to the lowest order in θ1, this expression can be
simplified as

ϵ̂2 ≃ 2ðγ2 − θ1θ2Þ: ð94Þ

The above result makes it clear that the slow-roll condition
ϵ̂2 ≪ 1 can be satisfied even for large values of jγ2j and
jθ1θ2j, if they approximately cancel out. Paired with
Eq. (87), this leads to γ2 ≃ ϵ1 ≃ θ1θ2. However, we do
not analyze this case any further, as mentioned above, and
generically write the condition as

jθ1θ2j ≪ 1; ð95Þ

which still permits jθ2j ∼ 1 for small jθ1j. Such large jθ2j
values imply jF̈j ∼Hj _Fj, which could provide a counter-
example to the approximation jF̈j ≪ Hj _Fj, which is often
used in the literature.

C. Inflation observables in the Jordan frame

In the Einstein frame, we can relate the Hubble-flow
parameters with spectral properties of the primordial
curvature perturbation as shown in Eqs. (9)–(11). Having
derived the relation between Einstein frame Hubble-flow
parameters and analogous quantities in the Jordan frame in
Eqs. (92) and (94), we can relate them with the spectral
properties of the primordial curvature perturbation as

As ≃
V

24π2F2γ2
; ð96Þ

ns − 1 ≃ −2ðγ2 þ γ2 − θ1θ2Þ; ð97Þ

r ≃ 16γ2: ð98Þ

Instead of using the γ parameter, we can also express the
above relations in terms of the Jordan frame Hubble-flow
parameters defined in Eq. (65). To do that we first apply
slow-roll approximation to Eq. (68), finding

γ2 ≃ ϵ1 þ θ1 − θ1θ2; ð99Þ

where we kept the last term because jθ2j is allowed to be of
order 1 [see Eq. (95)]. Taking the derivative of Eq. (99) and
plugging the result into Eqs. (96)–(98), we find

As ≃
V

24π2F2ðϵ1 þ θ1 − θ1θ2Þ
; ð100Þ

ns−1≃−2
�
ϵ1þθ1−2θ1θ2þ

ϵ2ϵ1þθ1θ2ð1−θ2−θ3Þ
2ðϵ1þθ1−θ1θ2Þ

�
;

ð101Þ

r ≃ 16ðϵ1 þ θ1 − θ1θ2Þ: ð102Þ

The above expressions are consistent with Eqs. (20) in
Ref. [39]. However, we do not assume jθ2j; jθ3j ≪ 1. These
parameters are allowed to be of order 1 by slow-roll
approximation as it is argued below Eq. (95).
The above equations relate the observable parameters of

slow-roll inflation with Jordan frame quantities. However,
these equations are not sufficient to compare them with
observations. We need to specify the moment at which they
must be evaluated. Within the single field slow-roll models
of inflation, it is sufficiently accurate to evaluate the above
expressions at the moment when the pivot scale exits the
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horizon. In the Einstein frame, this is assumed to happen
N̂� e-folds before the end of inflation. The Planck satellite
team considers N̂� ¼ 50–60. However, the Jordan frame
number of e-folds N does not necessarily correspond to the
same numerical value as N̂ [31,54,55].
We define the number of e-folds N in the Jordan frame

analogously to its counterpart in the Einstein frame, which
is given in Eq. (51),

N ≡ ln
aend
a

¼
Ztend
t

Hdt: ð103Þ

Remember, since we keep the spacetime slicing fixed, the
initial slice at t coincides in the Einstein as well as Jordan
frames. The same can be said about the tend slice. In other
words, the limits of integration are the same in both frames.
Plugging Eqs. (59) and (69) into Eq. (51) and using
Eq. (103), we get

dN̂ ¼ ð1þ θ1ÞdN: ð104Þ

When cosmological scales exit the horizon, jθ1j ≪ 1
according to Eq. (82), making the difference between
dN̂ and dN slow-roll suppressed. However, N is an integral
quantity. Therefore, depending on the behavior of jθ1j
throughout inflation, the total e-fold shift number between
the Einstein and Jordan frames can become observationally
relevant (see the models in Sec. V B, for example). We can
readily compute this shift number

R
θ1dN. Using the

definition of θ1 in Eq. (66) and the definition of e-fold
numbers in Eq. (103) gives

N̂ ¼ N þ 1

2
ln
Fend

F
: ð105Þ

Although in this work we are only concerned about
homogeneous quantities (apart from the numerical simu-
lations in the Appendix), we would also like to comment
here about the horizon crossing time (see also [31]). In the
Einstein frame, a mode of perturbation is said to leave the
horizon when its wave number is k ¼ â Ĥ (see, e.g., [11]
for details). Using the transformations in Eqs. (69) and (60),
we can easily find that this corresponds to

â Ĥ ¼ aHð1þ θ1Þ: ð106Þ

As we can see, for cosmological scales, where slow-
roll conditions are meant to be applicable, the error of
the often used choice k ¼ aH is of the order of slow roll
[see Eq. (82)].

D. Slow-roll parameters

Equations (96)–(98) are perfectly valid equations to
compute inflation observables in the Jordan frame. They

can be considered as analogous equations to the expres-
sions in terms of the Hubble-flow functions in the Einstein
frame as in Eqs. (9)–(11). However, the computational
benefit of the slow-roll attractor is that time derivatives
become unique functions of the field value, provided by
slow-roll equation of motion. Therefore, this effectively
reduces the dynamical degrees of freedom.
In the Einstein frame, this computational benefit is

utilized by writing the inflation observables as functions
of the field, as in Eqs. (1)–(3). We can also do the same in
the Jordan frame.
First, we can use the relation between Einstein frame

Hubble-flow parameters and the Jordan frame parameters
in Eqs. (92) and (94). Plugging these into Eqs. (7) and (8),
we find

ϵU ≃ ϵ̂1 ≃ γ2; ð107Þ

4ϵU − 2ηU ≃ ϵ̂2 ≃ 2ðγ2 − θ1θ2Þ: ð108Þ

The consistency of the above result can be checked
directly using Eqs. (37) and (38). Plugging in the expres-
sion for U in Eq. (58), we arrive at

ϵU ¼ 1

2K

�
V;ϕ

V
− 2

F;ϕ

F

�
2

: ð109Þ

Using the Jordan frame slow-roll equation of motion (85),
slow-roll Friedmann equation (83), and the definition of γ
in Eq. (67), we arrive at (107).
As mentioned above, slow-roll approximation also con-

tains the assumption that the time derivative of the slow-roll
equation of motion in Eq. (84) holds. This leads to

γ2 − θ1θ2 ≃ ηFV; ð110Þ

where we defined

ηFV ≡2ϵU−ηU

¼ 1

K

�
2
F;ϕϕ

F
−
V;ϕϕ

V
−2

F2
;ϕ

F2
þV2

;ϕ

V2
þK;ϕ

2K

�
V;ϕ

V
−2

F;ϕ

F

��
;

ð111Þ

which, again, could be derived by directly plugging in the
expression for U into the definition of ηU in Eq. (38).
Notice that we did not use Eq. (85) to derive the above
result, because θ2 does not necessarily have to be small.
That is, θ1θ2 is allowed to be of order slow roll and not
slow-roll squared.
According to the slow-roll condition in Eq. (77), the lhs

of the above result has to be small, hence the rhs too. It
follows then, that we can write the second slow-roll
constraint as
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jηFV j ≪ 1: ð112Þ

This can be equally well confirmed by Eq. (108): 2ηFV≃
ϵ̂2 ≪ 1.
Plugging Eqs. (107) and (110) into (1)–(3), we arrive at

slow-roll expressions that relate inflation observables with
functions F and V

As ≃
V

24π2F2ϵU
; ð113Þ

ns − 1 ≃ −2ðϵU þ ηFVÞ; ð114Þ

r ≃ 16ϵU; ð115Þ

where ϵU is meant to be evaluated using Eq. (109).
We can also conveniently slow-roll approximate the

number of e-folds of inflation in the Jordan frame.
Using the definition of N in Eq. (103) and slow-roll
equation of motion in Eq. (85), we arrive at

N ≃
Zϕend

ϕ

K

2
F;ϕ

F − V;ϕ

V

dϕ: ð116Þ

So far, we have considered a generic expression
for K. However, the definition of K in Eq. (57) contains
two positive terms. These terms remain comparable
throughout inflation only for a specific form of F, namely,

F ¼ ðαϕþ βÞ2; ð117Þ

with α ¼ Oð1Þ. In the case of α ¼ 1=
ffiffiffi
6

p
, both of those

terms are equal. More generically, however, one of them
should be dominant. In those cases the expressions can be
somewhat simplified.
Consider first the case F2

;ϕ ≪ F. That is, the approximate
expression for K is given by

K ≃
1

F
: ð118Þ

In this case, the slow-roll equation of motion (85) can be
approximated as

_ϕ

H
≃ 2F;ϕ − F

V;ϕ

V
; ð119Þ

and slow-roll parameter ϵU as

ϵU ≃
F2
;ϕ

2F

�
2 −

F
F;ϕ

V;ϕ

V

�
2

: ð120Þ

The smallness of ϵU implies

1

2

�
V;ϕ

V

�
2

≪
1

F
: ð121Þ

The second slow-roll parameter ηFV [defined in Eq. (111)]
in this approximation can be simplified as

ηFV ≃ 2F;ϕϕ þ F

�
V2
;ϕ

V2
−
V;ϕϕ

V
−
F2
;ϕ

F2
−
F;ϕ

2F

V;ϕ

V

�
; ð122Þ

where we also applied jF;ϕϕj ≪ 1. Finally, the number of e-
folds in this regime can be expressed as

N ≃
Zϕ
ϕend

1
V;ϕ

V − 2
F;ϕ

F

dϕ
F

: ð123Þ

In the opposite case, F2
;ϕ ≫ F and

K ≃
3

2

F2
;ϕ

F2
: ð124Þ

The slow-roll equation of motion can then be
approximated as

_ϕ

H
≃
2

3

F
F;ϕ

�
2 −

F
F;ϕ

V;ϕ

V

�
; ð125Þ

while the slow-roll parameter ϵU is given by

ϵU ≃
1

3

�
2 −

F
F;ϕ

V;ϕ

V

�
2

: ð126Þ

We can see that in this regime slow-roll condition ϵU ≪ 1
requires the cancellation

V;ϕ

V
≃ 2

F;ϕ

F
; ð127Þ

up to slow-roll precision.
The second slow-roll parameter ηFV can be simplified as

ηFV ≃
2F2

3F2
;ϕ

�
V2
;ϕ

V2
−
V;ϕϕ

V
þ
�
F;ϕϕ −

F2
;ϕ

F

�
V;ϕ

F;ϕV

�
: ð128Þ

Finally, the number of e-folds of inflation in the Jordan
frame is given by

N ≃
3

2

Zϕ
ϕend

F2
;ϕ=F

V;ϕ

V − 2
F;ϕ

F

dϕ
F

: ð129Þ

We can also study separately the case F2
;ϕ ≃ F, which

leads to Eq. (117). In this case,
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ϵU ≃Oð1Þ
�
2 −

F
F;ϕ

V;ϕ

V

�
2

; ð130Þ

and the same condition as in Eq. (127) must be satisfied for
slow-roll inflation to be realized.

V. GENERALIZED INDUCED GRAVITY
INFLATION

In this section, we analyze an induced gravity model of
inflation [5,6,56]. However, we generalize the model by
allowing for arbitrary powers of nonminimal function and
the spontaneous symmetry breaking potential. We are also
going to search for models that are consistent with the
current observational constraints of the scalar spectral index
and tensor-to-scalar ratio. The main purpose of this exercise
is to make use of the equations derived in the previous
section.9

The generalization of the induced gravity model that we
study can be written as

F ¼ ξϕp; ð131Þ

V ¼ λ

2q
ðϕ2 − v2Þq; ð132Þ

where jpj and q are of order 1. In addition, q must be an
even, positive number in order for the potential to be
bounded from below.10 The p ¼ q ¼ 2 case with ϕ ≫ v
has been studied extensively in the literature (see Refs. [5–
7,56,58–64] for some early work on such models). In this
section, our goal is to investigate if inflation is possible in a
broader range of parameters, where q is not necessarily
equal to p and the field ϕ rolls down the potential from both
sides of the minimum.
As Fmust be positive to avoid instabilities, we fix ξ > 0.

In that case, it will be assumed that for odd values of p we
are only interested in ϕ > 0 region.
In these class of models, one further assumes that

eventually the ϕ field settles down at the minimum of
the potential V with ϕ ¼ v. At that point, F ¼ 1 and we
recover the action of general relativity. This requirement
leads to the normalization ξvp ¼ 1. We make use of this
relation to simplify the expressions by normalizing the ϕ
field as

x≡ ϕ

v
: ð133Þ

The potential is symmetric under the transformation
ϕ → −ϕ. Therefore, x is positive.11 Using this definition,
Eqs. (131) and (132) can be written as

FðxÞ ¼ xp; ð134Þ

VðxÞ ¼ λ

2qξ2q=p
ðx2 − 1Þq: ð135Þ

In the context of inflation, the regime x < 1 corresponds to
hilltoplike inflation models and in the regime x > 1 one is
led to the chaoticlike models. We will use this terminology
below to distinguish the two regimes.
Remember, however, that in the Jordan frame the field

does not necessarily roll down the potential V; it can as well
climb up the potential. Hence, we need to impose additional
conditions in order to guarantee that the end point of the
evolution is at x ¼ 1.
To that aim, let us first write the slow-roll equation of

motion (85) for this model. In terms of x, it is given by

_x
H

≃ −
4ξ2=pxp−1

2þ 3p2ξ2=pxp−2
·
ðq − pÞx2 þ p

x2 − 1
: ð136Þ

As is discussed in the paragraph containing Eq. (64), the
above slow-roll equation does not necessarily describe a
field rolling down toward the minimum of the potential
VðxÞ. This becomes evident if we take the initial conditions
to be x ≪ 1, which corresponds to the hilltop setup. In
order for the field to slow-roll toward x ¼ 1, the field
velocity must be positive, _x > 0. However, this can be
satisfied only in the case with p > 0. Otherwise, the field
climbs up the potential, away from the x ¼ 1 value and
toward x ¼ 0. In the opposite regime, where x ≫ 1, the
field rolls down the potential if the velocity is negative,
_x < 0. Again, this leads to the condition p > 0 if q ¼ p, or
p < q if q ≠ p. Notice, that in the latter case it is consistent
to consider negative values of p.
This behavior becomes obvious if we write the Einstein

frame scalar field potential. According to Eq. (64),

U;x ¼ 2U

�ðq − pÞx2 þ p
xðx2 − 1Þ

�
: ð137Þ

We can readily notice that for very small x the force is
directed toward the minimum of U only for p > 0. While
for large x, the same is true either for p > 0, in the case of
p ¼ q, or for q > p, in the case of p ≠ q. These conditions
are summarized in the following equation:

9Recently, some works (see, for example, Refs. [52,57]) have
been published that analyze models that overlap with the ones
considered in this section in some parameter space. However, our
main goal is to derive analytical expressions of the constraints
that can be compared with observations.

10Unbounded potential V also results in an unbounded
potential U in Eq. (58).

11If initially ϕ > 0, then it runs toward the ϕ → v minimum
and toward ϕ → −v otherwise.
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p > 0 if x ≪ 1 ðhilltop modelsÞ;
p ≤ q if x ≫ 1 ðchaotic modelsÞ: ð138Þ

Before separating the analysis into the hilltop and chaotic
type regimes, let us first compute the general expression for
the ϵU slow-roll parameter. From Eq. (109), we find

ϵU ≃
4p2ξ2=pxp−2

2þ 3p2ξ2=pxp−2

�ðqp − 1Þx2 þ 1

x2 − 1

�2
: ð139Þ

As we know, the ϵU ≪ 1 condition serves as a good proxy
to indicate the regime where ϵ̂1 ≪ 1 [see Eq. (7)]. The end
of inflation is then approximately given by the condition
ϵU ≃ 1, which we will use in the following computations.

A. Hilltop type models

In this regime, we take the approximation

x� ≪ 1; ð140Þ

where the asterisk denotes values when cosmological scales
exit the horizon. Within this approximation, we can
simplify the expression for ϵU in Eq. (139) as

ϵU ≃
4p2ξ2=pxp−2

2þ 3p2ξ2=pxp−2
: ð141Þ

It depends on the value of p if slow-roll inflation can be
realized or not. Let us therefore consider first p > 2. In this
case, ϵU monotonically decreases as we decrease x and
from Eq. (141) it is clear that to satisfy the ϵU ≪ 1
condition we need to impose the bound

p2ξ2=pxp−2 ≪ 1: ð142Þ

Note that from the definition of F in Eq. (131), this
condition is equivalent to F2

;ϕ ≪ F. Therefore, we can
use Eq. (122) to compute the second slow-roll parameter
ηFV as

ηFV ≃ −pð2 − pÞξ2=pxp−2; ð143Þ

and approximate Eq. (141) as

ϵU ≃ 2p2ξ2=pxp−2: ð144Þ

Plugging the last two expressions into Eqs. (114) and (115)
gives

ns − 1 ≃
2 − 3p
16p

r: ð145Þ

As we can see in Fig. 1, these models fall outside the
observationally allowed region.

The above relation is also applicable for p ¼ 2 and
p ¼ 1 values too. In the former case, ϵU ≃ const as long as
x ≪ 1 is satisfied. Hence, slow-roll inflation, with ϵU ≪ 1,
is only possible for

ξ ≪ 1=2: ð146Þ

In the case of p ¼ 1, the p2ξ2=pxp−2 term is a decreasing
function of x. As we can clearly see from Eq. (141), this
implies

ϵU !x→0 4

3
; ð147Þ

which is a noninflationary regime. Hence, the slow-roll
inflation can be realized only for field values

x ≫
1

2
ξ2: ð148Þ

Both expressions in Eqs. (146) and (148) imply
F2
;ϕ ≪ F. This justifies using an approximate relation in

Eq. (122) to compute ηFV and therefore Eq. (145) to

FIG. 1. The comparison of observational constraints on scalar
spectral index ns and the tensor-to-scalar ratio r with predictions
of the generalized induced gravity models in the hilltop regime.
The green contours represent 1σ and 2σ constraints from Ref. [15]
and the blue contours add the new BICEP/Keck observations (see
Ref. [65] for details). p > 0 is required for hilltop models. Note
also that the presence of a line for some values of r vs ns does not
necessarily imply that those values can be actually realized within
a given model (which also holds for all the plots below). To
establish this one needs to compute the number of e-folds N̂�. As
the lines lie outside the observationally allowed region anyway,
we did not perform this computation.
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compute nsðrÞ relation. Unfortunately, all the hilltop type
models lie outside the observationally allowed region.

B. Chaotic type models

We call “chaotic” models that satisfy

x� ≫ 1: ð149Þ
The lowest order approximation of ϵU in Eq. (139) in terms
of x−2 depends on the relation between p and q. Let us
consider first the case where p ≠ q. As can be seen in
Eq. (138), this case also permits negative values of p and ϵU
is approximately given by

ϵU ≃
4p2ξ2=pxp−2

2þ 3p2ξ2=pxp−2

�
q
p
− 1

�
2

: ð150Þ

In the limit p2ξ2=pxp−2 ≫ 1, which is equivalent to
F2
;ϕ ≫ F, the first factor in the above expression is

∼4=3. However, for p and q of order 1, the second factor
ðq=p − 1Þ2 ∼Oð1Þ. Therefore slow-roll inflation can only
be realized for models with

p2ξ2=pxp−2 ≪ 1: ð151Þ
As this condition is equivalent to F2

;ϕ ≪ F, we can use an
approximate expression of ηFV in Eq. (122) again,

ηFV ≃
�
qp2ξ2=pxp−4 for p ¼ 2

ðq − pÞð2 − pÞξ2=pxp−2 for p ≠ 2;
ð152Þ

to the lowest orders in x−2 and p2ξ2=pxp−2.

We can readily notice that for x ≫ 1 the slow-roll
parameter ϵU ≫ ηFV. Therefore, using Eqs. (114) and (115)
we can write a unified expression for all values of p as

ns − 1 ≃
3ðp − 2Þ − 2ðq − 2Þ

16ðq − pÞ r: ð153Þ

For q ¼ 2, the above equation reduces to ns − 1 ≃ −3r=16,
which is valid for any p < q. In fact, this is the curve that
gives the smallest r value for a given ns. Unfortunately, as
can be seen in Fig. 2(a), this parameter range is already
excluded by observations.
In the case of p ¼ q, the ϵU function is shown in Fig. 3

for several values of p and ξ. To the lowest order in x−2 we
can approximate ϵU as

ϵU ≃
4p2ξ2=pxp−2

2þ 3p2ξ2=pxp−2
·
1

x4
: ð154Þ

It is then clear from the above result that inflation can be
realized in both regimes, for F2

;ϕ ≪F (i.e., p2ξ2=pxp−2≪ 1)
and for F2

;ϕ ≫ F. The expression for ϵU can be simplified in
both of these cases as

ϵU ≃
�
2p2ξ2=pxp−6 for F2

;ϕ ≪ F
4
3
x−4 for F2

;ϕ ≫ F:
ð155Þ

Let us consider the case when cosmological scales
exit the horizon in the F2

;ϕ ≪ F regime first. Then we

FIG. 2. Comparison of observational constraints of inflationary parameters ns and r with chaotic type (x� ≫ 1) models of generalized
induced gravity theories. (a) Models with p < q and F2

;ϕ ≪ F. (b) Models with p ¼ q and F2
;ϕ ≫ F. Thick sections of curves show

N̂� ∈ ½50; 60� range, where large points correspond to the N̂� ¼ 60 value. The black dotted curves represent the results from exact
numerical simulations (see the Appendix) in the same N̂� range. The contours are the same as in Fig. 1.

KARČIAUSKAS and TERENTE DÍAZ PHYS. REV. D 106, 083526 (2022)

083526-14



can approximate the expression in Eq. (122) for large x
values as

ηFV ≃

8<
:

6−p
2p x2ϵU for p ≠ 6

1
3
ϵU for p ¼ 6;

ð156Þ

where we also used Eq. (155). In the case of p ¼ 6 and
using Eqs. (114) and (115) we find

ns − 1 ≃ −
r
6
: ð157Þ

These values also lie outside the observationally allowed
region. In the case of p ≠ 6, ηFV ≫ ϵU and Eq. (114) is
approximated by

ns − 1 ≃
p − 6

p
x2ϵU: ð158Þ

The 1 − ns ≃ 10−2 constraint can only be satisfied for x ∼ 1.
However, for these large values, the x ≫ 1 condition that
was used to derive Eq. (154) is violated. That is, the
equations above, where the approximation F2

;ϕ ≪ F was
used, are applicable only for much smaller values of 1 − ns
than what is allowed by observations.
Therefore, we are only left with the region in which the

F2
;ϕ ≫ F (i.e., p2ξ2=pxp−2 ≫ 1) approximation holds. In

this limit, ϵU in Eq. (154) is given by

ϵU ≃
4

3x4
; ð159Þ

which is independent of p. The second slow-roll parameter
ηFV , on the other hand, can be approximated by Eq. (128).
For the current model and using x ≫ 1, this equation can be
written as

ηFV ≃
4

p

ffiffiffiffiffi
ϵU
3

r
þ 4

p
ϵU; ð160Þ

which leads to

ns − 1 ≃ −
2

p

ffiffiffi
r
3

r
−
�
4

p
þ 1

�
r
8
: ð161Þ

As we can see in Fig. 2(b), these models cross the
BICEP/Keck region with q ¼ p values up to 10. However,
we need to determine if this happens at the right number of
e-folds before the end of inflation. To that end, we can write
Eq. (116) in terms of the rescaled variable x as

N ≃
1

8ξ2=pp

Zx�
xend

ð2þ 3p2ξ2=pxp−2Þðx2 − 1Þ dx
2

xp
; ð162Þ

which can be readily integrated, leading to

N� ≃

8>>>>>>>>><
>>>>>>>>>:

3

4

�
1

6ξ
þ 1

��
x2� − x2end þ ln

x2end
x2�

�
; for p ¼ 2

1

16ξ2

�
x−2� − x−2end − ln

x2end
x2�

�
þ 3

2

�
x2� − x2end þ ln

x2end
x2�

�
; for p ¼ 4

1

2pξ2=p

�
x4−p� − x4−pend

4 − p
−
x2−p� − x2−pend

2 − p

�
þ 3p

8

�
x2� − x2end þ ln

x2end
x2�

�
; otherwise:

ð163Þ

We have already assumed that when cosmological scales
exit the horizon the F2

;ϕ ≫ F condition holds. In the case
p ¼ 2, this is equivalent to saying that 4ξ ≫ 1. For other
values of p, this condition implies p2ξ2=pxp−2� ≫ 1. Thus,
we can safely neglect the ðp2ξ2=pxp−2� Þ−1 terms, as com-
pared to x2� ≫ 1 term or 1, from the above expression. This,

however, does not imply that we can neglect
ðp2ξ2=pxp−2end Þ−1 terms. In the models with p > 2, ξ is
allowed to be small and still satisfy the p2ξ2=pxp−2� ≫ 1
condition, in principle.
However, as we will see shortly, in practice, observa-

tional constraints push ξ to be large and we can neglect

FIG. 3. An illustration of the slow-roll parameter ϵU for
chaotic type models with p ¼ q. The regions that correspond
to F2

;ϕ ≪ F and F2
;ϕ ≫ F are shown for the p ¼ 8 model. ϵU can

be approximated as in Eq. (155) in those regions.
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ðp2ξ2=pxp−2end Þ−1 terms too. Making use of x� ≫ xend, we can
eventually approximate N� by

N� ≃
3p
8

�
x2� þ ln

x2end
x2�

�
: ð164Þ

The logarithmic term is of the same order as the e-fold shift
number in Eq. (105). Plugging that equation into the above,
we find the e-fold number in the Einstein frame,

N̂� ≃
p
8

�
3x2� þ 5 ln

x2end
x2�

�
: ð165Þ

The logarithmic term can introduce a sizable correction to
N̂� and therefore cannot be neglected. Unfortunately, this
means that we need to solve a transcendental equation for
x�, which we do numerically.
However, before solving for x�, we need to find xend.

With the assumption p2ξ2=p ≫ 1 (or ξ ≫ p−p) it can be
easily computed from Eq. (139). Plugging q ¼ p into that
expression and taking ϵUjend ¼ 1, we find

xend ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ffiffiffi

3
p

s
≃ 1.35: ð166Þ

Now we can find x� from Eq. (165) corresponding to
N̂� ¼ 50 and 60e-folds of inflation. Plugging that value
into Eqs. (159)–(161), we are able to compare the results
with observations. They are shown in Fig. 2(b). As we can
see, practically only p ¼ q ¼ 2, 4, and 6 values are
allowed.

C. Slow-roll inflation for x ≃ 1

So far, we have considered models for which cosmo-
logical scales exit the horizon either when x� ≪ 1 or
x� ≫ 1. In this section, we look for observationally
acceptable models with x� ≃ 1. To that aim, let us define

δ≡ 1 − x2; ð167Þ

where jδj ≪ 1.
Before doing the analysis, note that in this setup the

constraints on p in Eq. (138) do not apply. Indeed, close to
x ≃ 1 the gravitational force is always directed toward the
minimum of the potential, as can be confirmed by writing

U;x ¼ 2U

�
−
q − ðq − pÞδ
ð1 − 1

2
δÞδ

�
: ð168Þ

For x≲ 1, δ is positive, which makes U;x negative and
vice versa.
Taking the first two terms in the expansion of ϵU in terms

of δ−1, we can write

ϵU ≃
4p2ξ2=p

2þ 3p2ξ2=p

�
q
p

�
2 1

δ2
: ð169Þ

It follows that slow-roll inflation, with ϵU ≪ 1, can be
realized only for

p2ξ2=p ≪ 1; ð170Þ

that is, F2
;ϕ ≪ F. Using this fact, the above equation for ϵU

can be simplified as

ϵU ≃
2q2ξ2=p

δ2
: ð171Þ

Applying the same approximations to the expression of ηFV
in Eq. (111), we get

ηFV ≃
4qξ2=p

δ2
: ð172Þ

Plugging the last two results into Eqs. (114) and (115), one
finally arrives at

ns − 1 ≃ −
qþ 2

8q
r: ð173Þ

The smallest r value for a given ns is achieved with q ¼ 2.
However, as can be seen in Fig. 4, even for these values the
predictions lie outside the 2σ contour of the BICEP/Keck
results.
Our results of Sec. V are summarized in Table I.

FIG. 4. Comparison of observational constraints with x� ≃ 1
models. The contours are the same as in Fig. 1.
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VI. SUMMARY AND CONCLUSIONS

In this work, we consider inflation models within the
framework of scalar-tensor theories of gravity. The most
straightforward way to analyze such models and confront
them with observations is to transform the action into the
Einstein frame. However, this is not always desirable. For
example, after the transformation, the matter sector directly
couples to the scalar field, even if no such coupling is
introduced in the Jordan frame. For certain applications,
this might actually complicate the analysis. In those cases,
it would be convenient to have a formalism where inflation
observables can be calculated only relying on Jordan frame
quantities. In this work, we derive the requirements that
Jordan frame quantities must satisfy to provide slow-roll
inflation. We also derive Jordan frame flow and slow-roll
parameters, which must be small, and write inflation
observables in terms of those parameters.
The central idea of our method is to utilize the fact that

conformal transformation corresponds to the change of
units of measure [45]. We assume to slice the spacetime
into spacelike hypersurfaces and keep that slicing fixed. It
allows us to map the relations defined in the Einstein frame
to the Jordan frame on the same slice by changing the units
of measure (performing the conformal transformation). In
particular, we take the conditions required for inflation and
more stringent conditions for slow-roll inflation, which are
most clearly defined in the Einstein frame, and map them to
the Jordan frame.
We also make use of another convenient fact that the

scalar and tensor metric perturbation spectra in single field
slow-roll inflation models can be conveniently written in
terms of homogeneous quantities only. Hence, only the
homogeneous relations need to be mapped from the
Einstein to the Jordan frame in order to derive observable
model predictions.
Using this method, we first derive the conditions for

inflation. It has been noted in various places in the literature
(see, e.g., [10]) that those conditions in the Jordan frame
might look somewhat counterintuitive from the Einstein
frame perspective. For example, the Jordan frame scale
factor does not have to be accelerating, as was

demonstrated in Eq. (73), or the Hubble-flow parameter
ϵ1 does not have to be smaller than 1 [see Eq. (71)]. This
has to be kept in mind when doing computations that are
related to the end of inflation.
However, once we impose a much stronger requirement,

that the Einstein frame Hubble-flow parameter ϵ̂1 ≪ 1 [see
Eq. (6) for the definition], the conditions become more
stringent. In that case, some of the familiar expressions in
the Einstein frame can be carried over to the Jordan one. In
particular, Eqs. (78) and (86), which for convenience we
rewrite here, are

1

2
_ϕ2 ≪ V;

_V
HV

≪ 1:

In the Jordan frame, we have an additional function F,
which enlarges the number of conditions. To find a compact
parametrization for them, we introduced a number of flow
parameters, in analogy to the Hubble-flow parameters.
These are ϵi, θi, and γ2 defined in Eqs. (65)–(67). We
demonstrated in this work that the requirement ϵ̂i ≪ 1
translates into the Jordan frame as

ϵ1; γ2; jγ2j; jθ1j; jθ1θ2j ≪ 1:

The above relations are derived in Eqs. (89), (92), (88),
(82), and (95), respectively.
Only two of the three sets of parameters ϵi, θi, and γi are

needed to describe the system, and we found that using θi
and γi results in the most compact equations. However,
when computing inflation observables, we provide two
combinations. In Eqs. (96)–(98) the scalar spectral index,
scalar spectral tilt, and tensor-to-scalar ratio, As, ns, and r,
respectively, are written as functions of γi and θi,

As ≃
V

24π2F2γ2
;

ns − 1 ≃ −2ðγ2 þ γ2 − θ1θ2Þ;
r ≃ 16γ2:

TABLE I. The summary of observational predictions of the generalized induced gravity inflation models in different regimes. In this
table “no slow roll” signifies the absence of the ϵU ≪ 1 region. The only models that are compatible with observations are chaotic type
models with p ¼ q ≤ 6 in the regime F2

;ϕ� ≫ F� [see Fig. 2(b)].

F2
;ϕ� ≪ F� F2

;ϕ� ≫ F�

Hilltop (x� ≪ 1) Eq. (145): ns − 1 ≃ 2−3p
16p r No slow roll

Chaotic (x� ≫ 1) q > p Eq. (153): ns − 1 ≃ 3ðp−2Þ−2ðq−2Þ
16ðq−pÞ r No slow roll

q ¼ p ¼ 6 Eq. (157): ns − 1 ≃ − r
6

Eq. (161): ns − 1 ≃ − 2
p

ffiffi
r
3

p
− ð4p þ 1Þ r

8

q ¼ p ≠ 6 Eq. (158): ns − 1 ≃ p−6
p x2�ϵU

x� ≃ 1 Eq. (173): ns − 1 ≃ − qþ2
8q r No slow roll
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And in Eqs. (100)–(102), they are written as functions of ϵi
and θi.
We also derive the slow-roll equations in the Jordan

frame. As described above, we take the Einstein frame
version of slow-roll conditions in Eqs. (47) and (48) and
after the conformal transformation they can be written as in
Eqs. (74) and (76). Taking into account all the smallness
conditions discussed above, we finally arrive at Eqs. (83)
and (85),

H2 ≃
V
3F

;

3H _ϕ ≃
2VF;ϕ − FV;ϕ

F2K
;

which are the Jordan frame versions of the slow-roll
Friedman equation and equation of motion. These approxi-
mate relations can be applied as long as slow-roll con-
ditions ϵU; jηFV j ≪ 1 are satisfied, where the slow-roll
parameters are defined in Eqs. (109) and (111),

ϵU ¼ 1

2K

�
V;ϕ

V
−2

F;ϕ

F

�
2

;

ηFV ¼
1

K

�
2
F;ϕϕ

F
−
V;ϕϕ

V
−2

F2
;ϕ

F2
þV2

;ϕ

V2
þK;ϕ

2K

�
V;ϕ

V
−2

F;ϕ

F

��
;

where ϵU is the same slow-roll parameter as in the Einstein
frame but expressed in terms of the Jordan frame quantities.
The dependence of inflation observables on ϵU and ηFV is
given in Eqs. (113)–(115),

As ≃
V

24π2F2ϵU
;

ns − 1 ≃ −2ðϵU þ ηFVÞ;
r ≃ 16ϵU:

When computing numerical values of the above param-
eters, another aspect that has to be taken into account is the
difference between the number of e-folds of inflation as
defined with respect to â and a, i.e., the scale factors in the
Einstein and Jordan frames, respectively. This difference is
proportional to the logarithm of F, as shown in Eq. (105),

N̂ ¼ N þ 1

2
ln
Fend

F
:

Although the e-fold shift number ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fend=F

p
is logarith-

mic, it can be substantial and therefore generically cannot
be neglected, as we demonstrate in the case of induced
gravity models of inflation. When comparing with obser-
vations, we used N̂ from 50 to 60, which are the values used
by the Planck team.
Finally, we should also mention another known fact, that

in the Jordan frame the field does not necessarily roll down
the potential VðϕÞ even in slow roll. As the strength and the
direction of the gravitational force depends on FðϕÞ, the

field ϕ can as well climb up that potential. This can be
readily understood by looking at the gradient of the scalar
field potential in the Einstein frame in Eq. (64). The
direction of the gravitational force is no longer determined
solely by the gradient of VðϕÞ, but in combination with the
gradient of FðϕÞ. This has to be taken into account when
considering models of inflation, as we also demonstrate in
our example model in Sec. V.
In that section, we consider a generalized induced

gravity model. The main idea of induced gravity theories
is to generate gravity by a spontaneous symmetry breaking
[66–69]. That is, general relativity is recovered after the ϕ
field settles at its vacuum expectation value, which is
determined by the potential VðϕÞ. To make sure that the
field slowly rolls toward the minimum of VðϕÞ one needs to
constrain possible functional forms of FðϕÞ.
The main goal of Sec. V is to apply some of our results to

a concrete model. Making use of Jordan frame quantities
only, we analyze the model specified in Eqs. (131) and
(132) and look for observationally acceptable parameter
space. We found that, among the many regions where slow-
roll inflation could be realized, only the case with
p ¼ q ¼ 2, 4, and 6 in the chaotic type regime (where
jϕ�j ≫ jvj) falls within 2σ region of the newest BICEP/
Keck results [65] [see Fig. 2(b)].
Finally, to validate our method, we performed numerical

simulations inwhichwe solved exact perturbation equations
in the Einstein frame and compared them with our Jordan
frame slow-roll approximations. As can be seen in the
Appendix and Fig. 2(b), the agreement is very good indeed.
In this work, we neglected a possible contribution from

matter fields to the dynamics of the system. We also
analyzed single field models only. These simplifications
allowed a simple check of the above results by transforming
the action into the Einstein frame and performing exact
computations numerically. In the future, we plan to extend
our formalism by including those complications, such as
matter fields and considering multifield models, which will
bring us closer to the real motivation of this work.
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APPENDIX: COMPARISON OF FLOW
PARAMETERS WITH NUMERICAL

SIMULATIONS

To see how well our approximations perform, we
compared them with exact numerical solutions. To that
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purpose, we used the induced gravity model in Eqs. (131)
and (132) with p ¼ q ¼ 2 and ϕ�=v ≫ 1. As shown in
Fig. 2(b), this model conforms to observations very well.
The numerical simulations are performed in both

frames. In the case of the Einstein frame, we first transform
the Jordan frame action in Eq. (53) using the conformal
transformation in Eq. (16). This results in a scalar field with
a noncanonical kinetic function as in Eq. (25) and back-
ground equations (26), (30), and (31). Using Eq. (51), they
can be also expressed in terms of the number of e-folds N̂,

d2ϕ

dN̂2
−
�
3 −

1

Ĥ

dĤ

dN̂

�
dϕ

dN̂
þ 1

2

K;ϕ

K

�
dϕ

dN̂

�
2

þ U;ϕ

KĤ2
¼ 0;

ðA1Þ

Ĥ2 ¼ UðϕÞ
3 − 1

2
Kðdϕ

dN̂
Þ2 ; ðA2Þ

dĤ

dN̂
¼ 1

2
KĤ

�
dϕ

dN̂

�
2

; ðA3Þ

where the kinetic term is given by

K ¼
�
1

ξ
þ 6

�
1

ϕ2
; ðA4Þ

and the lapse function N̂ ¼ ffiffiffiffi
F

p ¼ ffiffiffi
ξ

p
ϕ.

Alongside homogeneous equations, we also integrate
equations for perturbations. The curvature perturbation R̂k
is related to the field perturbations δϕk by [21]

R̂k ¼ −
ûk

â dϕ
dN̂

ffiffiffiffi
K

p ; ðA5Þ

where ûk ≡ â
ffiffiffiffi
K

p
δϕk is the Mukhanov-Sasaki variable.

The evolution of R̂k is governed by the equation

̈R̂k þ
�
ð3þ ϵ̂2Þ

ffiffiffiffi
F

p
−
1

2

_F

ĤF

�
Ĥ _̂Rk þ F

k2

â2
R̂k ¼ 0: ðA6Þ

In terms of the number of e-folds, it can be written as

d2R̂k

dN̂2
− ð3 − ϵ̂1 þ ϵ̂2Þ

dR̂k

dN̂
þ k2

â2Ĥ2
R̂k ¼ 0; ðA7Þ

where the Hubble-flow parameters ϵ̂i are defined in Eq. (6).
The above equation is solved starting from Bunch-Davies
vacuum initial conditions,

ûk;vac ¼
1ffiffiffiffiffi
2k

p eik=ðâ ĤÞ; ðA8Þ

N̂ ¼ 5 e-folds before the horizon exit, which is defined as
k ¼ â Ĥ, until N̂ ¼ 5 e-folds after the horizon exit. The

latter five e-folds are added in order to make it certain
that the decaying mode is negligible and R̂k remains
constant afterward, whereas we start integrating
five e-folds before horizon-crossing time to ensure that
k=ðâ ĤÞ ≫ 1, so Eq. (A8) is a good approximation for the
field perturbations.
The power spectrum of R̂ and the spectral tilt are

computed using

As ¼
k3

2π2
jR̂kj2; ðA9Þ

and

ns − 1 ¼ d lnAs

d ln k
: ðA10Þ

Similarly, we compute the amplitude of tensor perturba-
tions. In terms of the number of N̂ e-folds, it is given by

d2ĥk
dN̂2

− ð3 − ϵ̂1Þ
dĥk
dN̂

þ k2

â2Ĥ2
ĥk ¼ 0; ðA11Þ

with initial conditions

ĥk;vac ¼ 2
ûk;vac
â

: ðA12Þ

The tensor-to-scalar ratio is given by

r≡ At

As
; ðA13Þ

where the tensor amplitude is defined by

At ¼
k3

2π2
jĥkj2: ðA14Þ

As we integrate Eqs. (A1)–(A3), (A7), and (A11), we
also compute the coordinate time using Eq. (51),

tend − t ¼
ẐN
0

dN̂ffiffiffiffi
F

p
Ĥ
; ðA15Þ

where tend > t and tend is an arbitrary value at the end of
inflation.
In the Jordan frame, we only need to integrate homo-

geneous equations. To make sure we start from the same
spatial slice, the initial values of ϕ and _ϕ are taken exactly
the same as in the simulations above. Then, using defi-
nitions of N̂ and N in Eqs. (51) and (103) together with
Eqs. (59) and (60), we can relate the derivatives in both
frames by

dϕ
dN

¼ 1

1þ F;ϕ

2F
dϕ
dN̂

dϕ

dN̂
: ðA16Þ
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(a) (b)

(c) (d)

(e)

FIG. 5. The comparison of exact, numerical Einstein frame results and approximate relations derived in this work. We used the model
defined in Eqs. (131) and (132) with p ¼ q ¼ 2. These functions are plotted against the time t, which enumerates spatial slices and are
shown on the lower horizontal axis. The upper horizontal axis shows the corresponding e-fold number N̂ðtÞ in the Einstein frame for the
reference. (a) Numerical check of Eq. (107), where γ is approximated by Eq. (99). (b)–(e) Numerical check of Eqs. (94), (96), (97), and
(98), respectively.
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The homogeneous system of Jordan frame equations that
we are solving are given in Eqs. (61)–(63). In terms of
e-fold numbers N, they can be written as

d2ϕ
dN2

− ð3 − ϵ1Þ
dϕ
dN

þ V;ϕ

H2
¼ 3F;ϕð2 − ϵ1Þ; ðA17Þ

H2 ¼ V
3F

1

1 − 1
6F ðdϕdNÞ2 þ 2θ1

; ðA18Þ

ϵ1 ¼ −
ðdϕdNÞ2 þ dF

dN þ d2F
dN2

2Fð1þ θ1Þ
; ðA19Þ

where θ1 is defined in Eq. (66). The coordinate time is
calculated by integrating [cf. Eq. (103)]

tend − t ¼
ZN
0

dN
H

: ðA20Þ

Having computed the time variable t in both frames, we
can compare the results from the Jordan and Einstein
frames on the same time slice. The results are shown in
Fig. 5. In that figure, we compare the exact Einstein frame
calculations with the corresponding Jordan frame slow-roll
approximations. In particular, in Figs. 5(a) and 5(b), we see
that the agreement between the first two Einstein frame
Hubble-flow parameters and their expressions in terms of

Jordan frame flow parameters agree very well. While
looking at Figs. 5(c)–5(e), we can conclude the same
about the exact simulations of inflation observables and
their approximate expressions in terms of Jordan frame
flow parameters.
We can also check numerically the exact relation

between N̂ and N in Eq. (105). We plot their values on
the same spatial slice in Fig. 6. As one can see, adding the
e-fold shift number makes both curves N̂ðtÞ and NðtÞ
overlap exactly.
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