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In the context of modified gravity, at the linear level, the growth of structure in the Universe will be
affected by modifications to the Poisson equation and by the background expansion rate of the Universe. It
has been shown that these two effects lead to a degeneracy which must be properly accounted for if one is to
place reliable constraints on new forces on large scales or, equivalently, modifications to general relativity.
In this paper we show that current constraints are such that assumptions about the background expansion
have little impact on constraints on modifications to gravity. We do so by considering the background of a
flat, Λ cold dark matter universe, a universe with a more general equation of state for the dark energy, and
finally, a general, model-independent, expansion rate. We use Gaussian processes to model modifications
to Poisson’s equation and, in the case of a general expansion rate, to model the redshift-dependent Hubble
rate. We identify a degeneracy between modifications to Poisson’s equation and the background matter
density,ΩM, which can only be broken by assuming a model-dependent expansion rate. We show that, with
current data, the constraints on modifications to the Poisson equation via measurements of the growth rate
range between 10–20% depending on the strength of our assumptions on the Universe’s expansion rate.

DOI: 10.1103/PhysRevD.106.083523

I. INTRODUCTION

The growth of structure in the Universe is a sensitive
probe of fundamental physics [1,2]. It is driven by
gravitational collapse but is also sensitive to additional
forces which may be undetectable on smaller, laboratory
scales. It has been shown that measurements of the rate of
growth of structure can be used to test gravity and
constrain, as yet, elusive fifth forces [3].
To be specific, the motion of matter in the Universe can,

in general, be subjected to an effective force, F⃗eff of the
form

F⃗eff ¼ −∇⃗ΨN − ∇⃗Ψ5: ð1Þ

Here, ΨN is the Newtonian potential and Ψ5 is the potential
for a possible long-range force that coexists with gravity on
large scales. The properties of Ψ5 may depend on the state
of the Universe (e.g., its expansion rate or the fractional
energy densities of its different constituents) or even on
local environmental properties [4,5]. Thus Ψ5=ΨN will,
generally, be a function of space and time.
If we restrict ourselves to purely long-range forces with

no environmental dependence, we can define a generalized
Newtonian potential, Ψ≡Ψ5 þ ΨN . In an expanding
Universe with scale factor, a, Ψ satisfies a Newton-
Poisson equation on subhorizon scales

∇2Ψ ¼ 4πGμa2ρ̄δ; ð2Þ

where G is Newton’s constant, ρ̄ is the background energy
density of nonrelativistic matter, and δ is the density
contrast. We will assume μ is a function of time only
although, in certain scenarios, it can be scale dependent.
The relative amplitude of the new force, at any moment in
time, is given by μ − 1.
From the linearized Newton-Poisson, continuity and

Euler equations one can derive an evolution equation for
the growth rate of structure, f ≡ d ln δ=d ln a, given by

f0 þ f2 þ
�
1þ d ln aH

d ln a

�
f ¼ 3

2
μΩMðaÞ; ð3Þ

where a prime denotes a derivative with respect to ln a,H is
the Hubble rate and ΩMðzÞ is the fractional energy density
in matter as a function of redshift [1,6,7]. Thus, as we can
see, the evolution of f depends on μ. This means that, in
theory, one can use measurements of the growth rate to
constrain the presence of fifth forces.
The situation is, of course, more complex. The evolution

of the growth rate depends on the evolution of H and
ΩMðaÞ. The latter quantity depends, through the Einstein
field equations, on HðaÞ so that

ΩMðaÞ ¼
ΩMð0ÞH2

0

a3H2
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Thus, measurements of the growth rate can be used to place
constraints on the time evolution of μ and H, and on the
fractional matter density today,ΩMð0Þ (for ease of notation,
we will now refer to it as ΩM with no argument). But this
means that constraints on these various quantities are
intertwined and, unless we have independent methods
for pinning down H and ΩM, they will hamper our ability
to determine μ.
This degeneracy between μ and the expansion history

(encapsulated in H, for example) was discussed in Ref. [8].
There, it was shown that there is a degeneracy between
γ ≡ ∂ ln f=∂ lnΩM and the equation of state of the dark
energy component, w≡ PDE=ρDE, where ρDE (PDE) is the
energy density (pressure) of the substance responsible
for the accelerated expansion of the Universe at late times
(the dark energy). In Ref. [7], explicit expressions for the
degeneracy between μ and w were found using the linear
response approach.
Most attempts to constrain μðzÞ have assumed a Universe

inwhich the accelerated expansion at late times is driven by a
cosmological constant, i.e., theΛ cold dark matter (ΛCDM)
model [9–11]. A further assumption is that μðzÞ can be
modeled in terms of a simple function with one (or at most
two) parameters [9]. In a few cases, a more general form for
μðzÞ has been assumed with a few independent values at
different redshifts (for a notable example see Ref. [10]).
Alternatively, model-specific time dependences for μðzÞ
have been assumed arising from theoretical arguments,
either from the effective field theory of dark energy
[12,13] or from choices for the underlying model of gravity
(such as shift-symmetric scalar-tensor gravity and its exten-
sions [14]). Most of these attempts at constraining μðzÞ have
sidestepped the issue of the degeneracy described above
although we highlight Ref. [15] and its attempt to obtain
model-independent constraints.
In this paper we explore how current constraints on μ are

affected by our assumptions about the expansion rate of the
Universe. In particular, we will see how more or less
restrictive assumptions about the parametric form of HðzÞ
impact the uncertainty with which we can determine μðzÞ.
In the limit in which we do not assume a parametrized form
for HðzÞ we show that a fundamental degeneracy between
ΩM and μðzÞ manifests itself and, in that regime, we must
resign ourselves to constraining the combination ΩMμðzÞ.
The structure of this paper is as follows. In Sec. II we

present the main method of this paper, i.e., the use of a
Gaussian process as a model-independent parametrization
of μðzÞ. In Sec. III we discuss how to interpret said
Gaussian process. In Sec. IV we describe the cosmological
observables and the associated data sets which we use to
find the constraints in this paper. In Sec. V we present our
constraints on μðzÞ and how they depend on what we
assume as a model for the background evolution; we focus
on ΛCDM and its extension wCDM, in which we assume

an (possibly time-varying) arbitrary equation of state, w. In
Sec. VI we completely free the background evolution and
model HðzÞ as a Gaussian process. This gives rise to a
strong degeneracy between ΩM and μðzÞ and we can only
constraint μ̃ðzÞ ¼ ΩMμðzÞ. In Sec. VII we discuss both our
finding about the role of Gaussian processes in cosmo-
logical analysis and the constraints we find on μðzÞ.

II. GAUSSIAN PROCESS FOR μðzÞ
The goal of this work is to quantify the uncertainty in our

knowledge of μðzÞ. The quality of this constraint will
depend on both the quality of the data and the assumptions
we make about the underlying cosmology through the
expansion rate. We want to assume that we have no prior
knowledge of the time dependence of μðzÞ, apart from the
fact that it is relatively smooth. Thus, we choose to model
μðzÞ as a Gaussian process (GP).
GPs have been extensively used in astrophysics as tools

to model different quantities in an agnostic way [16–28].
Fundamentally, a GP is a collection of random variables
(nodes), each of them sampled from a multivariate
Gaussian distribution with a nondiagonal covariance [29].
Thus a GP gðxÞ where x is an arbitrary vector representing
the position of the nodes, is fully specified by a mean
function mðxÞ≡ E½gðxÞ� (where E½� � �� is the expectation
value over the ensemble) and a covariance function
kðx;x0Þ≡ E½ðgðxÞ −mðxÞÞðgðx0Þ −mðx0ÞÞ�. In combina-
tion, the mean and covariance functions determine the
statistical properties of the random variables that define the
family of shapes that the GP can take. In our case, we chose
μðaÞ ¼ 1 as the mean of our GP since this is the value
corresponding to general relativity (GR). For the covari-
ance function, we choose a square exponential covariance
function, defined as

k½gðxÞ; gðx0Þ� ¼ η2 exp
jx − x0j2

2l2
; ð5Þ

where η is the amplitude of the oscillations around the mean
and l is the correlation length between the GP realizations.
This decision was made based on the fact that the square
exponential is a computationally inexpensive and infinitely
differentiable kernel, appropriate for modeling smooth
fluctuations around the mean of the GP.
Given a likelihood Lðyjx; σÞ for a set of data points y,

with a set of errors σ, and a set of random variables x, a GP
can be employed as a prior over all the possible families
of functions used to fit the observations. Observations can
then be used to inform the GP posterior (i.e. the statistical
properties of the ensemble of random variables),
PðgðxÞjy; σÞ, which determines the family of functions
most consistent with the data.
Since we do not have direct measurements of μðzÞ, we

have to infer it from measurements of the growth rate.
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However, as one can see from Eq. (3), fσ8 also depends on
HðzÞ and ΩM. Thus, we must jointly determine μðzÞ, HðzÞ
and ΩM in terms of measurements of fσ8 and HðzÞ, or
derived quantities such as the comoving [DMðzÞ], lumi-
nosity [DLðzÞ] or the angular diameter [DAðzÞ] distances,
which are related to HðzÞ via

ð1þ zÞDA ¼ DL

1þ z
¼ DM ¼

Z
z

0

dz0

Hðz0Þ : ð6Þ

In summary, as we can see from Eqs. (3) and (6),
computing predictions for our observables will involve a
nonlinear, nonlocal mapping between the quantities we are
interested in [μðzÞ,ΩM,HðzÞ…] and the data. For example,
a measurement of fσ8 at a particular redshift, z, constrains
the history of μ up until that redshift and not only the value
of μ at that redshift.
The fact that the variables of our model are not linearly

related to our data has, nonetheless, strong implications.
Namely, we will have to sample the GP nodes as individual
parameters instead of just constraining the statistical
properties of the ensemble. This means that our model
will contain of the order of Oð102Þ parameters. This large
number of parameters (and hence dimensions) renders
traditional parameter space exploration techniques too slow
to be feasible.
In the Metropolis-Hastings (MH) sampler [30,31], sam-

ples are drawn randomly from a proposal distribution. If the
new proposal improves the fit to the data it is automatically
accepted. If not, the sample has a random chance of being
accepted to avoid falling into a local minimum. This means
that the chance of the sampler drawing a better sample and
thus of the sample being accepted decreaseswith the number
of dimensions of the parameter space. This decreasing
acceptance rate of new samples means that the time needed
by samplers that randomly explore the parameter space
quickly becomes unfeasible as we increase the number of
parameters. This is known as the dimensionality curse.
To remedy this, in this work we make use of the No

U-Turns sampler (NUTS) [32], a self-tuning version of the
Hamiltonian Monte Carlo (HMC) algorithm [33,34]. HMC
uses notions of Hamiltonian dynamics to draw trajectories
on the parameter space along which the sampler moves.
This results in a much greater acceptance rate, and allows
HMC to beat the dimensionality curse. Therefore, HMC
can efficiently explore parameter spaces with large num-
bers of dimensions in far less time than MH or nested
sampling techniques [35].
The drawback of HMC is that in order to evolve the

Hamiltonian equations of motion it is necessary to compute
the derivatives of the likelihood with respect to the param-
eters. Obtaining such derivatives can be even more expen-
sive than taking additional steps in the chains, especially in
high-dimensional spaces. In order to overcome this issue,

we require an inexpensive way of obtaining derivatives of
the likelihood. In this work, we employ the PYTHON package
PyMC3 [36] which uses the autodifferentiation [37] library
Theano [38] to obtain the gradient of our model with respect
to our parameters. This is achieved by drawing a symbolic
graph of the model that establishes the relationship between
the different variables.
Finally, our choice of NUTS over the traditional HMC is

due to the fact that in the latter one needs to be able to infer
a priori (or by trial and error) specifications such as for how
long the sampler should follow the trajectory or to what
precision it needs to be resolved. NUTS can tune these
parameters during the burn-in phase of the chains by
enforcing that the sampler does not perform a U-turn while
following a trajectory, preventing the samples from becom-
ing correlated.

III. INTERPRETING A GAUSSIAN PROCESS

In the previous section we described how to model μðzÞ
using a GP. In this section we discuss how to interpret it.
However, as we will see, this is no easy task. The problem
fundamentally stems from the fact that a GP is not a single
parameter with a singular figure of merit (e.g. the standard
deviation), but a vector of parameters. Nonetheless, if we
wish to assess how well we can constrain μðzÞ we need to
devise a compact and useful way of compressing (and
comparing) the information we get from the GP.
As discussed in Sec. II, the statistical properties of a

GP are encapsulated in its mean and covariance matrix.
Therefore, if one wishes to measure how constrained a GP
is, the first intuition would be to turn to the covariance
matrix of the GP’s posterior—the multidimensional equiv-
alent of the standard deviation. The problem that arises is
finding a way to compress such a covariance matrix into a
meaningful measurement.
A first idea would be to look at the determinant of said

covariance matrix. However, the determinant mixes con-
tributions from both the diagonal elements of the matrix
(i.e. the standard deviation in each node) and the off-
diagonal elements of the matrix (i.e. the correlations
between the nodes) in a nontrivial way that obfuscates
its interpretation. One could then think of diagonalizing the
covariance matrix. However, since diagonalizing is itself a
nonlinear operation interpreting the errors of the diagonal
basis would be a nontrivial task.
Alternatively, one could take advantage of the so-called

hyperparameters of the GP. Hyperparameters dictate the
values that the nodes are allowed to take and that act as a
high-level description of the statistical properties of the
nodes. The most relevant hyperparameter would be the
amplitude of the GP covariance matrix which dictates how
much the GP can deviate from its mean. This measurement
partially solves the issue of including the off-diagonal
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entries in an interpretable manner since the hyperparameter
controls the amplitude of both the diagonal and off-
diagonal elements of the matrix. However, it is unclear
how to compare two covariance matrix amplitudes with
two different correlation length values. Most importantly,
this measurement of uncertainty does not directly relate to
the nodes of the GP themselves, only to their allowed
values. In summary, there is not a singular way of
quantifying the uncertainty of a GP, especially using one
single number.
For the reasons discussed above in this work we use a

combination of two metrics to report the constraints on
the GP. At the most basic level, we study μðzÞ itself and our
constraints on its full redshift dependence. We pay par-
ticular attention to μðz ¼ 0Þ since it gives us information on
the strength of the fifth force today and can easily be related
to other, laboratory or astronomical constraints [2]. On a
more abstract level, we also look at the constraints on the
hyperparameter η that describes the amplitude of the
covariance matrix of the GP (i.e. the allowed deviation
of the nodes from their mean).

IV. OBSERVABLES AND DATA SETS

As previously stated, the quality of our data is just as
important as our assumptions on HðzÞ to determine our
ability to constrain μðzÞ. In this section, we discuss the data
used in this work, as well as how we forecast what future
data will be capable of.
Let us begin by discussing the currently available data.

We employ the same ensemble of data used in Ref. [28], as
well as additional measurements of fσ8. These can be seen
in Fig. 1 and in the summary table in the Appendix. The
observables and data sets we consider are as follows.
Cosmic chronometers (CCs) are tracers of dt=dz where t

is cosmic time. Since HðzÞ≡ _a=a ¼ −ðdt=dzÞ=ð1þ zÞ,
a measurement of dt=dz directly yields the expansion
rate [39]. Here, we use the HðzÞ measurements from
CCs summarized in Table 1 of Ref. [22].
Type Ia supernovae (SNIa) are explosions of

white dwarfs [40,41], which can be used as standard

candles [42,43]. SNIa obey the relationship mðzÞ ¼
5 log10DLðzÞ þ 25þM, where mðzÞ is known as the
distance modulus and M is the absolute (apparent) magni-
tude of the SNIa. Knowing M, one can use SNIa to
reconstruct DLðzÞ. Here we use a compressed version of
the Pantheon sample, known as “DS17,” composed of
40 measurements of the distance modulus in the range
0.15 ≤ z ≤ 1.615 [44]. We marginalize over the absolute
magnitude of the supernovae as opposed to fixing its
value [45]; this is equivalent to fitting the expansion rate,
EðzÞ ¼ HðzÞ=H0.
Baryon acoustic oscillations (BAOs) are set by the size of

the sound horizon at the end of the drag epoch (z ∼ 1020),
[46–48] rsðzÞ ¼

R
∞
z ½cs=Hðz0Þ�dz0, where cs denotes the

speed of sound. The BAO feature can be measured in
the directions parallel and perpendicular to the line of
sight to determine HðzÞ and DMðzÞ respectively. Here we
use the twelfth data release of the Baryon Oscillation
Spectroscopic Survey (BOSS DR12) which forms part of
the Sloan Digital Sky Survey (SDSS) III. In addition to this,
we employ the sixteenth data release of the extended
Baryon Oscillation Spectroscopic Survey (eBOSS DR16
[49]), which forms part of the SDSS IV [50]. Finally, we
make use of the Planck 2018 measurement of the BAO
angular scale at z� ∼ 1100. We use the Planckmeasurement
from the temperature, polarization and lensing maps
combined with BAO measurements denoted as TTTEEEþ
LowEþ Lensingþ BAO.
Redshift-space distortions (RSDs) are modifications to

the observed redshift of a given object caused by its radial
peculiar velocity [51]. These leave a characteristic aniso-
tropic imprint in the correlation function of galaxies that
can be used to measure the growth of structure. Here, we
use the three measurements of fσ8ðzÞ from the BOSS
DR12 data [52], and one value from the BOSS DR16
quasar sample. We include the full covariance matrix
between the BAO and RSD measurements from these
data sets [52,53]. We also include the fσ8 measurements
reported by the WiggleZ Dark Energy Survey [54].
Despite not being RSD based, we also include the
fσ8ðz ¼ 0Þ derived from the measured peculiar velocities
of the Democratic Samples of Supernovae [55]. In addition

FIG. 1. Shows the data points from the different surveys used in this work across redshift for the three cosmological functions of
interest HðzÞ, DM and fσ8.

JAIME RUIZ-ZAPATERO et al. PHYS. REV. D 106, 083523 (2022)

083523-4



to these, we consider three additional RSD-based fσ8
measurements not included in Ref. [28], namely, the fσ8
measurements from the VIMOS Public Extragalactic
Redshift Survey, the 6dF Galaxy Survey and the Subaru
Fibre Multi-Object Spectrograph galaxy redshift survey
(FastSound).
Finally, we are interested in how future surveys will

allow us to improve on current measurements. In order
to do so, we generate synthetic data based on the forecast
errors for the Dark Energy Spectroscopic Instrument
(DESI). DESI is currently taking data from the Mayall
4 meter telescope at Kitt Peak National Observatory to
construct a galaxy and quasar redshift survey. We use the
forecast errors from Ref. [56] for the observables [HðzÞ,
DAðzÞ, and fσ8] over 18 redshift bins from 0.15 to 1.85.
Then, we use the fiducial values of these quantities for the
best-fit Planck 2018 TTTEEEþ LowEþ Lensingþ BAO
ΛCDM cosmology (ΩP18

M ¼ 0.315, ΩP18
Λ ¼ 0.685, ΩP18

b ¼
0.049, HP18

0 ¼ 67.36 and σP188 ¼ 0.811) to generate a
synthetic data set. In the following sections, we use this
synthetic data to forecast how well a stage IV survey will
constrain μðzÞ relative to existing data.

V. MODEL-DEPENDENT CONSTRAINTS

Having discussed our modeling of μðzÞ and the data we
will use to constrain it, we are now at a position to start
obtaining constraints for μðzÞ. In this section we focus on
constraints which assume a particular model for the back-
ground expansion rate HðzÞ, while modeling μðzÞ as a GP.
Please note that we restrict ourselves to models without
curvature (i.e. Ωk ¼ 0). This is motivated by the results of
Baker et al. [7] where it was shown that the equation of
state for the energy component responsible for the accel-
erated expansion of the Universe would be degenerate
with μðzÞ.
We start by considering a fiducial expansion rate, i.e., the

expansion rate given by the Planck 2018 [9] ΛCDM
TTTEEEþ LowEþ Lensingþ BAO posteriors. In this
setup, we only make use of our fσ8 measurements to
constrain our model since we are already using Planck
2018’s posterior as a constraint on the expansion history.
The parameters varied in this setup with their respective
priors can be found in the first column of Table III. This will
give us a best-case scenario and will allow us to identify a
benchmark against which all other constraints can be
compared.
We then relax this assumption, removing the Planck

prior and freeing up the ΛCDM parameters where,

HðzÞ¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þzÞ3þΩRð1þzÞ4þΩΛ

q
; ð7Þ

and ΩM, ΩR and ΩΛ are the cosmological matter, radiation
and dark energy densities, respectively, today. We then use
the measurements of HðzÞ, DMðzÞ and fσ8 to constrain

these parameters at the same time that we constrain μðzÞ.
The details of this model can be found in the second
column of Table III.
In the next study case, to further loosen our assumptions,

we chose a background rate of expansion using a general
model of dark energy with an equation of state wðaÞ ¼
w0 þ wað1 − aÞ (wCDM). In such a model the expression
for the expansion rate becomes

HðzÞ¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þzÞ3þΩRð1þzÞ4þΩΛð1þzÞνðzÞ

q
; ð8Þ

where

νðzÞ ¼ 3ð1þ w0 þ zð1þ w0 þ waÞÞ
1þ z

: ð9Þ

Similarly to ΛCDM, we consider two cases. In the
first case, we use a fiducial wCDM expansion rate given
by Planck’s wCDM TTTEEEþ lowEþ lensingþ BAOþ
SNe posteriors, where we only use fσ8 measurements to
constrain our model. We include SNIa measurements since
the TTTEEEþ lowEþ lensingþ BAO combination con-
sidered so far is not able to place tight constraints on the
equation of state on its own. The details for this model can
be found in the third column of Table III. In the second
case, we free the expansion rate parameters (including w0

and wa) and use our whole suite of measurements to inform
our constraints. The details of this model can found in the
fourth column of Table III.
We find that regardless of the model assumptions made

(ΛCDM or wCDM), μðzÞ is in excellent statistical agree-
ment with the GR value μðzÞ ¼ 1 at all redshifts up to 1σ.
We find the same consistency with GR when using the
Planck 2018 prior on the cosmological parameters (includ-
ing w0 and wa in the wCDM case) and when freeing them.
Figure 2 shows the constraints obtained on μðzÞ in both
cases, with the constraints obtained assuming ΛCDM
shown in the top panel and those assuming wCDM in
the bottom panel. In both panels we compare the contours
obtained using the Planck 2018 posterior as a prior in
combination with our fσ8 measurements, and by using our
whole suite of measurements to inform our constraints. We
can see that imposing the Planck 2018 prior significantly
reduces the uncertainty on μðzÞ at all redshifts. More
quantitatively (see Table I), the uncertainty on μ0 decreases
by roughly∼35% for either a ΛCDM or wCDM cosmology
and, remarkably, the uncertainty in μ0 remains unchanged
when using the more complex wCDM background model.
Thus, we can conclude that the combination of cosmic
chronometer, BAO and SNIa data are sufficiently precise to
pin down the equation of state for the purpose of con-
straining μ0.
It is interesting to understand this result in light of the

discussion in Ref. [7]. There, it was shown that, while a
measurement of fσ8 at one redshift would lead to a severe
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degeneracy between μ and w, measurements at multiple
redshifts combined with distance measurements could, in
principle, break this degeneracy and decorrelate constraints
between the two parameters. In Fig. 3 we see this idea in
action. In this figure we show the 1D and 2D distributions
for the parameters w0, wa and μ0. We superpose the
contours obtained when using the Planck 2018 prior (blue)
and when only using current data to constrain the wCDM
parameters (red). As we can observe, the current data
contours show a degeneracy between w0 and wa which is

not present when using the Planck 2018 prior. However,
neither w0 nor wa are degenerate with μ0 in any case.
We further note that the uncertainty in μðzÞ increases as

we look at higher redshifts but not excessively so. Two
factors are at play here. First, since the data are nonlocal
functions of μðzÞ [i.e. μðzÞ needs to be integrated to solve
for f in Eq. (3)], they allow us to place constraints on
higher redshift values of μðzÞ. In addition to this, we are
marginalizing over the hyperparameters of the Gaussian
process. This means that the data at lower redshifts can put
a constraint on the amplitude and correlation length of the
GP’s kernel. This effectively limits the variance of the GP
even in regions with no data.
We have seen that assuming a wCDM for HðzÞ as

opposed to aΛCDMmodel does not degrade our constraints
on μðzÞ. It is then interesting to explore the relationship
between μðzÞ and other cosmological parameters of our
models, particularly ΩM and σ8. Figure 4 shows the 1D and
2D contours for the parameters ΩM, σ8 and μ0 obtained
when assuming the ΛCDM and wCDM models to para-
metrize HðzÞ. In each panel we superpose the results
obtained when assuming Planck 2018’s posterior as a prior
for the expansion rate as opposed to letting background data
inform the constraints. We show the associated numerical
constraints in Table I. We also display the constraints
obtained by fitting a ΛCDM model and a wCDM model
while keeping μðzÞ ¼ 1 (i.e. GR) for context.
Looking at Eq. (3) one would expect a great degeneracy

between ΩM and μðzÞ. However, if we look at the bottom
left corner panel (ΛCDM) and top right panel (wCDM) of
Fig. 4 we can see how information about the background
breaks this degeneracy. Therefore, it is not clear that a better
constraint on one will lead to an improvement in the other.
We show our constraints on ΩM for the different models

in Fig. 5, including constraints for the ΛCDM and wCDM
models when keeping μðzÞ ¼ 1 (i.e. GR) for reference.
Regardless of whether we assume a ΛCDM or wCDM
model for HðzÞ we obtain a slightly lower value for ΩM
than the one obtained by Planck 2018 (and the one obtained
using Planck 2018’s posterior as a prior). Nonetheless,
once the size of the error bars is taken into account, the
constraints are in reasonable statistical agreement (less than
1.5σ tension). Moreover, assuming wCDM systematically
results in a lower yet statistically compatible constraint of

FIG. 2. Obtained model-dependent constraints on μðzÞ. Top:
constraints obtained assuming a ΛCDM model for HðzÞ both
when when using Planck 2018’s ΛCDM posterior as a prior and
when using current late-time data to inform it (blue and red
respectively). Bottom: equivalent wCDM constraints (green and
purple respectively).

TABLE I. Model-dependent constraints on ΩM, σ8 and μ0, including mean values and 1σ errors.

ΩM σ8 μ0

ΛCDM 0.302� 0.007 0.789� 0.027 � � �
wCDM 0.292� 0.013 0.801� 0.034 � � �
μðzÞ þ ΛCDMP18 0.314� 0.007 0.811� 0.006 0.904� 0.123
μðzÞ þ wCDMP18 0.306� 0.008 0.821� 0.014 0.899� 0.123
μðzÞ þ ΛCDM 0.302� 0.007 0.878� 0.127 0.850� 0.191
μðzÞ þ wCDM 0.29� 0.016 0.887� 0.127 0.862� 0.190
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ΩM than assuming a ΛCDMmodel. Finally, it is interesting
to note that introducing μðzÞ barely degrades the constraint
on ΩM if the background is ΛCDM. On the contrary, for a
wCDM model, introducing μðzÞ leads to a ∼20% larger
error bar on ΩM. This is caused by the fact that freeing the
equation of state reduces the ability of the background to
constrain ΩM and, thus, the wCDM ΩM constraint increas-
ingly depends on the growth data to inform its value.
Moving to σ8, current growth data cannot break the

degeneracy between σ8 and μ0. This can be seen in the
middle panel of the bottom row and the right panel of
the middle row. Therefore, when assuming a model for
HðzÞ, the bottleneck in constraining μ0 is how well we
know σ8. This explains why our constraints on μðzÞ
drastically improve when imposing the Planck 2018 prior
since it imposes a much tighter constraint on σ8, breaking
the degeneracy with μðzÞ.

VI. MODEL-INDEPENDENT CONSTRAINTS

We now proceed to further relax our assumptions about
the background expansion rate by promoting HðzÞ to a GP.
We do so by following the methodology developed in
Ref. [28]. More specifically, we model HðzÞ as

HðzÞ ¼ A0HP18ðzÞð1þ δHgpÞ; ð10Þ

where A0 is a free parameter, HP18ðzÞ is the Hubble rate
for our ΛCDM Planck 2018 best-fit fiducial cosmology

FIG. 4. Constraints for the cosmological parametersΩM, σ8 and
μ0. Diagonal panels show 1D distributions. Off-diagonal panels
show 2D distributions. The bottom triangle shows the constraints
obtained when assuming a ΛCDM background both when
imposing Planck 2018’s ΛCDM posterior as a prior (blue) and
when using current late-time data to inform it (red). The top
triangle shows the equivalent constraints when a wCDM back-
ground is assumed instead (green and purple respectively).

FIG. 5. Constraints obtained for ΩM for each model considered
in this work. The side panel shows the uncertainty of each
constraint.

FIG. 3. Constraints for the cosmological parameters w0, wa and
μ0. Diagonal panels show 1D distributions. Off-diagonal panels
show 2D distributions. In each panel we superpose the contours
obtained when assuming Planck 2018’s wCDM posterior as a
prior (blue) and when marginalizing over a wCDM background
(red) given current late-time data.
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(see Sec. II), and δHgp is a relative deviation that we model
as a Gaussian process. This is a Bayesian approach to GPs
in which one marginalizes simultaneously over the GP
itself and its mean. In Ref. [28] we showed that this
approach shields our cosmological constraints from poten-
tial biases introduced by our choice of mean function. More
recently, Hwang et al. [57] showed that unphysical oscil-
lations can appear in the reconstructed functions if one does
not marginalize over a possible family of mean functions
for the GP. However, it is worth noting that the degener-
acies between the GP and the A0 parameter make exploring
the parameter space significantly more expensive.
Therefore, our inference process now involves two GPs.

This allows us to measure the degeneracy between mod-
ifications of the expansion history and the Poisson equation
in the prediction of fσ8 without having to assume a
particular model.
However, becoming fully model independent comes at

the cost of no longer being able to constrain ΩM with
measurements of background quantities. This is because
HðzÞ is no longer a function of cosmological parameters.
Thus, we have no independent way of constraining ΩM
apart from the relationship between HðzÞ and fσ8ðzÞ.
Revisiting Eq. (3), we can also see that we are now faced
with an unbreakable degeneracy between ΩM and μðzÞ.
In order to deal with this degeneracy, in this section we
consider the new, combined parameter

μ̃ðzÞ ¼ ΩM

ΩP18
M

μðzÞ; ð11Þ

where ΩP18
M is the Planck 2018 TTTEEEþ LowEþ

Lensingþ BAO, ΛCDM best-fit value of ΩM.
In order to solve Eqs. (3) and (6) when considering two

GPs, we employ the same combination of numerical
methods as in Ref. [28] [where we also modeled HðzÞ
as a GP], albeit with some modification. In Ref. [28] we
assigned a node of the GP to each node of the numerical
grid used to solve the growth equation and the comoving
distance integral. This approach becomes very computa-
tionally expensive when we introduce a second GP. In order
to make our model more computationally efficient, we
decouple the number of nodes in the numerical integration
schemes from the number of nodes used for each GP,
linearly interpolating where necessary. This allows us to
significantly reduce the number of parameters of the model
while preserving the necessary numerical accuracy.
Reducing the number of nodes in the GPs means that
the degeneracy between the remaining nodes is reduced.
This latter aspect is particularly helpful when using the
HMC algorithm which is most efficient when the param-
eters are as uncorrelated as possible. The end result of
reducing the number of parameters and the degeneracy
between them is a substantial speedup in the time needed
for the sampler to converge.

We show the obtained model-independent constraints
for μ̃ðzÞ in Fig. 6. On the one hand, in the top panel of the
figure, we can observe that the model-independent con-
straints on μ̃ðzÞ are only marginally worse than the model-
dependent constraints on μðzÞ (5–10% depending on
whether we consider the ΛCDM or wCDM model). This
means that, even when completely relaxing our assump-
tions about HðzÞ, current data have enough constraining
power to break the degeneracy between HðzÞ and μ̃ðzÞ.
This can be further seen in the correlation matrix between
the GP’s nodes of μ̃ðzÞ and HðzÞ. Figure 7 shows that,
although μðzÞ and HðzÞ nodes have a great degree of
autocorrelation (as expected for a GP), the correlation
coefficients between both quantities are never larger
than 5%. This can be seen as a generalization of the lack
of correlation we observed between the background
parameters and μ0 in Sec. V. Moreover, we can see that
HðzÞ’s low-redshift nodes are much less correlated with

high-redshift nodes than those of gμðzÞ.
It is important to bear in mind that these are constraints

on μ̃ðzÞ, not on μðzÞ. Converting constraints on μ̃ðzÞ into

FIG. 6. Top: constraints on μðzÞ for current data when assuming
the ΛCDM model to model the background expansion of the
Universe (red) and when using a second GP (green). Note that
when using a second GP the quantity being constrained is μ̃ðzÞ as
opposed to μðzÞ. Bottom: constraints obtained on μ̃ðzÞ when
using a second GP to model HðzÞ for both current data (green)
and mock DESI data (blue).
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constraints on μðzÞ requires a measurement of ΩM.
However, in the process of freeing HðzÞ we have lost all
of our knowledge of ΩM. Thus, an external, model-
independent measurement of ΩM would be needed to
transform μ̃ðzÞ constraints into μðzÞ constraints. The con-
straints on μ̃ðzÞ should therefore be understood as the most
optimistic model-independent constraint on μðzÞ possible
given current data, i.e. the case for which we have a perfect
model-independent measurement of ΩM.
Finally, we find σ8 ¼ 0.886� 0.138when a secondGP is

used to modelHðzÞ. This means that not assuming aΛCDM
or wCDM model for the expansion history degrades our σ8
constraint by around ∼10%. Nonetheless, the degree of
correlation between σ8 and μ̃0 remains virtually identical
to that of model-dependent analyses. Thus, model-
independent constraints on μ̃ðzÞ will also benefit greatly
from ways of tightening their constraint on σ8, just as we
saw in the model-dependent case. We will discuss this
further in the next section when considering our analysis of
mock DESI data.

VII. DISCUSSION

In this paper we have assessed the effect of our current
knowledge of the expansion rate history on our ability to
constrain μðzÞ in a model-independent manner. As was
argued in Refs. [7,8], the assumptions that go into modeling
the Hubble rate as a function of redshift, HðzÞ will impact
constraints on μðzÞ from the growth rate of structure. It was
shown that the more conservative (or looser) the model for
HðzÞ, the weaker the constraints on μðzÞ should be.
We have found that, however, current constraints on the

expansion rate from cosmic chronometer, supernova and
BAO data are sufficiently tight that the assumptions made

about the underlying background model are not important
when constraining μðzÞ. To show this, we have used a
completely general form for μðzÞ (a Gaussian process), and
quantified whether assuming a simple equation of state for
dark energy (w ¼ −1), or a more general equation of state
of the form w ¼ w0 þ wað1 − aÞ affects the final con-
straints on μðzÞ. We also considered a completely general
form for HðzÞ which we also modeled as a Gaussian
process. In this case, we are faced with a fundamental
degeneracy between μðzÞ and ΩM and thus, we present our
results in terms of μ̃ðzÞ ¼ ΩMμðzÞ=ΩP18

M where we recall
that ΩP18

M is the best-fit value of ΩM for the Planck 2018
TTTEEEþ LowEþ Lensingþ BAO analysis of the
ΛCDM model.
As discussed in Sec. III, we summarize our results on the

constraints on μðzÞ using two statistics. On the one hand,
we look at the uncertainty in μ0 ≡ μðz ¼ 0Þ as it directly
relates to the strength of any possible fifth force today. On
the other hand, we consider the mean value of the amplitude
of the Gaussian process covariance matrix, ημ, which is an
abstract measurement of the uncertainty of the Gaussian
process through its whole domain.
We present the corresponding results in Fig. 8.

Reassuringly, we find that the two statistics offer us the
same picture: the less assumptions we make about the
expansion history, the more uncertainty there is in μðzÞ.
However, it is extremely important to stress that the loss in
constraining power is marginal. Comparing assuming a
ΛCDM vs wCDM model, we find that it makes effectively
no difference and there is no degradation in our constraints
on μðzÞ. Even when a second GP is used to modelHðzÞ the
constraint is only a few percent larger.
Focusing on μ0, we find that σðμ0Þ ≃ 0.12 if we assume

Planck 2018’s posterior as a prior, for either the ΛCDM or
wCDMmodel. This uncertainty increases to σðμ0Þ ≃ 0.19 if
instead of imposing Planck 2018’s posterior as a prior we
use our collection of late-time HðzÞ, DMðzÞ and fσ8
measurements to inform our constraints. The main differ-
ence between assuming Planck 2018 posteriors and using
late-time data to inform our models is that the former
provides us with a much tighter constraint on σ8, the main
bottleneck when constraining μðzÞ in a model-dependent
fashion. Looking at the model-independent constraint, we
find that σðμ̃ðzÞÞ ≃ 0.21.
If we instead look at the constraints on ημ, we find the

exact same trend as in μ0. While one would expect the two
statistics to agree, μ0 only probes the GP at z ¼ 0 while ημ
contains information about the whole GP domain. We find
that for our best-case scenario, in which we assume Planck
2018’s ΛCDM background, ημ ¼ 0.25. Letting late-time
data inform a ΛCDM model instead returns ημ ¼ 0.32.
Furthermore, if we assume a wCDM model, we find
ημ ¼ 0.26 when using Planck’s posteriors to pin it and
ημ ¼ 0.32 when letting late-time data inform it. Finally, we
find ημ ¼ 0.33 in the model-independent case.

FIG. 7. Correlation coefficients between the nodes of the GP on
HðzÞ and the GP on μðzÞ. This plot can be seen as a generalization
of Fig. 3. Note, that current data is powerful enough to constrain
the expansion rate and the modifications of the linear growth
independently as shown by the lack of correlations between the
two quantities.
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The fact that constraints on μ are (relatively) insensitive
to our parametrization of HðzÞ is not unexpected. This is
because current background data is powerful enough to
constrain HðzÞ independently of the assumptions made.
In the analysis of Ref. [28], we found that constraints on
ΩM from the growth rate were not strongly dependent on
our modeling choices of the Gaussian process on HðzÞ.
There have been other attempts at constraining μðzÞ. In

Ref. [9] an uncertainty of σðμ0Þ ≃ 0.25was found under the
assumption that μ evolves as μðzÞ − 1 ∝ ½1 −ΩMðzÞ�.
However, different assumptions about the specific time
dependence of μ [e.g. μðzÞ ∝ an] lead to constraints that
are strongly dependent on the choice of n [11], with μ0 in the
range σðμ0Þ ∈ ð0.04; 1.5Þ. Assuming that the modified
Poisson equations arise from scalar-tensor theories, one
can use the tools of effective field theory [15] or simply
assume specific classes of models [14] to obtain
σðμ0Þ ≃ 0.25. As we can see, our methodology returns
stronger constraints with σðμ0Þ ∈ ð0.12; 0.19Þ depending
on the strength of the assumptions made on HðzÞ. We note
however that it can be misleading to directly compare σðμ0Þ

as it can be heavily dependent on the underlying model and
choice of data sets one is using.
It is instructive to see how much our constraints will

improve with future data. As an example, we choose the
specifications for the DESI data set, described in Sec. IV,
and combine it with the Planck 2018 cosmic microwave
background (CMB) BAO measurement to pin down the GP
on HðzÞ at high redshift. Our analysis of DESI mock data
shows that we will obtain constraints on μ̃ðzÞ [i.e. with a
model-independent HðzÞ] which are twice as tight as with
current data when assuming either a ΛCDM or wCDM
background. This is in spite of the DESI constraint on σ8
being about 6 times wider than Planck 2018’s. The reason
behind this improvement in constraining power boils down
to the fact that DESI alone will offer nearly twice as many
measurements on fσ8 as the number considered in this
work over a larger redshift window. Moreover, DESI fσ8
measurements will have significantly smaller error bars
than currently available ones. It is particularly important to
focus on the smaller size of said error bars relative to the
expected dynamic range of fσ8 in the redshift window
probed. This will greatly help break the degeneracy
between the amplitude of fσ8 (given by σ8) and its shape
[given by μðzÞ in the presence of background data to pin
down ΩM] present in current data.
Finally, there are several avenues through which the

results and methodology presented here could be further
explored. One can ask the question: how well do we need to
measure ΩM to obtain a competitive model-independent
constraint on μðzÞ with current data? Using propagation of
errors, σðμÞ=μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσðμ̃Þ=μ̃Þ2 þ ðσðΩMÞ=ΩMÞ2

p
, we find

that model-independent measurements of ΩM to 10%
precision would be enough to match model-independent
constraints on μðzÞ to model-dependent constraints with
current data. Similarly, a percentage model-independent
measurement of ΩM would allow us to constrain μðzÞ to
virtually the same precision as μ̃ðzÞ. This measurement of
ΩM would need to be independent from the model assumed
for the background expansion and for the parametrization
of the Poisson equation. Future works could attempt to
obtain an alternative model-independent constraint on ΩM
to break the μ̃ðzÞ − ΩM degeneracy found in this
methodology.
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APPENDIX: TABLES

In this appendix we display the large tables that would
have interrupted the reading flow of the main text of the
paper. Table II contains the data sets used in this work.
Table III contains the prior distributions assumed for

each of our models. In general, the priors are chosen broad
enough to prevent them from biasing our results. In
particular, the priors on the hyperparameters of the GP
on μðzÞ (ημlμ), are common to all of the studied cases. As
discussed in Ref. [28], when using gradient-based methods
it is best practice to use smooth priors unless there is a
physical limit on the values that the parameter can take
(e.g. ΩM ∈ ½0; 1�).
Thus, the prior of the amplitude of the GP, ημ, is a half-

normal distributionN 1=2ð0; 0.5Þ, i.e. centered at 0 with 0.5
standard deviation. On the other hand, the correlation
length lμ has an uniform prior Uð0.01; 6Þ. The reason
for a uniform prior (i.e. not smooth) is twofold. On the one
hand, when sampling lμ it is extremely important to avoid
small values in order to avoid volume effects [see Eq. (5)].
On the other hand, we do not want to down-/up-weight a
particular correlation scale for the nodes of the GP.
Moving on to the cosmological parameters, onlyΩM has a

uniform prior Uð0; 1Þ to enforce the physical limits on the
values of the parameter. All the others have normal
distributions whose details can be found in Table III. For
the cases with a Planck 2018 prior, we use the values quoted
in Ref. [9]. In particular, for the ΛCDMP18 þ μGP case
(second column), we use the TTTEEEþ lowEþ lensingþ
BAOΛCDMconstraints (last column of Table 2 inRef. [9]),
while for the wCDMP18 þ μGP case (fourth column), we
use the TTTEEEþ lowEþ lensingþ BAOþ SNe wCDM
constraints (first column of Table 6 in Ref. [9]). Note that in

thewCDMcase the constraints also include SNIa datawhich
is not present in the ΛCDM constraints. This is because
TTTEEEþ lowEþ lensingþ BAO data cannot constrain
wCDM models by itself. Note that for both the ΛCDM and
wCDM models we fix ΩR ¼ 9.245 × 10−5. ΩΛ is then
derived using 1 ¼ ΩM þΩR þ ΩΛ.
We must also consider a number of nuisance parameters

needed to model the specific data sets chosen for this work.
For instance, in order to relate the luminosity curves of the
Pantheon data set to luminosity distances one needs to
know the value of the absolute magnitude of the super-
novae, M. In this work we choose the agnostic way and
marginalize overM, assuming a normal priorN ð−19.2; 1Þ,
which encompasses the H0 values of both Riess et al. [68]
and the Planck Collaboration et al. [9]. On the other hand,
we make extensive use of measurements of both parallel
and perpendicular BAO measurements. In order to relate
these measurements to HðzÞ and DMðzÞ one needs to know
the value of the sound horizon at either drag (rd) or
recombination (r�) epochs. In order to obtain rd and r�
we use a modified version of the Eisenstein-Hu fitting
formula [69,70] given by

rd ≈
45.5337 ln ð7.20376=ωmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 9.98592ω0.801347
b

q Mpc; ðA1Þ

where ωm ¼ ΩMðH0=100Þ2 and ωb ¼ ΩbðH0=100Þ2.
Then, noting that the ratio between rd and r� can be
approximated as a function exclusively ofΩb, we derive the
fitting formula�
rd
r�

�
ðΩbÞ ≈ 1.11346 − 2.7985Ωb þ 16.5111Ω2

b: ðA2Þ

Hence, by combining Eqs. (A1) and (A2) we can obtain
a prediction for r⋆. This approach is capable of reproducing
the CLASS ΛCDM predictions for rd and r� to an average

TABLE II. Data sets used in our analysis, listing the probe, the redshift range of the probe, the choice of observable and the size of the
data vector.

Observable

Data set Probe Redshifts HðzÞ DmðzÞ fσ8 Data points

CCs [22] Cosmic chronometers 0.07–1.965 ✓ × × 33
Pantheon DS17 [44] SNIa 0.38–0.61 × ✓ × 40
BOSS DR12 [52] BAO þ RSD 0.38–0.61 ✓ ✓ ✓ 3 × 3
eBOSS DR16 [62] BAO þ RSD 1.48 ✓ ✓ ✓ 1 × 3
WiggleZ [63] RSD 0.44–0.73 × × ✓ 3
Vipers [64] RSD 0.60–0.86 × × ✓ 2
6dF [65] RSD 0.067 × × ✓ 1
FastSound [66] RSD 1.4 × × ✓ 1
DSS [67] RSD 0 × × ✓ 1
Planck 2018 [9] CMB 1090.30 × ✓ × 1

DESI [56] BAO þ RSD 0.15–1.85 ✓ ✓ ✓ 3 × 18

IMPACT OF THE UNIVERSE’S EXPANSION RATE ON … PHYS. REV. D 106, 083523 (2022)

083523-11



of 1.5% precision within the considered ΩM ∈ ½0.1; 0.6�
andΩb ∈ ½0.03; 0.07�. Since the wCDMmodel we consider
does not include early dark energy, we can also use
Eqs. (A1) and (A2) to predict the values of rd and r� in
such case. On the other hand, when a second GP is used to
model HðzÞ, ΩM is absorbed into the GP on μðzÞ to form

μ̃ðzÞ. This disallows us from following the same approach
to obtain rd and r� as when assuming a ΛCDM or wCDM
model. In this scenario we sample rd directly as a parameter
from N ð145; 5Þ. Then, to get r� we use Eq. (A2) as a
function of rd and Ωb using the same Ωb as in the ΛCDM
and wCDM case.
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A0 � � � � � � � � � � � � N ð1.0; 0.2Þ
ηH � � � � � � � � � � � � N 1=2ð0; 0.2Þ
lH � � � � � � � � � � � � Uð0.01; 6Þ
ημ N 1=2ð0; 0.5Þ N 1=2ð0; 0.5Þ N 1=2ð0; 0.5Þ N 1=2ð0; 0.5Þ N 1=2ð0; 0.5Þ
lμ Uð0.01; 6Þ Uð0.01; 6Þ Uð0.01; 6Þ Uð0.01; 6Þ Uð0.01; 6Þ
Ωm N ð0.316; 0.008Þ Uð0; 1Þ N ð0.307; 0.011Þ Uð0; 1Þ � � �
Ωb � � � Uð0.03; 0.07Þ � � � Uð0.03; 0.07Þ Uð0.03; 0.07Þ
H0 N ð67.27; 0.6Þ N ð70; 5Þ N ð68.31; 0.82Þ N ð70; 5Þ � � �
σ8 N ð0.811; 0.007Þ N ð0.8; 0.5Þ N ð0.82; 0.011Þ N ð0.8; 0.5Þ N ð0.8; 0.5Þ
w0 � � � � � � N ð−1; 0.5Þ N ð−0.957; 0.08Þ � � �
wa � � � � � � N ð0; 0.5Þ N ð−0.29; 0.3Þ � � �
M � � � N ð−19.2; 1Þ � � � N ð−19.2; 1Þ N ð−19.2; 1Þ
rd � � � Derived � � � Derived N ð150; 5Þ
r� � � � Derived � � � Derived Derived
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