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We continue our exploration of the wiggly generalization of the velocity-dependent one scale model for
cosmic strings, through the study of its allowed asymptotic scaling solutions. We extend the work of a
previous paper [A. R. R. Almeida and C. J. A. P. Martins, Phys. Rev. D 104, 043524 (2021).] by
considering the more comprehensive case of a time-varying coarse-graining scale for the string wiggles.
The modeling of the evolution of the network therefore relies on three main mechanisms: Hubble
expansion, energy transfer mechanisms (e.g., the production of loops and wiggles) and the choice of the
scale at which wiggles are coarse-grained. We analyze the role of each of them on the overall behavior of
the network, and thus in the allowed scaling solutions. In Minkowski space, we find that linear scaling,
previously observed in numerical simulations without expansion, is not possible with a changing averaging
scale. For expanding universes, we find that the three broad classes of scaling solutions—with the
wiggliness disappearing, reaching scaling, or growing—still exist but are differently impacted by the time
evolution of the coarse-graining scale. Nambu-Goto type solutions (without wiggles) are unaffected,
growing wiggliness solutions are trivially generalized, while for solutions where wiggliness reaches scaling
the expansion rate for which the solution exists is decreased with respect to the one for a fixed coarse-
graining scale. Finally, we also show that the inclusion of a time-varying coarse-graining scale allows, in
principle, for additional scaling solutions which, although mathematically valid, are not physical. Overall,
our mapping of the landscape of the allowed scaling solutions of the wiggly velocity-dependent one scale
model paves the way for the detailed testing of the model, to be done by forthcoming high-resolution field
theory and Nambu-Goto simulations.
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I. INTRODUCTION

Topological defects are predicted to have been formed
during phase transitions in the very early universe, as a
consequence of the Kibble mechanism [1]. Depending on
the topology of the vacuum manifold one can have various
classes of defects, with cosmic strings being the best
motivated and cosmologically more interesting ones. The
study of cosmic string network evolution is therefore an
important part of understanding the physics of the early
phases of the universe [2].
However, due to the complexity inherent to string

networks, a detailed quantitative understanding of cosmic
string evolution is difficult. The best approach to this
problem relies on the interplay between Nambu-Goto or
Abelian-Higgs numerical simulations [3–14] and analytic
modeling. Analytic models are rigorously derived from first
principles, using the string microphysics so as to derive

equations that govern the evolution of the network
expressed in terms of the relevant macroscopic quantities.
The loss of information that comes with this procedure is
encapsulated in the form of phenomenological parameters
which have to be calibrated with simulation data.
The most successful model of cosmic string evolution to

date is the so-called velocity-dependent one scale (VOS)
model [15–18], which has been extensively and success-
fully tested against numerical simulations of cosmic strings
[5,6,12,14]; analogous models also exist for other topo-
logical defects [18]. The VOS is able to provide an accurate
depiction of the large-scale behavior for the simplest
cosmic string networks. Nevertheless, efforts to extend it
for describing cosmologically more realistic networks of
strings, whose string world sheets are expected to have
additional degrees of freedom, are more recent. This
limitation is evident in the inability of the first-generation
VOS to explicitly take into account the behavior of the
small-scale structure that is known to build up in realistic
string networks [6,19,20]. Numerical simulations have
demonstrated the presence of non-negligible amounts of
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short-wavelength propagation modes (known as wiggles) at
scales significantly below the correlation length. Because
small-scale structure is a by-product of the energy loss
phenomena of the network, an accurate picture of cosmic
string evolution can only be achieved if these small-scale
dynamical processes are also modelled. This motivated a
wiggly generalization of the VOS [21,22], which explicitly
describes the evolution of small-scale structure in the
network, while also retaining the ability of the VOS to
capture the large-scale properties of the network.
In a previous paper [23] (henceforth denoted Paper I) we

improved the physical interpretation of the wiggly model
through an exploration of the mathematical landscape of
asymptotic scaling solutions. Specifically, we focused on
the case of a constant coarse-graining scale for the small-
scale structures, and identified three classes of network
scaling solutions, which describe physically different
behaviors of the small-scale structure of the network. In
addition to the Nambu-Goto solution (without wiggles), to
which the wiggly model reduces in the appropriate limit,
there are also solutions where the wiggliness of the network
grows, and, under more specific conditions, also solutions
where the wiggliness can itself reach scaling. Other things
being equal, which of the three regimes occurs depends
primarily on the expansion rate. One consequence of this is
that the full scaling of the network, including the wiggli-
ness, is more likely in the matter era than in the radiation
epoch, which is agreement with numerical studies [3,4,6].
On the other hand, in Minkowski space, linear scaling is
possible in the model, again in agreement with Minkowski
space numerical simulations [6,24].
The present work continues the study of the asymptotic

scaling solutions of the wiggly model, now extending this
analysis to cases where the coarse-graining scale is allowed
to vary. Specifically, we consider averaging scales which
vary as a power law of physical time. This choice is done in
part for the sake of mathematical tractability, but also
because it allows us to consider what is arguably the best
physically motivated choice for such a nonconstant scale:
that of the correlation length, which in most circumstances
is itself expected to vary as a power law of time. This allows
us to address, in a wider parameter space, a question which
was already the focus of Paper I: whether small-scale
structure reaches scaling, and under what physical con-
ditions this can happen. Additionally, this also enables us to
further clarify the role of each physical mechanism on the
evolution of the network. In this regard, Paper I focused on
the role of the cosmological expansion rate (also including
the particular case of Minkowski space) and of the net-
work’s energy transfer mechanisms (e.g., the production of
loops and wiggles). In the present work the role of the time-
varying averaging scale is also included in this analysis.
This paper is laid out as follows. We start with a brief

review of the mathematical formalism underlying the
wiggly extension of the VOS model in Sec. II. In
Secs. III and IV, we present the scaling solutions of the

wiggly model in Minkowski and power-law expanding
universes, respectively, and discuss their physical interpre-
tation. This structure mirrors the one of Paper I, which will
hopefully facilitate the comparison of the results of the two
works—in other words, many (though not all) of the
solutions to be discussed in what follows are extensions
of solutions already presented in Paper I. Some of these
solutions were also briefly reported in a recent conference
proceedings [25]. Lastly, our findings are summarized
in Sec. V.

II. THE VOS MODEL FOR WIGGLY COSMIC
STRING EVOLUTION

In this section we provide a short introduction to the
physical assumptions and mathematical formalism of the
VOS model and its wiggly extension. This is a review of
previous work in the literature, and in particular it is a
shorter version of the discussion in Sec. II of Paper I, but it
is presented here in order to make the present work
reasonably self-contained, in particular by defining all
the relevant variables.
The canonical VOS framework provides a quantitative

description of the evolution of a string network in terms of
two macroscopic quantities: a root-mean squared velocity v
and a characteristic length scale Lwhich is identified as the
string correlation length ξ and the string curvature radius
R. The VOS retains the one-scale assumption of Kibble’s
original model [26,27], but with the inclusion of a mean
velocity as an additional dynamical variable, one is now
able to make quantitative predictions in various cosmo-
logical epochs.
One starts by defining the total energy of the network E

and the root-mean-square (RMS) velocity v

E ¼ μ0aðτÞ
Z

ϵdσ ð1Þ

v2 ¼
R
_x2ϵdσR
ϵdσ

; ð2Þ

where μ0 is the string mass per unit length. String networks
comprise long (or infinite) strings and small closed loops.
The following will concern long strings. On large scales,
these can be treated as a Brownian random walk [6], to
which we can assign a characteristic length scale (or
interstring separation) L. One can then express the energy
E ¼ ρV in terms of a length scale

ρ≡ μ0
L2

: ð3Þ

The averaging procedure comes with a cost: the introduc-
tion of phenomenological parameters that account for the
small-scale physics of the network. In particular, the
fraction of energy lost into the production of loops
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is encoded in a loop chopping efficiency parameter c,
defined as

�
dρ
dt

�
to loops

¼ cv
ρ

L
: ð4Þ

In addition, the presence of small-scale wiggles on the
strings motivates the inclusion of the momentum (or
curvature) parameter kðvÞ, for which detailed descriptions
can be found in [12,16]. The VOS evolution equations can
then be shown to have the following form

2
dL
dt

¼ 2HLð1þ v2Þ þ cv ð5Þ

dv
dt

¼ ð1 − v2Þ
�
kðvÞ
L

− 2Hv

�
; ð6Þ

where H ≡ _a=a is the Hubble parameter.
The one-scale approximation underlying the original

VOS framework, L ¼ ξ ¼ R, implies that the model is
unable to accurately capture the dynamics at length scales
below the characteristic length. This motivates the wiggly
VOS extension, whose thorough mathematical derivation
can be found in [21,22]. Its starting point is noting that
wiggly strings have an energy density in the locally
preferred string rest frame (denoted U) and a local string
tension (denoted T) which are not identical nor constants,
as would be the case in the Nambu-Goto case. Specifically,
one can define them to depend on a dimensionless
parameter w that ranges from 0 to 1 (unity being the value
of a Nambu-Goto string), such that

T ¼ wμ0 ð7Þ

U ¼ μ0
w
; ð8Þ

and therefore T=U ¼ w2.
This motivates the redefinition of the total energy

E ¼ a
Z

ϵU dσ ¼ μ0a
Z

ϵ

w
dσ; ð9Þ

which is due to two main contributions: one from the bare
strings

E0 ¼ μ0a
Z

ϵdσ; ð10Þ

with the rest lying in the small-scale wiggles. Naturally, one
can assign characteristic length scales to each energy
contribution. The string correlation length is defined with
respect to the bare string density

ρ0 ≡ μ0
ξ2

; ð11Þ

and is a measure of the characteristic length of a Brownian
network; the string wiggle density is denoted ρw. While the
correlation length is still physically meaningful, the char-
acteristic length scale L only serves as a proxy for the total
energy in the network,

ρ≡ μ0
L2

; ð12Þ

which is trivially the sum of the bare and wiggle densities.
A quantitative description of small-scale structure evolution
is accomplished by introducing an additional quantity in
the model, a renormalized string mass per unit length μ,
which is a measure of the energy due to the wiggliness of
the network. It is natural to define it as a ratio between the
total energy of the network and the energy in the bare string
segments

μ≡ E
E0

¼ hwi−1; ð13Þ

or, equivalently, a ratio between length scales

ξ2 ¼ μL2: ð14Þ

Evidently, μ is expected to take values greater than the
unity, with μ ¼ 1 corresponding to the Nambu-Goto case.
Moreover, from Eq. (14) it becomes clear that we depart
from the one-scale assumption of the VOS, as we now have
two distinct length scales which will have distinct evolu-
tion. Consequently, our averaged model for wiggly cosmic
string evolution will entail three independent differential
equations, as opposed to two. In the last equality of
Eq. (13), the < � � � > denotes an average over the string
network. For a generic quantity Q, this is defined as

hQi ¼
R
QUϵdσR
Uϵdσ

¼
R
Q ϵ

w dσR
ϵ
w dσ

; ð15Þ

which attributes more weight to string segments with
greater mass currents.
We also need additional phenomenological terms that

model the energy transfers within the network, as some of
them contribute to the generation of small-scale structure,
while others are instrumental in its loss. Long string
intercommutings increase the number of kinks on the
string network, thus transferring energy to the wiggles.
This process can be modelled as�

1

ρ0

dρ0
dt

�
wig

¼ −csðμÞ v
ξ
; ð16Þ

such that s vanishes in the Nambu-Goto limit and should
also account for kink decay by gravitational radiation.
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Although kink formation occurs independently of loop
production, intercommutings can also lead to the formation
of loops. In fact, Nambu-Goto numerical simulations
[3,4,6] suggest that small-scale structure might stimulate
loop production. Phenomenologically, this translates into a
function f0 which explicitly depends on μ. By analogy with
Eq. (4), we define the fraction of the bare energy density
lost into loops per unit time as�

1

ρ0

dρ0
dt

�
loop

¼ −cf0ðμÞ
v
ξ
; ð17Þ

in the Nambu-Goto limit μ → 1 f0 should approach unity,
such that Eq. (4) is retrieved. Finally, one must also take
into account that a fraction of the total energy lost into
loops comes from the small-scale wiggles�

1

ρw

dρw
dt

�
loop

¼ −cf1ðμÞ
v
ξ
: ð18Þ

All in all, the total energy lost into loop the production is
given by�
1

ρ

dρ
dt

�
loop

¼
�
1

ρ

dρ0
dt

�
loop

þ
�
1

ρ

dρw
dt

�
loop

≡ −cfðμÞ v
ξ
;

ð19Þ

where, for the sake of simplicity, in the last equality we
have defined an overall loss parameter, f, which also has a
dependence on μ so as to account for the fact that loop
production is favored in regions of the network containing
more small-scale structure than average. As in Paper I, and
following the earlier discussion in [22], we assume that the
energy loss parameters take the form

f0ðμÞ ¼ 1

fðμÞ ¼ 1þ η

�
1 −

1ffiffiffi
μ

p
�

sðμÞ ¼ D

�
1 −

1

μ2

�
; ð20Þ

with η and D being new phenomenological parameters that
can be understood as probabilities for small-scale structure
loss and gain, respectively.
Lastly, it should be noted that μ has an explicit

dependence on time, but also on the coarse-graining scale,
denoted l; in other words, μ ¼ μðl; tÞ [6]. The analysis of

Paper I was limited to the case l ¼ const; in what follows,
we discuss the general case where l can itself be time-
dependent.
This coarse-graining scale (which can be, approximately

but not exactly, envisaged as a renormalization scale in the
particle physics sense) should be understood as a scale
below the correlation length that is also large enough so that
spatial variations in the energy density can be neglected. In
other words, this provides a mesoscopic scale in the
analytic model, which for that reason can no longer be a
purely one-scale model. Physically, a change in this scale
simply modifies the way the network energy is distributed
between the bare string and the small-scale wiggles, while
the total energy of the network is unaffected by this
division. In other words, with a varying coarse-graining
scale, scaling solutions are expected to be scale-dependent
in the sense that the previously defined v and ξ (or
equivalently μ) should all be dependent on the coarse-
graining scale. On the other hand one does not expect such
a scale dependence for the characteristic length scale L,
which is simply a measure of the total energy of the
network and therefore should be independent of l. Indeed,
solutions exhibiting such a dependence in L should be
considered nonphysical.
Changing the coarse-graining scale is equivalent to

redefining what small-scale structure is, and thus will
not only affect the value of μ but also those of E0

(equivalently, ρ0 or ξ) and of v. This is accounted for by
introducing the following scale-drift terms

1

μ

∂μ

∂l
dl
dt

∼
dm − 1

l
dl
dt

ð21Þ

∂v2

∂l
dl
dt

¼ 1 − v2

1þ hw2i
∂hw2i
∂l

dl
dt

; ð22Þ

where dmðlÞ is the multifractal dimension of a string
segment at scale l [28]. Note that Eq. (21) is a mere
geometric identity, whereas Eq. (22) ensures energy con-
servation at all scales.
With these definitions, and with the further assumption

of uniform wiggliness (in other words, that w varies only in
time), one can obtain the evolution equations for the wiggly
extension of the VOS model, which have the following
form

2
dL
dt

¼ HL

�
3þ v2 −

ð1 − v2Þ
μ2

�
þ cfvffiffiffi

μ
p ð23Þ

2
dξ
dt

¼ Hξ

�
2þ

�
1þ 1

μ2

�
v2
�
þ v

�
k

�
1 −

1

μ2

�
þ cðf0 þ sÞ

�
þ ½dmðlÞ − 1� ξ

l
dl
dt

ð24Þ
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dv
dt

¼ð1−v2Þ
�
kðvÞ
ξμ2

−Hv

�
1þ 1

μ2

�
−

1

1þμ2
½dmðlÞ−1�

vl
dl
dt

�
ð25Þ

1

μ

dμ
dt

¼ v
ξ

�
k

�
1 −

1

μ2

�
− cðf − f0 − sÞ

�

−H
�
1 −

1

μ2

�
þ ½dmðlÞ − 1�

l
dl
dt

: ð26Þ

We note that the Eqs. (23), (24), and (26) are related by
Eq. (14), and therefore only two of them are independent.
It is clear from these equations that the evolution of the

network is driven by three main mechanisms: expansion,
energy losses, and the choice of the scale in which wiggles
are coarse-grained. Understanding the roles of all three is
important to ascertain whether small-scale structure reaches
scaling, i.e., whether μ evolves toward a constant value, and
under what physical conditions this can happen. From a
physical point of view, there are three possible scaling
regimes: wiggliness can disappear (the trivial Nambu-
Goto), reach scaling (becoming a constant) or grow.
Numerical simulations [6] suggest that small-scale scaling
is achieved at least in the matter-dominated era, with the
interpretation in the radiation era being less clear. These
questions provide the overall motivation for the exploration
of the nontrivial solutions of the wiggly model.
As in Paper I, we carry out a systematic study of the

asymptotic scaling solutions of the wiggly generalization of

the VOS. Specifically, we consider scaling solutions of the
generic form

L ¼ ζ0tα

v ¼ v0tβ

μ ¼ m0tγ; ð27Þ

using Eq. (14), this also leads to

ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0tαþγ=2: ð28Þ

For convenience, Table I summarizes the eleven different
scaling solutions obtained in Paper I, and the main
conditions under which they are valid.
In what follows we extend the earlier work by consid-

ering a time-evolving coarse-graining scale. In particular,
we consider a power-law shaped scale

l ¼ l0tδ: ð29Þ

More specifically, we consider strictly nonzero values of
this power law, that is 0 < δ ≤ 1, with the upper limit being
set by causality. Moreover, note that we can consider the
case l ¼ ξ (corresponding to using the correlation length
itself as the coarse-graining scale) by making the specific
choice δ ¼ αþ γ=2. We also adopt the following phenom-
enological relation for the fractal dimension

TABLE I. The eleven scaling solutions obtained in Paper I, together with the conditions under which they apply. The first column
denotes the equation in Paper I in which the solution is first presented. The second and third columns indicate whether expansion and
energy losses are assumed to be present. The next four columns denote (sometimes in a simplified way), the scaling laws for the VOS
dynamical variables L, v, μ, and ξ, defined in the text; quantities with an index 0 denote constants. The parameter λ refers to the
expansion rate of the universe, which is assumed to be aðtÞ ∝ tλ. The final column presents the main or simplest necessary conditions on
the model parameters; these are necessary conditions for the solution to exist, but in some cases they are not sufficient (i.e., additional
conditions involving the model parameters also apply).

Paper I Expansion Energy losses L v μ ξ Condition(s)

Eq. (37) No No L ¼ ζ0 v ¼ v0 μ ¼ m0 ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0 None

Eq. (38) No Yes L ¼ ζ0t v ¼ v0 μ ¼ m0 ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0t η ≥ D

Eq. (43) No Yes L ¼ ζ0t1−γ=2 v ¼ v0 μ ¼ m0tγ ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0t η < D, γ ¼ 2 D−η

1þD

Eq. (49) Yes No L ¼ k
2

ffiffiffiffiffiffiffiffiffiffi
λð1−λÞ

p t v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−1 − 1

p
μ ¼ 1 ξ ¼ L λ ≥ 2

3

Eq. (50) Yes No L ¼ ζ0t v ¼ 1ffiffiffiffiffiffiffiffiffi
1þm2

0

p μ ¼ m0 ξ ¼ 3
2
kv0t λ ¼ 2

3

Eq. (52) Yes No L ¼ ζ0t3λ=2 v ¼ v0t−λ μ ¼ m0t2−5λ ξ ¼ kv0
2−4λ t

1−λ λ ≤ 1
3

Eq. (55) Yes No L ¼ ζ0t3λ=2 v ¼ tλ−2=3ffiffiffiffiffiffiffiffi
3λ−1

p
m0

μ ¼ m0t2=3−λ ξ ¼ 3
2
kv0tλþ1=3 1

3
< λ < 2

3

Eq. (63) Yes Yes L ¼ ζ0t v ¼ v0 μ ¼ 1 ξ ¼ L λ ≥ 2k
3kþc

Eq. (66) Yes Yes L ¼ ζ0t v ¼ v0 μ ¼ m0 ξ ¼ k
λv0ð1þm2

0
Þ t λ ¼ 2keff

3keffþceff

Eq. (81) Yes Yes L ¼ ζ0t1−λ−γ=2 v ¼ v0t−λ μ ¼ m0tγ ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0t1−λ λ ≤ keff

3keffþceff

Eq. (85) Yes Yes L ¼ ζ0t1−3γ=2 v ¼ v0t−γ μ ¼ m0tγ ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0t1−γ

keff
3keffþceff

< λ < 2keff
3keffþceff
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dmðμÞ ¼ 2 −
1

μ2
: ð30Þ

For convenience we also recall the definitions of the two
effective parameters introduced in Paper I

keff ≡ kþ cðD − ηÞ ð31Þ

ceff ≡ cð1þ ηÞ: ð32Þ

These effective parameters are physicallymeaningful, as the
existence of small-scale structure on the network modifies
string curvature and further stimulates energy losses. Our
analysis will follow the same structure as in Paper I,
separately treating the solutions in Minkowski space and
then for power law expanding universes. The reasoning for
this separation is that the momentum parameter k ¼ kðvÞ is
expected to vanish in the former case but is nonzero in the
latter. Finally, we note that in our discussion of the scaling
solutionswewill generally denote themomentumparameter
simply by k; its velocity dependence is not explicitly
relevant since all the scaling solutions either imply v ¼
const: or v → 0, and in both of these regimes kðvÞ reduces to
a constant value. Lastly, in what follows we discard ultra-
relativistic v ¼ 1 solutions as these hold no physical
relevance despite being mathematically allowed.

III. SCALING SOLUTIONS WITHOUT
EXPANSION

Here we consider solutions in Minkowski space, by
setting H ¼ 0. We recall that in this case we expect the
VOS model to hold for a vanishing momentum parameter
k ¼ 0 [6,12,17,18].

A. Without energy losses

We start by considering the simplest case possible, with
the only dynamical mechanism being the varying coarse-
graining scale itself. It follows from Eq. (23) that the
characteristic length scale of the network is constant, which
is a direct consequence of the conservation of the total
energy density of the network. We find two distinct scaling
regimes, the first being the trivial Nambu-Goto solution

L ¼ ζ0

v ¼ v0

μ ¼ 1

ξ ¼ L; ð33Þ

this is analogous to the solution of Eq. (37) of Paper I, with
the exception that the wiggliness is no longer arbitrary but
restricted to the Nambu-Goto value μ ¼ 1. Not only do the
scaling coefficients not exhibit any explicit dependence on
the scale, but this solution also exists for any value of δ.

This solution trivially shows that in the absence of small-
scale structure, a change of the coarse-graining scale has no
impact on our description of the network.
The second solution is nontrivial, having growing small-

scale structure

L ¼ ζ0

v ¼ v0t−δ

μ ¼ m0tδ

ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0tδ=2; ð34Þ

subject to the following constraint

v20m
2
0 ¼ 1: ð35Þ

Equivalently this solution can be written, in terms of l, as

v−1 ∝ μ ∝ l; ξ ∝
ffiffiffi
l

p
; ð36Þ

this solution, like the previous one, still exists for any value
of δ ≠ 0. In the presence of small-scale structure, a growing
coarse-graining scale leads to correspondingly larger wigg-
liness on that scale, which (as required by energy con-
servation, since no energy loss mechanisms are present) is
compensated by a decreasing velocity on that same scale.
This is one example of the point, already made in the
previous section, in other words, that by varying the coarse-
graining scale we are merely changing the way in which the
network’s energy is distributed between the bare string and
the wiggles, with the total energy being conserved.
Moreover, the condition imposed by Eq. (35) suggests

that, just like the wiggliness, the velocity is also a scale-
dependent quantity. Therefore this also suggests that in the
context of the wiggly VOS model, the velocity should be
interpreted as a mesoscopic velocity rather than a micro-
scopic RMS one. These two interpretations have been
previously discussed in [21,22].
We also note that the first solution can be obtained by

taking the fixed scale limit δ → 0 of the second one.
Finally, the specific case l ∝ ξ would correspond to
δ ¼ γ=2, while the second solution has γ ¼ δ; together,
these imply δ ¼ γ ¼ 0. One therefore concludes that for the
choice of an averaging scale equal to the network’s
correlation length, l ∝ ξ, there is no nontrivial scaling
solution (other than the Nambu-Goto one).

B. With energy losses

We now allow for the possibility of energy losses within
the network. In particular, we assume the energy loss terms
previously introduced in Eq. (20). The presence of energy
losses leads to a different dynamics of the characteristic
length scale. We again find two possible solutions.
The first solution is simply the Nambu-Goto solution,

implying linear scaling of both length scales

A. ALMEIDA and C. J. A. P. MARTINS PHYS. REV. D 106, 083525 (2022)

083525-6



L ¼ 1

2
cv0t

v ¼ v0

μ ¼ 1

ξ ¼ L: ð37Þ

This solution is analogous to that of Eq. (38) of Paper I,
again with the caveat that the constant m0 is no longer
arbitrary but restricted to the Nambu-Goto case, μ ¼ 1.
Clearly, the solution reflects the fact that if there is no
small-scale structure on the strings, then a change in coarse-
graining scale makes no difference.
The second scaling regime consists of a growing

wiggliness solution, but now the characteristic length scale
is also affected. The solution has the following form

L ¼ ζ0tα

v ¼ v0t−γ

μ ¼ m0tγ

ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0t1−γ; ð38Þ

subject to the following conditions

α ¼ ð2
3
− δÞð1þ ηÞ

2
3
ð1þ ηÞ þ 2ðD − ηÞ ð39Þ

γ ¼ 2ðD − ηÞ þ δð1þ ηÞ
3ðD − ηÞ þ ð1þ ηÞ ð40Þ

cv0ffiffiffiffiffiffi
m0

p
ζ0

¼ 2 − 3δ

3ðD − ηÞ þ ð1þ ηÞ ð41Þ

η < D ð42Þ

0 < δ ¼ γv20m
2
0 <

2

3
: ð43Þ

We note that in this second case taking the limit δ → 0
effectively leads to solutions akin to that of Eq. (43) of
Paper I, with γ → 0, α → 1 and ðD − ηÞ → 0. A second
novelty, as compared to the solutions described so far, is
that δ is no longer arbitrary but limited by the condition
δ < 2=3. This may be interpreted as a consequence of the
energy losses of the network: if the coarse-graining scale
does not evolve slowly enough, one is unable to find small-
scale structure. For faster growing scales, the only math-
ematically allowed solution is the Nambu-Goto one, and no
small-scale structure is seen. Physically, this means that all
the energy is ascribed to the bare strings.
On the other hand, taking the limit of no energy losses

ðD; ηÞ → 0 partially recovers the previous behavior of
Eq. (34), and of Eq. (38) of Paper I. Specifically, the

wiggliness and velocity have the expected complementary
behavior, with −β ¼ γ ¼ δ, but the behavior of α is now
scale-dependent [with α ¼ 1–3δ=2, unlike Eq. (34)], and
consequently ξ is no longer scaling linearly (instead we
have ξ ∝ t1−δ, unlike Eq. (38) of Paper I).
This explicit relation between δ and α in Eq. (39)

corresponds to an apparent scale dependence of the total
energy of the network. As has already been mentioned, one
would expect the total energy of the network to be a scale-
invariant quantity, independent of the coarse-graining scale.
(In other words, the choice of coarse-graining scale can
affect how the energy is distributed between the bare string
and the wiggles, but should not affect how the network
loses energy.) This may simply indicate that this solution is
unphysical for generic choices of δ, or in other words, that
scaling solutions of this kind do not exist. The only cases
where such a solution is well-behaved are the limiting cases
δ → 0 and δ → 2=3, which respectively lead to solutions
with α ¼ 1 and α ¼ 0, both of which have been previously
discussed.
Finally, if we specifically choose the scale to be that of

the correlation length, l ∝ ξ, we require δ ¼ αþ γ=2 ¼
1 − γ from which we find

δ ¼ 1þD
2ð1þ ηÞ þ 3ðD − ηÞ ð44Þ

α ¼ 1

2

ð1þ ηÞ
3ðD − ηÞ þ 2ð1þ ηÞ ð45Þ

γ ¼ 2ðD − ηÞ þ ð1þ ηÞ
3ðD − ηÞ þ 2ð1þ ηÞ ð46Þ

ζ0
ffiffiffiffiffiffi
m0

p ¼ cv0½2ð1þ ηÞ þ 3ðD − ηÞ� ð47Þ

v20m
2
0 ¼

1þD
ð1þ ηÞ þ 2ðD − ηÞ : ð48Þ

Since we require that δ < 2=3, we are led to the following
condition

η <
1

2
ð1þ 3DÞ ð49Þ

which is more stringent than the previous η < D, which
also led to growing wiggliness solutions for δ ¼ 0,
cf. Eq. (38) in Paper I. The physical interpretation of this
stronger bound is clear; the small-scale structure losses
must not only be smaller than the gains, but must be smaller
enough such that the small-structure can still grow if the
coarse-graining scale is also growing.
We can additionally take the limit of no energy loss,

ðD − ηÞ → 0, which yields
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L ∝
ffiffiffi
l

p
∝ t1=4; v−1 ∝ μ ∝ ξ ∝ l ∝ t1=2: ð50Þ

Unlike the case of no energy losses, here there is a possible
solution with a time-evolving coarse-graining scale, but this
is not a linear scaling solution. Thus, in this case there is still
no linear scaling other than the trivial Nambu-Goto one.

IV. SCALING SOLUTIONS
IN EXPANDING UNIVERSES

We now consider solutions in expanding universes, and
more precisely, power-law expanding universes of the form
aðtÞ ∝ tλ, with 0 < λ < 1. In this case, one expects k ≠ 0 as
confirmed by numerical simulations [6]. Following the
structure of the previous section, we first examine the case
without energy losses and then the more realistic case
where they are allowed.

A. Without energy losses

In this case, the three classes of scaling regimes are
possible. For the sake of clarity, we describe each in a
separate subsubsection.

1. Nambu-Goto solution

First, we have the Nambu-Goto scaling regime corre-
sponding to Eq. (49) of Paper I

L ¼ k

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1 − λÞp t

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−1 − 1

p
μ ¼ 1

ξ ¼ k

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1 − λÞp t; ð51Þ

with the same restrictions as in the δ ¼ 0 case. If we
interpret this velocity as a microscopic one and only require
v20 < 1, this condition restricts the expansion rates to
λ > 1=2, while if we interpret it as an average or meso-
scopic one, the mean loop velocity in Minkowski space
leads to the requirement that v20 ≤ 1=2, which makes this
solution physically viable only in the range λ ≥ 2=3. In
either case, slower expansion rates do not ensure sufficient
Hubble damping for the network to reach linear scaling. It
follows that scaling cannot be reached in the radiation-
dominated era, as the network simply does not lose
sufficient energy, but can be attained in the matter era.
Again the interpretation of this solution is straightforward:
since there is no small-scale structure, the introduction of a
time-dependent averaging scale neither affects the scaling
behavior of the VOS solution, nor does it impose any
restriction on δ.

2. Full scaling

Second, there is also a constant wiggliness solution

L ¼ ζ0t

v ¼ v0

μ ¼ m0

ξ ¼ kv0
λþ δ

t: ð52Þ

subject to the following constraints

v20 ¼
1þ ð2λ−1 − 3Þm2

0

1þm2
0

ð53Þ

δ ¼
�
1 −

3

2
λ

�
m2

0ð1þm2
0Þ ð54Þ

max

�
1

2
;
2

3

�
1 −

1

m2
0ð1þm2

0Þ
��

< λ <
2

3
: ð55Þ

Note that Eq. (52) shows that the correlation length,
whose normalization is inversely proportional to (λþ δ),
becomes smaller for faster growing coarse-graining scales.
For δ ¼ 0 one has λ ¼ 2=3 and therefore ξ ¼ ð3=2Þkv0t.
This is clearly an extension of Eq. (50) of Paper I, to which
it exactly reduces if we take the limit δ → 0. It has been
shown in Paper I that a full scaling regime of this kind, with
no other dynamical mechanisms acting on the network, was
only possible in the matter era. It is physically fully
consistent that the inclusion of a growing coarse-graining
scale decreases the value of the expansion rate for which
this kind of regime can occur. This is illustrated in Fig. 1,
along with the increase of the allowed expansion rate with
the wiggliness.

FIG. 1. The expansion rate λ as dictated by Eq. (54), for various
values of the constant wiggliness m0, as a function of the
averaging scale exponent δ.
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In the last constraint, the upper limit comes from
requiring δ > 0, while the lower limits come from requiring
v20 < 1 and δ ≤ 1 (and therefore the first of the upper limits
is strict while for the second, the equality is allowed). In the
low wiggliness limit (m0 → 1) all the range of expansion
rates between radiation and matter era are allowed, while in
the large wiggliness limit (m0 → ∞) no expansion rate is
allowed, cf. Fig. 2.
The last condition, Eq. (55), implies that this solution can

exist, at most, for expansion rates between the radiation and
matter eras, 1=2 < λ < 2=3. However, note that this relies
on the velocity limit being assumed to be v20 < 1. If instead
one requires v20 < 1=2, then one gets the condition

λ >
4m2

0

7m2
0 − 1

; ð56Þ

here the allowed parameter space is to some extent
complementary to that of the last condition in Eq. (55),
cf. Fig. 2. In the limit m0 → 1 this reduces to λ > 2=3,
implying that with this assumption on the velocity, this
time-dependent coarse-graining scale extension of Eq. (50)
of Paper I is not physically allowed, and therefore that there
is no full scaling solution for the network (other than the
Nambu-Goto one, which has μ ¼ 1). On the other hand, as
the value of m0 increases, so does the range of allowed
expansion rates.
If we assume that Eq. (55) holds and therefore that this

generalization of Eq. (50) of Paper I does exist, we can
specifically choose the scale to be that of the correlation
length. In that case we must have δ ¼ 1, which leads to the
condition

m2
0ð1þm2

0Þ ¼
2

2 − 3λ
: ð57Þ

Specifically, for the radiation era (λ ¼ 1=2) one finds

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð

ffiffiffiffiffi
17

p
− 1Þ

r
∼ 1.25; ð58Þ

which is commensurate with the results of radiation era
numerical simulations [6], although we emphasize the
above solution does not include energy losses.

3. Growing wiggliness

Lastly, there are solutions where small-scale structure is
allowed to grow, which have exactly the same requirements
as the expansion-only case, that is α ¼ 3λ=2 (thereby
imposing the physical constraint λ < 2

3
), β < 0 (decaying

velocities), together with 3λ=3 − β þ γ=2 ¼ 1, and
β þ γ ≥ 0. These are extensions to the solutions given
by Eqs. (52) and (55) of Paper I, for slow and intermediate
expansion rates, which indeed are only minimally changed.
For slow expansion rates we have

L ¼ ζ0t3λ=2

v ¼ v0t−λ

μ ¼ m0t2−5λ

ξ ¼ kv0
2 − 4λþ δ

t1−λ: ð59Þ

with the conditions

ffiffiffiffiffiffi
m0

p
ζ0 ¼

kv0
2 − 4λþ δ

ð60Þ

λ ≤
1

3
; ð61Þ

which in the limit δ → 0 trivially recovers Eq. (52) of
Paper I.
In the intermediate expansion rate regime, which

includes the radiation-dominated era but not the matter
era, one has

L ¼ ζ0t3λ=2

v ¼ tλ−2=3ffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ − 1

p
m0

μ ¼ m0t2=3−λ

ξ ¼ kv0
δþ 2=3

tλþ1=3: ð62Þ

subject to the constraints

FIG. 2. The range of expansion rates λ allowed by Eqs. (55) and
(56), as a function of the constant wiggliness m0, respectively in
blue and red lines. In each case the allowed range is between the
black dotted and dashed lines (which denote the radiation and
matter eras respectively), and above the corresponding
colored line.
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ffiffiffiffiffiffi
m0

p
ζ0 ¼

kv0
δþ 2=3

ð63Þ

1

3
< λ <

2

3
: ð64Þ

Once again, this solution is a straightforward generalization
of Eq. (55) of Paper I, to which it reduces to in the limit
δ → 0. We also note that the slow and intermediate scaling
regimes match for an expansion rate of λ ¼ 1=3.
Note that in both branches of these growing wiggliness

solution, the main impact of the increasing coarse-graining
scale is that the correlation length ξ becomes smaller, since
δ appears in the denominator of its normalization. As
previously mentioned, this is also the case for the solution
given by Eq. (52): the faster the coarse-graining scale
grows, the smaller the correlation length.
If in this growing wiggliness case we choose the scale to

be that of the correlation length, l ∝ ξ, we have the
following simplification in the slow expansion rates

δ ¼ 1 − λ ð65Þ

ffiffiffiffiffiffi
m0

p
ζ0 ¼

kv0
3 − 5λ

ð66Þ

λ ≤
1

3
; ð67Þ

while the corresponding relations for the intermediate
expansion rates are

δ ¼ 1

3
þ λ ð68Þ

ffiffiffiffiffiffi
m0

p
ζ0 ¼

kv0
1þ λ

ð69Þ

1

3
< λ <

2

3
; ð70Þ

as expected the two solutions match for λ ¼ 1=3. Overall,
this implies that for these solutions δ has a minimum value
of δ ¼ 2=3 (for the transition λ ¼ 1=3 case) and approaches
δ ¼ 1 in the limits λ → 0 and λ → 2=3. In both of these
cases there is only one choice of coarse-graining scale δ, for
each expansion rate λ, that leads to this solution.

B. With energy losses

Finally, we consider the most realistic case which
includes all the three dynamical mechanisms: expansion,
energy losses and a varying coarse-graining scale. In this
case, the three scaling regimes considered in the previous
subsection can in principle exist, and are extensions
of them.

1. Nambu-Goto solution

First, we have the canonical VOS Nambu-Goto solution

L ¼ ζ0t

v ¼ v0

μ ¼ 1

ξ ¼ ζ0t; ð71Þ

with the scaling parameters being given by

ζ2NG ¼ kðkþ cÞ
4λð1 − λÞ ð72Þ

v2NG ¼ ð1 − λÞk
λðkþ cÞ : ð73Þ

Again, in this case, since the network contains no wiggli-
ness, a growing coarse-graining scale makes no difference;
this solution is therefore the same of Eq. (63) of Paper I. In
the c ¼ 0 limit we recover the previous solution given by
Eq. (51). The consistency condition relating the expansion
rate and the VOS model parameters is λ > k=ð2kþ cÞ if
one only requires v20 < 1, or λ ≥ 2k=ð3kþ cÞ if one
imposes v20 ≤ 1=2.

2. Full scaling

There is also a full linear scaling solution

L ¼ ζ0t

v ¼ v0

μ ¼ m0

ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0t; ð74Þ

subject to the following consistency relations:

ζ20¼
ðcηm3=2

0 −cð1þηÞm2
0Þðδð1−m−2

0 Þðcð1þηÞm4
0−cηm7=2

0 þkm2
0Þ−kð1þm2

0Þðλþð2−3λÞm2
0ÞÞþk2ðm2

0þ1Þðλþð2−3λÞm2
0Þ

λm0ðδðm2
0−1Þþðm2

0þ1Þðλþð2−3λÞm2
0ÞÞ2

ð75Þ

v20 ¼
δð1 −m−2

0 Þðcηm7=2
0 − cð1þ ηÞm4

0Þ þ kðm2
0 þ 1Þðλþ ð2 − 3λÞm2

0Þ
λð1þm2

0Þ½kðm2
0 þ 1Þ þ ðm−2

0 þ 1Þðcð1þ ηÞm4
0 − cηm7=2

0 Þ�
ð76Þ
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ðλþm2
0ð2 − 3λÞÞð1þm2

0Þ
�
ðkþ cDÞ

�
1 −

1

m2
0

�
− cη

�
1 −

1

m1=2
0

��
¼ λ

�
1 −

1

m2
0

��
kðm2

0 þ 1Þ

þ ðm−2
0 þ 1Þðcð1þ ηÞm4

0 − cηm7=2
0 Þ

�
− δ

�
1 −

1

m2
0

�
ðcð1þ ηÞm4

0 þ ð2kþ cþ cDÞm2
0 − cηm7=2

0 − cDÞ: ð77Þ

We note this solution is a generalization of Eq. (66) of
Paper I, to which it reduces to in the limit δ → 0. Moreover,
setting m0 ¼ 1 the first two conditions recover the canoni-
cal Nambu-Goto solution, Eq. (71), while the third con-
dition becomes trivial.
Despite the algebraic complexity of these conditions, it is

straightforward to verify that, in the limit of large wiggli-
ness, m0 → ∞, this solution only exists for a single
expansion rate

λ ¼ 2keff þ δceff
3keff þ ceff

; ð78Þ

the corresponding scaling solution can be written

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ceff ½ð2 − 3λÞk − δceff �

λð2 − 3λÞ2
s

t

m3=2
0

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − 3λÞk − δceff

λceff

s
1

m0

μ ¼ m0

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ceff ½ð2 − 3λÞk − δceff �

λð2 − 3λÞ2
s

t
m0

: ð79Þ

Note that Eq. (78) implies that in order to have this scaling
solution at the radiation-domination epoch we require

keff ¼ ð1 − 2δÞceff : ð80Þ

Both of these generalize the result of Paper I, which is
recovered when δ → 0. Note that, given physically rea-
sonable values of the other parameters, such a scaling
solution in the radiation era is only possible for δ < 1=2.
On the other hand, requiring that this solution occurs in the
matter era leads to δ ¼ 2=3. In particular, this means that in
this large wiggliness limit this solution is not possible for a
coarse-graining scale l ∝ ξ, since that would require δ ¼ 1.
From Eq. (78) one also sees that in the limit ceff=keff → 0

one recovers λ ¼ 2=3 (the matter era, as expected), while in
the opposite limit of ceff=keff → ∞ one would have λ ¼ δ.
Figure 3 illustrates all the above behaviors.

3. Growing wiggliness

Last but not least, the regime with growing wiggliness
again contains two solutions depending on the expansion
rate. These are analogous to the ones in Eqs. (59) and (62),
and still require β < 0 (decaying velocities), β þ γ ≥ 0, and
α − β þ γ=2 ¼ 1, although α ¼ 3λ=2 no longer holds.
Instead we require α > 3λ=2, which is expected from a
physical point of view since the inclusion of energy losses
implies that the total energy of the network will decay
faster. Moreover, both α and λ depend on the VOS model
parameters, and there are general consistency relations
which apply to both solutions,

v0ffiffiffiffiffiffi
m0

p
ζ0

¼ λþ γ − δ

keff
¼ 2α − 3λ

ceff
; ð81Þ

with keff and ceff as defined in Eqs. (31) and (32)
respectively. Note that in addition to the explicit presence
of δ in these consistency relations, the scaling exponent γ
and (possibly) α also depend on δ, so the impact of an
increasing coarse-graining scale is not immediately clear
from these relations.

FIG. 3. The expansion rate λ given by Eq. (78), given by the
color map, as a function of the ratio of the phenomenological
parameters ceff=keff and the exponent of the time-dependent
coarse-graining scale δ. For convenience the particular values
λ ¼ 1=3, λ ¼ 1=2 (radiation era) and λ ¼ 2=3 (matter era) are
shown with dotted, dashed, and solid black lines, respectively.
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In the slow expansion regime we have

L ¼ ζ0tα

v ¼ v0t−λ

μ ¼ m0tγ

ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0t1−λ ð82Þ

together with

α ¼ 1

2

ð2 − δÞceff þ λð3keff − ceffÞ
keff þ ceff

ð83Þ

γ ¼ δceff þ 2keff − λðceff þ 5keffÞ
keff þ ceff

ð84Þ

λ ≤
1

2

2keff þ δceff
3keff þ ceff

; ð85Þ

which simplifies to Eq. (81) of Paper I in the fixed scale
limit δ → 0. Eliminating energy losses by taking the limit
ðD − ηÞ → 0 also yields Eq. (59). Note the evolution of
both the total energy of the network and the bare string
energy is unchanged by the introduction of the averaging
scale, being given by

ρ0
ρcrit

∝ t2λ ð86Þ

ρ

ρcrit
∝ t2λþγ: ð87Þ

For intermediate expansion rates we have

L ¼ ζ0tα

v ¼ v0t−γ

μ ¼ m0tγ

ξ ¼ ffiffiffiffiffiffi
m0

p
ζ0t1−γ ð88Þ

together with

α ¼ ð2
3
− δÞceff þ λð3keff þ ceffÞ

2
3
ceff þ 2keff

ð89Þ

γ ¼ ceffδþ 2keff − λð3keff þ ceffÞ
ceff þ 3keff

ð90Þ

λ ∈
�
1

2

2keff þ δceff
3keff þ ceff

;
2keff þ δceff
3keff þ ceff

�
ð91Þ

δ ¼ ð2α − 3λÞ k
ceff

þ 2

3

�
1 − α −

3

2
λ

�
v20m

2
0; ð92Þ

Again, we note that in the fixed scale limit δ → 0, we
recover Eq. (85) of Paper I. Further, in the no energy losses

limit we are able to recover the previous solution Eq. (62).
This solution implies that the ratio of bare string energy in
relation to the background energy density evolves accord-
ing to

ρ0
ρcrit

∝ t2γ ð93Þ

while for the total energy density of the network we have

ρ

ρcrit
∝ t3γ; ð94Þ

again, these are the same as for the analogous δ ¼ 0 cases
of these solutions, discussed in Paper I.
As before, we consider the specific case where l ∝ ξ for

both of these solutions. In the slow expansion regime, it is
clear that this choice of scale limits the expansions for
which this type of scaling can occur, excluding both the
matter and radiation eras. However, as seen in Fig. 4, the
scaling solution described by Eq. (88) is expected to occur
for intermediate expansion values, which include the matter
and radiation eras. The behavior of the network in these two
cosmological epochs is depicted in Fig. 5. This illustrates
how full scaling of the network can take place in the matter
era in the absence of energy losses, while this never occurs
in the radiation era regardless of the values of the effective
energy loss parameters.
A possible physical caveat to these mathematically

allowed solutions is again the dependence of the scaling
exponent α on the coarse-graining scale power δ. In order to
probe the isolated effect of the averaging scale on the
evolution of the network, we can asymptotically eliminate
the energy losses and Hubble damping by taking math-
ematical limits of the slow expansion regime solution,
Eq. (82). If we do this by simultaneously assuming λ → 0,
k → 0 and ðD − ηÞ → 0, we find α ¼ 1 − δ=2 and γ ¼ δ,

FIG. 4. Range of allowed expansion rates as a function of ceff
keff

in
the case where l ∝ ξ, in the slow (orange) and intermediate (blue)
growing wiggliness regimes, according to Eqs. (85) and (91)
respectively.
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which corresponds to ξ ∝ t, but this is again physically
problematic due the apparent violation of energy conser-
vation. On the other hand, if we assume λ → 0 and c → 0,
we find the physically more acceptable α ¼ 0 (expected
since there are no explicit energy loss mechanisms), γ ¼ 2,
and also ξ ∝ t, independently of δ.
This behavior should be compared to the incoherent

behavior previously found when considering the no energy
losses limit in Eq. (38): taking ðD − ηÞ → 0 in Eq. (38)
resulted in a solution partially similar but not identical to
Eq. (34). That solution would correspond to a network
losing energy, in spite of the absence of mechanisms that
could explain this. The reason behind this discrepancy

remains unclear, but it seems to be related to the role of the
momentum parameter. The fact that in Minkowski space
one sets the momentum parameter as k ¼ 0, seems to
prevent α from reaching 0 whenever the solution
approaches the limit of no energy losses, deeming the
solutions physically irrelevant.

V. CONCLUSIONS

We have refined the physical interpretation of the wiggly
generalization of the VOS model [21,22] by determining
the possible scaling regimes and their allowed physical
ranges and applicable consistency conditions. In doing this,
we have also further clarified the role of the various
physical mechanisms on the evolution of the network.
This analysis has been particularly focused on the role of
the coarse-graining scale, since the other relevant physical
mechanisms were already discussed in Paper I [23]. For
convenience, the landscape of all the possible scaling
solutions of the wiggly model, including both the ones
presented in Paper I (and summarized in Table I of the
present work) and the additional ones which have been
presented in the previous sections, is presented in schematic
form in Fig. 6.
In the absence of energy loss mechanisms, one expects

the network to be in a trivial equilibrium solution. The
inclusion of a growing time-dependent coarse-graining
scale leads to a new scaling regime where small-scale
structure grows in time, but this is compensated by a
decreasing velocity, with the total energy density remaining
constant. This behavior is consistent with the interpretation
of a mesoscopic velocity that is embodied in the wiggly
extension of the VOS model, rather than the traditional
microscopic RMS velocity of the simplest version of the
model. Further, this scaling solution allows the averaging

FIG. 6. Schematic representation of the various families of scaling solutions. Here, PI stands for the solutions first described
in Paper I [23].

FIG. 5. The values of the scaling exponents of the characteristic
lengthscale (solid line), the wiggliness (dashed line) and the
coarse-graining scale (dotted line) as a function of ceff

keff
, in the

intermediate expansion rate regime, given by Eqs. (89), (90), and
(92) respectively, for the case where l ∝ ξ. Red lines correspond
to the matter era, while blue lines represent the radiation era.
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scale to remain unbounded, which can be attributed to total
energy conservation. If, however, the network is also subject
to energy losses, the time dependence of the coarse-graining
scale becomes bounded from above. The fact that its
exponent is not allowed to take too large values should be
interpreted as a consequence of the network losing energy:
choosing a fast-growing coarse-graining scale would imply
we are unable to find small-scale structure. Furthermore,
while linear scaling in Minkowski space had been found in
Paper I, in agreement with numerical simulations [6,24], it is
clear that the introduction of a time-varying coarse-graining
scale prevents this type of scaling from occurring.
In power-law expanding universes, one expects the three

scaling regimes for the wiggliness to be possible, depend-
ing on the expansion rate. For fast expansion rates, the
Nambu-Goto solution subsists as wiggliness is unable to
accumulate in the network. Slower expansion rates allow
for either growing or constant wiggliness. In the latter case,
which can occur for a single expansion rate (which depends
on the remaining model parameters), the network is also
expected to reach full scaling, where the energy density,
velocity and wiggliness evolve toward a constant. In the
absence of other energy loss mechanisms, this takes place
in the matter-dominated era, as seen in Paper I. Allowing
the coarse-graining scale to grow (with other phenomeno-
logical parameters unchanged) decreases the value of the
expansion rate for which full scaling occurs. In this more
general parameter space, it is no longer necessarily the case
that full scaling is more likely to occur in the matter-
dominated era than for other expansion rates. In particular,
there are choices of phenomenological model parameters for
which full scaling would occur in the radiation-dominated
era. We note that the existence of three broad classes of
scaling solutions is a generic feature of models of cosmic
string networks with additional degrees of freedom on the
stringworld sheet, having previously been identified in chiral
superconducting strings [29] and more recently in general
models possessing arbitrary currents and charges [30].
Finally, in our analysis in the present work it has become

clear that there is a new class of solutions that depict
unexpected behavior, either due to the lack of energy
conservation whenever there are no mechanisms that could
make the network lose energy (e.g., no Hubble damping, no
production of loops or kinks), or the apparent discrepancies
that arise when considering limit cases. We suggest that
these solutions (e.g., Eq. (38) should be treated as physi-
cally irrelevant, although they are mathematically allowed.
The fact that such solutions only emerge whenever the

coarse-graining scale is varying in time suggests that the
interplay between coarse-graining and energy loss mech-
anisms (some of which are phenomenologically added to
the equations, as opposed to being derived ab initio from
the relevant microscopic equations of motion) warrants
additional study.
We conclude on a point already made in Paper I: our

mapping of the landscape of the allowed scaling solutions
of wiggly string networks paves the way for the detailed
testing of the model, to be done by forthcoming high-
resolution field theory and Nambu-Goto simulations. Some
data from an earlier generation of Nambu-Goto simulations
already exists [3,4,6,10,24], and while our results are in
qualitative agreement with these works, their data is far
from being sufficiently precise to allow a meaningful and
quantitative comparison, not least because in most such
simulations no wiggliness measurements are reported—the
exception being [6].
Our work therefore provides motivation for additional,

higher resolution simulations. Nambu-Goto simulations
will be particularly suitable for exploring the landscape
of scaling solutions, since in these simulations one can
switch intercommuting and loop production on and off at
will. Nevertheless, one can envisage a similar analysis
being done with Abelian-Higgs (field theory) simulations.
While this would not be possiblewith traditional CPU-based
simulations [5,9,11] due to a lack the spatial resolution and
dynamic range to study small-scale wiggliness, a new
generation GPU-accelerated Abelian-Higgs simulation code

]31,32 ] has emerged, enabling a detailed and statistically
more robust calibration of the VOS model [12–14] and
making a quantitative characterization of scales significantly
below the correlation length possible. Such an analysis will
also provide a cross-check of Nambu-Goto simulation
results. Work along these lines is ongoing in our team.
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