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We present high-fidelity cosmology results from a blinded joint analysis of galaxy-galaxy weak
lensing (ΔΣ) and projected galaxy clustering (wp) measured from the Hyper Suprime-Cam Year-1
(HSC-Y1) data and spectroscopic Sloan Digital Sky Survey (SDSS) galaxy catalogs in the redshift
range 0.15 < z < 0.7. We define luminosity-limited samples of SDSS galaxies to serve as the tracers
of wp in three spectroscopic redshift bins, and as the lens samples for ΔΣ. For the ΔΣ measurements,

we select a single sample of 4 × 106 source galaxies over 140 deg2 from HSC-Y1 with photometric
redshifts (photo z) greater than 0.75, enabling a better handle of photo-z errors by comparing the ΔΣ
amplitudes for the three lens redshift bins. The deep, high-quality HSC-Y1 data enable significant
detections of the ΔΣ signals, with integrated signal-to-noise ratio S=N ∼ 15 in the range 3 ≤
R=½h−1 Mpc� ≤ 30 for the three lens samples, despite the small area coverage. For cosmological
parameter inference, we use an input galaxy-halo connection model built on the DARK EMULATOR

package (which uses an ensemble set of high-resolution N-body simulations and enables fast,
accurate computation of the clustering observables) with a halo occupation distribution that includes
nuisance parameters to marginalize over modeling uncertainties. We model the ΔΣ and wp

measurements on scales from R ≃ 3 and 2 h−1 Mpc, respectively, up to 30 h−1 Mpc (therefore
excluding the baryon acoustic oscillations information) assuming a flat ΛCDM cosmology,
marginalizing over about 20 nuisance parameters and demonstrating the robustness of our results
to them. With various tests using mock catalogs described in Miyatake et al. [preceding paper, Phys.
Rev. D 106, 083519 (2022)], we show that any bias in the clustering amplitude S8 ≡ σ8ðΩm=0.3Þ0.5
due to uncertainties in the galaxy-halo connection is less than ∼50% of the statistical uncertainty of
S8, unless the assembly biaseffect is unexpectedly large. Our best-fit models have S8 ¼ 0.795þ0.049

−0.042
(mode and 68% credible interval) for the flat ΛCDM model; we find tighter constraints on the
quantity S8ðα ¼ 0.17Þ≡ σ8ðΩm=0.3Þ0.17 ¼ 0.745þ0.039

−0.031.

DOI: 10.1103/PhysRevD.106.083520

I. INTRODUCTION

Wide-area imaging galaxy surveys offer exciting oppor-
tunities to address fundamental questions in cosmology
such as the nature of dark matter and the origin of cosmic
acceleration [1]. Current-generation imaging surveys such
as the Subaru Hyper Suprime-Cam (HSC) [2–5], the Dark
Energy Survey (DES) [6–12], and the Kilo-Degree Survey
(KiDS) [13–15] have used accurate measurements of weak
gravitational lensing effects to obtain tight constraints on
cosmological parameters. Intriguingly, the cosmological
models inferred from these large-scale structure probes
consistently (albeit at low significance) exhibit a lower
value of σ8 or S8, which characterizes the clustering
amplitude in the late Universe (e.g., [4,16]), than do
cosmological models inferred from the Planck cosmic
microwave background (CMB) measurement [17], hinting
at the possibility of new physics beyond the standard
cosmological model, i.e., the flat ΛCDM model with
adiabatic, Gaussian initial conditions (e.g., [16]).

The main challenge of large-scale structure probes lies in
the uncertainty in galaxy bias; that is, the unknown relation
between the distributions of matter and galaxies [18,19].
Since the physical processes inherent in the formation and
evolution of galaxies are still difficult to accurately model
from first principles, we need both observational and
theoretical approaches to tackle the galaxy bias uncertainty
in order for us to obtain “unbiased” and “precise” inference
of the underlying cosmological parameters from large-scale
structure observables. On scales large enough to be
described by linear perturbation theory, galaxy bias is
expected to have a simple form [20]; however, there is
considerable statistical power to be gained by exploiting the
information in the mildly nonlinear regime (e.g., [21–23]).
Combining multiple observational probes offers a prom-

ising way to mitigate the impact of galaxy bias uncertainty
on cosmology inference [7,14,22–28]. In particular, gal-
axy-galaxy weak lensing, obtained by cross-correlating the
positions of foreground (lens) galaxies with shapes of
background galaxies, can be used to infer the average
mass distribution around lens galaxies. Combining the
galaxy-galaxy weak lensing with the autocorrelation
function of galaxies in the same sample as the lens galaxies
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can be used to observationally disentangle the galaxy bias
and the correlation function of the underlying matter
distribution.
The halo model prescription of large-scale structure

[29–32] is a useful theoretical method to make model
predictions of galaxy clustering quantities. Halos are
locations where galaxies likely form, and the clustering
properties of halos are relatively well understood, both
from analytical approaches and N-body simulations [33].
An empirical model such as the halo occupation distribu-
tion (HOD) method [34,35] can be used to connect galaxies
to halos. An advantage of this method is that it allows one
to use small-scale information in cosmology inference,
thereby yielding tighter constraints on cosmological param-
eters (see, e.g., [27,36–39]). However, if the model is not
sufficiently accurate nor flexible enough to capture the
complicated galaxy-scale physics or marginalize over
uncertainties in the galaxy-halo connection, the method
might lead to a significant bias in cosmological parameters,
more than the statistical credible interval (see, e.g., [40–
43]). Aworst-case scenario is that one might claim a wrong
cosmology, e.g., a time-varying dark energy model, from a
given dataset due to inaccurate theoretical templates.
In this paper we estimate cosmological parameters

by comparing halo model predictions to the clustering
observables, galaxy-galaxy weak lensing and the projected
auto-correlation function of galaxies, measured from the
Subaru HSC Year 1 datasets (hereafter HSC-Y1) [3] and
the spectroscopic LOWZ and CMASS galaxy samples of
the Sloan Digital Sky Survey (SDSS; York et al. [44]). In
this paper we use luminosity-limited, rather than flux-
limited, samples of LOWZ and CMASS [45] galaxies
because those samples are nearly volume-limited in each of
the redshift bins we use, and display weaker redshift
evolution of the clustering properties in each bin than do
the flux-limited samples, allowing us to use redshift-
independent model predictions in the parameter inference
[26,27]. In addition, the luminosity-limited samples allow
us to rather straightforwardly model the magnification bias
effect on the galaxy-galaxy weak lensing measurement
[46]. For the source sample of HSC-Y1 galaxies used in the
galaxy-galaxy weak lensing measurement, we employ a
single sample of source galaxies for the three lens samples
of LOWZ and CMASS galaxies, following the method
described in Oguri and Takada [24]. This method allows for
a calibration of photo-z errors by comparing the relative
strengths of the galaxy-galaxy weak lensing at different
lens redshifts for the same source sample. This calibration
allows us to mitigate photo-z errors, one of the most
important systematic effects in weak lensing cosmology.
On the modeling side, we use the publicly available code

DARK EMULATOR developed in Nishimichi et al. [47],
which enables fast, accurate computations of halo cluster-
ing quantities (the halo mass function, the halo-matter
cross-correlation function and the halo autocorrelation

function) as a function of redshift, separation and halo
mass(es) for an input model within the flat wCDM
cosmology framework. This emulator is flexible in the
sense that we can combine it with a user-specified
prescription of the galaxy-halo connection, the HOD
prescription used in this paper, to make model predictions
of galaxy-galaxy weak lensing and galaxy autocorrelation
function for a target sample of galaxies for an input
cosmological model [21]. With this emulator, we can
perform cosmology inference in a multidimensional
parameter space, which is equivalent to comparing the
measured signals with model predictions from mock
catalogs of galaxies in N-body simulations. In doing this,
we include a sufficient number of nuisance parameters to
account for uncertainties in the galaxy-halo connection
and other observational effects, and then estimate cos-
mological parameters after marginalizing over the nui-
sance parameters.
We perform the cosmology analysis in a blind manner

to avoid confirmation biases affecting our results. After
unblinding, we compare our results with those from other
cosmological experiments such as other weak lensing
surveys and Planck. We aim to address the question of
whether the cosmological parameters, especially S8 or σ8
inferred from our joint probes analysis, are consistent
with those of the Planck cosmology. Note that our
companion paper [48] performs a cosmology analysis
limited to large scales using a theoretical template moti-
vated by the perturbation theory, which is complementary
to our analysis.
This paper is organized as follows. In Sec. II, we briefly

describe the HSC first-year shear catalog and the spectro-
scopic SDSS galaxy catalog that are used in the galaxy-
galaxy weak lensing and galaxy clustering measurements.
In Sec. III, we describe the measurements of our clustering
observables. In Sec. IV, we describe our analysis method:
the theoretical templates based on the halo model and the
likelihood analysis. In Sec. V we describe our strategy for
the blind cosmology analysis. In Sec. VI we show the main
results of this paper: our cosmological constraints and their
robustness to different systematics. Finally we give our
conclusions in Sec. VII. We include seven appendices
giving technical details of our model and tests of systematic
effects.
Throughout this paper, unless stated otherwise, we quote

the central value of a parameter from the mode value of
parameter that has the highest probability for the margin-
alized 1D posterior probability density function in the
chain: PðpmodeÞ ¼ maximum. We quote the 68% credible
interval(s) for parameter(s) from the highest density interval
of parameter(s) [49] satisfying

Z
p∈P>P68

dpPðpÞ ¼ 0.68; ð1Þ
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where PðpÞ is the 1D or 2D marginalized posterior
distribution. The 95% credible interval is similarly defined.

II. DATA

A. HSC-Y1 data: Source galaxies for
galaxy-galaxy weak lensing

HSC is a wide-field prime focus camera on the 8.2m
Subaru Telescope [50–53]. The HSC Subaru Strategic
Program (HSC SSP) survey started in 2014 and is using
330 Subaru nights to conduct a five-band (grizy) wide-area
imaging survey [3]. The combination of HSC’s wide field
of view (1.77 deg2), superb image quality (typically 0.600
seeing FWHM in i band), and large photon-collecting
power makes it one of the most powerful instruments for
weak lensing measurements. The HSC SSP survey consists
of three layers: wide, deep, and ultradeep. The wide layer,
which is designed for weak lensing cosmology, plans to
cover about 1200 deg2 of the sky with a 5σ depth of i ∼ 26
(200 aperture for a point source). Since the i-band images
are used for galaxy shape measurements in weak lensing
analyses, they are preferentially taken under good seeing
conditions.
In this paper, we use the HSC first-year (hereafter HSC-

Y1) galaxy shape and photo-z catalogs [54,55] constructed
from about 90 nights of HSC wide data taken between
March 2014 and April 2016 [56]. Both catalogs are based
on the object catalog produced by the data reduction
pipeline [57]. In the following subsections, we describe
details of the shape and photo-z catalogs.

1. HSC-Y1 galaxy shape catalog

We apply a number of cuts to construct the shape catalog
of HSC galaxies [see [54], for details]. For instance, we
restrict our analysis to survey regions with approximately
full depth in all five filters (the “full-depth full-color” or
FDFC region), to ensure the homogeneity of the galaxy
sample. We also adopt a CMODEL magnitude cut of i < 24.5
(see [57] for the definition of CMODEL magnitude), which
is conservative given the depth of the HSC wide layer.
We apply the “Sirius” star mask to remove regions affected
by bright stars [58]. We remove galaxies located in
disconnected regions and regions where point spread
function (PSF) modeling fails. The resulting HSC-Y1 shear
catalog has more than 12 million galaxies, covering
136.9 deg2 spread over six distinct fields: XMM,
GAMA09H, WIDE12H, GAMA15H, HECTOMAP, and
VVDS (see Fig. 1 in Ref. [54]). The HSC wide survey
footprint overlaps fully with the SDSS sky coverage.
Mandelbaum et al. [54] and Oguri et al. [59] carried out
various null tests to show that the shear catalog satisfies the
requirements of HSC-Y1 science for both cosmic shear and
galaxy-galaxy weak lensing analyses [60]. In Appendix B,
we give further null tests that are specific for cosmology

analysis with the galaxy-galaxy lensing measurements
based on the HSC-Y1 and SDSS datasets.
The shape catalog includes the following quantities

relevant to our weak lensing analysis. The shape catalog
has the PSF-corrected galaxy ellipticity ðe1; e2Þ ¼
ðe cos 2ϕ; e sin 2ϕÞ, where ϕ is the position angle. Since
the ellipticity is defined in terms of distortion, i.e., e ¼
ða2 − b2Þ=ða2 þ b2Þ, where a or b is the major or minor
axis, one needs to apply the appropriate responsivity factor
when estimating weak lensing shear from galaxy shapes
(see Sec. III A 1 for details). The shape catalog contains, for
each galaxy, an estimate of the rms intrinsic ellipticity per
component erms, from which the ellipticity measurement
noise is already subtracted, and contains the calibration
factors derived from the image simulations [55]. The
calibration factors consist of the shear multiplicative bias
m and the additive bias ðc1; c2Þ which relate a measured
shape to a true shape as γmeas;i ¼ð1þmÞγtrue;iþci. The
shape catalog also contains the inverse-variance weight ws,
which takes into account the intrinsic shape and measure-
ment noise.

2. Source galaxy catalog for galaxy-galaxy weak lensing

Thanks to the depth of the HSC-Y1 data, we can define a
secure sample of source galaxies behind lens galaxies, for
galaxy-galaxy weak lensing measurements. In this paper
we select three distinct samples of lens galaxies from the
database of spectroscopic SDSS galaxies up to z ¼ 0.7. To
select background galaxies, we use photometric redshift
(hereafter photo-z) estimates of each HSC galaxy. Multiple
photo-z catalogs using different algorithms are available
(see [61] for details). For our fiducial analysis, we use the
MLZ method [62]; as for our fiducial catalog, in Sec. VI A,
we will discuss how the choice of different photo-z
algorithms affects the cosmological results.
In this paper, following the method in Oguri and Takada

[24], we use a single sample of source galaxies for the
galaxy-galaxy weak lensing measurements for all three
samples of lens galaxies in different redshift bins (see
below). This method enables us to mitigate the impact of
photo-z uncertainties on cosmological constraints, as we
will explicitly demonstrate later. We define a sample of
background galaxies by requiring that the posterior that the
galaxy has redshift less than 0.75 be less than 1% [63–65]:Z

7

zl;maxþ0.05
dzs PiðzsÞ ≥ 0.99; ð2Þ

where PiðzsÞ is the posterior distribution of photo-z esti-
mation for the ith HSC galaxy. Note that we use a lower
bound of zs ¼ 0.75, comfortably larger than the upper
bound of the SDSS lens galaxy sample, zl;max ¼ 0.7.
With this cut, the sample includes 4,308,983 HSC galaxies
over about 140 deg2, corresponding to a net number
density of n̄s ≃ 8.74 arcmin−2 and a weighted number
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density (defined in Chang et al. [66]) of n̄s ≃ 7.95 arcmin−2.
The mean redshift of the sample is hzsi ≃ 1.34.

B. SDSS spectroscopic galaxy catalog for lens galaxies:
LOWZ and CMASS

To trace the large-scale structure, we use the large-scale
structure sample compiled in Data Release 11 (DR11)
[45,67] of the SDSS-III (Baryon Oscillation Spectroscopic
Survey) project [68]. The SDSS-III is a spectroscopic
follow-up of galaxies and quasars selected from the
imaging data obtained by the SDSS-I/II [44] covering
about 11;000 deg2 [69] using the dedicated 2.5 m SDSS
Telescope [70]. Imaging data obtained in five photometric
bands (ugriz) in the SDSS I/II surveys [71–73] were
augmented with an additional 3000 deg2 of imaging data
by the SDSS-III BOSS project [68,74–76]. These data were
processed by a series of image processing pipelines [77–79]
and corrected for Galactic extinction [80] to obtain a
reliable photometric catalog, which serves as an input to
select targets for spectroscopy [68]. Targets are assigned to
tiles using an adaptive tiling algorithm designed to maxi-
mize the number of targets that can be successfully
observed [81]. The resulting spectra were processed by
an automated pipeline to perform redshift determination
and spectral classification [82]. The BOSS large-scale
structure (LSS) samples are selected using algorithms
focused on galaxies in different redshifts: 0.15 < z <
0.35 (LOWZ) and 0.43 < z < 0.7 (CMASS). In addition
to the galaxies targeted by the BOSS project, we also use
galaxies that pass the target selection but have already been
observed as part of the SDSS-I/II project (legacy galaxies).
These legacy galaxies are subsampled in each sector so that
they obey the same completeness as that of the LOWZ/
CMASS samples in their respective redshift ranges [83].
To perform measurements of the clustering and lensing

signals, we create various subsamples, cutting on redshift
and absolute magnitude, of the parent LSS catalog provided
with DR11. To estimate the i-band absolute magnitudes for
individual SDSS galaxies, we employ the method in Wake
et al. [84] to make k corrections (using “passive plus star-
forming galaxies” in Wake et al. [84] constructed using
templates from the stellar population synthesis model in
Bruzual and Charlot [85]) of individual galaxies based on
CMODEL photometry. We k correct the photometry LOWZ
galaxies to a redshift of 0.20 and that of CMASS galaxies to
a redshift of 0.55.
We use three galaxy subsamples in three redshift bins:

“LOWZ” galaxies in the redshift range z ¼ ½0.15; 0.35�
and two subsamples of “CMASS” galaxies, hereafter
called “CMASS1” and “CMASS2,” respectively, which
are obtained from subdivision of CMASS galaxies into two
redshift bins, z ¼ ½0.43; 0.55� and z ¼ ½0.55; 0.70�, respec-
tively. As shown in Fig. 1, we define each of the
subsamples by selecting galaxies having the absolute
magnitudes Mi − 5 log h < −21.5, −21.9 and −22.2 for

the LOWZ, CMASS1, and CMASS2 samples, respectively.
The comoving number densities for the Planck cosmology
n̄g=½10−4 ðh−1 MpcÞ−3� ≃ 1.8, 0.74, and 0.45, respectively,
which are a few times smaller than those of the entire parent
(color-cut and flux-limited) LOWZ and CMASS samples.
As shown in Fig. 1, the number density depends only
weakly on redshift within each sample. The CMASS1
sample does show a somewhat stronger redshift depend-
ence, but we will show later that our cosmological con-
straints remain almost unchanged when we exclude the
CMASS1 sample from the cosmological analysis.
In Appendix B, we quantify the sensitivity of our lensing

analysis to the choice of k-correction method we use. We
find that the differences are smaller than the statistical
uncertainties.
The SDSS DR11 large-scale structure catalogs [83]

provide weights to account for various systematic effects,
including (i) the inverse correlation between the number
density of galaxies and that of stars [86] and issues related
to seeing (w�), (ii) fiber collided galaxies that do not have a
spectroscopic redshift, and (iii) systematic failures to obtain
the spectroscopic redshifts of galaxies, respectively.
The last two weights correct for the full LOWZ and

CMASS sample, not the absolute-magnitude-limited sub-
samples we use here, and thus are not applicable for our
purposes. Instead we assign the redshift of the nearest
neighbor to all fiber collided or redshift-failure galaxies,
and compute their absolute magnitudes and include or
exclude them depending upon our selection criteria. In
summary, in our clustering analysis, we set the weights to
wl ¼ w� if the galaxies satisfy our absolute magnitude

FIG. 1. Upper panel: the LOWZ and CMASS galaxy samples in
the plane of redshift and absolute magnitude. In this study we use
the three samples denoted by the black boxes: the LOWZ sample
in the redshift range z ∈ ½0.15; 0.35� with absolute magnitudes
M < −21.5, the “CMASS1” sample in z ∈ ½0.43; 0.55� with
M < −21.9, and the “CMASS2” sample in z ∈ ½0.55; 0.70� with
M < −22.2. The figure includes only 5% of the galaxies to avoid
crowding. Lower panel: the solid (dashed) lines show the redshift
dependence of the comoving number density of galaxies in each
of our galaxy samples (the parent LOWZ and CMASS sample),
obtained assuming the Planck cosmology.
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threshold criteria given below (see also Ref. [26] for a
similar treatment for a stellar-mass selected sample).
Detailed tests on mock galaxy catalogs of the use of
nearest neighbor redshifts can be found in Guo et al.
[87]; they demonstrated that the nearest-neighbor correc-
tion achieves subpercent accuracy in the projected galaxy
autocorrelation function for scales used in this paper.
For simplicity, throughout this paper we ignore the

redshift evolution of the clustering observables within the
redshift bin of each sample, as is usually done in galaxy
clustering analyses. The volume-limited samples should
have weaker redshift evolution than does a flux-limited
sample, because the volume limited sample would tend to
reside in host halos of similar masses over the redshift
range of the bin. In fact, Miyatake et al. [26] verified that
both the lensing and clustering signals of volume-limited
samples, defined in the range 0.43 < z < 0.59, have weak
redshift dependence. In addition the luminosity-limited
sample allows a simpler treatment of the magnification
bias effect on the galaxy-galaxy weak lensing than does
the flux-limited sample, as we will describe below.

III. MEASUREMENTS

In this paper we use the galaxy-galaxy weak lensing
ΔΣðRÞ and the projected correlation function wpðRÞ as
clustering observables. This section describes details of the
measurement methods of these two quantities.

A. Galaxy-galaxy weak lensing: ΔΣðRÞ
Cross-correlating the positions of spectroscopic galaxies

(spectroscopic SDSS galaxies in our study) with shapes of
background galaxies (HSC galaxies) enables us to probe
the averaged mass distribution around lens galaxies—
galaxy-galaxy weak lensing [88]. Throughout this paper
we use the average excess surface mass density profile,
ΔΣðRÞ, as the galaxy-galaxy weak lensing observable,
where ΔΣ has dimensions of ½hM⊙ pc−2� and is given as a
function of the projected comoving separation R with units
of ½h−1Mpc�. An alternative choice of the weak lensing
observable is the tangential shear profile γþðθÞ (a dimen-
sionless quantity) as a function of angular separation θ. As
shown in Shirasaki and Takada [89], ΔΣðRÞ is typically
measured with higher signal-to-noise ratio than is γþ,
because it upweights source galaxies at higher redshifts
that therefore have higher lensing efficiency for a given lens
sample. In this section we describe the measurement
method of galaxy-galaxy weak lensing and show the
signal-to-noise ratio of the measurements from the HSC-
Y1 dataset.

1. Galaxy-galaxy weak lensing estimator

An estimator of ΔΣðRiÞ for the ith radial bin Ri is given
(e.g., see [26]) by

cΔΣðRiÞ¼
P

ls∈Ri
wls hΣ−1

cr i−1ls ½et;ls=2RðRiÞ−ct;ls�
½1þKselðRiÞ�½1þKðRiÞ�

P
ls∈Ri

wls

����
Ri¼χðzlÞΔθls

− ðsignal around random pointsÞRi
; ð3Þ

where the summation “ls” runs over all lens-source pairs
that lie in the ith radial bin Ri ≡ χðzlÞΔθls; χðzlÞ is the
comoving angular diameter distance to the lth SDSS lens
galaxy at the spectroscopic redshift zl, and Δθls is the
angular separation between lens and source in each pair;
et;ls is the “tangential component” of ellipticity of the sth
HSC source galaxy [90]; ct;ls is the additive shear calibra-
tion factor given in the HSC shape catalog [55]; hΣ−1

cr ils is
the average of the inverse critical surface mass density
given by the lensing efficiency averaged over the photo-z
posterior distribution function of each source galaxy,
PsðzsÞ, behind the lth lens galaxy:

hΣ−1
cr ils ¼

R
∞
0 dzsPsðzsÞΣ−1

cr ðzl; zsÞR
∞
0 dzs PsðzsÞ

; ð4Þ

with

Σcrðzl; zsÞ≡ χðzsÞ
4πGχlsðzl; zsÞχðzlÞð1þ zlÞ

: ð5Þ

Here χlsðzl; zsÞ is the angular comoving distance between
lens and source, given as χls ¼ χðzsÞ − χðzlÞ for a flat-
geometry universe assumed throughout this paper. Note
that the factor ð1þ zlÞ arises from our use of comoving
coordinates in the projected separation. Also note that we
set Σ−1

cr ¼ 0 when zs < zl in Eq. (4). The factor “wls” in
Eq. (3) denotes the “weight” for which we employ an
inverse-variance weighting that is nearly optimal in the
shape-noise-dominated regime, following Mandelbaum
et al. [23] (also see Ref. [89]):

wls ¼ wlwshΣ−1
cr i2ls; ð6Þ

where wl and ws are the weights given in the BOSS catalog
and the HSC shape catalog, respectively (see Sec. II B for
details).
To compute hΣ−1

cr i [Eq. (4)], we use the photo-z posterior
distribution of individual galaxies, PsðzsÞ. Since the pos-
terior distribution of source galaxies, even after averaging,
differs from the underlying true redshift distribution, there
is a bias in the estimation of hΣ−1

cr i [91]. As we will discuss
below, to quantify this possible bias, we also use the
“reweighting” method in Hikage et al. [4] to estimate the
intrinsic redshift distribution for the source sample, by
matching the populations of the COSMOS 30-band photo-z
sample [92,93] to that of our background galaxy sample in
the color space, because the COSMOS 30-band photo-zs
are much more accurate than ours.
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The shear responsivity RðRÞ in Eq. (3), which accounts
for conversion of “distortion” (½a2 − b2�=½a2 þ b2�) to
“shear” (½a − b�=½aþ b�Þ [94], is given by

RðRiÞ ¼ 1 −
P

ls∈Ri
wlse2rms;sP

ls∈Ri
wls

; ð7Þ

where erms;s is the rms intrinsic ellipticity of the sth source
per component. The factor ½1þ KðRiÞ� is the multiplicative
shear calibration factor that is given in the HSC shape
catalog, defined as

1þ KðRiÞ ¼ 1þ
P

ls∈Ri
wlsmsP

ls∈Ri
wls

; ð8Þ

where ms is the multiplicative calibration factor for the
sth source galaxy that is estimated per object using the
simulations of HSC images [55]. This calibration factor not
only accounts for both noise bias (e.g., [94–96]) and model
bias [97,98], but also the effect of image blending expected
in HSC including the impact of unrecognized blends to
some degree.
We also need to correct for the effect of selection bias,

because our sample of source galaxies is based on the
specific photo-z cuts [Eq. (2)] in addition to the fiducial
cuts used for the source catalog in the cosmic shear analysis
[4,5]. The factor ½1þ KselðRÞ�−1 corrects for the selection
bias. We follow the method described in Sec. 5.6.2 of
Mandelbaum et al. [55] to compute the correction factor for
the source galaxy sample in each separation bin R. In this
method, we include the selection bias effect by modifying
the multiplicative bias factor ms, by computing the prob-
ability of galaxies in the sample at the edge of the resolution
factor cut, where the resolution factor is given by the ratio
of the PSF size to the observed size of the galaxy. We have
confirmed that this selection bias effect is very small.
Furthermore, in the cosmological inference, we will intro-
duce a nuisance parameter Δmγ (see below) to model any
residual systematic error in the shear calibration and study
its impact on the cosmological results.
Finally, the second term on the right-hand side of Eq. (3)

denotes the signal around the random points, which is
measured by replacing lens galaxies with random points.
We need to subtract this random signal to correct for
observational systematic effects such as residual system-
atics in shape measurements due to an imperfect correction
of optical distortions across the field of view. The number
of random points is 20 times larger than that of lens
galaxies, where the random catalogs are generated mim-
icking the redshift distribution of galaxies in the LOWZ,
CMASS1, or CMASS2 sample. We found that the signal
around random points starts to deviate from zero at
R≳ 15 h−1 Mpc, but the deviations are still smaller than
the statistical uncertainties, as shown in Fig. 18 in
Appendix B.

As can be found from Eq. (3), the estimation of ΔΣðRÞ
involves conversion of the observed angular separation
between source and lens, Δθ, to the comoving separation R
and the multiplicative factor of hΣ−1

cr i−1ls . To do these, we
need to assume a “fiducial” cosmology, which generally
differs from the underlying true cosmology. For the flat
ΛCDMmodel which we use throughout this paper, the only
relevant free parameter is Ωm (because we use units such as
h−1 Mpc and hM⊙ pc−2 in which the h dependence is made
explicit, we are insensitive to the value of h). In this paper
we use the method in More [99] to take into account the
geometrical dependence of Ωm in the computations of
hΣ−1

cr ils and R (also see Miyatake et al. [21]). Throughout
this paper we employ Ωm;fid ¼ 0.279 for the fiducial
cosmology in the measurements of ΔΣðRÞ and wpðRÞ.
The large-scale structure which lies between us and the

lens galaxies causes distortions of the shapes of the back-
ground source galaxy sample. It also modulates the number
densities of both the source and lens galaxies due to lensing
magnification [46,100]. This complicates the interpretation
of the galaxy-galaxy lensing signal. As shown in Unruh
et al. [46], the effect of the magnification of the source
galaxy sample is small and can be neglected. However, the
correlated effect of the magnification of the lens sample,
and the associated imprints on the shapes of the source
galaxies can be a significant source of systematic error [46].
The number density fluctuations of lens galaxies caused by
the magnification is given by

δmag
g ðχl; χlθÞ≡ N − N0

N0

;

¼ μαmag−1 − 1;

≃ 2ðαmag − 1Þκðχl; χlθÞ; ð9Þ

where κ is the lensing convergence, i.e., the projected mass
density field up to zl, in the direction θ, and we have
assumed the weak lensing regime, jκj ≪ 1. Here we
approximate the intrinsic number counts of lens galaxies
by a power law with respect to magnitudes, and the slope
of galaxy counts around a given magnitude cut αmag is
defined as

αmag ≡ −
d log Nð> flimÞ

d log flim
; ð10Þ

for which we use the flux corresponding to the absolute
magnitude cut, flim ∝ 10−0.4Mab;lim . The same foreground
large-scale structure causes a weak lensing distortion of the
HSC source galaxies. In turn the magnification bias causes
an additive contamination to the standard galaxy-galaxy
weak lensing as described below.
Figure 2 displays the number counts of galaxies in the

LOWZ, CMASS1, and CMASS2 samples. The estimated
slope around the magnitude cut is αmag ≃ 2.26� 0.03,
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3.56� 0.04, or 3.73� 0.04 for the LOWZ, CMASS1, or
CMASS2 sample, respectively, where the 1σ error is
estimated assuming the Poisson errors in the number counts
in each magnitude bin around the magnitude cut. For the
cosmological inference, we use the estimated αmag for the
central value and employ a Gaussian prior with width given
by σðαmagÞ ¼ 0.5. We use a significantly larger width than
the estimated error on these slopes to be conservative and in
order to take into account variations in the slope for
different color cuts of galaxies in the parent SDSS samples
in each redshift bin (see the right panel of Fig. 2). We find
that even with such wide Gaussian priors, the estimated
cosmological parameters do not change significantly from
the results obtained by fixing αmag to the central value. We
comment that our luminosity-limited samples are better
suited for a treatment of the magnification bias than are the
parent LOWZ and CMASS galaxy samples. The parent
LOWZ and CMASS galaxies are selected by the color-
dependent flux cuts [68,101]. Hence the magnification bias
cannot be characterized by a single slope of the number
counts in the original sample, and one would have to
carefully estimate the effect using the effective slope as
done in Ref. [100].
Our use of conservative cuts based on the photo-z

posterior distribution of the source galaxies also mitigates
any contamination of intrinsic alignments of source gal-
axies to the galaxy-galaxy weak lensing measured that
could occur if some of the source galaxies were at the same
redshift as the lens galaxies and therefore are physically
associated with the same large-scale structure in which
the lens galaxies reside (e.g., [102]). As we show in
Appendix B, we do not see any excess clustering of source
galaxies around our lenses. Therefore we do not explicitly
model intrinsic alignments in this paper.
We use mock catalogs of HSC- and SDSS-like galaxies

to determine the covariance matrix of statistical errors for
the ΔΣ measurement, as described in Appendix B of

Miyatake et al. [21]. In Appendix A we briefly describe
the details of the mock catalogs and our method for the
covariance calibration. The correlation matrix is shown in
the right panel of Fig. 15, which shows significant off-
diagonal components at R≳ 10 h−1 Mpc. The covariance
matrix includes cross-correlation between the ΔΣðRÞ sig-
nals of different lens galaxies, which arise from the shape
noise of the same source galaxies and the cosmic shear due
to the shared foreground large-scale structures. In addition,
our companion paper [48] derived an additional contribu-
tion to the covariance matrix arising from the magnification
bias. While this contribution does not significantly affect
the cosmological parameter estimation, we include it for
completeness.
In Fig. 3 we show the measured signals of ΔΣðRÞ for

each of the LOWZ, CMASS1, and CMASS2 samples,
respectively. We define the radial bins by dividing 0.05 <
R=½h−1 Mpc� < 80 into 30 evenly spaced logarithmic bins.
The region that is not grayed out displays the range of R
bins which we use for our cosmological analysis:
3 ≤ R=½h−1Mpc� ≤ 30. To be more precise, the smallest
bin in this range includes the lens-source pairs in the
separation range 3.27 ≤ R=½h−1 Mpc� ≤ 4.18, while the
largest bin is in the range 23.4 ≤ R=½h−1 Mpc� ≤ 29.9.
As is clear from the figure, the HSC-Y1 data yields a
significant detection of ΔΣ over this full range of
separations.
To quantify the significance of the lensing measure-

ments, we can define the cumulative S/N ratio as�
S
N

�
2 ≡ X

3≤Ri;Rj≤30
ΔΣðRiÞ½C−1

ΔΣ;sub�ijΔΣðRjÞ; ð11Þ

where CΔΣ;sub is a submatrix of the full covariance matrix
including only the elements in theR range∈ ½3;30� h−1Mpc
and ðCΔΣ;subÞ−1 is its inverse. The legend of Fig. 3 shows the

FIG. 2. Left panel: the differential number counts of galaxies as a function of absolute magnitude, integrated over redshift, for each of
the LOWZ, CMASS1, and CMASS2 subsamples (see Fig. 1). The vertical line for each sample denotes the magnitude cut that is used to
define the sample in the clustering analysis. Right panel: the number counts for subsamples of galaxies divided based on the different
color cuts for the CMASS2 sample.
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S/N ratio values for each of the LOWZ, CMASS1, and
CMASS2 samples, and the total S/N ratio denotes the total
S/N ratio value combining the three samples taking into
account the cross-covariances. Even though it covers only
140 deg2, the HSC-Y1 data give a significant detection of
the weak lensing signal, with total S=N ≃ 15.4. These S/N
ratio values are consistent with those we obtained from the
mock catalogs for the Planck-like cosmology (see Table III
of Ref. [21]).
Figure 4 shows the S/N ratio values as a function of the

minimum separation Rmin over which the sum in Eq. (11)
extends.

2. A model for the residual systematic
photo-z errors: Δzph

In Appendix B we show the results for various system-
atics tests such as the B-mode signal and the “boost” factor.
The boost factor might arise from contamination by
galaxies physically associated with lens galaxies to the
source galaxy sample due to imperfect determination of
photo-z. In brief, we did not find any evidence for such
residual systematic effects in our ΔΣ measurements,

FIG. 3. Upper panels: the galaxy-galaxy weak lensing signals, R × ΔΣðRÞ, measured by combining spectroscopic SDSS galaxies and
HSC-Y1 galaxies for lens and source galaxy samples, respectively. Here we consider the LOWZ, CMASS1, and CMASS2 lens samples
in the redshift range, z ¼ ½0.15; 0.35�; ½0.43; 0.55�, and [0.55, 0.70], respectively, and we employ a single source population from the
HSC-Y1 shape catalog (see text for details). The error bars at each bin are computed from the diagonal components of the covariance
matrix. The regions that are not grayed out display the range of separations, 3 ≤ R=½h−1 Mpc� ≤ 30, which we use for our baseline
cosmology analysis. The legend denotes the cumulative signal-to-noise (S/N) ratio over the range 3 ≤ R=½h−1 Mpc� ≤ 30. The total S/N
ratio over the three samples is given in the upper right corner, taking into account the cross-covariances. The colored band and line over
the fitting range of separations in each panel denote the 68% credible interval and mode of the posterior distribution of the model
predictions in each separation bin, obtained from the Bayesian cosmology inference. The black line in each panel denotes the model
prediction at maximum a posteriori (MAP). Lower panels: Similarly, the results for the projected correlation function, R × wpðRÞ. The
region that is not grayed out displays the range of separations, 2 ≤ R=½h−1 Mpc� ≤ 30, which we use for our cosmology analysis. Note
that we employed Ωm;fid ¼ 0.279 in the measurements of ΔΣðRÞ and wpðRÞ, which is needed for computations of R and hΣ−1

cr i.

FIG. 4. The cumulative signal-to-noise ratio of ΔΣ, integrated
over Rmin < R < 30 h−1 Mpc, where we vary the minimum
separation Rmin. Note the reversed x axis in this plot. We fix
the maximum separation to 30 h−1 Mpc. We use the same
binning of separations as in Fig. 3. The lines show the results
for each of the LOWZ, CMASS1, and CMASS2 samples, and the
bold line shows the total S/N ratio obtained by combining the ΔΣ
measurements for all the samples.
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reflecting the high quality of the HSC-Y1 data and the
appropriateness of our source galaxy cuts. In our cosmo-
logical analysis, we introduce nuisance parameters Δzph
(described in this subsection) and Δmγ (the following
subsection) to model possible residual systematic errors
in the photo-z determination and multiplicative shear
calibration, and treat those parameters as free parameters
in the cosmology inference. Hence, even if we have
residual unknown systematic effects in the weak lensing
measurements, these nuisance parameters largely absorb
the impact of these systematics on the cosmological
constraints.
Following the method in Huterer et al. [103] (see also

Ref. [21]), we model the systematic error in the mean
source redshift by shifting the posterior distribution of each
source galaxy by the same amount Δzph; that is,

PsðzsÞ → Psðzs þ ΔzphÞ: ð12Þ

We then use the shifted distribution to compute the
averaged lensing efficiency hΣ−1

cr ils and the weight wls
for the source-lens pairs using the actual HSC-Y1 and
SDSS catalogs [Eqs. (4) and (6)] and then determine
the lensing signal as before using Eq. (3). We find that
the lensing signal after this shift is well approximated by
the following multiplicative form:

cΔΣðilÞðR;ΔzphÞ ≃ fðilÞph ðΔzphÞcΔΣðilÞðR;Δzph ¼ 0Þ; ð13Þ

where fðilÞph ðΔzphÞ is the multiplicative factor to model the
effect of systematic photo-z error and il is an index
denoting the three lens samples: “LOWZ,” “CMASS1,”
and “CMASS2.” Note that we properly take into account

the dependence of fðilÞph ðΔzphÞ on the assumed cosmology,
Ωm for a flat ΛCDM (cold dark matter) model, in parameter
inference, using the similar method to that described in
Sec. III A. We find that the shift Δzph leads to different
changes in the amplitudes of ΔΣ for the different lens
samples (LOWZ, CMASS1, and CMASS2) depending on
the lens redshift. Because we have used a single population
of source galaxies, we can use the differences in the ΔΣ
amplitudes at different lens redshifts to determine Δzph,
simultaneously with cosmological parameter estimation.
That is, we are carrying out a self-calibration of the average
photo-z error using the method proposed by Oguri and
Takada [24]. We will show below that this method indeed
enables a self-calibration of the photo-z uncertainty to the
level allowed by the current statistical errors.
The nuisance parameter for photo-z systematics we

employ is only the mean shift of PsðzsÞ. To check if this
parametrization is adequate, we perform the following test
using the reweighted COSMOS 30-band photo-z (see
Sec. III A 1). The COSMOS 30-band photo-zs have a
much lower outlier rate and higher precision than do our

photo-zs because of the wide wavelength coverage and
deeper photometry. We compute the possible bias in hΣ−1

cr i
due to the use of PsðzsÞ using the method given by Eq. (11)
in Miyatake et al. [65] (see also Ref. [104] for the original
discussion of this method). Specifically, we compute the
ratio between hΣ−1

cr i based on the reweighted COSMOS
photo-z and that based on our PsðzsÞ. We find that, for the
entire lens sample and our source galaxy sample, the ratio is
1.005 (that is, the fractional change is only 0.5%). As
described in Sec. IV B, we employ a Gaussian prior for
Δzph with σðΔzphÞ ¼ 0.1 in our baseline setup. We con-
firmed that f−1ph is changed by ∼ −4% (∼þ5%) for Δzph ¼
−0.1 (Δzph ¼ 0.1), which is larger than the difference
between the reweighted COSMOS photo-z and PsðzsÞ of
our source galaxies. We thus conclude that our paramet-
rization of photo-z systematics and its prior effectively
absorbs all other photo-z systematics. In what follows, we
will also employ an even wider prior of σðΔzphÞ ¼ 0.2 to
study the ability of our method to self-calibrate possible
unknown photo-z errors in the current HSC-Y1 data.
In our method, we follow Eq. (13) and divide by the

photo-z error factor for an assumed Δzph:

ΔΣmodelðRÞ → ΔΣmodelðRÞ
fðilÞph ðΔzphÞ

; ð14Þ

for each of the LOWZ, CMASS1, and CMASS2 samples.
We do this rather than redoing the weak lensing measure-
ment incorporating the photo-z bias. Because we are not
changing the data vector, we can use the same covariance
matrix in the cosmology inference. As a final sanity check,
we also study the impact of different photo-z methods on
the cosmological results. Table I gives the weighted average
of differences in ΔΣðRÞ between the measurements with
the different photo-z methods and those with the fiducial
photo-z method. Note that we repeat the cut of Eq. (2) to
define the source galaxy sample for each catalog, so the
source samples are different for different photo-z catalogs.
The lensing signals changes between photo-z algorithms
are different between the LOWZ, CMASS1, and CMASS2
samples, some of which show 2 − 3σ differences. We
will explicitly study to what extent the cosmological results
are changed by using the different photo-z methods in
Sec. VI A and Appendix G.

3. A model for the residual shear calibration factor: Δmγ

An accurate weak lensing measurement requires an
unbiased measurement of the shapes of an ensemble of
galaxies used to measure the shear. This is not straightfor-
ward [55], and an imperfect shape measurement leads to a
residual systematic error in the ΔΣ measurements. To
model the impact of a residual systematic error in the
shear calibration, we introduce a nuisance parameter, Δmγ ,
and then shift the theoretical template as
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ΔΣmodelðRÞ → ð1þ ΔmγÞΔΣmodelðR;Δmγ ¼ 0Þ: ð15Þ

We vary Δmγ with a Gaussian prior in the parameter
inference (see Sec. IV B for details). Since we use a single
population of source galaxies,we can use the same parameter
Δmγ for the lensing signals of all three lens samples (LOWZ,
CMASS1, andCMASS2), followingOguri and Takada [24].
This is a good approximation as long as the source galaxies
arewell separated from or physically independent of the lens
galaxies. Thus the effect ofΔmγ does not depend on the lens
redshift, allowing us to distinguish systematic effects ofΔzph
andΔmγ fromone another. That is, in principle,we canmake
a self-calibration of both Δzph and Δmγ. One of the most
pernicious systematic effects in shape measurements for
deep imaging such as HSC-Y1 is blending effects in the
sourcegalaxies.However, this systematic can be absorbed by
the nuisance parameter Δmγ because any blending effect
affects the galaxy-galaxy weak lensing for the three lens
samples in the same way.
As described above, because we treat the effects of

systematic errors (Δzph and Δmγ) as multiplicative func-
tions, we can include both effects jointly by multiplying the
multiplicative functions in the cosmology analysis.

B. Galaxy-galaxy clustering: wpðRÞ
As another clustering observable, we use the projected

correlation function, denoted as wpðRÞ, measured for each
of the lens galaxy samples: LOWZ, CMASS1, and
CMASS2. Here we describe how we measure wpðRÞ.
First, we measure the three-dimensional galaxy-galaxy

correlation function using the Landy and Szalay [105]
estimator:

ξ̂ggðR;ΠÞ ¼
DD − 2DRþRR

RR
; ð16Þ

where R and Π are the projected separation and line-
of-sight separation between galaxy pairs, respectively,
and DD, DR, and RR are the counts of galaxy pairs,

galaxy-random pairs, and random pairs in a given separa-
tion bin of (R, Π). Note that the notation “R” is used to
denote random points, which should not be confused with
the responsivity R in Eq. (7). Throughout this paper we
assume the distant observer approximation to estimate the
separations ðR;ΠÞ from the observed redshifts and angular
positions (RA, Dec) of galaxies or randoms for each pair.
We then project the three-dimensional correlation function
to the projected correlation function as

ŵpðRÞ ¼ 2

Z
Πmax

0

dΠ ξ̂ggðR;ΠÞ; ð17Þ

where we choose the fiducial value ofΠmax ¼ 100 h−1Mpc
for the projection length. The projected correlation function
minimizes the effect of redshift-space distortions (RSDs),
which makes the modeling somewhat easier. However the
RSD effect may not be negligible for large projected
separations, and we include the RSD effect in the theoretical
model predictions using the method in van den Bosch et al.
[38] (see also Ref. [21]). When calculating the integral we
adopt a binning of ΔΠ ¼ 1 h−1 Mpc. We employ 30 bins
logarithmically evenly spaced over 0.5 ≤ R=½h−1Mpc� ≤ 80.
For the cosmology analysis below, we use 16 bins in the
range of 2 ≤ R=½h−1Mpc� ≤ 30 as our fiducial choice.
As in the ΔΣ measurement, the conversion of angular

separation and redshift difference between paired galaxies
to the three-dimensional separation (R, Π) requires the use
of a reference cosmology, which will in general differ from
the true cosmology. We use the method in Ref. [99] to
correct for the conversion with varying Ωm for the flat
ΛCDM cosmology.
We estimate the covariance matrix of wpðRÞ using the

jackknife method of the actual SDSS data for each of the
LOWZ, CMASS1, and CMASS2 samples. We utilize 192
jackknife regions of the SDSS survey footprint (see [26] for
details), measure wpðRÞ from each jackknife region and
then estimate the covariance matrix from the measured
wpðRÞ from all the jackknife realizations.
In the bottom panels of Fig. 3 we show the measured

signals of wpðRÞ for the LOWZ, CMASS1, and CMASS2

TABLE I. Differences in the galaxy-galaxy lensing signals computed using the different photo-z catalogs,
compared to the lensing signal with the fiducial photo-z catalog (MLZ). We use the same method [Eq. (2)] to select
source galaxies for each of the different photo-z catalogs, and compute ΔΣ with the same binning scheme as the
fiducial measurement. We then subtract the fiducial signal, computed the covariance of the difference signal (for
details of the covariance calculation, see Appendix B), and average over 3 ≤ R=½h−1 Mpc� ≤ 30 with inverse-
variance weighting, for each of the lens samples (LOWZ, CMASS1, and CMASS2). The resulting average and
standard deviation is shown in each case.

Photo-z method LOWZ CMASS1 CMASS2

DEMP −0.054� 0.037 −0.011� 0.029 −0.034� 0.029
EPHOR_AB −0.051� 0.038 0.057� 0.036 0.142� 0.060
FRANKENZ −0.004� 0.025 0.002� 0.030 0.003� 0.033
MIZUKI −0.047� 0.024 −0.055� 0.013 −0.045� 0.013
NNPZ −0.054� 0.033 −0.020� 0.047 0.067� 0.055
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samples. The unshaded region displays the range of
separations, 2 ≤ R=½h−1Mpc� ≤ 30 (16 bins), which we
use for our fiducial cosmological analysis.
Figure 5 shows the cumulative S/N ratio in wpðRÞ

integrated overRmin ≤R≤ 30 h−1Mpc, as a function ofRmin,
similarly to Fig. 4. The SDSS samples cover ∼8000 deg2,
andwpðRÞ is measured with high significance. The S/N ratio
values over the fitting range, 2 ≤ R=½h−1 Mpc� ≤ 30, are
consistent with those we found from the mock catalogs for
the Planck-like cosmology (see Table III in Ref. [21]).
Nevertheless, as we will show below, analyzing ΔΣðRÞ
and wpðRÞ jointly is essential to break degeneracies between
galaxy bias uncertainties and cosmological parameters and
therefore to obtain stringent constraints on cosmological
parameters [21,27,37]. Either ΔΣðRÞ or wpðRÞ alone suffers
from severe parameter degeneracies.

IV. ANALYSIS METHOD

In this section, we describe theoretical templates to
model the clustering observables, ΔΣðRÞ and wpðRÞ, that
we use for our cosmological analysis. Details and vali-
dation of the theory using mock galaxy catalogs are given
in Miyatake et al. [21]. Both of the clustering observables,
ΔΣðRÞ and wpðRÞ, depend only on the clustering properties
of the SDSS galaxies and not on those of HSC galaxies
used as the source galaxy sample in the ΔΣ measurements.
Thus, the theoretical templates are designed to model the
clustering properties of the SDSS galaxies.

A. Model

1. DARK EMULATOR

In this paper we extensively use the publicly available
code, DARK EMULATOR [106], developed in Nishimichi
et al. [47]. DARK EMULATOR is a software package enabling

fast, accurate computations of halo clustering quantities
for an input flat wCDM cosmological model. They con-
structed an ensemble set of cosmological N-body simu-
lations, each of which was performed with 20483 particles
for a box with length 1 or 2 Gpc=h on a side, for 101
flat wCDM cosmological models. The wCDM cosmology
is parametrized by six parameters, p ¼ fωb;ωc;Ωde;
lnð1010AsÞ; ns; wdeg, where ωbð≡Ωbh2Þ and ωcð≡Ωch2Þ
are the physical density parameters of baryons and CDM,
respectively, h is the Hubble parameter, Ωde ≡ 1 − ðωb þ
ωc þ ωνÞ=h2 is the density parameter of dark energy for a
flat-geometry universe, As and ns are the amplitude and tilt
parameters of the primordial curvature power spectrum
normalized at kpivot ¼ 0.05 Mpc−1, and wde is the equation
of state parameter for dark energy. In the following we
focus on flat ΛCDM cosmological models with wde ¼ −1.
For the N-body simulations, they included the neutrino

mass effect fixing the neutrino density parameter ων ≡
Ωνh2 to 0.00064, corresponding to 0.06 eV for the total
mass of three neutrino species that is the lower bound of the
normal mass hierarchy as in Esteban et al. [107]. They
included the effect of massive neutrinos in an approximate
manner only through the present-day linear matter transfer
function, which was then scaled to the initial redshift of the
simulations using the linear growth factor computed with-
out neutrinos in setting up the initial conditions. The
subsequent nonlinear growth was followed consistently
in an N-body simulation, ignoring the neutrino effects (see
[47] for details). Since we focus on the σ8 parameter [108],
i.e., the present-day normalization of the linear matter
power spectrum instead of the amplitude of the primordial
fluctuations, this approximate treatment has little impact on
our primary constraints from the HSC-Y1 and SDSS data.
The particle mass for the fiducial Planck cosmology is

m ¼ 1.02 × 1010 h−1M⊙ for the higher resolution simu-
lations used as the basis for DARK EMULATOR. The emulator
uses halos with mass greater than 1012 h−1 M⊙, corre-
sponding to about 100 simulation particles.
For each N-body simulation realization (each redshift

output) for a given cosmological model, they constructed a
catalog of halos using ROCKSTAR [109], which identifies
halos and subhalos based on clustering of N-body particles
in phase space (position and velocity space). Then they
constructed the catalog of central halos in each output. In
this step, halo mass is defined using the spherical over-
density with respect to the halo center (defined as the
position with the maximum mass density): M≡M200m ¼
ð4π=3ÞR3

200m × ð200ρ̄m0Þ, where R200m is the spherical halo
boundary radius within which the mean mass density is 200
times ρ̄m0. By combining the outputs of N-body simula-
tions and the halo catalogs at multiple redshifts in the
range z ¼ ½0; 1.48�, they built an emulator, dubbed DARK

EMULATOR, which enables fast and accurate computations
of the halo mass function, halo-matter cross-correlation,

FIG. 5. Similarly to Fig. 4, the cumulative signal-to-noise ratio
of wpðRÞ integrated over Rmin ≤ R ≤ 30 h−1 Mpc as a function
of Rmin.
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and halo autocorrelation as a function of halo mass,
redshift, spatial separation, and cosmological model.
For host halos of SDSS LOWZ and CMASS galaxies,

which have a minimum (typical) mass ofM200m ∼ 1012 M⊙
(1013 M⊙), DARK EMULATOR was shown to achieve suffi-
cient accuracy for these observable quantities compared to
the statistical measurement errors of ΔΣ and wp expected
from the HSC-Y1 and SDSS data, as shown in Fig. 31 of
Ref. [47]. In summary, DARK EMULATOR outputs the
following quantities:
(1) dnh

dM ðM; z;pÞ: the halo mass function for halos in the
mass range ½M;M þ dM�.

(2) ξhmðr;M; z;pÞ: the halo-matter cross-correlation
function for a sample of halos in the mass range
½M;M þ dM�. and

(3) ξhhðr;M;M0; z;pÞ: the halo-halo autocorrelation
function for two samples of halos with masses
½M;M þ dM� and ½M0;M0 þ dM0�.

for an input set of parameters, halo massM (andM0 for the
cross-correlation function between two halo samples),
redshift z, and cosmological parameters p.
In addition, DARK EMULATOR outputs ancillary quantities,

such as the linear halo bias (the large-scale limit of the halo
bias), the Tinker model of the linear halo bias [110] (see
below), the linearmatter power spectrum, the linear rmsmass
fluctuations of halo mass scale M (σLmðMÞ), and σ8.
The supported range of each cosmological parameter

for DARK EMULATOR is given in Table II. These ranges
are sufficiently broad that they cover the range of cosmo-
logical constraints from current state-of-the-art large-scale
structure probes such as the Subaru HSC cosmic shear
results [4,5]. Since σ8 and Ωm are primary parameters to
which large-scale structure probes are sensitive, we also
quote the supported ranges of these derived parameters:
0.55≲ σ8 ≲ 1.2 and 0.17≲ Ωm ≲ 0.45, as shown in Fig. 2
of Nishimichi et al. [47]. In this paper we use DARK

EMULATOR to perform cosmological parameter inference in
a multidimensional parameter space by comparing the
model templates of ΔΣ and wp with the signals measured
from the SDSS and HSC-Y1 data.

A Bayesian parameter inference method might
sample some models that are outside the supported range
of ΛCDM models in DARK EMULATOR. In this case, we
make the following, simple extrapolation of the model
predictions:

ξhmðr;p∉Þ →
bTinkerðp∉Þ
bTinkerðpedgeÞ

ξLmmðr;p∉Þ
ξLmmðr;pedgeÞ

ξDEhmðr;pedgeÞ;

ξhhðr;p∉Þ →
�

bTinkerðp∉Þ
bTinkerðpedgeÞ

�
2 ξLmmðr;p∉Þ
ξLmmðr;pedgeÞ

ξDEhh ðr;pedgeÞ;

ð18Þ

where p∉ is a set of six cosmological parameters that are
outside the supported range (Table II), pedge is a set of
parameters at the edge of the supported range, bTinkerðp∉Þ
and bTinkerðpedgeÞ are the linear bias parameters at models of
p∉ and pedge that are computed based on the fitting formula
of Tinker et al. [110], ξLmm is the linear-theory prediction for
the matter two-point correlation function at the respective
model, and ξDEhh and ξDEhm are the DARK EMULATOR outputs at
the edge model. Here we use CLASS [111,112] to compute
the linear-theory matter correlation, ξLmmðrÞ, for models
outside the supported range. We define pedge by replacing
only the parameter(s) outside the supported range with their
value(s) at the edge of the supported range, while keeping
the other parameter(s) at their input value(s). In the above
extrapolation, we simply assume that the halo-matter
cross-correlation and the halo autocorrelation follow the
linear theory predictions (ξhm ≃ bξmm and ξhh ≃ b2ξmm),
and that the ratio of ξLhhðp∉Þ and ξhhðp∉Þ can be accurately
captured by a similar ratio between ξLhhðpedgeÞ and
ξhhðpedgeÞ. Including automated outputs of the model
predictions for models outside the supported range is
important, because we perform a blinded cosmological
analysis of the HSC and SDSS data. If DARK EMULATOR

provides an error message indicating that an outside
model has been sampled, we could unintentionally and
prematurely unblind our analysis. For the extrapolation
we can adopt any input value for As, but need to adopt
values in the specific ranges for ωc and Ωde as we will
explain around Table III.
After unblinding our cosmology analysis, we confirmed

that all models within the 95% credible interval of S8 in the
chains for our baseline analysis are within the emulator
supported range [113].

2. Galaxy-galaxy weak lensing: ΔΣðRÞ
Our galaxy-galaxy weak lensing observable ΔΣðRÞ

depends only on the clustering properties of SDSS lens
galaxies, and not on the redshifts of HSC source galaxies.
The ensemble average of the galaxy-galaxy weak lensing
estimator has two contributions:

TABLE II. The set of six cosmological parameters used in our
analysis, which specify a model within the flat-geometry ΛCDM
framework. For an input ΛCDMmodel, DARK EMULATOR outputs
the halo clustering quantities (see text for details). The column
labeled “parameters” lists six cosmological parameters. The
column labeled “supported range” denotes the range of param-
eters that is supported by DARK EMULATOR.

Parameters Supported range [min, max]

Ωde [0.54752, 0.82128]
lnð1010 AsÞ [2.4752, 3.7128]

ωb [0.0211375, 0.0233625]
ωc [0.10782, 0.13178]
ns [0.916275, 1.012725]
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ΔΣmodelðR; zlÞ ≃ ΔΣðR; zlÞ þ ΔΣmagðR; zlÞ: ð19Þ

The first term on the right-hand side is the standard
contribution to the galaxy-galaxy weak lensing signal:
the excess surface mass density profile of lens galaxies.
The second term is the contribution caused by the
lensing magnification effect, which arises from correla-
tions between shapes of source galaxies and the mass
distribution in the foreground structures of lens galaxies
along the same line-of-sight directions to source galaxies
[46]. Below we describe our models for each contribution
within the ΛCDM model framework. Throughout this

paper, we model the clustering observables of each
SDSS galaxy sample using the theoretical model prediction
at a representative redshift, denoted as zl: z̄l ≃ 0.26, 0.51
and 0.63 for the LOWZ, CMASS1, and CMASS2 samples,
respectively. That is, we ignore the possible redshift
evolution of the clustering observables within the redshift
bin for simplicity.
The excess surface mass density profile ΔΣ for a given

sample of lens galaxies is expressed as (e.g., [23,114]):

ΔΣðR; zlÞ ¼ ρ̄m0

Z
kdk
2π

Pgmðk; zlÞJ2ðkRÞ; ð20Þ

where J2ðxÞ is the second-order Bessel function and
Pgmðk; zlÞ is the cross-power spectrum between galaxies
and matter at redshift zl. Hereafter we omit zl in the
argument for notational simplicity.
As described above, DARK EMULATOR outputs halo

clustering properties for an input cosmology. To obtain
themodel predictions for the observable quantities for SDSS
galaxies, we need a model for the galaxy-halo connection.
For this, we use the HOD [34,35]. In Appendix C we
describe the galaxy-halo connectionmodel (for more details
see Miyatake et al. [21]). Our fiducial model for the galaxy-
halo connection has five parameters for each galaxy sample
(LOWZ,CMASS1, andCMASS2): fMmin;σlogM;κ;M1;αg.
Here Mmin and σlogM describe the central galaxy HOD,
while the other parameters are for the satellite galaxy HOD.
The parameter α is the slope of the satellite occupation
number, and is distinct from the parameter αmag used for the
slope of the number counts of lens galaxies when modeling
magnification bias.
The mean number density of galaxies is given by

n̄g ¼
Z

dM
dnh
dM

hNciðMÞ½1þ λsðMÞ�; ð21Þ

where hNciðMÞ is the HOD of central galaxies, and
hNciðMÞλsðMÞ is the HOD of satellite galaxies. Here we
use DARK EMULATOR to compute the halo mass func-
tion dnh=dM.
As shown in Eq. (20), we must compute Pgm for a given

set of model parameters to obtain a model prediction for
ΔΣðRÞ. We use DARK EMULATOR to compute Pgm as

PgmðkÞ ¼
1

n̄g

Z
dM

dnh
dM

hNciðMÞ½1þ λsðMÞũsðk;M; zÞ�

× Phmðk;MÞ; ð22Þ

where ũsðk;MÞ is the Fourier transform of the average
radial profile of satellite galaxies in a host halo with mass
M. Here we use DARK EMULATOR to compute the halo
mass function dnh=dM and the halo-matter cross power
spectrum, Phmðk;MÞ, for an input cosmological model.
Throughout this paper, we assume that satellite galaxies

TABLE III. Model parameters and priors used in our cosmo-
logical inference. The label “flat” denotes a flat prior with the
range given, while “Gauss(μ, σ)” is a Gaussian prior with mean μ
and width σ. The parameters above the horizontal double lines are
the parameters used in our fiducial analysis: five cosmological
parameters, five HOD parameters for each of the LOWZ,
CMASS1, and CMASS2 samples, two nuisance parameters to
model residual photo-z and multiplicative shear biases, and three
parameters (αmag) to model the magnitude slope of the galaxy
number counts that characterizes the magnification bias effect on
ΔΣ for each of the LOWZ, CMASS1, and CMASS2 samples:
25 ¼ 5þ 3 × 5þ 2þ 3 in total. The parameters below the
double lines are used in the extended models.

Parameter Prior

Cosmological parameters
Ωde flat(0.4594, 0.9094)
lnð1010AsÞ flat(1, 5)
ωb Gauss(0.02268, 0.00038)
ωc flat(0.0998, 0.1398)
ns Gauss(0.9649, 0.0126)

HOD parameters
log MminðziÞ flat(12.0, 14.5)
σ2logM ðziÞ flat(0.01, 1.0)
logM1ðziÞ flat(12.0, 16.0)
κðziÞ flat(0.01, 3.0)
αðziÞ flat(0.5, 3.0)

Magnification bias
αmag (LOWZ) Gauss: (2.26, 0.5)
αmag (CMASS1) Gauss: (3.56, 0.5)
αmag (CMASS2) Gauss: (3.73, 0.5)

Photo-z/Shear errors
Δzph Gauss: (0.0, 0.1)
Δmγ Gauss: (0.0, 0.01)

Add. galaxy-halo connection paras
Off-centering parameters

poffðziÞ flat(0, 1)
RoffðziÞ flat(0.01, 1)

Incompleteness parameters
αincompðziÞ flat(0, 5)
log MincompðziÞ flat(12, 15.3)
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follow aNavarro-Frenk-White profile [115]. To compute the
Navarro-Frenk-White profile as a function of halo mass and
redshift for a given cosmological model, we use the halo
mass-concentration relation computed using the publicly
available code COLOSSUS [116,117]. For our fiducial model,
we do not consider the effect of off-centered “central”
galaxies or the “incompleteness” of central galaxies
[114,118], where the incompleteness effect models a pos-
sibility that some massive halos might not host a central
galaxy in the sample due to color andmagnitude cuts. For an
extended cosmological analysis, we include parameters to
model the off-centering and incompleteness effects to study
their impact on the inferred cosmological parameters,
following Miyatake et al. [21]. In order to compute ΔΣ
for each model, we use the publicly available FFTLOG [119]
code to perform the Hankel transforms in Eq. (20).
We model the second term in Eq. (19) using the non-

linear matter power spectrum [46]:

ΔΣmagðRÞ ≃ 2ðαmag − 1Þ 3
2
H0Ωm

Z
zl

0

dzH0

HðzÞ
ð1þ zÞ2
1þ zl

×
Z

dzs PsðzsÞ
χ2ðχl − χÞðχs − χÞ

χ2l ðχs − χlÞ

× ρ̄m0

Z
kdk
2π

PNL
mmðk; zÞJ2

�
k
χ

χl
R

�
; ð23Þ

where PsðzsÞ is the stacked posterior distirbution of source
galaxies and PNL

mmðkÞ is the nonlinear matter power spec-
trum. We use HALOFIT [120] to model PNL

mm for a given
cosmological model. Note that ΔΣmag does not depend on
galaxy bias. The above expression includes the redshift
distribution of source galaxies, but we treat the lens
galaxies as all being at their mean redshift for simplicity.
As we will show below, ΔΣmag leads to about 1%, 7%, and
10% contributions to theΔΣmodel for the LOWZ, CMASS1,
and CMASS2 samples, respectively, for the Planck cos-
mology [121]. Including the ΔΣmag contribution in the
theoretical template adds some cosmological information.
In our analysis we treat the magnitude slope αmag as a
nuisance parameter, with a Gaussian prior with width
σðαmagÞ ¼ 0.5 around the central value taken from the
measurement value (see Fig. 2). On the other hand, using
the mock signals, we checked that, if the magnification bias
is ignored in the model template, then it could cause
∼0.1–0.2σ bias in S8.
Exactly speaking we have to use the intrinsic redshift

distribution of source galaxies to compute the model
prediction of Eq. (23). We checked that the model

prediction is changed only by up to ∼5% in the amplitude
even if using the intrinsic redshift distribution estimated by
the reweighting method based on the COSMOS photo-z
catalog (see Sec. III A) and including the weights of source
and lens galaxies as done in Eq. (6). This inaccuracy is
safely absorbed by the prior range of σðαmagÞ ¼ 0.5 in the
parameter inference, because �1σ changes in αmag from its
central value lead to �20–40% fractional chaneges in the
magnification bias [Eq. (23)] for the three lens samples.

DARK EMULATOR allows us to compute the model
predictions, ΔΣmodelðRÞ, for an input model in a few
CPU seconds. This is fast enough to enable cosmological
parameter inference in a high-dimensional parameter space
(25 parameters for our baseline setup). In Miyatake et al.
[21], they validated that this fiducial model template has
sufficient accuracy to recover the input S8 to within 0.5σ
through a suite of tests using mock signals with varying
galaxy properties, such as different HOD implementations,
different satellite distributions within halos, central galaxies
with off-centering effect (except for extreme cases), central
galaxies with incompleteness effect, and baryonic effects
on the matter distribution.

3. Projected autocorrelation function: wpðRÞ
As shown in Eq. (17), we must first compute the three-

dimensional correlation function of galaxies for a given set
of the model parameters to obtain the model templates for
wpðRÞ. The three-dimensional correlation function ξgg is
given as

ξggðr; zlÞ ¼
Z

∞

0

k2dk
2π2

Pggðk; zlÞj0ðkrÞ; ð24Þ

where j0ðxÞ is the zeroth-order spherical Bessel function,
and PggðkÞ is the autopower spectrum of galaxies. Once
the power spectrum PggðkÞ is given for an input of model
parameters, we can compute the model prediction of wpðRÞ
according to Eq. (17).
In the halo model, Pgg can be divided into two

contributions, i.e., the 1- and 2-halo terms, as

PggðkÞ ¼ P1 h
gg ðkÞ þ P2 h

gg ðkÞ; ð25Þ
where the 1-halo term describes correlations between
galaxies within the same host halo, and the 2-halo term
describes correlations between galaxies residing in dif-
ferent halos. In our method, we compute the autopower
spectrum as

P1h
ggðkÞ¼

1

n̄2g

Z
dM

dnh
dM

hNciðMÞ½2λsðMÞũsðk;MÞþλsðMÞ2ũsðk;MÞ2�;

P2h
ggðkÞ¼

1

n̄2g

�Z
dM

dnh
dM

hNciðMÞf1þ λsðMÞũsðk;MÞg�
�Z

dM0 dnh
dM0 hNciðM0Þf1þλsðM0Þũsðk;M0Þg

�
Phhðk;M;M0Þ: ð26Þ
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Here we use DARK EMULATOR to compute dnh=dM and
Phhðk;M;M0Þ, the power spectrum between halos with
masses M and M0 for an input cosmological model. Note
that in our fiducial model we assume that satellite galaxies
reside in halos that host a central galaxy in our sample. In
Miyatake et al. [21], they confirmed that fitting the model to
mock observables computed for the case that satellite galaxies
are populated in halos irrespective of whether the halos host
central galaxies in the sample resulted in a negligible shift in
S8, for our baseline analysis setup (see below).
Then we project the computed ξggðrÞ over Π ¼ ½0; πmax�

to obtain wpðRÞ for each input model, where we employ
πmax ¼ 100 h−1Mpc as used in the measurement. We
include the residual RSD effect in the wpðRÞ prediction
using the method in van den Bosch et al. [38] for each input
cosmological model (see also Ref. [21] for details).
For each input model, DARK EMULATOR allows us to

compute the model prediction wpðRÞ in ∼30 CPU seconds.

B. Parameter estimation method

We assume that the likelihood of the data compared to
the model predictions follows a multivariate Gaussian
distribution:

ln LðdjθÞ ¼ −
1

2

X
i;j

½di − tiðθÞ�C−1
ij ½dj − tjðθÞ�; ð27Þ

where d is the data vector, t is the model prediction for the
data vector given the model parameters (θ), C−1 is the
inverse of the covariance matrix, and the summation runs
over indices corresponding to the dimension of the data
vector. In our baseline analysis, the data vector consists of
ΔΣðRÞ in nine logarithmically spaced radial bins within
3 ≤ R=½h−1Mpc� ≤ 30, and wpðRÞ in 16 radial bins within
2 ≤ R=½h−1Mpc� ≤ 30, for each galaxy sample. We there-
fore use 75ð¼ 3 × ð9þ 16ÞÞ data points in total. When we
use the data vector in a more limited range of separations,
we take the submatrix of the full covariance matrix corre-
sponding to that range of separations, and then invert the
matrix to obtain the inverse of the covariance matrix,
½Csub�−1. We also note that our analysis does not include
the observed galaxy abundance, n̄g.
For the model parameters in our baseline analysis, we

include five cosmological parameters given by θcosmo ¼
fΩde; lnð1010AsÞ;ωb;ωc; nsg for the flat ΛCDM framework
and five HOD parameters for each of the LOWZ, CMASS1,
and CMASS2 samples. For ωb, we employ a Gaussian
prior with a mean and width inferred from big bang
nucleosynthesis experiments [17,122–124]. For ns, we
employ a Gaussian prior inferred from the Planck 2018
“TT;EE;TEþ lowE” constraints [17]: ns ¼ 0.9649�
ð3 × 0.0042Þ, where we employ the Gaussian width three
times wider than the 1σ uncertainty (0.0042) of the Planck
constraint.We employ these priors since the clustering obser-
vablesΔΣ andwp are not sensitive toωb and ns. ForΩde and

ωc,we adopt broad, flat priors in the ranges that correspond to
about �30σ and �15σ, respectively, compared to the 1σ
error of the Planck constraints for flat ΛCDMmodel. These
ranges correspond to the supported range of the extrapolation
of DARK EMULATOR (for details see Sec. IVA 1). Since there
is no limitation on ln ð1010AsÞ in the extrapolation, we
employ a broad and uninformative flat prior.
In addition we include αmagðziÞ to model a possible

uncertainty in the magnitude slope of the number counts in
modeling the magnification for each lens sample: we use
the measured value of αmag for the central value (see
Sec. III A 1 and Fig. 2) and employ a Gaussian prior with a
width of σðαmagÞ ¼ 0.5. This is a conservative choice, since
the Gaussian width is much wider than the measurement
error on αmag, but we show that the results remain almost
unchanged when fixing αmag to the measured value.
Furthermore, we include nuisance parameters, Δzph and

Δmγ , to model residual uncertainties in the source photo-z
biases and the multiplicative shear bias. Since we use a
single population of source galaxies, we need to adopt just
one Δzph and one Δmγ parameter to model the impact on
the galaxy-galaxy weak lensing signals for all three lens
galaxy samples. We use a conservative prior range on Δzph
that is wider than that used in Hikage et al. [4] and Hamana
et al. [5]. Their prior range was estimated from the
difference between the means of the stacked photo-z
posterior distributions for different photo-z methods and
for the reweighted COSMOS redshift distribution. Our
broader prior range allows us to marginalize over possible
residual photo-z systematics that may not be captured by
the prior range employed based on the COSMOS reweight-
ing method. For Δmγ, we employ a prior range that
corresponds to about 1σ statistical uncertainties in the
shape measurement calibration [55] (see also Table 6 in
Ref. [4]). We will discuss the case where the prior range of
Δmγ is broadened in Sec. VI A. We have five nuisance
parameters of the systematic effects in total: αmagðziÞ, Δzph,
and Δmγ . Hence we have 25(¼ 5þ 3 × 5þ 5) parameters
in total, as summarized in Table III.
We then obtain the posterior distribution of our param-

eters given the data by performing Bayesian inference:

PðθjdÞ ∝ LðdjθÞΠðθÞ; ð28Þ
where PðθjdÞ is the posterior distribution of θ given the
data vector (d) and ΠðθÞ is the prior distribution.
Throughout this paper we focus on the marginalized
posterior distributions of the derived parameters, Ωm, σ8,
and S8 ≡ σ8ðΩm=0.3Þ0.5, where Ωm ¼ 1 −Ωde for a flat
cosmological model. While ln ð1010AsÞ is sampled in
logarithmic space with a flat prior, we account for the
Jacobian or weight to effectively produce a flat prior in
linear space of σ8 when obtaining the posterior distribution
of σ8 as a derived parameter (see Sec. IV A in Sugiyama
et al. [28] for a detailed discussion). However, the effect is
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negligible because the Jacobian is nearly constant in the
range of the credible interval of σ8 in our constraints.
To estimate the posterior distribution of parameters in a

multidimensional parameter space, we use the importance
nested sampling algorithm implemented in the publicly
available software package MULTINEST [125–127] and its
PYTHON wrapper, PYMULTINEST [125–128], through the
package MONTE PYTHON [129,130]. We set the sampling
efficiency parameter efr ¼ 0.8 and the evidence tolerance
factor tol ¼ 0.5 as recommended by the developers. After
extensive convergence tests as described in Appendix D, we
confirmed that the chains used in our analysis have con-
verged to thedesired degree. In this paper,we report themode
of the one-dimensional or two-dimensional posterior distri-
butions as the central value(s) of parameter(s), and the
highest density interval of the marginalized posterior dis-
tribution to infer the credible interval(s) of parameter(s)
[see Eq. (1)].

C. Analysis setups

To perform the cosmological parameter inference, we
must specify other aspects of the analysis setup, such as the

range of separations and combinations of observables to use.
Table IV summarizes the setups used in this paper. One
important choice in the analysis relates to the range of
separations in ΔΣðRÞ and wpðRÞ used in the cosmological
analysis, or “scale cuts.” There are two competing effects. To
increase the statistical constraining power on the cosmologi-
cal parameters, we want to include information from ΔΣðRÞ
and wpðRÞ down to smaller separations. However, the
observables at such small scales may be more strongly
affected by physical systematic effects inherent in galaxy
formation/physics, which are difficult to accurately model.
Aswe carefully studied in our validation paper [21], the scale
cuts of ð2; 3Þ h−1Mpc forwp andΔΣ are reasonable choices
to obtain unbiased estimates of the cosmological parameters,
with reasonably small credible intervals given the stati-
stical power of HSC-Y1 and SDSS. The scale cuts of
ð2; 3Þ h−1 Mpc are larger than the virial radii of massive
halos, so we do not include information from scales that are
deeply in the 1-halo term regime in our cosmology analysis.
Nevertheless we note that the galaxy-galaxy weak lensing
signal around the scale cut is sensitive to the interior mass
inside that radius,which allowsus to extract the averagemass

TABLE IV. A summary of the analysis setups. The first column identifies each analysis setup. The scale cuts “ðX; YÞ” denote the lower
scale cuts applied to wpðRÞ and ΔΣðRÞ, meaning that we use wp and ΔΣ for X ≤ R=½h−1 Mpc� ≤ 30 and Y ≤ R=½h−1 Mpc� ≤ 30,
respectively, in the cosmology analysis. The column “sample parameters” lists the model parameters used in each analysis.The setups
labeled “wide shear prior” and “wide photo-z prior” were identified for study after unblinding our cosmology results, in order to study
the robustness of our cosmological parameter constraints to the adopted prior width for photo-z biases (Δzph) or multiplicative shear
biases (Δmγ).

Setup
Scale cuts
½h−1 Mpc� Sample parameters

Baseline (2, 3) ðΩde; lnð1010AsÞ;ωb;ωc; ns)+HOD (3 × 5 parameters)
+mag/photo-z/shear (5 parameters)

Scale cuts (4, 6) � � �
(8, 12) � � �

No LOWZ (2, 3) ðΩde; lnð1010AsÞ;ωb;ωc; ns)+HOD (2 × 5 parameters)
+mag/photo-z/shear (4 parameters)

No CMASS1 (2, 3) ðΩde; lnð1010AsÞ;ωb;ωc; ns)+HOD (2 × 5 parameters)
+mag/photo-z/shear (4 parameters)

No CMASS2 (2, 3) ðΩde; lnð1010AsÞ;ωb;ωc; ns)+HOD (2 × 5 parameters)
+mag/photo-z/shear (4 parameters)

No shear error (2, 3) ðΩde; lnð1010AsÞ;ωb;ωc; ns)+HOD (3 × 5 parameters)+mag/photo-z (4 parameters)
No photo-z error (2, 3) ðΩde; lnð1010AsÞ;ωb;ωc; ns)+HOD (3 × 5 parameters)+mag/shear (4 parameters)
Fix magnification bias (2, 3) ðΩde; lnð1010AsÞ;ωb;ωc; ns)+HOD (3 × 5 parameters)+photo-z/shear (2 parameters)

Wide shear prior (2, 3) Same as the baseline analysis, with σðΔmγÞ ¼ 0.1
Wide photo-z prior (2, 3) Same as the baseline analysis, with σðΔzphÞ ¼ 0.2

Off-centering (2, 3) ðΩde; lnð1010AsÞ;ωb;ωc; ns)+HOD w/off-centering (3 × 7 parameters)
+photo-z/shear (5 parameters)

Incompleteness (2, 3) ðΩde; lnð1010AsÞ;ωb;ωc; ns)+HOD w/incompleteness (3 × 7 parameters)
+photo-z/shear (5 parameters)

Different photo-z (2, 3) Same sample parameters as the baseline analysis, but lensing signal computed
with different photo-z methods (DEMP, EPHOR_AB, FRANKEN-Z, MIZUKI, and NNPZ)

2 cosmological parameters (2, 3) ðΩde; lnð1010AsÞÞ þ HOD (3 × 5 parameters)+mag/photo-z/shear (5 parameters)
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of halos hosting the SDSS galaxies and in turn helps
constrain the large-scale bias of SDSS galaxies via the
scaling relation of halo bias with halo mass, encoded in
DARK EMULATOR, when combined with the measurement of
wp. To study the impact of the scale cut choice, we also study
the results for (4, 6) and ð8; 12Þ h−1 Mpc.
If we use either ΔΣ or wp alone, then the parameter

inference suffers from severe degeneracies, especially
between the galaxy bias (and therefore the HOD model
parameters) and the cosmological parameters that encode
information about the power spectrum amplitude, as shown
in our validation paper [21] (see Fig. 9 in that paper). Hence,
in the followingwe show only the results of the joint analysis
of ΔΣ and wp.
As an internal consistency test, we also perform the

analyses excluding some information from the baseline
setup: excluding one of the LOWZ, CMASS1, or CMASS2
samples, or either of the residual systematic error param-
eters, Δzph or Δmγ (see Table III). We also show the results
for extended models that include the effects of off-centered
central galaxies or the incompleteness effect of central
galaxies. For both extended models, we introduce two
additional model parameters, as indicated in the rows “Off-
centering” or “incompleteness” in Table III.
To check for possible systematic biases arising from

photo-z estimates, we perform cosmological inference
using the lensing signals computed with photo-z methods
other than the one used in the baseline analysis, referred to
as the “Different photo-z” setup in Table IV.
In addition, after unblinding our cosmology results (see

next section), we further decided to introduce the setups
labeled “wide shear prior” and “wide photo-z prior” in
Table IV. For these, we employ significantly wider Gaussian
priors, σðΔmγÞ ¼ 0.1 or σðΔzphÞ ¼ 0.2, in the parameter
inference. The purpose of these additional setups is to study
the impact of the prior width on the cosmological parameters
and to explore the possibility of self-calibration of these
nuisance parameters.
After unblinding, we also perform an analysis with

cosmological parameters other than ðΩm; lnð1010AsÞÞ fixed
to the Planck 2015 “TT;TE;EEþ lowP” constraints [121]
to check how the parameters that are not well constrained
by our data vector affect our cosmological constraints. This
setup is labeled “2 cosmological parameters” in Table IV.

V. BLINDING SCHEME AND VALIDATION

To avoid confirmation bias we perform our cosmological
analysis in a blind fashion. The details of the blinding scheme
can be found in Sec. 3.2 of Hikage et al. [4]. We employ a
two-tier blinding strategy to avoid unintentional unblinding
during the cosmological analysis. The two tiers are as
follows:
(1) Catalog level: The analysis team performs the

cosmological analysis using three different weak
lensing shape catalogs. Only one is the true catalog

and the other two are fake catalogs (see below for
details). The analysis team members do not know
which is the true catalog.

(2) Analysis level: The analysis team does not make
plots comparing the measurements with theoretical
models. When the analysis team makes plots
showing the credible intervals of cosmological
parameters (i.e., the posterior distribution), the
central value(s) of parameter(s) are shifted to zero,
and only the range of the credible interval(s) can be
seen. Finally, the analysis team does not compare the
posterior for cosmological parameter(s) or the model
predictions with external results such as the Planck
CMB cosmology prior to unblinding.

See Sec. 3.2 in Hikage et al. [4] for details of how the
fake catalogs were constructed in a manner that prevents
accidental unblinding by the analysis team. Use of these
catalogs means that the analysis group must perform three
analyses, but this method avoids the need for reanalysis
once the catalogs are unblinded.
Validation of the cosmological analysis method is

demonstrated in Miyatake et al. [21]. The analysis team
promised that the results would be published regardless of
the outcome, once the results are unblinded. In addition, the
analysis method could not be changed or modified after
unblinding. In the following we explicitly flag results
obtained after unblinding.

VI. RESULTS: COSMOLOGICAL CONSTRAINTS

In this section we show the main results of this paper,
which are the cosmological parameters estimated from the
joint measurements of ΔΣðRÞ and wpðRÞ in the HSC-Y1
and SDSS datasets.

A. ΛCDM constraints

We show the cosmological parameter constraints for the
flat ΛCDM model, which is the minimum theoretical
framework that fairly well reproduces a broad range of
cosmological observations. In particular, wewill focus on the
cosmological parameters Ωm, σ8, and S8 ≡ σ8ðΩm=0.3Þ0.5,
which are well constrained by our measurements. Figure 6
shows the posterior distributions for ðΩm; σ8; S8Þ obtained
from the baseline setup in Table IV. Our results for the
cosmological constraints are

Ωm ¼ 0.383þ0.028
−0.053 ;

σ8 ¼ 0.718þ0.044
−0.031 ;

S8 ¼ 0.795þ0.049
−0.042 : ð29Þ

Thus theHSC-Y1data, combinedwith the SDSSdataset, can
constrain S8 to about 6% fractional precision. Note that we
show the posterior distribution in the full parameter space in
Fig. 22 in Appendix E.
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We check the convergence of our nested sampling results
as described in detail inAppendixD.We have confirmed that
our run terminates at the point where the relative posterior
mass is sufficiently small, and the standard deviation of the

mode values of the 1D projected S8 posterior distributions is
0.0008 estimated from four independent chains. This is about
2% of the statistical error in S8.
The best-fit model predictions at MAP are shown in

Fig. 3, together with the measured signals for each galaxy
sample. It is clear that the best-fit model fairly well
reproduces the measured signals.
Figure 7 shows the HODs estimated for each sample.

Since we imposed a luminosity cut, the HODs reach unity
at a relatively high mass, around Mh ∼ 1014 h−1 M⊙. Such
high-mass halos host satellite galaxies. This trend is
reflected by the high mean halo mass and low satellite
fraction given in Table VI, where the mean halo mass and
satellite fraction are defined as

hMhi ¼
R
dM dnh

dM hNciðMÞMR
dM dnh

dM hNciðMÞ ð30Þ

and

fsat ¼
1

n̄g

Z
dM

dnh
dM

hNciðMÞλsðMÞ; ð31Þ

respectively. From the HODs in the chains, we compute
predictions for the abundance of each sample, which
are consistent with the measured abundances shown in
Fig. 1. However, Table VI shows that the number density
of each sample is poorly constrained, only by within a
factor of 2. This reflects the fact that we did not use
abundance information and we employed broad priors
for each HOD parameter in our parameter inference.
The abundance information could add significant con-
straining power in principle if it is reliably used. In
other words, our cosmological constraints are purely from
the clustering information, and our constraints are considered

FIG. 6. The 1D and 2D posterior distributions in the subspace of
S8, σ8, and Ωm for the flat ΛCDM cosmology, obtained from our
baseline analysis setupusing the lensing signalswithR=½h−1Mpc�¼
½3; 30� and clustering signals withR=½h−1 Mpc� ¼ ½2; 30�. The dark
(light) shaded regions show the 68% (95%) credible intervals,
includingmarginalization over uncertainties in the other parameters.
The modes and 68% credible intervals of each parameter are shown
above each panel of the 1D posterior distributions.

FIG. 7. The median and the range from the 16th to the 84th percentile of the HOD in each halo mass bin for the LOWZ, CMASS1, and
CMASS2 samples. These are computed from the posterior distribution of the model predictions, hNiðMÞ, in the chains of the baseline
analysis, marginalizing over uncertainties in the cosmological parameters and other model parameters. The solid (dashed) lines show the
median for the centralþ satellite HOD (central HOD), and the shaded region displays the percentile range. Note that, for this figure,
Fig. 8, and Table VI, we use the median and percentile to show the range of the model predictions in each bin, because the posterior
distribution of a quantity under consideration has a non-Gaussian distribution and its mode and highest density interval are difficult to
reliably estimate (while the median and percentile are more stable).
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conservative in this sense. On the other hand, the mean halo
mass for each sample is constrained to a fractional precision
of ∼10%, reflecting the fact that the galaxy-galaxy weak
lensing can constrain the mean halo mass, as expected.
The mean halo mass and satellite fraction are generally

higher and lower than other similar studies, respectively.
This is because our luminosity cut preferentially selects
galaxies residing in more massive halos, compared to
previous studies. For example, Miyatake et al. [26] and
More et al. [27] used a subsample of CMASS galaxies in the
redshift range z ∈ ½0.43; 0.59�with stellarmass cuts applied,

which resulted in the abundance n̄g∼3×10−4 ðh−1MpcÞ−3.
They obtained a mean halo mass hMhi ∼ 3 × 1013 h−1M⊙
and satellite fraction fsat ∼ 8%. In White et al. [131], they
used the full CMASS sample from the first semester of
BOSS data, and obtained hMhi ∼ 2.7 × 1013 h−1M⊙ [132]
and fsat ∼ 10% from their projected clustering measure-
ment. Note that our validation tests using mock catalogs
in Miyatake et al. [21] indicated that the input HOD
parameters are not necessarily well recovered (see Fig. 22
of that paperMiyatake et al. [21]), partly because our
baseline analysis does not use clustering information deeply
inside the 1-halo term, which is sensitive to the abundance
and spatial distribution of satellite galaxies in host halos.
Hence these predictions for the properties of our SDSS
galaxy samples should be interpreted with caution.
The “effective” bias function for a given galaxy sample

can be defined in terms of the clustering correlation
functions as

bgmðrÞ≡ ξgmðrÞ
ξmmðrÞ

: ð32Þ

Another useful quantity is the cross-correlation coefficient
function, defined as

rgmðrÞ≡ ξgmðrÞ
½ξggðrÞξmmðrÞ�1=2

: ð33Þ

We expect rgmðrÞ ≃ 1 on scales where gravitational effects
dominate, or equivalently, on scales greater than those
affected by nonlinear physics including baryonic physics
[21,133]. Using the chains in the cosmological analysis, we
can compute the marginalized posterior distributions of
bgmðrÞ and rgmðrÞ, for each galaxy sample, as shown in
Fig. 8 (see also Fig. 5 in Ref. [27] for a similar approach).
The figure shows that the large-scale bias bgm ≃ 2.2, 2.6,
and 2.7 for the luminosity-limited samples of LOWZ,
CMASS1, and CMASS2, respectively. These are greater
than those of the flux-limited samples, b ≃ 2.15, e.g., as
shown in Ref. [134], but are in good agreement with the
bias value b ≃ 2.5 for the stellar-mass limited samples of
CMASS galaxies at z ∼ 0.5 in Ref. [27]. The figure also
shows rgm ≃ 1 on scales greater than a few Mpc for all
samples, indicating that nonlinear effects are confined to
scales smaller than a few Mpc for these SDSS galaxies
(e.g., [133]).
In Fig. 9, we evaluate the goodness of fit of the best-fit

model to the measured signals. To do so, we generate noisy
data vectors using the “full” covariance matrix. The full
covariance matrix includes the elements in radial bins
outside those used in our cosmology analysis and the
cross-covariance terms that describe correlated scatters
between the clustering observables, e.g., the galaxy-galaxy
weak lensing signals for the different lens samples. Then
we apply the same cosmology analysis to each of the mock
signals. The histogram in Fig. 9 shows the distribution of

TABLE V. Summary of cosmological constraints with each
analysis setup in Table IV.

Setup S8¼σ8ðΩm=0.3Þ0.5 σ8 Ωm

Baseline 0.795þ0.049
−0.042 0.718þ0.044

−0.031 0.383þ0.028
−0.053

Scale cuts: (4, 6) 0.805þ0.056
−0.050 0.770þ0.065

−0.069 0.311þ0.070
−0.034

Scale cuts: (8, 12) 0.886þ0.079
−0.077 0.873þ0.093

−0.097 0.300þ0.062
−0.043

w/o LOWZ 0.815þ0.059
−0.052 0.753þ0.047

−0.046 0.371þ0.034
−0.061

w/o CMASS1 0.795þ0.051
−0.051 0.716þ0.049

−0.039 0.380þ0.030
−0.055

w/o CMASS2 0.783þ0.059
−0.047 0.716þ0.045

−0.037 0.354þ0.055
−0.041

w/o Δmγ 0.794þ0.050
−0.043 0.720þ0.041

−0.033 0.386þ0.024
−0.060

w/o Δzph 0.807þ0.044
−0.041 0.728þ0.036

−0.032 0.391þ0.022
−0.058

w/o Δαmag;i 0.795þ0.049
−0.044 0.720þ0.041

−0.032 0.389þ0.023
−0.060

σðΔmγÞ ¼ 0.1 0.779þ0.068
−0.052 0.715þ0.046

−0.040 0.384þ0.025
−0.062

σðΔzphÞ ¼ 0.2 0.775þ0.053
−0.045 0.706þ0.043

−0.034 0.383þ0.026
−0.058

w/ off-centering 0.792þ0.049
−0.040 0.712þ0.035

−0.031 0.389þ0.026
−0.049

w/ incompleteness 0.823þ0.042
−0.045 0.741þ0.040

−0.034 0.380þ0.029
−0.048

DEmP 0.777þ0.047
−0.045 0.707þ0.040

−0.033 0.385þ0.024
−0.061

Ephor AB 0.802þ0.048
−0.044 0.718þ0.036

−0.033 0.391þ0.027
−0.050

Franken-Z 0.806þ0.047
−0.045 0.721þ0.042

−0.031 0.388þ0.027
−0.052

Mizuki 0.761þ0.049
−0.040 0.700þ0.039

−0.035 0.378þ0.024
−0.063

NNPZ 0.770þ0.044
−0.046 0.696þ0.034

−0.032 0.387þ0.024
−0.054

2 cosmological
parameters

0.782þ0.044
−0.031 0.732þ0.047

−0.036 0.356þ0.024
−0.039

TABLE VI. The predictions for the properties of the SDSS
galaxy samples, obtained from the chains of the baseline analysis,
similarly to Fig. 7. Here we give the median and the range from
the 16th to 84th percentile for the number density, the mean halo
mass and the satellite fraction for each of the LOWZ, CMASS1,
and CMASS2 samples.

Sample
n̄g

[10−4ðh−1MpcÞ−3]
hMhi

[1013h−1M⊙] fsat [%]

LOWZ 1.11þ0.70
−0.56 6.59þ0.85

−0.82 0.33þ2.35
−0.31

CMASS1 0.59þ0.65
−0.27 5.76þ0.55

−0.76 0.17þ1.53
−0.16

CMASS2 0.66þ0.78
−0.34 4.85þ0.54

−0.69 0.28þ2.74
−0.27
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the χ2 values of the model prediction at MAP. We found
that the χ2 values tend to exceed that inferred from the
degrees of freedom, 50 ¼ 75 − 25. We ascribe this excess
to severe parameter degeneracies; some of our parameters,
especially the HOD parameters, are not well constrained by
the observables. The histogram can be compared to the χ2

value of the actual HSC-Y1 and BOSS analysis, denoted by
the vertical solid line, showing that the χ2 value of the real
data would occur with a reasonable chance. Hence, we
conclude that our model fairly well describes the observ-
ables, given the current statistical errors. Note that the
degrees of freedom estimated from the analysis of mock
signals is much larger than the one estimated using the
Gaussian linear model [135], which is ν ¼ 57.3. We have
confirmed that this discrepancy is due to the strong non-
Gaussianity in the posterior distributions of HOD param-
eters. We rerun the analyses of mock signals with the HOD
parameters fixed, and reestimated the effective degrees of
freedom; in this case, the result matches well with the
effective degrees of freedom using the Gaussian linear
model with the HOD parameters fixed.
We emphasize that our cosmological parameter

constraints are obtained after marginalizing over the

FIG. 8. Upper panels: the galaxy bias, defined by bgmðrÞ≡ ξgmðrÞ=ξmmðrÞ. The line and shaded region denote the median
and the range from the 16th to the 84th percentile of the posterior distribution of the galaxy bias, respectively, for the LOWZ,
CMASS1, and CMASS2 samples, as obtained from the chains of the baseline analysis. The unshaded region in each panel shows
the range of separations used for the cosmological analysis. Lower panels: the cross-correlation coefficient, defined by
rgmðrÞ≡ ξgmðrÞ=½ξggðrÞξmmðrÞ�1=2. The horizontal dashed line denotes rgmðrÞ ¼ 1 for comparison.

FIG. 9. An evaluation of the goodness of fit of the best-fit
model at MAP for the baseline analysis shown in Fig. 6. The
histogram shows the distribution of the χ2 values of the model at
MAP, obtained by applying the same baseline analysis to 30
noisy mock datasets (see text for details). The blue line is the best-
fit χ2 distribution, characterized by the degrees of freedom ν ¼
71.1 estimated from the χ2 values for 30 noisy mocks data. The
vertical black line denotes the χ2 value (χ2 ¼ 82.4) at MAP for
the analysis of the HSC-Y1 and SDSS data.
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galaxy-halo connection parameters and the nuisance
parameters Δzph and Δmγ. The method outlined in
Oguri and Takada [24] using a single population of source
galaxies allows for an effectivemarginalization over residual
uncertainty in photo-z biases andmultiplicative shear biases.
Figure 10 shows the posterior distributions in a sub-space of
S8, Δmγ and Δzph. The vertical dashed lines in the 1D
posterior distributions of Δmγ and Δzph show the width of
the Gaussian prior on these parameters. Note that the prior
width of Δzph, σðΔzphÞ ¼ 0.1, is much wider than the error
inferred from the photo-z method (σz̄s ≃ 0.04 as shown in
Table 6 of Ref. [4]).We find that the peak of the 1D posterior
distribution of Δzph is slightly shifted to −0.046 from the
prior mean (Δzph ¼ 0), while its width slightly shrinks to
σðΔzphÞ ≃ 0.085 from the priorwidth (0.1). This implies that
the nuisance parameter Δzph is calibrated to some degree,
but the constraint is still prior dominated. The modeΔzph ¼
−0.046 corresponds to a decrease in hΣ−1

cr i by∼ −2%, which
is the opposite direction compared to the shift estimated
using reweighted COSMOS photo-z (þ0.6%), as described
in Sec. III A 2. However, the small size of the latter shift and
of the COSMOS field (∼2 deg2) means we can draw no
conclusion regarding the difference between these shifts.
As a postunblinding analysis, we performed an additional

cosmology analysis employing an even wider prior of
σðΔzphÞ ¼ 0.2 to study the impact of the prior width
on our results. We find S8 ¼ 0.775þ0.053

−0.045 and Δzph ¼
−0.113þ0.135

−0.152 (see Fig. 26), which indicates we are entering
the self-calibration regime, because the obtained uncertainty
onΔzph is smaller than the prior width. The central value of
S8 is shifted to a lower value by ∼0.5σ compared to the
baseline result (S8 ¼ 0.795þ0.049

−0.042 ). In summary these results
provide some reassurance that our results are robust against
residual photo-z biases, even if they exist.
Similarly, the posterior for Δmγ in Fig. 10 is also prior

dominated. As a postunblinding analysis, we employed a
wider prior width of σðΔmγÞ ¼ 0.1, which is much wider
than the shear calibration uncertainty estimated from image
simulations [55]. We find that the posterior width of Δmγ

slightly shrinks by ∼15%, implying that the data provides
some contribution to the posterior due to self-calibration. In
this case,we find a slightly lower value ofS8 than our baseline
result in Table V: S8 ¼ 0.778þ0.066

−0.053 . It is interesting to note
that the results withwider priors onΔzph andΔmγ both prefer
a slightly lower value of S8 than the baseline result.
We also note that S8 is largely unchanged even if we fix

Δzph ¼ 0 or Δmγ ¼ 0 in the parameter inference. When we
fix Δmγ ¼ 0, the statistical uncertainty on S8 does not
change. However, when we fix Δzph ¼ 0, the S8 error
decreases by ∼7%. This disparity in behavior is due to the
difference in the prior width for these nuisance parameters.
Table V and Fig. 11 summarize cosmological parameter

constraints for different analysis setups in the flat ΛCDM
model (see Table IV for the definition of the analysis setups).
All the results are consistent with the baseline result, except
for the result using stricter scale cuts, ð8; 12Þ h−1Mpc.Wedo
not identify any signature of failure or inconsistency in our
cosmology analysis, to within the statistical uncertainties.
To study variations in the estimated S8 due to the scale

cuts, we apply the halo model method to different real-
izations of the noisy mock signals where the statistical
errors in each radial bin are added to the noiseless mock
signals using the covariance matrices of ΔΣ and wp. Here
we generated the noisy mock signals for all three samples.
The generated statistical scatters in each signal include the
cross-covariances between the different samples. As shown
in Fig. 12, we found that two among ten realizations display
a similar shift in S8, which is neither a significant nor a
negligible fraction.
Another possibility to explain this variation is assembly

bias. We provide a detailed discussion in Appendix F. In
short, we cannot arrive at a definite conclusion: the shift in
S8 that we found from the real data might be due to the
statistical scatters (sample variance) or the assembly bias
effect. We need more data for a more concrete conclusion.
A cosmological analysis of the redshift-space clustering of
SDSS galaxies might also help discriminate the origin of
the shift because redshift-space distortions are less affected

FIG. 10. Similar to Fig. 6, but this figure shows the 1D and 2D
posterior distributions in a subspace of S8 and two nuisance
parameters, Δmγ and Δzph, that model possible residual system-
atic biases in the multiplicative shear calibration factor and the
photometric redshifts for the HSC galaxies used as source
galaxies in the galaxy-galaxy weak lensing measurements. The
vertical dashed lines in the 1D posterior distribution of Δmγ or
Δzph denote the width of the Gaussian prior on the parameter.
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by the assembly bias effect [39,136]. In fact our result of
S8 is in nice agreement with that of the recent study [39],
S8 ¼ 0.784þ0.048

−0.042 , which performed the full-shape cosmol-
ogy analysis of the redshift-space power spectrum of

BOSS galaxies and also showed that the results using the
redshift-space power spectrum are robust against a pos-
sible assembly bias effect using the mocks including the
assembly bias effect.

FIG. 12. The modes and 68% credible intervals from the cosmology analyses with different scale cuts on ten realizations of noisy
mocks. The orange line denotes input cosmological parameters of mock signals.

FIG. 11. A summary of the cosmological parameters, S8, σ8, and Ωm, obtained from each analysis setup in Table IV. Each circle and
error bar denotes the mode and 68% credible interval for one setup, marginalized over the other parameter for that setup.
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B. Postunblinding cosmological results

1. Comparison with other weak lensing surveys

In Fig. 13 we compare our cosmological constraints on
S8, σ8, andΩm for the flat ΛCDM cosmology to those from
the Planck 2018 cosmology analysis [17] and from other
weak lensing surveys. For a fair comparison, we infer the
other experiment results under similar assumptions/setups.
For the Planck 2018 constraints, we employed the fixed

neutrino mass mν;tot ¼ 0.06 eV as in our analysis, and
ran the Planck likelihood code [137] to estimate cosmo-
logical parameters assuming the data vector of the primary
CMB information, more specifically “TT;EE;TEþ lowE”
according to the notation used in [17]. For the DES and
KiDS1000 results, we use the public chains available from
[138] and [139] to infer the constraints primarily from the
similar observables. For DES-Y1, we use the results from
joint analysis of the angular galaxy clustering (“GGC”) and
the galaxy-galaxy weak lensing (“GGL”), i.e., 2 × 2 pt,
from Abbott et al. [7]. For KiDS1000, we use the result
from joint analysis of cosmic shear (“CS”) and GGL, where
a spectroscopic (flux-limited) SDSS galaxy sample is used
for the GGC analysis. Note that the 3 × 2 pt result of
KiDS1000 includes baryon acoustic oscillations (BAO)

information that can give a tighter constraint on Ωm, so
we instead use the above result of CS × GGL. For both the
DES-Y1 and KiDS1000 analyses, the observables were
angular correlation functions—γTðθÞ and/or wðθÞ—rather
than ΔΣðRÞ and wpðRÞ.
Figure 13 shows that our results are generally consistent

with other results to within the credible intervals. To be more
quantitative, using a tension metric proposed by Park and
Rozo [16], we find that the tension between our result and the
Planck constraint is 0.9σ, or 0.36 in terms of probability to
exceed. However, a closer look reveals some interesting
differences. First, if we take Ωm ≃ 0.3, as inferred from the
BAO measurements using SDSS galaxies [39,140], the
intersection of the ðΩm; S8Þ-posterior distributions at Ωm ¼
0.3 indicates a possible tension of S8 between our result and
the Planck 2018 result, similar to that reported by previous
weak lensing constraints (green, red, and purple contours).
However, the significance is weak, so we need more HSC
data to reach a definite conclusion.
Our cosmological constraints may appear weaker than

those from other surveys because of the broader S8
constraint. However, as shown in Fig. 13, the degeneracy
direction in the σ8 −Ωm plane is different for this analysis
compared to other surveys. The S8 parameter was originally
introduced to describe the combination of σ8 and Ωm that
cosmic shear can best constrain. However, this combination
is not generally optimal for other observables. Thus, we
extract the “optimal” constraints for each survey by
defining the parameter S8ðαÞ ¼ σ8ðΩm=0.3Þα and varying
α to find the tightest constraint. For each survey, we find the
tightest 68% credible interval: S8ðα ¼ 0.17Þ ¼ 0.745þ0.039

−0.031
for HSC-Y1, S8ðα ¼ 0.61Þ ¼ 0.764þ0.030

−0.030 for DES-Y1, and
S8ðα ¼ 0.58Þ ¼ 0.758þ0.017

−0.019 for KiDS-1000. Therefore, our
HSC-Y1 analysis has comparable constraining power to
DES-Y1. We expect the cosmological parameter con-
straints to tighten significantly due to the larger area
coverage of subsequent HSC datasets [141] and by further
combining the cosmic shear information with the joint-
probe measurements in this paper, i.e., 3 × 2 pt cosmology
(see below for further discussion).

2. Comparison with different analysis
methods of HSC-Y1

In Fig. 14 we compare the cosmological parameters
obtained from the different analysis methods and/or observ-
ables using the same HSC-Y1 dataset. The orange con-
tours, denoted by the “minimal bias” model, are from
our companion paper [48], obtained using the same signals
as used in this paper, but with even more restrictive scale
cuts, because they used a perturbation theory-inspired
model as the theoretical template to interpret the large-scale
information in the ΔΣ and wp signals. Hence, the results of
the minimal bias model can be considered a conservative
estimate of cosmological parameters. From the comparison,
it is clear that interpreting the small-scale information using

FIG. 13. Similar to Fig. 6, but this figure compares our results
with those from other cosmological experiments assuming a flat
ΛCDM cosmology. The blue curves (contours) are the main
results of this paper, the same as those in Fig. 6. The orange
curves are from the DES-Y1 analysis using galaxy-galaxy
lensing (“GGL”) and clustering signals (“GGC”) [7]. The green
curves are constraints from the KiDS1000 analysis with cosmic
shear (“CS”) and GGL [14]. The red curves are the Planck 2018
results using the primary CMB anisotropy information
(“TT;TE;EEþ lowE”) [17].
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DARK EMULATOR improves our ability to constrain cosmo-
logical parameters, even after marginalizing over nuisance
parameters. However, there is a shift in the central values of
cosmological parameters between our results and the min-
imal bias method, despite using the same dataset. As
discussed above, we used noisy mock data vectors to test
whether such shifts in cosmological parameter constraints for
these two methods can occur due to sample variance. We
found that three out of ten noisy mock realizations exhibit
shifts in cosmological parameters similar to those found in
the real data. Hence we conclude that the difference between
the central parameter values for our method and Sugiyama
et al. [48] are likely due to sample variance.
The HSC-Y1 cosmic shear result [4], which does not use

any information from the SDSS galaxies, is consistent with
our results to within the credible intervals, but the central
values display a offset, especially in the Ωm direction.
While our constraints are dominated by the SDSS cluster-
ing information, we note that Hamana et al. [5], in their
Sec. VI. 7, showed that apparently large scatters in the
central values of the cosmological parameters between
different analysis methods could occur due to the sample
variance and the use of different ranges of scales even for
cosmology inference using the same HSC-Y1 dataset. It is
interesting to note that the degeneracy directions, e.g., in

the (Ωm; S8) space, are different, and thus a combination of
these observables may yield even tighter constraints.

VII. SUMMARY AND DISCUSSION

In this paper, we have reported cosmological constraints
from the blinded joint analysis of galaxy-galaxy weak
lensing (ΔΣ) and projected clustering correlation function
(wp) (a 2 × 2 pt joint-probe analysis), measured from the
first year imaging galaxy catalog of the Subaru HSC SSP
survey (HSC-Y1) and the spectroscopic galaxy catalog of
SDSS-III/BOSS DR11. To perform a robust analysis, we
have defined the luminosity limited, rather than the flux-
limited, samples from the SDSS galaxies to serve as the
tracers of wp in the three redshift bins in the range
0.15 < z < 0.7, and as the lens samples of ΔΣ. For the
ΔΣ measurements, we have opted to use a single sample of
background galaxies selected from the weak lensing HSC
source catalog with photo-z information greater than 0.75.
The HSC-Y1 dataset, despite the relatively small area
(about 140 deg2), allows for a significant detection of
the galaxy-galaxy weak lensing signals thanks to both
the depth and the high imaging-quality of the data (see
Fig. 3). On the theory side, we have employed the public
code DARK EMULATOR to accurately model the clustering
observables down to small scales. The validation of our
cosmological analysis was demonstrated in previous
work [21].
With the above joint-probe cosmology, we are able to

obtain stringent constraints on the cosmological parameters
in flat ΛCDMmodel, represented by S8≡σ8ðΩm=0.3Þ0.5 ¼
0.795þ0.049

−0.042 (Fig. 6 and Table V). An important feature of
our results is that our constraints are robust against the
possibility of residual photo-z biases in the HSC source
sample—one of the main systematic effects in weak lensing
cosmology. By adopting the single sample of source
galaxies, we are able to calibrate out the nuisance parameter
related to a residual photo-z bias. This is achieved by
comparing the galaxy-galaxy weak lensing amplitudes for
the SDSS lens-galaxy samples in the three spectroscopic
redshift bins, following the method described in Oguri and
Takada [24]. Figures 10 and 26 show that this method
enables constraints on the photo-z bias parameter.
Our results are generally consistent with bothPlanck and

other weak lensing constraints (DES and KiDS) to within
the statistical errors (Fig. 13). However, if we take the inter-
section of the ðΩm; S8Þ-posterior distributions atΩm ¼ 0.3,
our result indicates a possible tension for σ8 compared to
thePlanck 2018 result, similarly to those indicated by other
weak lensing constraints (e.g., [4]). We performed various
tests using the different scale cuts, the extended theoretical
template, and the different combinations of datasets, but
did not identify any significant signature of residual
systematics in our results (Fig. 11).
There are several ways in which the constraints from this

paper could be improved. As can be seen from Fig. 13,

FIG. 14. Similar to Fig. 6, but compared with the results from
different observables or analysis methods, assuming a flat ΛCDM
cosmology. The blue curves (contours) are the main result of this
paper. The orange curves are the constraints from our companion
paper [48] where the “minimal” bias model motivated by the
perturbation theory of structure formation is used, as a theoretical
template, to interpret the large-scale informationof the same signals
ΔΣ and wp used in this paper. The green curves are from the
Fourier-space cosmic shear measurements of the HSC-Y1 data [4].
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the degeneracy direction in the Ωm and σ8 space for our
method is different compared to that in the cosmic shear
constraint, which is usually characterized by the direction
of σ8ðΩm=0.3Þ0.5 ¼ const that motivates the definition of
S8. The degeneracy direction of our constraint is charac-
terized by the direction of σ8ðΩm=0.3Þ0.17 ¼ const. This
means that the combination of our method (2 × 2 pt)
together with cosmic shear would yield improved cosmo-
logical constraints. However, this would also require us to
include additional nuisance parameters to model contami-
nating effects on the cosmic shear signals such as intrinsic
alignments and baryonic effects. In this regard, it is worth
considering a 3 × 2 pt analysis in future work.
Another promising method would be to combine the

HSC galaxy-galaxy lensing information of SDSS galaxies
with redshift-space clustering signals of the same SDSS
galaxies. In this paper, by intention, we used the “pro-
jected” clustering information of SDSS galaxies and did not
include the geometrical BAO information on large scales.
The BAO information, the Alcock-Paczyński effect, and
redshift-space distortions due to peculiar velocities of
galaxies are powerful probes of Ωm, σ8 and the growth
rate of large-scale structure. Recently, we developed an
emulator based method to model the redshift-space power
spectrum of galaxies using an HOD model [39,142].
Kobayashi et al. [39] applied this method to the red-
shift-space power spectrum of SDSS galaxies and obtained
stringent constraints on S8 ¼ 0.784þ0.048

−0.042 . This represents a
similar precision of σðS8Þ ≃ 0.05 to our precision of
σðS8Þ ≃ 0.05. Galaxy-galaxy weak lensing probes the
Fourier modes that are perpendicular to the line-of-sight
direction and are almost independent to those probed by the
redshift-space power spectrum [143]. Furthermore, the
overlap between the HSC and SDSS survey footprints is
small and therefore the constraints from HSC are almost
independent from those from SDSS. The combination of
HSC galaxy-galaxy weak lensing together with the red-
shift-space power spectrum of SDSS galaxies would be a
promising way to improve constraints on both cosmologi-
cal parameters and the galaxy-halo connection parameters.
We have developed the self-consistent emulator-based halo
model pipeline needed to perform this joint cosmology
analysis, and this is our future work.
The HSC survey is ongoing [3] and currently has the

Year 3 shape catalog of galaxies [141] that covers an area of
about 430 deg2 which is three times larger than the HSC-
Y1 data. Hence the HSC Year 3 will enable improved
measurements in all weak lensing observables. In future
work, we will apply the methods developed in this paper to
the HSC Year 3 data, together with other clustering
observables, as described above. In addition, HSC already
covers more than 1000 deg2 and will be completed by the
end of 2021 or 2022. The full HSC survey will enable us to
place one of the tightest cosmological constraints, compa-
rable to other Stage-III surveys such as DES and KiDS.
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APPENDIX A: COVARIANCE MATRIX

As described in Appendix B of Miyatake et al. [21] (see
alsoRefs. [146,147]),we construct the covariancematrix that
describes the statistical errors of the ΔΣ measurement using
light cone mock catalogs of both SDSS and HSC galaxies.
To construct these mock catalogs, we use the full-sky,

light cone simulations from Takahashi et al. [148]. Each of
the 108 light cone realizations consists of multiple spherical
shells at different radii with an observer located at the
center of the sphere. Each spherical shell contains the
lensing fields and the halo distribution. The lensing fields at
the representative redshift of each shell can be used to
simulate the lensing distortion effects on a galaxy due to
foreground structures if the galaxy is located in the shell.
The halo distribution in each shell reflects a realization of
halos at the redshift corresponding to the shell.

We populate each of the light-cone simulation realizations
with SDSS- and HSC-like galaxies. For HSC, we use the
HSC-Y1 source catalog and populate each HSC galaxy into
the corresponding shell in the light cone simulation according
to its angular position (RA and Dec) and photometric redshift
(best-fit photo-z). After randomly rotating each galaxy shape
to erase the real weak lensing effect, we simulate the lensing
effect on eachgalaxyusing the lensing informationof the light
cone simulation. Thus, themockHSC catalog reproduces the
angular positions, the distributions of ellipticities, and the
photo-zs of HSC galaxies. Because the HSC-Y1 survey
footprint covers a small area, we can extract 21 HSC-Y1
realizations in each of the 108 all-sky simulations. Hence we
generate 2268 HSC mock catalogs in total.
For SDSS, we populate each of the light cone mocks

with SDSS-like galaxies based on the HOD method. We
built mock catalogs for the LOWZ, CMASS1, and
CMASS2 samples in their corresponding redshift ranges
in each full-sky simulation. We imprint the SDSS survey
footprint onto each full-sky simulation realization.
Thus our light cone mock catalogs contain both HSC- and

SDSS-like galaxies. We apply the same measurement pipe-
line as used in the actual analysis to each of the mock
realizations and compute the covariance matrices ofΔΣðRÞ.
The covariance matrices of ΔΣ include the cross-covariance
between the different lens samples. This arises from the
shape noise of source galaxies and from cosmic shear
contamination. However, we ignore the cross-covariance
between ΔΣ and wp, because the overlap between the HSC-
Y1 and SDSS survey footprints is small (only 140 deg2

compared to 8000 deg2). The covariancematrix estimated in
this method properly includes the super sample covariance
contribution [149].
We treat shape noise in this covariance calibration as

follows. Shapes in the mock source catalog are the sum of
the intrinsic shapes of galaxies (taken from the actual shape
catalog after applying a random rotation) and lensing shear
from the ray tracing. In the mock source catalog, the
multiplicative bias is not incorporated, and thus if we
naively compute the covariance from the mock data, there
would be inconsistency between the signal and covariance.
To properly incorporate the multiplicative bias, we first
need to separate out the intrinsic shape component to obtain
the lensing shear component alone, and then add the
intrinsic shape component scaled by the multiplicative
bias. In practice, we compute the covariance as

CovΔΣi;j ¼ CovΔΣ
mock

i;j − Cov
ΔΣmock

rand: shape

i;j

þ Cov
ΔΣdata

rand: shape

i;j

ð1þ KðRiÞÞð1þ KðRjÞÞ
; ðA1Þ

where i and j are the indices of radial bins running over all
of the lens samples. The first term on the right-hand side is
the covariance from the mock data, where a mock signal of
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each realization is computed following Eq. (3) but without
applying any multiplicative bias correction. The second
term is the covariance from the mock data with randomly
rotated shapes. The third term is the covariance from the
real data with randomly rotated shapes scaled by the
multiplicative bias factors in the ith and jth radial bins.
Note that, when computing the second and third terms,
we follow Eq. (3) (without the multiplication bias correc-
tion) but did not subtract the random signal. This is because
the random signal subtraction is primarily for subtracting
the lensing signal that arises from large-scale structure
but this signal no longer exits in the randomized shapes
[146]. Practically, ignoring the random signal significantly
reduces computing time. Figure 15 shows the covariance
matrix estimated based on the above method.

Figure 16 shows the cumulative signal-to-noise ratio
integrated over 3 ≤ R=½h−1Mpc� ≤ Rmax, where we vary
the maximum separation Rmax as denoted in the x axis.
The cumulative signal-to-noise ratio does not increase above
Rmax > 30 h−1Mpc, which is due to the increase in the
sample covariance at large scales due to large-scale structure.
Since the cumulative signal-to-noise ratio is a proxy for the
information content in the lensing amplitudes over the range
of separation, our fiducial choice of Rmax ¼ 30h−1Mpc in
the cosmology analysis is nearly optimal, because we focus
on the cosmological parameters S8, Ωm, and σ8, which
primarily determine the lensing amplitude.
As described in Sec. III B, we use the jackknife method

to estimate the covariance matrix for the projected cor-
relation function, wpðRÞ, for LOWZ, CMASS1, and
CMASS2. The jackknife method has the advantage that
it captures all contributions to the covariances (survey
geometry, inhomogeneities, etc.). Figure 17 shows the
results for the covariance matrix. It is clear that there is
significant cross-covariance between the wpðRÞ signals in
different separation bins, and therefore it is important to
properly take into account the cross-covariance.

APPENDIX B: TESTS OF LENSING
SYSTEMATICS

In this appendix, we describe our lensing system-
atic tests.
As described in Sec. III A 1, we subtract the signal

around random points from the signal around lens galaxies
to obtain an unbiased estimate of galaxy-galaxy weak
lensing [150]. We use 20 times more random points than
that of lens galaxies. Figure 18 shows the signal around
random points measured in the same way as described in
Sec. III A. The error bars are estimated from 20 realizations

FIG. 16. Cumulative signal-to-noise ratio of the weak lensing
signal, integrated over 3 ≤ R=½h−1 Mpc� ≤ Rmax. The cumulative
signal-to-noise ratio saturates above Rmax > 30 h−1 Mpc which
validates the upper limit of our scale cut.

FIG. 15. Left panel: weak lensing signal around SDSS galaxies measured with the HSC-Y1 source galaxies. The shaded region is
excluded from our fiducial cosmology analysis. The signal-to-noise ratios are computed within the scales used for our analysis. The
lensing signals for the CMASS1 and CMASS2 samples have offsets along the x-axis for illustrative purposes. Right panel: correlation
coefficient matrix of the lensing profile (ΔΣ), defined as rij ≡ Covij=½CoviiCovjj�1=2. The bold solid lines indicate the different lens
samples (LOWZ, CMASS1, and CMASS2). In each submatrix, elements inside the dashed lines denote the scales used for our fiducial
cosmology analysis: 3 ≤ R=½h−1 Mpc� ≤ 30.
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of random points. The random signal starts to deviate from
zero at R≳ 15 h−1 Mpc, but is still smaller than the
statistical uncertainties. This result shows that the random
point correction is not significant. Nonetheless, we subtract
the random signal from the signals around lens galaxies to
obtain an unbiased estimate of ΔΣ.
Galaxy-galaxy weak lensing, which arises from the

scalar gravitational potential, induces only E-mode signal
or the tangential shear pattern around lensing galaxies on
average in the weak lensing regime. On the other hand, the
45-degree rotated component from the tangential shear, or
the B mode, should vanish if the lensing measurement is

perfect or if systematic effects are negligible in the data. We
compute the B-mode signal by replacing the tangential
component of individual background galaxy shape in
Eq. (3) with the 45-degree rotated component. This is
shown in the left panel of Fig. 19. The measured B-mode
signals are consistent with the null signal to within the error
bars over the range of separation bins that we use for the
cosmological analysis (the unshaded region). The p value
for a null B-mode signal (calculated for the three lens
samples within the fiducial scale cuts) is 0.34. Hence we do
not find evidence for a residual B-mode signal for all the
three measurements of galaxy-galaxy weak lensing.
Another important systematic effect is the “boost” factor

which quantifies an excess or deficiency in the number of
lens and source galaxy pairs compared to that of random
point and source galaxy pairs (for details, see [23,150]). A
nonzero boost factor arises from systematic effects. For
example, if some source galaxies are actually in the lens
redshift range and are therefore physically associated with
lens galaxies, due to the imperfect photo-z estimates, then
the number of lens and source pairs appears to be in excess.
Or if some source galaxies are difficult to detect in the
vicinity of lens galaxies on the sky due to imperfect
photometry such as a flux contamination of bright lens
galaxies to background HSC galaxies, the number of
source galaxies near lenses could appear to be in deficiency.
Following [26], we define the boost factor as

BðRiÞ ¼
P

ls∈Ri
wls=

P
l wlP

rs∈Ri
wrs=

P
r wr

; ðB1Þ

where “r” in the summation runs over random points. The
numerator and denominator essentially count the averaged
number of source galaxies around each lens galaxy and
random points, respectively. We estimate the covariance of
the boost factor using the mock catalogs of source galaxies.
When estimating the boost factor and the covariance, we
limit the lens and random points within the FDFC region;
otherwise the covariance becomes too large due to the partial
use of annulus bins around galaxies and randoms outside of

FIG. 18. The lensing signals measured around random points
measured in the same way as the lensing signals around the lens
galaxies [the second term in Eq. (3)]. Error bars denote the
standard deviation of the results for 20 realizations of random
points, where each realization contains the same number of
random points as that of lens galaxies for each sample. The
shaded yellow region denotes the statistical errors of the lensing
measurements, computed from the diagonal components of the
covariance matrix in Fig. 15; the statistical errors in each R bin
are connected to compute the shaded region for illustrative
purpose. The shaded gray region denotes the range excluded
from our baseline cosmology analysis. The unshaded region
denotes the range used in the cosmology analysis.

FIG. 17. Correlation coefficient matrix of wpðRÞ for each of the LOWZ, CMASS1, and CMASS2 samples, estimated from 192
jackknife samples. In this case, the cross-covariance between the different samples vanishes, in contrast to the covariance matrix for the
lensing signals (Fig. 15).
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FIG. 20. Difference between the fiducial lensing signals and those computed with different analysis choices. The top-left, top-right,
bottom-left panels shows the difference when using other photo-z methods. The bottom right panel shows the difference when
considering a different k-correction method. The yellow region show the range of statistical uncertainties for our lensing signal. The
unshaded region show the range used in the cosmology analysis.

FIG. 19. Systematic tests of galaxy-galaxy weak lensing measurements. Left panel: the B-mode signals around galaxies in each of the
LOWZ, CMASS1, and CMASS2 samples, measured using the 45-degree component (nonlensing components) of source ellipticities.
Error bars denote the diagonal components of the covariance matrix of the lensing profile in each R bin. Right panel: a “boost” factor
BðRÞ, which measures an excess or deficiency in the number of lens/source pairs compared to random/source pairs (see text for details).
The error bars are estimated using the same mock catalogs used in the covariance estimation. We performed the same boost factor
measurements for each of the mock realizations, and estimated the error bars from the standard deviations. The reduced chi-square
values and p values are computed using the data points and the covariance over the range indicated by the unshaded region.
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the FDFC region. We show the measured boost factor in the
right panel of Fig. 19. The measured boost displays an offset
from unity, but does not show any strong R dependence,
which would be observed if it was due to contaminating
galaxies clustered with the lenses. The p value of the boost
factor being nonunity (calculated for the three lens samples
within the scale cuts) is 0.56. Figure 19 gives a misleading
impression because the radial bins are highly correlated. We
do not make any correction for the boost factor in the weak
lensing signals. However, note that we will introduce
nuisance parameters of the residual photo-z errors and the
multiplicative shear bias, which cause an overall (almost R
independent) offset in the weak lensing signals. This nui-
sance parameters can capture possible residual effect in the
boost factor if it is present.
We also quantify how the lensing signal changes with

different photo-z estimates. Figure 20 shows the difference
between the lensing signals computed with the fiducial
method and one of the nonfiducial photo-z methods. The
covariance of the difference signal is estimated using differ-
ence signalsmeasured from256 realizationsof source catalogs
with randomly rotated shapes, as detailed in Miyatake et al.
[65]. The weighted mean and the standard deviation of the
difference signals are shown in Table I. The resulting impact
on the cosmological parameters is summarized in Table Vand
Fig. 11. These show that all results are consistent with those of
the fiducial analysis to within the error bars.
Our fiducial sample is defined using the k-correction

method described in Wake et al. [84], where we k corrected
the magnitudes of LOWZ galaxies to a redshift of 0.20 and
those of CMASS galaxies to a redshift of 0.55. We also
created a sample using the k-correction method with
KCORRECT_V4.3 [151] to quantify how the lensing signals
change with the different k-correction methods. The differ-
ence in the signals is shown in Fig. 20, which does not
show any significant change in the signals.
In summary we do not find any strong evidence of the

residual systematic effects in our weak lensing measure-
ments. This reflects the high-quality of the HSC-Y1 shape
catalog, at least compared to the statistical errors of the
HSC-Y1 survey volume.

APPENDIX C: HOD

In the halo model we assume that all matter is associated
with halos, and that the correlation function of matter is
given by contributions from pairs of matter in the same halo
and those in two different halos. These are referred to as the
1- and 2-halo terms, respectively. We employ the HOD
[30,32,34]. The HOD model gives the mean number of
central and satellite galaxies in halos of mass M as

hNiðMÞ ¼ hNciðMÞ þ hNsiðMÞ; ðC1Þ
where hiðMÞ denotes the average of a quantity for halos of
mass M.

We employ the mean HOD for central galaxies, given as

hNciðMÞ ¼ 1

2

�
1þ erf

�
log M − log Mmin

σlog M

��
; ðC2Þ

where erfðxÞ is the error function and Mmin and σlogM are
model parameters.
For the mean HOD of satellite galaxies, we employ the

following form:

hNsiðMÞ≡ hNciðMÞλsðMÞ ¼ hNciðMÞ
�
M − κMmin

M1

�
α

;

ðC3Þ
where κ;M1, and α are model parameters, and we have
introduced the notation λsðMÞ ¼ ½ðM − κMminÞ=M1�α. For
our fiducial prescription we assume that satellite galaxies
reside only in a halo that already hosts a central galaxy.
We have five model parameters, fMmin; σlogM; κ;M1; αg,

to characterize the central and satellite HODs for each
galaxy sample for a given cosmological model.

APPENDIX D: CONVERGENCE TEST OF OUR
NESTED SAMPLING RESULTS

In this paper, we use the multimodal nested sampling
algorithm MULTINEST [125–127] for parameter inference.
We test the convergence of our nested sampling results

FIG. 21. Distributions of logX, the remaining volume of a prior
after replacing a live point with the lowest likelihood at each step,
for two nested sampling runs. The upper right panel shows the
relative posterior mass at each logX value.
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followingAppendix 3 in Hikage et al. [4]. Figure 21 shows a
diagnostic plot made by the publicly available software
NESTCHECK [152–154]. When our nested sampling runs
terminate, the remaining posterior mass is sufficiently small.
The standard deviations of S8, σ8, and Ωm derived from

four chains of the baseline analysis setupwith different seeds
are less than∼0.1% of the central values, which corresponds
to less than ∼2% of the statistical uncertainties, for S8, Ωm,
and σ8.

APPENDIX E: FULL POSTERIOR
DISTRIBUTIONS OF THE BASELINE ANALYSIS

Figure 22 shows the 1D and 2D posterior distributions
in full parameter space, for the baseline analysis as shown
in Fig. 6. Some of the HOD parameters are not well
constrained by the clustering observables, as also found in
the validation tests using the mock signals in Miyatake
et al. [21].

FIG. 22. The 1D and 2D posterior distribution in full parameter space for the baseline analysis.
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APPENDIX F: THE IMPACT OF DIFFERENT
SCALE CUTS ON COSMOLOGICAL

PARAMETERS

We now discuss the results for different scale cuts of
ð4; 6Þ h−1 Mpc or ð8; 12Þ h−1Mpc for wp and ΔΣ, instead
of our fiducial choice of ð2; 3Þ h−1Mpc, as shown in
Table V. The maximum scale cut is kept fixed at
30 h−1Mpc. The 2D posterior distribution in each subspace
of ðΩm; σ8; S8Þ can be found from Fig. 23. First of all, the
constraining power on S8 is reduced by a factor of 1.2 and
1.9 for the scale cuts of (4, 6) and ð8; 12Þ h−1Mpc,
respectively. A systematic shift in the central value of S8
with the increase of the scale cuts, rather than a random
scatter, raises some concern. In the validation paper [21],
we found such a systematic trend in S8 when applying the
halo model method to the mock catalogs including a
possible assembly bias effect if SDSS galaxies are affected
by the effect (see Fig. 17 in [21]), where mock SDSS
galaxies are preferentially populated into halos with lower
concentrations. If the assembly bias effect exists, the large-
scale clustering signals cannot be fully characterized by the
average mass of halos hosting SDSS galaxies, which is
constrained by the small-scale signal of galaxy-galaxy
weak lensing, ΔΣ. On the other hand, the larger scale cuts
of ð8; 12Þ h−1Mpc avoid the impact of the assembly bias
effect because the cut does not include the small-scale
lensing signal. In turn, if assembly bias exists and the halo
model is fitted to the signals down to small scales, it would
cause a bias in cosmological parameters, which is basically

what Miyatake et al. [21] found. Hence the systematic trend
for the different scale cuts might indicate a hint in the
assembly bias effect for the SDSS samples [155]. However,
note that Miyatake et al. [21] employed mock catalogs with
unexpectedly large assembly bias effects even though there
has not been any clear detection of assembly bias from real
SDSS data [156]. On the other hand, we showed that the
minimal bias method described in our companion paper
[48], is robust against assembly bias effect as long as
sufficiently large scale cuts are employed. The scale cuts of
ð8; 12Þ h−1Mpc used in this paper (Table IV) were vali-
dated for the perturbation theory-based method using the
same mock SDSS catalogs including the assembly bias
effect. The result of S8 for the scale cuts of ð8; 12Þ h−1Mpc
is, to within the error bar, consistent with that of S8 when
using the minimal bias method.

APPENDIX G: SYSTEMATIC TESTS WITH
DIFFERENT ANALYSIS SETUPS

In this appendix, we demonstrate the robustness of the
results with regards to different analysis setups, as listed in
Table IV. These results are also summarized in Table Vand
Fig. 11. In this appendix we show the results for the 1D and
2D posteriors of the parameters for the different setups.
Figure 24 shows the posteriors if we remove one of the

lens samples in the parameter inference (also see Fig. 11
and Table V). All the results for S8 are consistent with the
baseline result to within the 68% credible interval, but the
result removing the LOWZ sample displays a sizable shift
in the cosmological parameters. This might be due to the

FIG. 23. Similar to Fig. 6, but this figure shows the posterior
distributions of cosmological parameters obtained by using
different scale cuts of ð4; 6Þ h−1 Mpc and ð8; 12Þ h−1 Mpc for
wp and ΔΣ instead of our fiducial choice of ð2; 3Þ h−1 Mpc.

FIG. 24. Similar to Fig. 6, but this figure shows the posterior
distributions if one of the LOWZ, CMASS1, or CMASS2 sample
is not used in the parameter inference.
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statistical scatters of the SDSS galaxies because our
constraints are mainly from wp and the wp information
for the different samples are considered independent. In
fact, such a shift in the cosmological parameters for the
different samples were also seen from the cosmological
analysis of redshift-space galaxy clustering (e.g., see Fig. 2
in [39,157]). Since the shift in the parameters are not large
compared to the current statistical errors, we leave this to
our future work using a larger dataset from the ongoing
HSC survey.
One notable feature of this paper is a conservative

treatment of the nuisance parameters, i.e., the photo-z
biases and the multiplicative shear biases, which are among
the most important systematic errors in weak lensing.
Throughout this paper, as a conservative approach, we
employed rather broad priors for these nuisance parame-
ters, Δzph and Δmγ , and derive cosmological constraints
after marginalization over the nuisance parameters. On the
other hand, most previous weak lensing based studies
employ tight priors on these parameters, typically a few
percent in the amplitudes of Δzph and Δmγ . Here we study
the impact of the nuisance parameters on our results. As
one extreme case, Fig. 25 shows how the cosmological
constraints are changed if either of Δzph or Δmγ is fixed to
the central value (i.e., Δzph ¼ 0 or Δmγ ¼ 0 as implied by
the fiducial photo-z code or the shear calibration). The
posterior distributions remain almost unchanged, meaning
that our constraints are robust against these nuisance
parameters to within the prior width. For completeness,

the figure also shows how the results are changed if we
ignore the magnification bias in the template of ΔΣ. Again
it is clear that the magnification bias does not have a large
impact on the results.
As another extreme case, we study how the broader

prior widths of Δzph and Δmγ change the results. In doing
this, we employ the prior width of σðΔzphÞ ¼ 0.2 or
σðΔmγÞ ¼ 0.1, compared to our fiducial choices of
σðΔzphÞ ¼ 0.1 or σðΔmγÞ ¼ 0.01. These widened priors
are quite conservative, and the results would be basically
equivalent to the case using these nuisance parameters as
free parameters. Figures 26 and 27 show the results.
Encouragingly these conservative choices only moderately
enlarge the size of the credible intervals for S8, and at the
same time constrain each of the nuisance parameters by the
credible interval smaller than the prior width. That is, these
joint-probe cosmology method enables us to perform, to
some extent, a self-calibration of these nuisance parame-
ters. It is intriguing to find that both results prefer a slightly
smaller value of S8, meaning that the HSC-Y1 and SDSS
data prefer such a value or the central values inferred from
the photo-z calibration or the shear calibration might
involve unknown systematic errors under the assumption
of a flat ΛCDM model. This is definitely an interesting
direction to further explore with upcoming large HSC
datasets.

FIG. 25. Similar to Fig. 6, but showing the posterior distribu-
tions if we fix any of the nuisance parameters [Δzph, Δmγ , or
αmagðziÞ] to their fiducial value(s) rather than varying them in the
parameter inference.

FIG. 26. Similar to Fig. 10, but with the baseline analysis
and the Δzzp ¼ 0.2 setup. The numbers on the top diagonal
panels are constraints with the σðΔzzpÞ ¼ 0.2 setup. The vertical
dashed lines in the 1-d posterior distribution of Δmγ or Δzph
denote the width of Gaussian prior on the parameter for the
σðΔzphÞ ¼ 0.2 setup.
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In Fig. 28 we show the results for the extended halo
model, where the off-centering effect or the incompleteness
effect for central galaxies is included. To model the effect
we need to introduce two additional model parameters
for each of the effects as can be found from Table IV.

FIG. 28. Similar to Fig. 6, but the posterior distributions
obtained by using the extended halo model where the off-
centering effect or the incompleteness selection for central
galaxies are further included (also see Table IV). For each case,
the two additional model parameters for each of the LOWZ,
CMASS1, and CMASS2 samples are included. For comparison
we also show the results for the baseline setup, which are the
same in Fig. 6.

FIG. 29. Similar to Fig. 6, but this figure shows the posterior
distributions if the different photo-z catalogs, as denoted by
legend, are used to define the source galaxy sample for the ΔΣ
measurement.

FIG. 27. Similar to Fig. 10, but with the baseline analysis and the
Δmγ ¼ 0.1 setup. The numbers on the top of the diagonal panels are
constraints with the σðΔmγÞ ¼ 0.1 setup. The vertical dashed lines
in the 1D posterior distribution ofΔmγ orΔzph denote the width of
Gaussian prior on the parameter for the σðΔmγÞ ¼ 0.1 setup.

FIG. 30. Similar to Fig. 6, but this figure show the posterior
distributions when only lnð1010AsÞ and Ωde among the five
cosmological parameters are varied.

COSMOLOGICAL …. II. JOINT ANALYSIS OF … PHYS. REV. D 106, 083520 (2022)

083520-35



The figure clearly shows that the cosmological constraints
are robust against these variants in the theoretical templates.
Figure 29 shows the posterior distributions inferred

from data vectors computed with different photo-z meth-
ods. We do not find any significant shift in the parameter
constraints.
Figure 30 compares the posterior distributions between

the baseline analysis and the analysis with only two
cosmological parameters ðΩm; ln 1010 AsÞ varied while
other cosmological parameters fixed to the Planck 2015
“TT;TE;EEþ lowP” constraints [121]. We do not find any

significant shift in S8, while the statistical uncertainty
shrinks by ∼20%.
In summary, we investigate how the cosmological con-

straints are changed for different model templates or differ-
ent combinations of data vector, which are shown in TableV,
Fig. 11, and Figs. 24–30. All results for S8 are consistent
with the baseline result to within the 68% credible interval.
Hence we conclude that none of the tests indicates an
unknown systematic error compared to the current statistical
error, and our results, especially the result for S8, are robust
against possible residual systematic effects.
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