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Unified dark matter cosmologies economically combine missing matter and energy in a single fluid. Of
these models, the standard Chaplygin gas is theoretically motivated, but faces problems in explaining large
scale structure if linear perturbations are directly imposed on the homogeneous fluid. However, early
formation of a clustered component of small halos is sufficient (and necessary) for hierarchical clustering to
proceed in a cold dark matter (CDM) component as in the standard scenario, with the remaining
homogeneous component acting as dark energy. We examine this possibility. A linear analysis shows that a
critical Press-Schechter threshold for collapse can generally only be reached for generalized Chaplygin gas
models that mimic ΛCDM, or ones where superluminal sound speeds occur. However, the standard
Chaplygin gas case turns out to be marginal, with overdensities reaching order one in the linear regime.
This motivates a nonlinear analysis. A simple infall model suggests that collapse is indeed possible for
perturbations of order 1 kpc and above; for, as opposed to standard gases, pressure forces decrease
with increasing densities, allowing for the collapse of linearly stable systems. This suggests that a
cosmological scenario based on the standard Chaplygin gas may not be ruled out from the viewpoint of
structure formation, as often assumed. On the other hand, a “nonlinear Jeans scale,” constricting growth to
scales R≳ kpc, which may be relevant to the small scale problems of CDM, is predicted. Finally, the
background dynamics of clustered Chaplygin gas cosmologies is examined and confronted with
observational datasets. It is found to be viable (at 1-sigma), with a mildly larger H0 than ΛCDM, if
the clustered fraction is larger than 90%.
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I. INTRODUCTION

If general relativity holds on galactic and cosmological
scales, the vast majority of the matter and energy content of
our Universe must be in unknown form. In the standard
“double dark” scenario, most of the dark sector is com-
posed of dark energy in the form of a cosmological constant
(Λ), while the rest is in a cold dark matter (CDM)
component [1,2]. On the phenomenological level, the
model is highly predictive and successful, the tension
between the locally measured values of the expansion rate
and that inferred from the cosmic microwave background
(CMB) [3] notwithstanding. Other issues include small
(galactic) scale problems at low redshift [4–6] and apparent
discrepancies related to unexpectedly early galaxy, massive
galaxy, and black hole formation [7–20].

On the fundamental level, despite extensive direct and
collider searches, the prime CDM candidate, the weakly
interacting massive particle (WIMP) believed to naturally
arise in extensions of the standard model, has not materi-
alized. The parameter range open to the “WIMP miracle”
has been thus shrinking, at the same time that solutions to
the aforementioned small scale problems have been invok-
ing alternative dark matter candidates, such as warm dark
matter [21–25], self-interacting dark matter [26–31], dis-
sipative dark matter [32–35], and fuzzy dark matter made
of ultralight axions [36–40]. Dark energy, on the other
hand, remains evermore elusive. Particularly perplexing is
its small magnitude and its relatively recent domination of
the cosmic energy budget. These issues have been the
subject of intense investigation, seeking alternatives to the
cosmological constant as drivers of late cosmic acceler-
ation, including modifications of fundamental gravitational
law (e.g., [41–43] for reviews).
Dark energy effectively contributes a negative pressure

term in the Friedmann acceleration equation, thus accel-
erating the late background dynamics. Earlier on, when the
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Universe was denser, the dark energy contribution was
small; with radiation, pressureless matter dominates. Matter
also dominates in the late Universe on nonlinear scales, of
galaxies, and clusters, which are likewise characterized by
relatively high density and little pressure. It is therefore
natural to ask whether the double dark sector is simply
composed of a single component, one with negative
pressure at low density and essentially zero pressure at
high densities.
The most extensively studied among unified dark matter

models that fit the bill are generalized Chaplygin gas
cosmologies [44,45], where the associated fluid comes
with an equation of state relating the pressure and densities,

p ¼ −
Ac2

ρα
; ð1Þ

and where A and α are parameters that may be determined
empirically to fit observations. Attractive aspects of such
models include the simplicity via which the dark sector is
unified through Eq. (1); their relevance to some problems
affecting the standard model, such as theH0 tension, is also
of interest [46]. The original Chaplygin gas model, with
α ¼ 1, is particularly well motivated from a theoretical
point of view [47,48]. However, in its context, large scale
perturbations, growing relatively late on a homogeneous
background, are affected by the increasing sound speed in
the expanding medium. The propagation rate of pressure
forces thus catches up with the rate of gravitational collapse
and halts the condensation. The perturbations thus become
Jeans stable, oscillating acoustically and (Hubble) damping
instead of growing. This imprints strong unobserved
signatures on the matter density fluctuation power spec-
trum. The predictions regarding structure formation are, in
this context, in catastrophic tension with observations [49].
Including a baryonic component improves the situation

[50]. Nevertheless, values of α very close to zero (and
therefore to the standard model) or greater than one (when
the sound speed may become superluminal) are still
favored [51–53]. Indeed, combinations of supernova data,
CMB, and baryon acoustic oscillations data appear to
conclusively constrain Chaplygin gas cosmologies to the
neighborhood of ΛCDM [54,55]. Nonadiabatic perturba-
tions (e.g., [56–58]) were also considered. It is not clear,
however, whether the growth of such perturbations would
remain impervious to pressure forces into the nonlinear
regime.
One may immediately remark, however, that the above

constraints are inferred by considering a nearly homo-
geneous Chaplygin gas that remains unclustered on all
scales, including the smallest ones (corresponding to
dwarf galaxy halos and smaller). For example, Sandvik
et al. [49] examine linear perturbations in a homogeneous
Chaplygin gas fluid on scales corresponding to comoving
wave numbers k < 1 Mpc−1. However, in a hierarchical

scenario, the medium in which such perturbations are
probed should not be considered homogeneous. Indeed,
in the standard CDM pictures it has already clustered on a
hierarchy of smaller scales, from the smallest Earth mass
gravitationally bound structures up to galactic and cluster
scale halos.
In a successful unified dark matter scenario, large scale

perturbations would occur in an already clustered medium.
Such a medium would act as pressureless CDM, readily
allowing further clustering. The hierarchically forming
halos would host galaxies with spatial distribution that
may be expected to be quite close to the standard CDM
case, with a commensurately similar linear matter power
spectrum. Furthermore, if clustering is efficient, simple
arguments suggest that the background evolution can also
be rendered compatible for observations, even for the
theoretically attractive case of α ¼ 1 [59].
The central question is therefore not whether the evo-

lution of large scale (and thus late growing) perturbations in
a homogeneous unified dark matter fluid is compatible with
data, but whether such a medium can sufficiently cluster
early on. For this would enable it to exhibit a significant
CDM-like component, which can hierarchically condense
into halos and hence host galaxies. Answering this in full
requires, in principle, detailed modeling of the nonlinear
collapse and clustering process. This has not been avail-
able, due to the novelty and presumed complexity of
modeling the hydrodynamics of fluids with anomalous
equations of state, involving negative pressure with
absolute value decreasing with density. However, this
anomalous form itself suggests that examining the non-
linear regime must be considered central to any inves-
tigation because, in a Chaplygin gas, pressure forces
become less significant with increasing density and a
linearly (Jeans) stable system may be nonlinearly unstable
against gravitational collapse, providing for a medium of
collapsed halos that may cluster hierarchically. This is in
stark contrast to a regular gas, where the sound speed and
pressure forces necessarily increase with density, which in
turn implies that a Jeans stable gas generally remains
stable against nonlinear perturbations. Pending full
hydrodynamic treatment, estimates of the effect of non-
linearity, circumventing complications of unknown
hydrodynamics while capturing the essentials, thus seem
crucial to adequately evaluating the efficacy of Chaplygin
gas cosmology.
Here we revisit the linear and nonlinear stability of

generalized Chaplygin gases, with the aforementioned
remarks in mind. We confirm previous results suggesting
that linear clustering is most efficient for either very small
values of α in Eq. (1) or larger ones associated with
superluminal sound speeds (Sec. II). Nevertheless, we point
out that even a linear analysis predicts that perturbations
can come tantalizingly close (at small scales) to the critical
(Press-Schechter-based value) for collapse in the fiducial
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case of standard Chaplygin gas with α ¼ 1. This further
motivates examination of the nonlinear regime. In Sec. III,
we review some previous attempts at such an analysis,
before proceeding to estimate the importance of pressure
forces along an inhomogeneous spherical collapse model,
avoiding complications that come with shell crossing and
possible formation of shocks. In Sec. IV, we discuss the
basic characteristics and viability of the background evo-
lution of a clustering Chaplygin gas cosmology.

II. PERTURBATIONS IN THE LINEAR REGIME

We briefly review the evolution of the homogeneous
generalized Chaplygin gas and the fixing of its parameters.
We then describe the effect of perturbations and present the
resulting matter power spectra and associated rms mass
fluctuations on various scales.

A. Background evolution of homogeneous
Chaplygin gases

By inserting the equation of state (1) into the energy
conservation law

_ρþ 3Hðρþ p=c2Þ ¼ 0; ð2Þ

whereH is the Hubble parameter, one obtains the evolution
equation for the homogeneous generalized cosmological
Chaplygin gas,

ρðtÞ ¼
�
Aþ B

a3ð1þαÞ

� 1
1þα

: ð3Þ

Here, aðtÞ is the scale factor and A and B are constants that
can be related to the dark energy and matter cosmic
contents, respectively,

A ¼ ρ1þα
c ð1 −Ω1þα

m Þ; B ¼ ρ1þα
c Ω1þα

m ; ð4Þ

where ρc is the current total density, which is thus assumed
to correspond to the critical closure density, and Ωm ¼
ρm=ρc is the current ratio of matter to total density [60]. For
sufficiently small a, the second term is dominant in (3) and
behaves as ρ ∼ 1=a3, in correspondence to the standard
matter domination era. On the other hand, the current dark
energy dominated era is characterized by

ρða ¼ 1Þ ¼ ρc ¼ ðAþ BÞ 1
1þα; ð5Þ

while ρ → A
1

1þα specifies the dark energy content. In turn,
for a given α, A, and B may be fixed by specifying the
current contribution of the dark energy and matter compo-
nents to the total energy density.

B. Growth and oscillation of linear perturbations

The relativistic equation that describes the growth of
small matter overdensity perturbation modes in a nearly
homogeneous fluid may be written as

δ̈k þH _δk½2 − 3ð2w − c2sÞ� −
3

2
H2δk½1 − 6c2s þ 8w − 3w2�

¼ −
�
kcs
a

�
2

δk; ð6Þ

where the equation of state parameter w and the sound
speed cs are given by

w≡ p
ρ
¼ −

�
1þ Ω�

m

1 − Ω�
m
a−3ð1þαÞ

�
−1

ð7Þ

and

c2s ≡ ∂p
∂ρ

¼ −αwc2; ð8Þ

with Ω�
m ¼ Ω1þα

m and Ωm the current matter density
parameter [49]. In Eq. (6), cs is assumed to be expressed
in units of c ¼ 1.
Equation (6) is solved numerically by changing the

independent variable from t to ln a. Accordingly,

d
dt

¼ H
d

d ln a
; ð9Þ

and

_δk ¼ H2δ00 þ 1

2
ðH2Þ0δ0; ð10Þ

where 0 ≡ d
d ln a and

ξ≡ ðH2Þ0
2H2

¼ −
3

2

�
1þ

�
1

ΩM�
− 1

�
a3ð1þαÞ

�
−1
: ð11Þ

Equation (6) can then be written as

δ00k þ ½2þ ξ − 3ð2w − c2sÞ�δ0k
¼

�
3

2
ð1 − 6c2s þ 8w − 3w2Þ −

�
kcs
aH

�
2
�
δk: ð12Þ

We immediately note the appearance, in this context, of a
(nonrelativistic) Jeans length, arising from the presence of
the pressure term,

λJ ¼
ffiffiffiffiffiffiffiffiffiffi
πjc2s j
Gρ

s
: ð13Þ

As a result, if, as will be assumed here, c2s > 0 (α > 0),
linear perturbations on scales below λJ will acoustically
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oscillate and damp with the expansion, rather than grow. (If
c2s < 0, the perturbations below the critical scale will grow
exponentially [49,54].)
The Jeans length, as usual, reflects a competition between

the sound crossing time and the gravitational collapse time,
determined by the dynamical time ≈ðGρÞ−1=2. In the matter
dominated regime, ρ ∝ 1=a3 and c2s ∝ α=ραþ1. For α > 0

(c2s > 0), λJ is a real number that rapidly increases as

λJ ∝
ffiffiffi
α

p
a3ðαþ2Þ=2 ð14Þ

as the Universe expands. For α ¼ 1, for example, this
corresponds to a steep increase ∼a9=2. Thus, according to
such estimates—derived on the assumption that the per-
turbed medium remains nearly homogeneous on scales
smaller than λJ—the growth of late forming structures is
suppressed, unless α is very small; otherwise, the rate of
gravitational collapse cannot catch up with the swiftly
increasing sound horizon.
In this context, the large scale structure power spectrum

will be dominated by acoustic oscillations, if perturbations
on the relevant scales are evolved to the present while
imprinted on a homogeneous background. If smaller scales
have collapsed into halos, however, the situation is quali-
tatively different. For, in this case, a clustered CDM
medium forms, composed of halos that may merge into
larger structures, as in the standard scenario. This merging
process, also as in the standard scenario, reflects the growth
of larger scale perturbations, which are now imprinted on
the clustered medium and not on the initial homogeneous
background. As the clustered medium is made of high
density halos, and is therefore essentially pressureless, it
should act as a standard dark matter component and thus
clusters on larger scales as CDM does. The rest of this study
aims at investigating this possibility.

C. Power spectrum and rms fluctuations

We start with a standard Gaussian random field of
density perturbations. It is obtained using the publicly
available code CAMB [61], with cosmological parameters
h ¼ 0.69, ns¼ 1,ΩΛ ¼ 0.71,Ωm ¼ 0.29, andΩk ¼ 0.001.
This fixes our initial conditions at z ¼ 100, when the
Chaplygin gas pressure is still entirely negligible, and the
cosmological model and its spectrum of fluctuations are
indistinguishable from ΛCDM.
We then evolve realizations of this Gaussian random

field by integrating Eq. (12), using an adaptive Runge-
Kutta method, to obtain the matter power spectrum

PðkÞ ¼ hjδðkÞj2i ð15Þ

at different redshifts. and also the associated dimensionless
power spectrum,

Δ2ðkÞ≡ 1

2π2
k3PðkÞ; ð16Þ

which measures the contribution of perturbations per unit
logarithmic interval at wave number k to the variance of
matter density fluctuations. This variance may in turn be
given in terms of the power spectrum, filtered on spatial
scales R, such that

σ2MðRÞ ¼
1

2π2

Z
PðkÞW2

RðkÞk2dk; ð17Þ

where WRðkÞ is the Fourier transform of the spatial filter
(henceforth assumed top hat).

D. Results: Marginal stability at α= 1

As expected from previous work and discussed in the
Introduction, when the index α in (1) is small, the growth of
perturbations in a homogeneous generalized Chaplygin gas
is closest to the standard case involving CDM. Figure (1)
shows the rms dispersion σMðRÞ for the Chaplygin fluid for
α ¼ 10−5. Perturbations at all smaller scales pass the
critical Press-Schechter threshold of about σM ¼ 1.7
(e.g., [62]), the Jeans length catching up with the scale
of the collapsing object only well into the nonlinear regime,
when bound halos are expected to have already formed.
The largest perturbation scale shown (R ¼ 10 Mpc)
remains largely unaffected by the generalized Chaplygin
gas pressure. The effect of pressure forces in this case (of
small α) is small due to the smallness of the prefactor α in
the expression of the sound speed (8).
For large values of α, the suppression of structure

formation is also alleviated. Here, the reduction is due to
a steep variation of the sound speed with density. The
results for α ¼ 2 are shown in Fig. 2. Note that here the

FIG. 1. The evolution of the mass dispersion σMðR; aÞ, with
scale factor a, for a generalized Chaplygin gas with α ¼ 10−5

[in Eq. (1)], smoothed on the indicated (comoving) scales R.
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Press-Schechter threshold of around 1.7 is only passed on
scales smaller than 1 Mpc, as the steep dependence of the
pressure on density enables the growth at higher redshift
when the background density is relatively large. This is the
epoch where smaller perturbations grow most, due to their
earlier head start (resulting from the shape of the standard
initial dimensionless power spectrum). The growth of
larger fluctuations, which takes place later, is highly sup-
pressed [as they evolve later, when the background density
is lower and Jeans scale growing as in Eq. (14)]. The
collapse of the smaller perturbations is nonetheless suffi-
cient to allow for a pressureless clustered CDM component,
from which higher scales can hierarchically cluster.
However, the sound speed in the remaining homogeneous
background fluid can become superluminal at lower red-
shift. Whether this is physically admissible has been
discussed in [52].
Intermediate values of α correspond to situations

whereby neither a steep decrease in sound speed with
density nor small prefactor α in Eq. (8) may sufficiently
suppress the pressure forces. Figure 3 shows the case
α ¼ 10−2, where all perturbations acoustically oscillate and
damp well before reaching the critical Press-Schechter
threshold of σM ¼ 1.7. In this case, therefore, no structure
is expected to form on any scale.
Of particular interest is the fiducial case of α ¼ 1. Here,

the Press-Schechter threshold is not formally reached, but
the necessary condition for nonlinear growth, σM ≈ 1, is
attained on the smaller scales shown, of R ≤ 0.1 Mpc. This
leaves open the possibility of collapse in the nonlinear
regime, which is characterized by increased density and
steeply decreased pressure, and with this, the emergence of
a CDM component composed of collapsed halos and the
possibility of hierarchical clustering thereof.
Further clarification of a possible route to hierarchical

structure formation in such a situation (i.e., for the case
α ¼ 1) may be illustrated by explicitly examining the

evolution of the dimensionless power spectrum. This we
plot in Fig. 5. As is clear, linear perturbations in the
homogeneous fiducial Chaplygin gas universe at z ¼ 0
(a ¼ 1) are eventually acoustically suppressed at all scales.
Nevertheless, as one goes back to earlier times (larger
background ρ), significant growth can occur, before oscil-
lations and expansion damping dominate. This gives rise to
the peaks in the dispersion σM, which touch the nonlinear
regime and approach the Press-Schechter collapse thresh-
old in Fig. 4.
The marginal stability observed in the linear regime may

have crucial consequences for the clustering of the
Chaplygin gas, for the fiducial Chaplygin gas has the
peculiar property that the pressure forces in general steeply
decrease in magnitude with density: ∼c2s=ρ ∝ ∼1=ρ3.
Therefore, if collapse is so nearly reached in the linear
context, it may very well actually occur if the nonlinear
increase in density is adequately taken into account. This is

FIG. 2. Mass dispersion σMðR; aÞ, when α ¼ 2 in Eq. (1). FIG. 3. Mass dispersion σMðR; aÞ when α ¼ 10−2 in Eq. (1).

FIG. 4. Mass dispersion σMðR; aÞ for the case of the standard
Chaplygin gas, with α ¼ 1 in Eq. (1).
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what we attempt to investigate in the next section, by
invoking a simple spherical infall model.

III. NONLINEAR REGIME: EXPECTED
CLUSTERING FOR α= 1 AND MINIMAL

MASS SCALE

A. Motivation

In Fig. 6 we compare the linear growth of perturbations,
on a kiloparsec scale, in a pressureless CDM fluid to that in
the fiducial Chaplygin gas (α ¼ 1) and to the nonlinear
growth in a homogeneous top hat collapse model of a
pressureless medium (e.g., [62]). As is clear, the growths
are similar up to σM ≈ 1. Beyond that, as may be expected,
the overdensity associated with nonlinear top hat collapse
diverges from the linear one in the pressureless case. In the
linear analysis, the overdensity growth in the Chaplygin gas
case is then reversed, as the pressure term overtakes self-
gravity in significance. Again, if one was dealing with a
regular laboratory gas, this trend would be expectedto be
reinforced in the nonlinear regime, since the sound speed
and associated pressure forces increase as the densities
increase. At an overdensity of order one, however, the
squared sound speed in a Chaplygin gas c2s ¼ dp=dr ∼
1=ρ2 has already decreased by a factor of 4. This implies
(for a given density gradient) an order of magnitude (a
factor of 8 to be precise) decline in pressure forces
1
ρ dp=dr ∼

c2s
ρ . This is not taken into account in a linear

analysis, which effectively assumes that the pressure inside
the overdensity can be characterized by the steeply rising
sound speed of the rapidly decreasing density of the
expanding background. (Indeed, with c2s=ρ ∼ 1=a9.)

Further compression implies additional suppression of
pressure forces, relative to the linear regime, while the
competing gravitational forces are enhanced. Once turn-
around is achieved, the pressure forces can only become
less important, as the density now increases in absolute
terms (and not only relative to the expanding background).
It would therefore seem entirely plausible that a nonlinear
analysis would predict collapse instead of reexpansion of
small scale perturbations, allowing for halos that can
hierarchically cluster as in the standard CDM-based
scenario.
Given this, remarkably little work regarding the non-

linear stability of the Chaplygin gas has been carried out.
Here, we briefly discuss a couple of examples, pointing out
that the conclusions attained from the simplified treatments
are far from conclusive. Given the complexity of the
problem at hand, and the largely unexplored hydrodynam-
ics of the peculiar equation of state involved, this is not
surprising.
Bilić et al. [63] have used the continuity and Euler-

Poisson system of equations in an expanding Universe to
derive an equation that describes the growth of overdensity
perturbations,

a2δ00 þ 3

2
aδ0 −

3

2
δð1þ δÞ − 4

3

ðaδ0Þ2
1þ δ

−
1þ δ

a2H2

∂

∂xi

�
c2s

1þ δ

∂δ

∂xi

�
¼ 0; ð18Þ

where a 0 denotes the derivative with respect to scale factor
a,H is a local Hubble parameter (describing the expansion
or contraction rate of each shell inside a spherical

FIG. 5. The evolution, with scale factor, of the dimensionless
power spectrum of linear perturbations in a standard Chaplygin
fluid (α ¼ 1) cosmology.

FIG. 6. The evolution, in the linear regime, of the mass
dispersion σMðR; aÞ on 1 kpc scale in the standard Chaplygin
fluid, compared with the evolution of overdensity corresponding
CDM case and its nonlinear (homogeneous) top hat counterpart.
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overdensity), and x is a radial variable. In order to study the
nonlinear growth, a self-similar solution, involving a time-
dependent scale R, such that δða; xÞ ¼ δRðaÞfðx=RÞ, was
proposed. It is not clear, however, that such a solution
exists and for which form of f. This is crucial, as in the
presence of significant pressure gradients, such a form may
very well not in fact exist (even with gravity alone acting,
they generally exist only for power law initial conditions
[64]). In the aforementioned work, a Gaussian fðx=RÞ ¼
expð−x2

2R2Þ was a priori assumed, and the equation arising
from substituting the resulting δða; xÞ into (18) still
involved the Gaussian and its derivatives. To get rid of
it, the resulting equation was arbitrarily solved at x ¼ 0.
However, transforming a partial differential equation,
describing fluid flow (and its continuity), into an ordinary
one at an arbitrary point cannot be considered generically
valid. It also appears that the background sound speed, and
not the much smaller one inside the perturbation (as
discussed above), was used. In turn, the principal con-
clusion from that work, which points toward inefficient
Chaplygin gas clustering, even in the nonlinear regime,
seems to lack sufficient foundation to rule out the viability
of the otherwise appealing unified dark matter cosmologies
based on the standard Chaplygin gas.
Another attempt at examining nonlinear growth in

Chaplygin gases was undertaken by Fernandes et al.
[65]. Here, a top hat collapse model was invoked, in such
a way that a homogeneous density profile was assumed
inside a spherical perturbation with a pressure discontinuity
at the boundary, separating the overdense region from the
homogeneous background. Thus, this ignores pressure
gradients inside the perturbation and concentrates all
pressure forces at the boundary. The results are also
anomalous—and in disagreement with linear analysis—
in the sense that they suggest that pressure forces associated
with larger positive values of α tend to actually speed up the
collapse relative to the pressureless case of α ¼ 0.
In the following, we describe a model that may help

estimate the possibility of collapse and formation of self-
gravitating halos in standard Chaplygin gas cosmologies.
The principal goal is to take into account, in simplest terms,
the effect of the peculiar phenomenon of the decrease in the
magnitude of the pressure with the increasing (over)density,
characteristic of any unified dark matter fluid.

B. Possibility and scale of unhindered collapse
in a spherical infall model

1. Basic idea

To our knowledge, the hydrodynamics of a negative
pressure gas has not been explored in any detail. In the
mathematical literature, it is known that solutions
of the Riemann problem lead to shocks [66–68], which
may accompany eventual shell crossing in a nonlinear
collapse model. In the following, we wish to circumvent

such complications, while obtaining a reasonably
realistic estimate for the possibility of gravity overcoming
pressure forces, so as to allow for collapse in the standard
Chaplygin gas.
For this purpose, we use a simple spherical infall model,

where, in the absence of pressure forces, all shells reach
their maximum radius and turnaround before any shell
crossing occurs. We solve the dynamics of the model and
estimate the pressure forces along the unperturbed motion.
Given that Chaplygin gas pressure forces necessarily
become less important with increasing density, while
gravitational forces become more potent, the maximum
strength of the pressure forces to gravitational force, at
every shell, will occur close to its maximum expansion at
turnaround. In this context, if we can show that pressure
forces are small compared to gravitational ones before and
around the turnaround, for all shells, then this suggests they
are negligible throughout the evolution and thus collapse
akin what happens in the case of pressureless CDM
may occur.

2. Model

In the context just set, we consider the dynamics of a
pressureless matter perturbation in a flat, matter dominated
universe. As we are interested in the early collapse of the
smallest structures, when dark energy is not important, we
limit ourselves to the case of an Einstein–de Sitter universe.
Without shell crossing, the mass M ¼ Mð< rÞ, within a
shell at radius r of a spherical perturbation, is conserved.
The dynamics of its Lagrangian radius is then simply
determined by ̈r ¼ −GM=r2, with (specific) energy inte-
gral 1

2
ðdrdtÞ2 − GM

r ¼ E, and parametric solutions in terms of
a phase angle 0 ≤ θ ≤ 2π,

r ¼ Ashð1 − cos θÞ;
t ¼ Bshðθ − sin θÞ; ð19Þ

where Ash ¼ GM=jEj and A3
sh ¼ GMB2

sh, and the sub-
scripts indicate that these constants are specific to each
shell. They can be fixed by conditions at time ti, where
the linear regime may be assumed to reign. The initial
velocity of a shell corresponds to the cosmological expan-
sion determined by the Hubble parameter Hi, minus a
peculiar (inward) velocity term δiðriÞHiri=3. The initial
average overdensity within radius ri is given by
δiðriÞ þ 1 ¼ M=M̄i. Using the energy integral, one finds

Ash ¼ 3
10

ri
δ̄ðriÞ and Bsh ¼ 1

2H0
ð5
3

δiðriÞ
ai

Þ−
3
2 (e.g., [62,69–71]).

Solutions for the Lagrangian radius r are self-similar, in
the sense that r=ri depends only on the development angle
θ for any initial radius ri at ti, but θi is different for each
shell. In accordance with the discussion of the previous
subsection, we need these (no shell crossing) solutions to
be valid at least until all shells have achieved maximal
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expansion and turned around. In a realistic initial profile,
with density decreasing with radius, shell crossing will first
occur at the inner shells. To eliminate such crossing
(including the innermost shell crossing itself before reex-
panding) until all shells have turned around, one may thus
require that θðri ¼ 0Þ ≤ 2π, when the outermost shell,
initially at radius Ri, is turning around; i.e., when
θðRiÞ ¼ π. In general, from the second of Eqs. (19), a
shell initially at dimensionless radius x ¼ ri=Ri will have a
development angle

θtðriÞ − sin θtðriÞ ¼ π

�
δiðxÞ
δ̄iðRiÞ

�
3=2

ð20Þ

at the turnaround of the outer shell. This implies that the
maximum density contrast allowed between the initial

central and average density is ½ δið0Þ
δ̄iðRiÞ�max ¼ 22=3.

The overdensity within the maximal initial radius Ri can
be assumed to correspond to the rms dispersion in the linear
density field σMðRi; tiÞ. To complete the model, we then
need a profile for the initial overdensity, in order to
determine δ̄iðriÞ. We follow [71] in using a simple generic
density profile, with steepness adjusted through a param-
eter β,

δ̄iðxÞ
δ̄iðRiÞ

¼ δið0Þ
δ̄iðRiÞ

ð1 − cxβÞ: ð21Þ

The corresponding local (as opposed to volume averaged)
density distribution has the same form but with
c → cðβ þ 3Þ=3. Figure 1 in [71] shows the profiles for
various values of β (their Fig. 3 also shows the much
steeper forms of these density contrast, when evolved until
the turnaround of the outer shell). Here we will use three
values of β, reflecting qualitatively different behaviors:
β ¼ 7, corresponding to nearly flat profile in the inner
regions and steep decrease in outer (x≳ 0.5) ones; β ¼ 1,
with density decreasing linearly with x; and β ¼ 0.1, which
corresponds to nearly flat profile in the outer region with
rapid increase at small radii. Realistic initial peak profiles,
obtained by smoothing the linear random field, are con-
sistent with such a flat distribution at large radii, with
steeper increase in the central region, as Fig. 10 of [71]
illustrates. It also suggests that, for small mass halos
collapsing at higher redshifts, which is our prime interest
here, our relatively small initial maximal average over-
density contrast, chosen to ensure that no shell crossing
occurs, is not unrealistic.
Assuming this maximal average density contrast fixes

the first factor on the right-hand side of (21). Requiring
δ̄iðx¼1Þ
δ̄iðRiÞ ¼ 1, fixes c to c ¼ 1 − ½ δið0Þ

δ̄iðRiÞ�
−1. As noted, the

average overdensity δ̄iðRiÞmay be presumed to correspond
to the linear σMðRi; ziÞ. To ensure such a correspondence—
that overdensities are adequately linear at all radii riðziÞ

within the sphere—we start our evolution at zi ¼ 300
(larger than the starting redshift in the previous section).
Given β, this fixes the profile completely.
The magnitudes of the pressure and gravitational forces

are given by

j∇ϕj ¼ GM
r2

; ð22Þ
����∇Pρ

���� ¼ 1

ρ

dP
dρ

dρ
dr

¼ Ac2

ρ

dρ
drta

; ð23Þ

where we have assumed α ¼ 1 in Eq. (1), as for a fiducial
Chaplygin fluid configuration. If the pressure forces are
negligible along an evolution described by (19), the mass
inside each shell is practically conserved and

M ¼ Mð< riÞ ¼ 4π

Z
ri

0

r2ρidr; ð24Þ

which is readily evaluated given (21). The local density is
then given by

ρ ¼ 1

4πr2
dM
dr

: ð25Þ

With negligible pressure (and no shell crossing), M ¼
Mð< rÞ ¼ Mð< riÞ, and the density will depend only on
the evolution of the Lagrangian coordinate r and its first
derivative with respect to the initial condition ri or,
equivalently, on the change of volume between shells, as
we detail in Appendix A, wherewe derive the pressure force
along the unperturbed (gravity dominated) solution (19).
Our approach will be to assume the unperturbed solution

(19), calculate the pressure and gravity forces along it as
described, and contend the scheme to be self-consistent if
we find j ∇Pρ j=j∇ϕj ≪ 1 for all (r, t) or, equivalently, ðri; θÞ,
prior to shell crossing. In this case, the solution should hold
to a good approximation, allowing for collapse into self-
gravitating halos.

3. Conditions at turnaround and the
nonlinear collapse scale

As noted in Sec. III B 1, the magnitudes of the gravi-
tational forces driving the collapse are minimal at turn-
around, while the competing pressure forces, hindering the
collapse, are expected to be maximal near turnaround, as
the average density inside a shell is minimal there. As these
latter forces are determined by the local (as opposed to
average) density and gradient, this statement can only be of
approximate validity. However, the calculations of
Appendix A show that this is generally a good approxima-
tion.Wewill therefore display our results here at turnaround,
relegating the full evolution plots to the Appendix, while
contending that j ∇Pρ j=j∇ϕj ≪ 1 at turnaround points to the

ABDULLAH, EL-ZANT, and ELLITHI PHYS. REV. D 106, 083524 (2022)

083524-8



possibility of self-gravitating collapse and clustering in
fiducial cosmological Chaplygin gas.
Figure 7 shows the results when the initial conditions

correspond to the profile in (21) with β ¼ 7, with an
overdensity with boundary Ri ¼ 1 kpc (comoving). As is
clear, the gravitational force is dominant at turnaround for

all shells (at least by about an order of magnitude). We thus
conclude that self-gravitating collapse is possible in this
case. Figure 8 shows the situation when β ¼ 1 or β ¼ 0.1.
These values correspond to profiles with initial density
gradients that are less steep, when x≳ 0.5, than in the
former case; for β ¼ 1 the density falls linearly with radius,
while for β ¼ 0.1 it is nearly flat except in the central
region. As can be seen from the figure, the gravitational
force is largely unaffected by the change in profile.
However, the pressure forces are smaller in regions where
the initial profiles have larger density or smaller gradient.
And, again, these forces are invariably far smaller in
magnitude than the gravitational ones, thus allowing for
self-gravitating collapse.
Figure 9 shows the ratio of the magnitudes of the

pressure to gravitational forces when the initial perturbation
radii Ri correspond to the various indicated spatial scales. It
shows that, at smaller scales, the pressure forces can
become large enough to impede collapse, but that they
gradually diminish relative to the gravitational force as the
scale increases. The transition to a regime where they may
be considered negligible generally occurs at an initial
(comoving) perturbation scale of order 1 kpc. Thus, while
the results of Sec. II D (particularly, Fig. 4), show that all
the scales should be Jeans stable in the linear regime, one
may now define a nonlinear Jeans scale at the kiloparsec
scale. This phenomenon, absent in regular gases, arises
from the peculiar property connected to the gas at hand,
namely, the decreasing magnitude of the pressure with
density.
From these results, it is clear that the collapse of

comoving smoothing scales of R ≈ 100 kpc, corresponding

FIG. 7. Gravitational and pressure forces at turnaround for
initial density profiles given by (21), with β ¼ 7 (which is flat
near the center and steeply decreasing for x ≳ 0.5) and Ri ¼
1 kpc (comoving). The system is started at z ¼ 300 and evolved
using (19), with initial average overdensity inside Ri correspond-
ing to the rms fluctuation in the linear field σMð1 kpcÞ. The scaled
radius on the x axis denotes the radius of turnaround of a certain
shell relative to the radius of turnaround of the outer shell. As
there is no shell crossing up to turnaround of all shells, smaller
radii correspond to initially smaller x ¼ ri=Ri.

FIG. 8. Same as in Fig. 7, but for β ¼ 1 (left) and β ¼ 0.1 (right). The difference from the aforementioned figure reflects situations
whereby the initial profile is linearly decreasing with radius (β ¼ 1) or approximately flat except near the center (β ¼ 0.1). The initial
density gradients are smaller than for β ¼ 7 in the outer regions.
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to halo masses of order 108 M⊙, may be readily realized as
in CDM. This is likely to be the smallest halo mass scale
relevant to observed dwarf satellite galaxies [72]. On the
other hand, interestingly, significantly smaller scales would
be progressively suppressed, which may be of relevance to
the small scale problems associated with CDM [4,5].

IV. BACKREACTION ON
BACKGROUND DYNAMICS

A. General considerations

The results of the previous section show that it is quite
plausible for nonlinear clustering to occur in the standard
Chaplygin gas. We here examine the effect of this phe-
nomenon on the background evolution. As noted in [59],
this may bring that evolution closer to that of the largely
successful standard ΛCDM scenario. We illustrate this here
in simplest terms, through modification of Eq. (3). For
concreteness, we focus on the standard (α ¼ 1) case,
though the results may be trivially generalized. We thus
rewrite Eq. (3) as

ρChðaÞ ¼
�
Acl þ

Bcl

a6

�
1=2

: ð26Þ

As with A and B, the new coefficients Acl and Bcl must be
calibrated to be compatible with observations. At recombi-
nation (a ∼ 10−3), the first term in brackets is negligible
(suppressed by a factor a6 compared to the first).
In order to fit CMB data, with this component represent-

ing a matter contribution [73], one should have

Bcl ¼ B ¼ ρ2mða ¼ 1Þ ¼ ρ2cΩ2
m: ð27Þ

Then suppose that at a ¼ acl < 10−1 the smallest scale that
can cluster, in accordance with calculations of the previous

section, collapses into halos. A phase transition then
occurs, with the clustered phase behaving thereafter as a
pressureless component made of collapsed halos, which
may henceforth hierarchically merge. We assume that a
definite fraction of Chaplygin gas f splits into this CDM
component. The density of the unclustered component then
decreases by a factor 1 − f, but unless the clustering is so
efficient, such that 1 − f < 10−3, the first term in the
bracket of (26) remains negligible. The density of the
system then splits into

ρ ¼ ρCh þ ρCDM ¼ ð1 − fÞB
1=2

a3cl
þ f

B1=2

a3cl
: ð28Þ

For f > 0.5, most of the energy density is in the clustering
component (with density ρCDM) at this point, while a
minority remains in the form of homogeneous Chaplygin
gas (with ρCh). However, at late times (as a → 1), the first
term in Eq. (26) becomes important, and the total density
(of homogeneous Chaplygin plus clustered CDM compo-
nent) evolves as

ρ ¼
�
Acl þ

ð1 − fÞ2B
a6

�
1=2

þ f
B1=2

a3
: ð29Þ

Evaluating this at a ¼ 1, and assuming a current critical
density ρc, gives

Acl ¼ Aþ 2fρ2cΩ2
m

�
1 −

1

Ωm

�
; ð30Þ

where A ¼ ð1 −Ω2
mÞρ2c [from Eq. (4)].

For f → 0,Acl → A, as expected. It is worthwhile to note,
however, that forΩm ≈ 0.3 and a high level of clustering,Acl
is significantly smaller than A. As a Chaplygin dark sector

FIG. 9. The ratio between the pressure to gravitational forces at turnaround for the profiles in (21), with β ¼ 7, 1, and 0.1 (from left to
right). The perturbations are probed at the various scales indicated. The transition scale at which the ratios switch from values smaller to
ones larger than unity (at R ≈ 1 kpc) constitutes what we have termed the nonlinear Jeans scale.
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that can support the observed large scale structure must
embody a clustered medium, it would therefore be charac-
terized by Acl, rather than A, in its equation of state. The
calculations of the previous sections, where A was used as
customary, thus involve larger sound speeds and pressure
gradients. They should actually be considered conservative
in estimating the relative strengths of the gravitational to
pressure forces.
Because the terms suppressed by powers of a rapidly

decrease with a, there are two transitions embodied in
the form of Eq. (29). One occurs when Acl ≳ B

a6
ð1 − fÞ2.

This indicates that the nonclustered Chaplygin component
has transited to a dark energy like fluid, behaving like a
cosmological constant, with density ρΛ ¼ ffiffiffiffiffiffi

Acl
p

. With
Ωm ¼ 0.3 and f → 1, this nicely gives ρΛ → 0.7ρc. This
is not surprising, as the advent of a cosmological constant
component renders the background evolution closer to
ΛCDM than that of the homogeneous Chaplygin gas
cosmology. We illustrate this in Fig. 10, where we plot
the ratios of the Hubble parameter in flat clustered
Chaplygin gas universes to those of ΛCDM, assuming
the same values H0 for all models at z ¼ 0.
The transformation of the homogeneous component into

a Λ-like sector occurs when

aΛ ≳
�
B
Acl

�
1=6

ð1 − fÞ1=3; ð31Þ

which happens at earlier a [by a factor ∼ð1 − fÞ1=3],
compared to the homogeneous Chaplygin gas scenario.
The latter is still in transition at a ¼ 1, causing tension with
late Universe background cosmic dynamics [59].

Finally, we have the transition whereby the total cosmic
energy density switches from being dark matter dominated
to dark energy domination. By this time, the homogeneous
Chaplygin component has already fully transited into its
Λ-like phase. If we accordingly ignore the second term in
Eq. (29), a clustered Chaplygin gas universe should transit
to a dark energy dominated regime at a ≳ f1=3ð B

Acl
Þ1=6. As

the equation of state of the homogeneous dark energy com-
ponent is now effectively that of a cosmological constant
with p¼−ρΛ, imposing the condition ρþ3p¼0 leads to a
deceleration-acceleration transition at

ada ≳
�
f
2

�
1=3

�
B
Acl

�
1=6

: ð32Þ

With Ωm ¼ 0.3 and f → 1, this tends to ada ¼ 0.6, with
zda ¼ 0.67, which is compatible with lower bounds inferred
from observations. The transition redshift increases as f
decreases. It remains within viable bounds zda ≲ 1 as long
as the clustering is efficient (f ≳ 0.7).
One can thus count three transitions. The first one leads

to a clustered medium, whereby part of the Chaplygin
gas collapses into halos and acts henceforth as a CDM-like
component; the second transition occurs when the remain-
ing homogeneous gas starts to effectively act as a cosmo-
logical constant; whereas the third transition takes
place when the Chaplygin universe transits to an accel-
erated phase. This latter development occurs much the
same way as Λ becomes dominant in the standard model.
Furthermore, when the matter energy density is calibrated
to the CMB, the Λ-like component comes with energy
density compatible with its measured late time value in the
context of the ΛCDM model. The basic characteristics
of the clustered Chaplygin cosmology appear in this
context quite akin to ΛCDM, including a similar transition
time for its transformation from decelerated to accelerated
expansion.

B. Constraints from observations

The general considerations just described suggest that
the background evolution of clustered Chaplygin gas
cosmologies may be viable, provided that the fraction that
clusters into a CDM-like component (f) is large enough. In
order to obtain specific quantitative constraints on f,
we confront the model with observational datasets con-
straining the background cosmology. For this purpose, we
use supernova SNe 1a, baryon acoustic oscillation (BAO),
and CMB data, in addition to cosmic chronography (CC)
estimates of the Hubble parameter HðzÞ.
For supernova data we use the Pantheon sample [74,75],

combining data from the Pan-STARRS1 Medium Deep
Survey with older observations, for a total 1048 SNe Ia in
the redshift range 0.01 < z < 2.3. We also use anisotropic
BAO data from the Sloan Digital Sky Survey III, as
provided in [76], to simultaneously constrain the Hubble

FIG. 10. Ratio of the evolution of the Hubble parameter in
clustered standard Chaplygin gas universes [α ¼ 1 in Eq. (1)] to
that of ΛCDM, with Ωm ¼ 0.3 and ΩΛ ¼ 0.7, for various values
of the fraction f of the clustered (CDM) Chaplygin gas
component.
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parameter and the angular diameter distance. Additional
constraints onHðzÞ come from CC data obtained from [77].
As the CMB spectrum at last scattering (z ¼ z�) is practi-
cally unaffected by the modification of late time dark
energy behavior introduced by replacing ΛCDM by a
Chaplygin gas dark sector (as the contribution to the total
energy density from the dark energy component at z� is of
order 1=z3� ≲ 10−9 in both cases), constraints on the back-
ground evolution may be effectively expressed by a “com-
pressed likelihood” of the CMB power spectrum [78,79].
This includes the shift parameter R ¼ 1

c DMðz�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

p
,

whereDM is the comoving angular diameter distance to last
scattering, which in a flat Friedmann-Robertson-Walker
universe is given by

DMðz�Þ ¼ c
Z

z�

0

dz
HðzÞ : ð33Þ

AnotherCMBdistance prior is the angular scale of the sound
horizon at last scattering lA ¼ πDMðz�Þ=rsðz�Þ, where
rsðz�Þ is the comoving sound horizon at z�. Finally, an
additional constraint is obtained from the present physical
baryon density ωb ¼ Ωbρc. We use the following values,
based on an analysis of the Planck-2018 TT, TE, EEþ lowE
data [80]: R ¼ 1.7502� 0.0046, lA ¼ 301.471þ0.089

−0.090 , and
Ωbh2 ¼ 0.02236� 0.00015. We note the particularly
strong constraint on lA: jΔlAj=lA ≃ 3 × 10−4.
To enable proper comparison with those datasets, the

equations of the previous subsection are modified, so as to
account for separate baryonic and radiation components.
Thus, B now refers just to the dark matter density, so that
Bcl ¼ B ¼ ρ2cΩ2

c ¼ ω2
c, and Eq. (29) has two additional

additive terms, incorporating the baryon and radiation
energy densities, namely, Ωb=a3 and ΩR=a4. Also, by
defining ρða ¼ 1Þ ¼ ρc, one now has

Acl ¼ ρ2c½Ω2
Ch − ð1 − fÞ2Ω2

c�; ð34Þ

where ΩCh ¼ 1 − ðfΩc þ Ωb þ ΩRÞ.
The modified Eq. (29) is then included into the publicly

available code CLASS [81], in order to evaluate the
theoretical predictions. The statistical analysis is conducted
by running a Monte Carlo Markov chain (MCMC) over
models, using the publicly available EMCEE code [82].
Keeping the number of relativistic degrees of freedom

fixed as in standard cosmology, the background evolution
of the clustered Chaplygin gas universe is determined by
four parameters. Three of these (H0, ωb, and ωc) are
shared with ΛCDM, with which we will be comparing
our clustered Chaplygin gas models, by conducting
control MCMC runs. For these parameters, we take flat
priors in the following forms: H0 ¼ ½65∶80� km=s=Mpc,
Ωch2 ¼ ½0.1∶0.131� and Ωbh2 ¼ ½0.015∶0.028�. A prior is
also placed on the absolute magnitudes of the SNe
Ia: M ¼ ½−20∶ − 18�.
The additional parameter in our clustered Chaplygin

model is the clustering fractionf.Whenf → 0, one recovers
the conventional Chaplygin gas, which has been shown to be
strongly disfavored by observations [recall that we are
assuming, throughout this section, that we are dealing with
a standard Chaplygin gas with α ¼ 1 in Eq. (1)]. Here we
want to examine the likelihood of clustered models charac-
terized by different f. For this purpose, we place a flat prior
encompassing the whole range of possibilities f ¼ ½0∶1�.
The posterior probabilities of all parameters are then
obtained from the MCMC analysis.
The results are shown in Fig. 11. The best fit values for

the clustered Chaplygin gas is f ≃ 0.95. Values down to
f ¼ 0.91 are allowed at the 1-sigma level. Slightly smaller
values of f ≳ 0.88 are allowed at 2-sigma. The background

FIG. 11. 1- and 2-sigma contours of the Hubble parameter and physical baryon and dark matter densities at z ¼ 0, in flat clustered
Chaplygin gas universes (blue) and ΛCDM (red). In the former case, we also show the distribution of the clustering fraction f against
H0. The dataset used includes SNe Ia, CMB, and BAO data, as well as CC estimates of HðzÞ. The χ2 for the best fitting ΛCDM and
Chaplygin models are 1054 and 1048, respectively (with corresponding reduced χ2=dof of 1.027 and 1.021).
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evolution of the clustered Chaplygin gas may thus be
considered viable for these clustering levels and associated
levels of confidence. Indeed, we find the total χ2 is slightly
smaller for the best fitting clustered Chaplygin gas than
the best fitting ΛCDM (1054 versus 1048). On the other
hand, the unclustered standard Chaplygin gas model, with
f → 0 (and α ¼ 1), is clearly ruled out, as expected. At the
opposite limit, as f → 1, the model tends toward ΛCDM,
as expected from the discussion of the previous subsection
and as illustrated in Fig. 12.
The mean value of H0 for the clustered Chaplygin

models is larger than that obtained for ΛCDM, namely,
69.7 km=s=Mpc for the former versus 68.5 km=s=Mpc for
the latter, when f is left free. When f is fixed, H0 is also
systematically higher for smaller f (Fig. 12).
The larger H0 in the Chaplygin case can be understood

in terms of the behavior of the Hubble parameter shown
in Fig. 10, noting again that the acoustic scale lA is the
most strongly constrained observable in our analysis.
This principally translates into a constraint on the
comoving angular diameter distance to the CMB last
scattering surface. In ΛCDM this distance is entirely
fixed, given the physical energy densities associated
with radiation, dark matter, baryons, and the cosmologi-
cal constant. However, since (from Fig. 10), when
HCh=HΛCDM is set to unity at z ¼ 0, for z > 0 and f < 1
there are intervals for which the ratio is smaller
than unity, it follows from Eq. (33) that one can obtain
the same value for DM by rescaling HChðzÞ, such that
HChðz ¼ 0Þ=HΛCDMð0Þ > 1. The effect is illustrated in
Fig. 13 in terms of the likelihood contours.

This situation is similar to the case of phantom dark
energy models. And, as in that case, one may actually
entirely “solve” the H0 tension, if this is solely defined as a
tension between local and CMB measurements of H0.
However, also as in the phantom case, distance measures on
the way to the CMB, particularly high precision BAO data,
constrain the models to be close to ΛCDM [83]. In the
present context, this requires f to be close to unity and thus
H0 to be only slightly larger than in ΛCDM, compared to
what is needed to entirely alleviate the H0 tension. The
behavior of the ratio of HðzÞ for the best fitting Chaplygin
and ΛCDMmodels, reflecting the competing constraints, is
shown in the lower panel of Fig. 14.

FIG. 12. Convergence of clustered Chaplygin models toward
ΛCDM as the clustered fraction f → 1. Dashed contours refer to
ΛCDM. Note the systematically larger H0 for smaller f.

FIG. 13. Constraints from the various datasets. While ΛCDM is
highly constrained by CMB data, clustered Chaplygin gas models
are compatible with larger H0 if the clustered fraction f is
relatively small. Smaller values of f (and largerH0) are, however,
disfavored by other datasets (primarily by high precision inter-
mediate distance measurements coming from the BAO). Thus,
favored models remain close to ΛCDM (represented by the
dashed contours).

FIG. 14. Observational Hubble data (OHD), from CC and BAO
measurements, and best fitting ΛCDM and clustered Chaplygin
models. The local value ofH0, as measured by Riess et al. [84], is
also shown in the lower panel (but not included in the likelihood
analysis of either model).
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V. CONCLUSION

Unified dark matter models are appealing for combining
the dark sector in a single component, which can act as both
dark energy and dark matter. The prototypical example is
that of the generalized Chaplygin gas, with equation of state
(1), providing for small pressure at high densities and
significant negative pressure at low density. However,
unless the generalized Chaplygin gas parameter is chosen
such that the associated cosmology is virtually indistin-
guishable from ΛCDM, or superluminal sound speeds are
allowed, linear perturbations in a homogeneous Chaplygin
fluid will become Jeans stable and oscillate acoustically
and damp, rather than grow, on scales observed in large
scale structure surveys. This, in particular, is true for the
theoretically motivated standard Chaplygin gas with α ¼ 1.
Here we first note that, in a hierarchical structure

formation model, dark matter perturbations probed by
large scale structure surveys do not occur in a homo-
geneous fluid. Rather, they occur in a medium that is
already hierarchically clustered, starting from dwarf galaxy
scales or smaller. It is sufficient for the Chaplygin fluid to
collapse into halos early on, on some small scale (dwarf
galaxy halo or below), for a CDM-like component to
materialize and cluster hierarchically.
We thus ask whether any small scale seed perturbations

can grow sufficiently to collapse early on. We first examine
the linear stability and check whether perturbations may
grow to reach the usual Press-Schechter threshold required
for nonlinear collapse. We find that, while this may be the
case for very small or large values of α, such an analysis
suggests that acoustic oscillations generally prevent the
achievement of the threshold. However, for the fiducial
case of α ¼ 1, the rms fluctuations do come quite close to
achieving the critical threshold for scales associated with
dwarf galaxies and below.
That the perturbations come tantalizingly close to cross-

ing the critical collapse threshold for this relatively well
motivated model—and at the minimal scales expected in a
successful hierarchical collapse model, with no free param-
eters tuned—suggests that a nonlinear analysis is war-
ranted. This is particularly motivated by the fact that
pressure forces in a unified dark matter fluid decrease in
magnitude with increasing density (characteristic of non-
linear phase), as opposed to the case of laboratory fluids
where the pressure and its gradients become more impor-
tant as the density increases. Thus, systems that are stable
against self-gravitating collapse in the linear regime may
not be so in a nonlinear analysis.
Numerical and theoretical modeling of the dynamics of a

negative pressure fluid with sound speed decreasing with
density is largely unexplored. Through a simple secondary
infall model, we attempt to circumvent expected difficul-
ties, while capturing the basic ingredients that determine
the possibility of collapse and formation of self-gravitating
objects in the nonlinear regime. We choose the initial

density distribution to correspond to a system where all
shells turn around, before any shell crossing occurs, when
the system is evolved solely under gravity. Then we evolve
the dynamics, starting in the linear regime at high redshift.
We show that while a linear analysis predicted that kilo-
parsec scale perturbations were marginally (Jeans) stable,
nonlinear evolution suggests that pressure forces should, in
fact, be negligible compared to gravitational ones along the
whole inhomogeneous top hat trajectory, for perturbations
on scales ≳1 kpc, thus enabling gravitating collapse.
One may, in this context, define a nonlinear Jeans scale,

which does not have a counterpart in standard gases. It
arises from the peculiar characteristic of the decreasing
magnitude of the pressure in Chaplygin gases. Nonlinear
perturbations larger than this Jeans length can also grow, as
the ratio of the gravitational forces becomes smaller still. In
particular, the collapse of comoving scales associated with
small dwarf satellite galaxies should be readily allowed.
Once structures form on small scales, a CDM-like

component is present. It may proceed to cluster hierarchi-
cally, independent of the remaining homogeneous
Chaplygin fluid. The latter may still act as dark energy.
The acoustic oscillations, thought to rule out unified dark
fluid models, would only be imprinted in that dark energy
component and would not appear in the galaxy power
spectrum, which would correspond to CDM.
The formation of structure on scales smaller than the

nonlinear Jeans scale, on the other hand, would be sup-
pressed. This may be of relevance to the small scale
problems associated with CDM, for example, the apparent
overabundance of small CDM halos compared to the
number of small galaxies observed. As with particle
CDM alternatives, devised in part to address such prob-
lems, a Chaplygin gas model may be tested with observa-
tions of small scale structure [85,86].
In light of these results, the problem of acoustic

oscillations in the linear power spectrum of Chaplygin
gases may not be as serious as usually assumed, provided
the hierarchical structure formation process is adequately
taken into account. In particular, it would appear less
serious than the problem of finding self-gravitating equi-
librium with a density distribution corresponding to that
inferred from observations at large radii around galaxies
and clusters, while keeping the same equation of state [87].
Furthermore, in the context of the present analysis, the

basic characteristic background evolution of the clustered
Chaplygin gas cosmology is found to tend toward ΛCDM
as the clustering efficiency is increased: when clustering
occurs, the remaining homogeneous component constitutes
a cosmological constant sector early on, with an energy
density akin to the corresponding one in ΛCDM; the
acceleration deceleration transition occurs also as in the
standard models. Finally, the pressure forces associated
with the clustered gas are smaller [through a rescaling of
the parameter A in Eq. (1), as described in Sec. IV]. This
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reinforces the consistency of the collapse model and may
also help alleviate the aforementioned problems related to
the dynamics of the outer parts of galaxies and clusters.
Quantitative comparison with observational datasets

shows the background dynamics of the clustered
Chaplygin gas models to be viable (at the 1-sigma level)
if the fraction of fluid that collapses into a CDM-like
component of small halos (that may subsequently hier-
archically cluster) is larger than 90%. The associated value
of the Hubble constant is larger than in ΛCDM, due to
effects similar to those present in phantom dark energy
models. As in these models, the “Hubble tension” may be
completely resolved if it is defined solely in terms of
discrepancy between local and CMB measurements.
However, other data, particularly high accuracy BAO
distance measurements, dictate that viable models (and
their H0) remain relatively close to ΛCDM.
Further investigation, beyond the simple nonlinear col-

lapse model presented here, requires an examination of
what happens at shell crossing in the later stages of self-
gravitating collapse, including the treatment of possible
shocks. Though some work regarding the Riemann prob-
lem for Chaplygin gas exists in the mathematical literature,
including idealized shock simulations [66–68], the physical
consequences of the phenomenon remains unexplored. To
our knowledge, no detailed numerical simulations of the
dynamics of any Chaplygin fluids have been conducted,
much less of its self-gravitating cosmological evolution.
We hope that the proof of principle presented here,
suggesting that the problem of large scale oscillations in
the power spectrum should not be as insurmountable as
widely believed, would help reopen detailed investigation

of the consequences of structure formation in the context of
Chaplygin gas cosmologies.
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APPENDIX A: RATIO OF PRESSURE TO
GRAVITY FORCE ALONG
PARAMETRIC SOLUTION

We wish to evaluate the relative magnitude of the
gravity to pressure forces along the cycloid solution
(19). As this solution reflects evolution solely under the
influence of gravity (and with no shell crossing), it would
still approximately hold if the pressure forces remain
small relative to gravity along it, at all temporal stages and
spatial radii.
Before shell crossing occurs, finding the gravitational

force on a shell at radius r is trivial; it is simply given by
−GM=r2, with the massM enclosed in r taken as constant,
and the radius given by the first by the cycloid solution
(19). To evaluate the pressure forces along this “unper-
turbed” solution, we map the evolution of the local density
and its gradient along it. For this purpose, we consider
neighboring initial conditions, starting at same initial time
t ¼ ti and developing according to Eqs. (19).
In the absence of shell crossing, the evolving density

ρðr; tÞ is given in terms of the initial distribution ρi through

FIG. 15. Scaled pressure along parametric solution (19) at various values of the scaled initial radius x ¼ ri=Ri. The initial density
profiles are given by (21) with (from left to right) β ¼ 7, 1, and 0.1 and Ri ¼ 1 kpc, starting at zi ¼ 300 with overdensity equal to the
rms fluctuation of the linear Gaussian field: δ̄ðRiÞ ¼ σMðRi; ziÞ. The derivative discontinuities (reflecting sign switching in d2r=dr2i and
dr=dri) correspond to consecutive shells approaching instead of increasing their separation and then to eventual shell crossing. The
calculation of the pressure beyond this (shell crossing) point is only formal, as the dynamics reflected in the solution (19) no longer
strictly apply. Note that the steeper the change in density through the bulk of the system (larger β), the more spaced out the discontinuity
angles for different values of x.
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the change of the volume element between neighboring
shells. Namely,

ρðr; tÞ ¼
���� dVi

dV

����ρiðri; tiÞ; ðA1Þ

where [using the first of Eqs. (19)]

���� dVi

dV

���� ¼ r2i
r2

���� dridr

���� ¼
�
1 − cos θi
1 − cos θ

�
2
���� dridr

����: ðA2Þ

The density gradient can also be written as

dρðr;tÞ
dr

¼dri
dr

�����dVi

dV

����dρiðri;tiÞdri
þρiðri;tiÞ

d
dri

����dVi

dV

����
�
: ðA3Þ

The explicit forms of the terms required to calculate the
density and its gradient for the profiles adopted in this study
are given in Appendix B. We here present the results. As in
the main text, we use the code CAMB to produce σMðRiÞ at
zi ¼ 300, with H0 ¼ 69 km s−1Mpc−1.
Figure 15 shows results for the scaled pressure

forces on various shells are shown for the three chosen
values of β, reflecting flatter initial outer profiles (i.e., as
x ¼ ri=Ri → 1) for the standard Chaplygin gas (α ¼ 1). As
may be expected (and already noted in Sec. III B 2), given
the equation of state (1), the pressure force increases as a
shell expands, reaching a maximum near turnaround. It
then rapidly decreases as the shell contracts. The derivative
discontinuities correspond to switching in signs in the
second derivatives of the radial coordinate with respect to
the initial conditions—signaling that shells are approaching
rather than increasing their separation—and then in the first
derivatives, when shell crossing eventually occurs. This
occurs with wider spacing for steeper initial density
gradients because, in the limit of homogeneous monolithic
collapse, shell crossing occurs for all shells at the same θ

(and θi is also the same for all shells, as opposed to the
case here).
Beyond shell crossing, our model no longer strictly

applies. The model also becomes inconsistent if the
pressure forces—at any θ ≤ π, for any shell—become
comparable to the gravitational forces; in this case, the
gravitationally dominated dynamics of the unperturbed
trajectories are no longer a good approximation. As
Fig. 16 shows, however, this is not the case. Although,
before turnaround (θ ¼ π), the pressure force systemati-
cally increases and the gravity decreases, as the system
expands, the ratio remains much smaller than unity, for all
shells and all models. The maximum value of the ratio is
reached at turnaround. Beyond turnaround, the increasing
density (hence generally decreasing pressure) and increas-
ing gravity ensures that the pressure forces become smaller
still relative to the gravitational ones. This renders self-
gravitating collapse possible. As discussed in Sec. III B 3
(particularly in relation to Fig. 9) this conclusion is
strengthened for larger scale nonlinear perturbations. The
collapse of comoving smoothing scales corresponding to a
halo mass scale relevant to dwarf galaxies should be readily
allowed. On the other hand, structure formation on signifi-
cantly smaller scales would be progressively suppressed,
which would, in turn, be of relevance to the small scale
problems associated with CDM structure formation.

APPENDIX B: EXPLICIT FORMS OF THE
DENSITY AND ITS GRADIENT ALONG

PARAMETRIC SOLUTION

To find j dridr j, we use the first of Eqs. (19), to obtain

dr
dri

¼ dAsh

dri
ð1 − cos θÞ þ Ash sin θ

dθ
dri

: ðB1Þ

This may be readily evaluated using dθ
dθi

dθi
dri
, and noting that,

as we are studying divergences between neighboring cells

FIG. 16. Same as in Fig. 15, but for the ratio of pressure to gravitational force and until local shell crossing occurs.
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at fixed time, the condition dt ¼ 0 may be imposed on the
second of Eqs. (19) to obtain

dθ
dθi

¼ −
dBsh
dθi

ðθ − sin θÞ
Bshð1 − cos θÞ : ðB2Þ

For the family of profiles given by (21), and assuming an
initial overdensity corresponding to the rms fluctuations of
the linear density field such that ¯δðRiÞ ¼ σMðRiÞ at the
initial time ti, one finds

dθi
dri

¼
10
3
22=3σMcβðriRi

Þβ−1
Ri sin θ

: ðB3Þ

Also, as Ash ¼ 3
10

ri
δ̄ðriÞ and Bsh ¼ 1

2H0
ð5
3

δ̄ðriÞ
ai
Þ−3=2 (Sec. III B 2

and references therein), we have

dAsh

dri
¼ 3

10δ̄ðriÞ
þ 3

10

22=3σMcβðriRi
Þβ

δ̄ðriÞ2
; ðB4Þ

dBsh

dθi
¼ −

3 sin θi
8H0ai

�
5δ̄ðriÞ
3ai

�−5=2
: ðB5Þ

The density evolution of the density of these profiles can
then be evaluated along the parametric solution using
Eqs. (A1) and (A2).
In order to obtain the density gradient, we need to

evaluate d
dri

j dVi
dV j. From (A2), this first requires obtaining

d
dri

�
r2i
r2

�
¼ 200

9

δ̄ðriÞ
ð1 − cos θÞ2

dδ̄ðriÞ
dri

−
200

9
δ̄ðriÞ2

sin θ
ð1 − cos θÞ3

dθ
dri

; ðB6Þ

in addition to

d
dri

���� dridr

���� ¼ −
���� drdri

����
−2 d

dri

���� drdri
����: ðB7Þ

The first derivative appearing here is obtained as described
above. For the second derivative, one has

d2r
dr2i

¼−
3

5δ̄ðriÞ2
dδ̄ðriÞ
dri

ð1− cosθÞþ 3

5δ̄ðriÞ
sinθ

dθ
dri

þ 3

10

2ri
δ̄ðriÞ3

�
dδ̄ðriÞ
dri

�
2

ð1− cosθÞ

−
3

10

ri
δ̄ðriÞ2

d2δ̄ðriÞ
dr2i

ð1−cosθÞ−3

5

ri
δ̄ðriÞ2

dδ̄ðriÞ
dri

sinθ
dθ
dri

þ 3

10

ri
δ̄ðriÞ

cosθ

�
dθ
dri

�
2

þ 3

10

ri
δ̄ðriÞ

sinθ
d2θ
dr2i

: ðB8Þ

Here,

d2θ
dr2i

¼−
10

3

dδ̄ðriÞ
dri

cosθi
sinθ2i

dθ
dri

þ10

3

d2δ̄ðriÞ
dr2i

1

sinθi

dθ
dθi

þ 9

20

cosθi
δ̄ðriÞ

θ− sinθ
1−cosθ

�
dθi
dri

�
2

−
9

20

1

δ̄ðriÞ2
dδ̄ðriÞ
dri

sinθi
θ− sinθ
1− cosθ

dθi
dri

þ 9

20

sinθi
δ̄ðriÞ

dθ
dri

dθi
dri

−
9

20

sinθi
δ̄ðriÞ

sinθðθ− sinθÞ
ð1− cosθÞ2

dθ
dri

dθi
dri

: ðB9Þ

For the profiles (21),

dδ̄ðriÞ
dri

¼ −σM22=3cβ
1

Ri

�
ri
Ri

�
β−1

ðB10Þ

and

d2δ̄ðriÞ
dr2i

¼ −σM22=3c
βðβ − 1Þ

R2
i

�
ri
Ri

�
β−2

: ðB11Þ
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