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We present validation tests of emulator-based halo model method for cosmological parameter inference,
assuming hypothetical measurements of the projected correlation function of galaxies, wpðRÞ, and the
galaxy-galaxy weak lensing, ΔΣðRÞ, from the spectroscopic SDSS galaxies and the Hyper Suprime-Cam
Year 1 (HSC-Y1) galaxies. To do this, we use DARK EMULATOR developed in Nishimichi et al. based on an
ensemble of N-body simulations, which is an emulation package enabling a fast, accurate computation of
halo clustering quantities (halo mass function, halo autocorrelation and halo-matter cross-correlation) for
flat-geometry cold dark matter cosmologies. Adopting the halo occupation distribution, the emulator
allows us to obtain model predictions of ΔΣ and wp for the SDSS-like galaxies at a few CPU seconds for an
input set of parameters. We present performance and validation of the method by carrying out Markov
chain Monte Carlo analyses of the mock signals measured from a variety of mock catalogs that mimic the
SDSS and HSC-Y1 galaxies. We show that the halo model method can recover the underlying true
cosmological parameters to within the 68% credible interval, except for the mocks including the assembly
bias effect (although we consider the unrealistically large amplitude of assembly bias effect). Even for the
assembly bias mock, we demonstrate that the cosmological parameters can be recovered if the analysis is
restricted to scales R≳ 10 h−1 Mpc (i.e., if the information on the average mass of halos hosting SDSS
galaxies inherent in the 1-halo term of ΔΣ is not included). We also show that, by using a single population
of source galaxies to infer the relative strengths of ΔΣ for multiple lens samples at different redshifts, the
joint probes method allows for self-calibration of photometric redshift errors and multiplicative shear bias.
Thus we conclude that the emulator-based halo model method can be safely applied to the HSC-Y1 dataset,
achieving a precision of σðS8Þ ≃ 0.04 after marginalization over nuisance parameters such as the galaxy-
halo connection parameters and the photo-z error parameter, and our method is complementary to methods
based on perturbation theory.
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I. INTRODUCTION

Wide-area imaging galaxy surveys offer exciting oppor-
tunities to address the fundamental questions in cosmology
such as the nature of dark matter and the origin of cosmic
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acceleration [1]. The current-generation imaging surveys
such as the Subaru Hyper Suprime-Cam [2] (HSC) [3–5],
the Dark Energy Survey [6] (DES) [7], and the Kilo-Degree
Survey (KiDS) [8] have succeeded in using accurate mea-
surements of weak gravitational lensing effects to obtain
tight constraints on cosmological parameters. Interestingly,
the cosmological model inferred from these large-scale
structure probes show the so-called σ8 or S8 tension (e.g.,
[4,9]) compared with cosmological models inferred from
the Planck cosmic microwave background (CMB) meas-
urement [10], perhaps indicating a signature beyond the
standard cosmological model, i.e., the flat-geometry
Lambda-dominated cold dark matter (ΛCDM) model
(e.g., [9]). Upcoming galaxy surveys such as the Subaru
Prime Focus Spectrograph [11,12], the Dark Energy
Spectrograph Instrument [13], the VRO Legacy Survey
of Space and Time [14], the ESA Euclid [15], and the
NASA Roman Space Telescope [16,17] are expected to
deliver a decisive conclusion on the possible tension and
also revolutionize our understanding of the Universe.
Main challenges of large-scale structure probes lie in

uncertainty in galaxy bias, which refers to unknown rela-
tion between the distributions of matter and galaxies in
large-scale structure [18,19]. Since physical processes inher-
ent in formation and evolution of galaxies are still difficult to
accurately model from the first principles, we need both
observational and theoretical approaches to tackle the galaxy
bias uncertainty in order for us to obtain “unbiased” and
“precise” estimation of the underlying cosmological param-
eters from large-scale structure observables.
For observational approach, joint probes cosmology

offers a promising way to mitigate the impact of galaxy
bias uncertainty on cosmology inference [7,8,20–26]. In
particular, galaxy-galaxy weak lensing, obtained by cross-
correlating positions of foreground (lens) galaxies with
shapes of background galaxies, can be used to infer the
average mass distribution around lens galaxies. A combi-
nation of galaxy-galaxy weak lensing with autocorrelation
function of the same sample of galaxies as the lens galaxies
can be used to observationally disentangle the galaxy bias
and the correlation function of the underlying matter dis-
tribution from the measured clustering signal of galaxies.
On theory side, there are mainly two empirical

approaches to tackle the galaxy bias uncertainty. First
one is a model based on perturbation theory (PT) of
large-scale structure [27,28]. As long as only the large-
scale information of clustering observables in the linear or
quasinonlinear regime is used and nuisance parameters to
model galaxy bias are introduced, such a PT-based method
is expected to serve as an “accurate” theoretical template of
galaxy clustering [26,29–31]. Accuracy here refers to the
fact that a PT model can reproduce the observed clustering
correlation of galaxies by varying the bias parameters,
down to a certain scale still in the quasinonlinear regime,
where PT is valid. An advantage of this method is that the
model can be used for any type of galaxies, because PT is

formulated based on properties of gravity and primordial
fluctuations [32] and the free bias parameters absorb large-
scale clustering properties of galaxies irrespective of galaxy
types. A price to pay is that the method breaks down at
scales below a certain nonlinear scale, and cannot be used
to extract cosmological information from the small-scale
clustering signals, which generally carry higher signal-to-
noise ratios than in the large scales. A further refined
method that separates short-scale physics such as bias from
large-scale cosmological information of interest, so-called
effective field theory of large scale structure [33], has been
emerging as a method that can be applicable to small scales,
although an application to galaxy-galaxy lensing and
clustering measurements has yet to be made.
An alternative theoretical method is the halo model

approach [34–37]. Halos are places where galaxies likely
form, and clustering properties of halos are relatively
well understood, on both analytical approach and N-body
simulations [38]. Then an empirical model such as the halo
occupation distribution (HOD) method [39,40] can be used
to connect halos to galaxies. An advantage of this method is
that it would allow one to use the small-scale information in
cosmology inference, thereby yielding tighter constraints
on cosmological parameters. However, a danger is that, if
the model is not sufficiently accurate nor flexible enough to
capture the complicated galaxy-scale physics, the method
might lead to a significant bias in cosmological parameters,
more than the statistical credible interval. A worst-case
scenario is that one might claim a wrong cosmology, e.g., a
time-varying dark energy model, from a given dataset due
to the inaccurate theoretical templates.
Hence, the purpose of this paper is to assess performance

and limitation of the halo model method for cosmo-
logy inference. To do this, we use the DARK EMULATOR

developed in Nishimichi et al. [41], which enables a fast,
accurate computation of halo clustering quantities (halo
mass function, halo autocorrelation function and halo-
matter cross-correlation) for an input set of cosmological
parameters within flat-geometry wCDM framework with
adiabatic Gaussian initial conditions. The DARK EMULATOR

is particularly useful for our halo model approach, as it
enables accurate predictions for the clustering quantities
well into the nonlinear regime and thereby allows us to
make robust use of the cosmological information from
small scales. We combine DARK EMULATOR with the HOD
model to make model predictions of the projected corre-
lation functions of galaxies, wpðRÞ and the galaxy-galaxy
weak lensing, ΔΣðRÞ, that mimic those measured from the
spectroscopic SDSS DR11 galaxies [42] and the HSC Year
1 (HSC-Y1) galaxies [43]. More precisely, we consider
mock galaxies of LOWZ and CMASS galaxies in the
redshift range 0.15≲ z≲ 0.7 for the spectroscopic galaxies
in the wp measurement and for the lens sample in ΔΣ, and
then consider mock galaxies of the deep HSC-Y1 data for
the background galaxy sample in ΔΣ. We use a variety of
mock catalogs for the SDSS galaxies to assess performance
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and limitation of the halo model method for cosmology
inference, including a mock where we implement an
extreme version of galaxy assembly bias [44]. Here we
quantify the performance by studying whether the halo
model method can recover the cosmological parameters
employed in the mock catalogs, after marginalization over
the galaxy-halo connection parameters—hereafter we will
often refer to this exercise as cosmology challenges.
Moreover, following Oguri and Takada [21], we assess
the ability of our method to perform self-calibration of
photometric redshift errors and multiplicative bias error for
the joint probes cosmology. Those errors are among the
most important, systematic errors for weak lensing cos-
mology, and we show below that the method allows for an
accurate self-calibration of the errors, i.e., a robust esti-
mation of cosmological parameters mitigating the impact of
the systematic errors. This paper gives a validation of the
halo model methodology for cosmology inference that we
are planning to carry out with the actual SDSS and HSC
datasets [45]. The results of this paper are also compared to
those of the companion paper, Sugiyama et al. [26], which
used a perturbation theory inspired method and was
validated against the same mock catalogs.
The structure of this paper is as follows. InSec. IIwebriefly

review the halo model for wp and ΔΣ and discuss the
methodology of how cosmological parameters can be esti-
mated from the clustering observables. In Sec. III we describe
details of N-body simulations, the halo catalogs, the mock
catalogs of SDSSandHSCgalaxies, andDARKEMULATOR. In
Sec. IV we describe our strategy for assessing performance
and limitation of the halo model method, i.e., cosmology
challenges done from the comparison of the halo model with
the mock signals. In Sec. V, we show the main results of this
paper. Section VI is devoted to conclusion and discussion.
Throughout this paper, unless otherwise stated, we employ
the flat-geometry Planck cosmology [46] as a target cosmol-
ogy for cosmology challenges and as a fiducial cosmology
when we compute cosmological dependences of observables.
The model is characterized byΩm ¼ 0.3156 (the present-day
matter densityparameter),h ¼ 0.672 andσ8 ¼ 0.831, respec-
tively, and we adopt the units of c ¼ 1 for the speed of light.

II. THEORY

In this paper we focus on two observables that are
obtained from imaging and spectroscopic data of galaxies
in the overlapping regions of the sky. One is the galaxy-
galaxy weak lensing that can be measured by stacking
shapes of background galaxies around a sample of fore-
ground lensing galaxies. Here we assume that the back-
ground galaxy sample is taken from the Subaru HSC
images, while the foreground lensing galaxies are from
the SDSS spectroscopic galaxies. The other is the projected
correlation function of the spectroscopic galaxies that are
from the same population of galaxies used as lens (fore-
ground) galaxies in the galaxy-galaxy weak lensing.

A. Observables: Galaxy-galaxy weak lensing
and projected autocorrelation function

Galaxy-galaxy weak lensing [24,47] probes the averaged
excess surface mass density profile, ΔΣ, around the lensing
(foreground) galaxies that is given in terms of the surface
mass density profile, ΣgmðRÞ, as

ΔΣðR; zlÞ ¼ hΣgmið< RÞ − ΣgmðRÞ;
¼ Σcrðzl; zsÞγþðRÞjR¼χlΔθ; ð1Þ

where γþ is the average tangential shear of background
galaxies in the circular annulus of projected centric radius R
from the foreground galaxies, and χl is the comoving
angular diameter distance to each foreground galaxy. Note
that background galaxy shapes are averaged over all the
pairs of foreground-background galaxies in the same pro-
jected separation R, not the angular separation Δθ, even
when the lensing galaxies have a redshift distribution.
hΣgmið< RÞ is the average surface mass density within a
circular aperture of radius R, defined as hΣgmið< RÞ≡
1=ðπR2Þ R R

0 2πR0dR0ΣgmðR0Þ. Σcr is the critical surface
mass density that describes a lensing efficiency for pairs
of foreground/background galaxies as a function of their
redshifts, and is defined as

Σcrðzl; zsÞ≡ χsðzsÞ
4πGχlsðzl; zsÞχlðzlÞð1þ zlÞ

; ð2Þ

where χs and χls are the comoving angular diameter
distances to each source galaxy and between source and
lens galaxies in each pair, respectively. The factor ð1þ zlÞ
is due to our use of the comoving coordinates. In practice
we need to take into account the redshift distributions of
lens and source galaxies that are straightforward to include,
e.g., following the method in Ref. [24].
The surface mass density profile around lensing galaxies,

ΣgmðRÞ, is given in terms of the three-dimensional galaxy-
matter cross-correlation function as

ΣgmðR; zlÞ ¼ ρ̄m0

Z
∞

−∞
dπξgmð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ R2

p
; zlÞ; ð3Þ

where ρ̄m0 is themeanmass density today, ξgmðrÞ is the three-
dimensional cross-correlation function between the galaxies
and matter, and π is the separation along the line-of-sight
direction, and R is the projected separation perpendicular to
the line-of-sight direction. Here we ignored the contribution
from the background mean mass density because it is not
relevant forweak lensing observables [compared toEq. (3) in
Ref. [26] ]. The Fourier-transformed counterpart of ξgmðrÞ is
the galaxy-matter cross power spectrum, PgmðkÞ, defined as

ξgmðr; zlÞ≡
Z

∞

0

k2dk
2π2

Pgmðk; zlÞj0ðkrÞ; ð4Þ
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where j0ðxÞ is the zeroth-order spherical Bessel function.
Hereafter we omit the redshift of the lensing galaxies, zl, in
the argument of the correlation functions for notational
simplicity. Throughout this paper we assume a distant obser-
ver approximation for computations of projected correlation
functions. In other words, we ignore the effects of curved sky
for definitions of separations along or perpendicular to the
line-of-sight direction. The excess surface mass density
profile is given in terms of the galaxy-matter cross power
spectrum as

ΔΣgmðRÞ≡ hΣgmið< RÞ − ΣgmðRÞ;

¼ ρ̄m0

Z
∞

0

k2dk
2π2

PgmðkÞJ2ðkRÞ; ð5Þ

where J2ðxÞ is the second-order Bessel function.
To obtain the theoretical template of ΔΣðRÞ for a given

cosmological model within the flat ΛCDM framework, we
use DARK EMULATOR, developed in Ref. [41], which
enables accurate and fast computations of halo statistical
quantities; the halo mass function, the halo-matter cross-
correlation function and the halo-autocorrelation function
as a function of redshift, halo masses, and separations for an
input cosmological model. As demonstrated in Ref. [41],
the emulator outputs the predictions to better than a few
percent in the fractional amplitude over scales of separa-
tions we are interested in.
However, the emulator does not take into account the

effects of baryonic physics, and this is a limitation we should
keep in mind. Nevertheless we do not think this limitation
causes a catastrophic failure of our approach due to the
following reasons. The baryonic physics is local in the sense
that it affects the matter distribution at scales smaller than a
maximum scale, denoted as R�. For example, even if we
consider a violent effect of the AGN feedbacks, it would
affect the mass distribution around halos up to a few Mpc at
maximum. As nicely discussed in Refs. [48,49], we can
safely consider that the baryonic effect causes a “redistrib-
ution” ofmatter at r≲ R� around galaxies, and does not alter
the mass distribution at r≳ R� (r is the three-dimensional
radius from the center of the galaxy). In other words, even in
the presence of the baryonic physics, the mass conservation
at r≲ R� holds. Keeping this in mind, we can say that DARK
EMULATOR, as designed, can accurately model the matter
distribution at r≳ R� around the host halos of galaxies, and
also satisfies the mass conservation to within r ≃ R�, even
though DARK EMULATOR ceases to accurately predict the
mass profile at r≲ R�.
Based on the above consideration, we can rewrite the

lensing profile [Eq. (5)] as

ΔΣðRÞ ¼ hΣgmið<RÞ−ΣgmðRÞ;

¼Mð<R�Þ
πR2

þ 2

R2

Z
R

R�
R0dR0ΣgmðR0Þ−ΣgmðRÞ: ð6Þ

In the second line on the rhs, we used the relation
Mð< R�Þ≡ R R�

0 2πR0dR0ΣgmðR0Þ, where Mð< R�Þ is the
mass interior of a circular aperture of radius R�. The second
term is the contribution over the range of ½R�; R� to the
average mass density. As long as we focus on the lensing
profiles at R ≥ R�, DARK EMULATOR can accurately predict
the lensing profile, including the interior mass at the
aperture of R ≃ R�. On the other hand, we need to intro-
duce various nuisance parameters to model the lensing
“profile” at R ≤ R�, if the information is included, and then
marginalize over the parameters when estimating the interior
mass Mð< R�Þ and performing cosmology inference.
Another clustering observable we use is the projected

autocorrelation function for spectroscopic galaxy sample
that is the same sample used as lens (foreground) galaxies
in the galaxy-galaxy weak lensing measurement. The
projected correlation function is defined by a line-of-sight
projection of the three-dimensional autocorrelation func-
tion of galaxies, ξggðrÞ, as

wpðRÞ≡ 2

Z
πmax

0

dΠξggð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Π2

p
Þ; ð7Þ

where πmax is the length of the line-of-sight projection.
Note that the projected correlation function has the unit of
½h−1Mpc�. Throughout this paper, unless explicitly stated,
we employ πmax ¼ 100 h−1Mpc as our default choice.
Also notice that ξggðrÞ is given in terms of the autopower
spectrum of the galaxy number density field, Pgg, as

ξggðrÞ ¼
Z

∞

0

k2dk
2π2

PggðkÞj0ðkrÞ: ð8Þ

The projected correlation function is not sensitive to the
redshift-space distortion (RSD) effect due to peculiar
velocities of galaxies, if a sufficiently large projection
length (πmax) is taken (see Fig. 6 in Ref. [50]). The RSD
effect itself is a useful cosmological probe, but its use
requires an accurate modeling [44,51,52], which is not
straightforward. Hence, the projected correlation function
makes it somewhat easier to compare with theory in a
cosmological analysis. In the following, we ignore the RSD
effect in most cases of our cosmology challenges, but will
separately discuss the impact of the RSD effect in param-
eter estimation.

B. Theoretical template: Dark Emulator
implementation of halo model

In this section we describe details of the halo model
implementation to make model predictions for the observ-
ables ΔΣðRÞ and wpðRÞ. As can be found around Eqs. (5)
and (7), we need the real-space cross-power spectrum of
galaxies and matter Pgmðk; zÞ, and the real-space autopower
spectrum of galaxies, Pggðk; zÞ, as a function of cosmo-
logical models to compute the observables.
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1. Halo occupation distribution

In the halo model we assume that all matter is associated
with halos, and the correlation function of matter is given
by the contributions from pairs of matter in the same halo
and those in two different halos, which are referred to as the
1- and 2-halo terms, respectively. To connect halos to
galaxies in a given sample, we employ the HOD [35,37,39].
The HOD model gives the mean number of central and
satellite galaxies in halos of mass M as

hNiðMÞ ¼ hNciðMÞ þ hNsiðMÞ; ð9Þ

where hiðMÞ denotes the average of a quantity for halos of
mass M.
We employ the mean HOD for central galaxies, given as

hNciðMÞ ¼ 1

2

�
1þ erf

�
logM − logMmin

σlogM

��
; ð10Þ

where erfðxÞ is the error function and Mmin and σlogM are
model parameters.
For the mean HOD of satellite galaxies, we employ the

following form:

hNsiðMÞ≡ hNciðMÞλsðMÞ ¼ hNciðMÞ
�
M − κMmin

M1

�
α

;

ð11Þ

where κ, M1, and α are model parameters, and we have
introduced the notation λsðMÞ ¼ ½ðM − κMminÞ=M1�α. For
our default prescription we assume that satellite galaxies
reside only in a halo that already hosts a central galaxy.
This means Nc ¼ 1 for such halos. Then we assume that
the number of satellite galaxies in halos of massM follows
the Poisson distribution with mean λsðMÞ; ProbðNsÞ ¼
ðλsÞNs expð−λsÞ=Ns! for halos that host a central galaxy
inside, and ProbðNsÞ ¼ δKNs;0

for halos that do not host a
central galaxy, where δKij is the Kronecker delta function.
Under these assumptions, the mean number of galaxy pairs
living in the same halo with mass M, which is relevant for
the 1-halo term, can be computed as

hNðN − 1Þi ¼ hNcihNðN − 1ÞijNc¼1

þ ð1 − hNciÞhNðN − 1ÞijNc¼0;

¼ hNci½hðNc þ NsÞðNc þ Ns − 1Þi�Nc¼1;

¼ hNci½hN2
s i þ hNsi�;

¼ hNci½2λs þ λ2s �; ð12Þ

where we have used the fact N ¼ 0 for halos which have no
central galaxy for our default prescription.

We have five model parameters, fMmin; σlogM; κ;M1; αg,
to characterize the central and satellite HODs in total for
each galaxy sample for a given cosmological model.
Once the HOD model is given, the mean number density

of galaxies in a sample is given as

n̄g ¼
Z

dM
dnh
dM

½hNciðMÞ þ hNsiðMÞ�; ð13Þ

where dnh=dM is the halo mass function which gives
the mean number density of halos in the mass range
½M;M þ dM�. In the following we use “blue” fonts to
denote a quantity that can be supplied by DARK EMULATOR.
In the above case we use DARK EMULATOR to compute the
halo mass function for wCDM cosmology, while we input
the HOD model, as described, to compute the galaxy
number density.

2. Galaxy-galaxy weak lensing profile

As we described above, the galaxy-galaxy weak lensing
arises from the cross-correlation of (spectroscopic) lensing
galaxies with the surrounding matter distribution in large-
scale structure, ξgmðr; zlÞ. Hence we need to model ξgmðrÞ
as a function of the parameters of galaxy-halo connection
and cosmological parameters.
Since the Fourier space gives a somewhat simpler form

of the expression, we mainly write down the power
spectrum that is the Fourier-transformed counterpart of
the two-point correlation function, here ξgm. Under the halo
model approach, the cross-power spectrum of galaxies and
matter is given as

PgmðkÞ ¼
1

n̄g

Z
dM

dnh
dM

½hNciðMÞ þ hNsiðMÞũsðk;M; zÞ�

× PhmðkÞ; ð14Þ

where PhmðkÞ is the halo-matter cross-power spectrum that
can be computed by DARK EMULATOR as a function of
cosmological model within wCDM cosmologies. The
quantity ũsðk;MÞ is the Fourier transform of the averaged
radial profile of satellite galaxies in host halos of M at
redshift z, which we need to specify. Note that all the
quantities in the above equation are evaluated at the lens
redshift zl, but we omit to denote in the argument of each
function for notational simplicity. DARK EMULATOR was
built to calibrate the halo-matter cross-correlation by
measuring the averaged mass profile around halos with
mass M in N-body simulation outputs [41]. By construc-
tion, the halo-matter cross-correlation satisfies the mass
conservation around halos. We also note that DARK

EMULATOR already includes both the 1- and 2-halo term
contributions in Phm, which correspond to the cross-
correlations of halos with matter in the same halo and
the surrounding matter outside the halo, respectively.
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More exactly speaking, DARK EMULATOR outputs
ξhmðr;MÞ for an input set of parameters (halo mass,
separation, and cosmological parameters), which is the
Fourier transform of Phmðk;MÞ. In order to obtain ξgm or
ΔΣ for the assumed model we extensively use the publicly
available FFTLOG [53] code to perform the Hankel trans-
forms when going back and forth between real and Fourier
space [see Eqs. (4) and (5)].
For the radial profile of satellite galaxies, we assume that

satellite galaxies follow a Navarro-Frenk-White (NFW)
profile [54] that is an approximated model of the averaged
dark matter profile in halos. To compute the NFW profile as
a function of halo mass, redshift, and cosmological model,
we need to specify the scaling relation of mass concen-
tration with halo mass in the halo matter profile. For this we
employ the fitting formula given in Ref. [55]; more exactly,
we use the publicly available PYTHON code, “COLOSSUS”
[56,57], to compute the concentration parameter for a given
set of parameters (halo mass, redshift, and cosmological
parameters).
As for the default model of the galaxy-halo connection,

we consider neither the off-centering effect nor the incom-
pleteness effect of galaxies, where the latter describes a
possibility that some fraction of even very massive halos
might not host a SDSS-like galaxy due to an incomplete
selection after the specific color and magnitude cuts (for
details of the model, see [25]). Rather than introducing
additional nuisance parameters to model these effects, we
employ a minimum halo model as our baseline model.
However, we use different types of mock catalogs of SDSS-
like galaxies including the off-centering effects and the
incompleteness effect, and then will use the mock catalogs
to validate and assess the performance of the baseline
method. If our baseline model can recover the underlying
cosmological parameters, we claim that the method is
validated. If the method shows any failure to recover the
cosmological parameters, we will start to introduce more
parameters. However, if the cosmological constraints turn
to be sensitive to such details of a treatment of galaxies
inside the halo, then this is a sign of the failure or limitation
of the halo model based method, because such a small-scale
distribution of galaxies is very difficult to accurately model
due to complexities of physical processes inherent in
formation and evolution of galaxies. Hence, rather than
including such model parameters, we employ the minimum
halo model to assess its performance.
The upper panel of Fig. 1 shows how different terms of

Pgm contributes to the ΔΣ profile for the SDSS-like
galaxies at z ¼ 0.251 as we will describe in more detail.
Even though satellite galaxies tend to reside in massive
halos, all the curves have a similar shape (R dependence) in
large R bins, R≳ 10 h−1Mpc, for a fixed cosmology. All
the small-scale physics involved in the galaxy-halo con-
nection affectsΔΣ at R≲ 10 h−1Mpc. Note that, due to the
nonlocal nature of ΔΣ, the small-scale physics affects ΔΣ

up to relatively large scales, compared to a virial radius of
massive halos. Also importantly, the integrated lensing
signal up to a few Mpc scales gives an estimate of the
average halo mass, which has a close tie to the large-scale
amplitudes of ΔΣ and wp via the scaling relation of halo
bias with halo mass (see below). For comparison, the figure
also shows the impact of off-centering effects of central
galaxies on ΔΣ, assuming that some fraction of central
galaxies might be offset from the true halo center as a
result of the assembly history of galaxies in their host
halos [58,59].

FIG. 1. Break down of different contributions to the galaxy
weak lensing profile [ΔΣðRÞ; upper panel] and the projected
correlation function of galaxies (wp; lower) for the SDSS LOWZ-
like galaxies at z ¼ 0.251, which are computed using DARK

EMULATOR and our model ingredients of the galaxy-halo con-
nection for the Planck cosmology. For illustrative purpose we
multiply each observable by R so that their dynamic range
(y axis) becomes narrower. Upper panel: the dashed line shows a
contribution arising from the cross-correlation of central galaxies
with the surrounding matter distribution, while the dot-dashed
line denotes a contribution from the cross-correlation of satellite
galaxies with matter. For comparison, we also show how a
possible off-centering of central galaxies affects the lensing
profile, although we do not include this effect in the theoretical
templates. Here, as a working example, we consider the off-
centering parameters poff ¼ 0.3 and Roff ¼ 0.4 irrespective of
halo mass, where poff models a fraction of off-centered central
galaxies in halos of mass M, while R is the off-centering radius
relative to the scale radius of NFW profile of halos. The upper
solid lines is the total power. Lower: the similar break down of
different contributions to the projected correlation function of the
galaxies, for the same model in the upper panel.
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3. Projected correlation function of galaxies

To model wp we need to model the real-space corre-
lation function of galaxies, ξgg, or the Fourier transform Pgg

for an input set of parameters. The autopower spectrum
of galaxies in a sample is decomposed into the two

contributions, the 1- and 2-halo terms, and those are given
within the halo model framework as

PggðkÞ≡ P1h
ggðkÞ þ P2h

ggðkÞ ð15Þ
with

P1h
ggðkÞ ¼

1

n̄2g

Z
dM

dnh
dM

hNciðMÞ½2λsðMÞũsðk;MÞ þ λsðMÞ2ũsðk;MÞ2�;

P2h
ggðkÞ ¼

1

n̄2g

�Z
dM

dnh
dM

hNciðMÞf1þ λsðMÞũsðk;MÞg
�

×

�Z
dM0 dnh

dM0 hNciðM0Þf1þ λsðM0Þũsðk;M0Þg
�
Phhðk;M;M0Þ; ð16Þ

where Phhðk;M;M0Þ is the power spectrum between two
halo samples with masses M and M0. DARK EMULATOR

outputs the real-space correlation function of halos,
ξhhðr;M;M0Þ, that is the Fourier transform of Phh. Sim-
ilarly to the case of ΔΣ, we use the FFTLOG code to perform
the Fourier transform to obtain the prediction of ξggðrÞ [see
Eq. (8)] and then perform the line-of-sight integral to obtain
the prediction of wpðRÞ [see Eq. (7)]. We note that, strictly
speaking, our standard halo model implementation of the 1-
halo term behaves as a shot noise like term of k0ð¼ const:Þ
at the limit of k → 0, and this gives a subtle violation of the
mass and momentum conservation [32]. One could modify
the halo model at very small k to enforce the conservation
laws, as done in Ref. [60], but we found that our treatment,
practically, gives a sufficiently accurate model prediction
over scales of separations that we are interested in, for
the SDSS-like galaxies [51] (see also [61] for a similar
discussion). As given by Eq. (7), we employ πmax ¼
100 h−1 Mpc, as our default choice to integrate ξggðr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ π2

p
Þ to obtain the model prediction for wpðRÞ.

The lower panel of Fig. 1 shows different contributions
in the projected correlation function wp for the Planck
cosmology, assuming the same model as in the upper panel.
As can be found from Eq. (16), the 1-halo term arises from
the central-satellite and satellite-satellite correlations, while
the 2-halo term is from the correlations of central-central,
central-satellite and satellite-satellite galaxies in different
halos, respectively. The figure clearly shows that all the
contributions to the 1-halo term are confined to small
scales, at R≲ a few Mpc, a virial radius of massive halos,
reflecting the local nature of wp in contrast to ΔΣ. All the
different contributions to the 2-halo term have a similar
shape (R dependence); the different terms differ from each
other only by a multiplicative factor for a fixed cosmology.
This means that the shape of the 2-halo term is not sensitive
to details of the galaxy-halo connection. The features
aroundR ≃ 90 h−1 Mpc are the BAO features, which appear
at smaller scales than the BAO scale of 100 h−1 Mpc in the

three-dimensional correlation function, due to the line-of-
sight projection. However, we note that we will not include
the BAO information in the parameter estimation in the
following; we will use the wp information up to R ≃
30 h−1Mpc as our default choice.

C. Joint probes cosmology: A mitigation method
of galaxy bias uncertainty

For convenience of our discussion let us define the cross-
correlation coefficient function for halo correlation function:

rhmðrÞ≡ ξhmðrÞ
½ξhhðrÞξmmðrÞ�1=2

: ð17Þ

As shown in Fig. 31 of Ref. [41], DARK EMULATOR predicts
rhm ≃ 1 on r≳ 10 h−1 Mpc, the scale greater than a typical
size ofmassive halos, and rhm is close to unitywithin 5%or so
even at the intermediate scales a few Mpc< r≲ 10 h−1Mpc.
As stressed in our companion paper [26], the real-space
observables have an advantage that all variants due to
the galaxy-halo connection are confined to small scales,
r≲ 10 h−1Mpc, and the cross-correlation function on large
scales satisfy rhm ≃ 1 (see also [62] for a similar discussion).
This is not necessarily true in Fourier space, because the
variations on small scales become extended in Fourier space
due to the nature of Fourier transform. The simplest example
is the shot noise; the shot noise affects the real-space
correlations at zero separation, while it behaves like a white
noise and affects the power spectrum over all scales (k bins).
It is also constructive to discuss an asymptotic behavior

of the halo correlation functions, ξgm and ξgg, on large
scales. At scales much greater than the nonlinear scale,
r ≫ R�, the galaxy-matter cross correlation has an asymp-
totic behavior given as z

ξgmðrÞ½r ≫ R��
�����! 1

n̄g

Z
dM

dnh
dM

hNgiðMÞξhmðr;MÞ

≃ beffξmmðrÞ; ð18Þ
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where we have used ũsðk;MÞ → 1 for k ≪ 1=R�, and we
defined the effective bias parameter, at a sufficiently large
separation satisfying r ≫ R�, as

beff ≡ 1

n̄gξmmðrÞ
Z

dM
dnh
dM

hNgiξhmðr;MÞ: ð19Þ

In addition, as can be found from Eq. (3), ΔΣ, which has a
dimension of ½hM⊙ Mpc−2�, has an additional dependence
on ρ̄m0

ΔΣ ∝ ρ̄m0ξgm ∝ Ωmbeffξmm: ð20Þ

Note that the dependence of h is not relevant because all the
quantities are measured in units where the dependence of h
is factorized out.
Similarly the autocorrelation function of galaxies is

found to have an asymptotic behavior at the limit of large
scales, r ≫ R�, as

ξggðrÞ½r ≫ R��
�����! 1

n̄2g

�Z
dM

dnh
dM

hNgiðMÞ
�

×

�Z
dM0 dnh

dM0 hNgiðM0Þ
�
ξhhðr;M;M0Þ ≃ b2effξmmðrÞ:

ð21Þ

This is not an exact relation, but we found that the relation
rgg ≡ ξgm=½ξggξmm�1=2 ≃ 1 holds for scales of r ≫ R�, as
shown in Fig. 32 of Ref. [41]. Thus the combination of ξgm
and ξgg, which are inferred from ΔΣ and wp, respectively,
can be used to infer the underlying matter correlation
function ξmm, and in turn we can use it to extract cos-
mological information. Furthermore, as implied from
Eq. (6), an amplitude of ΔΣ at scales around a transition
scale between the 1- and 2-halo terms gives an estimate of
the average mass of halos hosting galaxies:

ΔΣgmðRÞjR≃a few Mpc → M̄h: ð22Þ

In turn this can put a strong constraint on the halo bias, beff ,
via the scaling relation of halo bias with halo mass (or the
dependence of ξhm and ξhh amplitudes on halo mass).
Hence, combining the small- and large-scale information of
ΔΣ with wp helps break degeneracies between cosmologi-
cal parameters and the galaxy bias, and then gives useful
constraints on cosmological parameters. This is the basic
picture of how the joint probes cosmology usingΔΣ and wp

can constrain cosmological parameters. However, if the
scaling relation of the large-scale galaxy bias amplitude
with the average halo mass is broken, then this method does
not work. This would be the case for the assembly bias
effect, where the galaxy bias depends on secondary
parameter(s) related to the assembly history of host halos,
in addition to halo mass.

In Fig. 2, we study how ΔΣ and wp depend on the
cosmological parameters, Ωm and σ8, because large-scale
structure probes are most sensitive to these parameters.
Here we consider the expected signals of ΔΣ and wp for
the SDSS LOWZ-like galaxies at z ¼ 0.251 (as we will
describe in detail in Sec. III B) which are computed using
DARK EMULATOR based on the halo model. We note that,
due to the nonlocal nature of ΔΣ, the lensing profile
at a particular scale, say R0, is sensitive to the matter-
galaxy cross-correlation at r ∼ R0=2. Note that we employ
Rcut ¼ 2 and 3 h−1Mpc for the scale cuts of ΔΣ and wp as
our default choice, respectively, and will use the informa-
tion of ΔΣ and wp at scales greater than the scale cuts for
the cosmology challenges.
Let us first consider the dependence of σ8. There are two

competing effects in the change of our target observables
originating from that of σ8 for models with a fixed Ωm.
First, an increase of σ8 boosts the amplitude of ξmm by
definition. Second, it leads to a decrease of halo bias

FIG. 2. Dependences of ΔΣ and wp on cosmological param-
eters, σ8 (blue lines) and Ωm (red), computed using the DARK

EMULATOR based halo model. Here we consider the HOD
parameters for the LOWZ sample at z ¼ 0.251. Here we consider
fractional changes of σ28 (not σ8) or Ωm by �5% or �10%,
respectively, where the other parameters are fixed to their fiducial
values. The solid and dashed, respectively, lines show the
fractional changes in ΔΣ or wp relative to that for the fiducial
model when σ28 or Ωm is changed to a positive or negative side
from its fiducial value. The error bars around unity denote 1σ
statistical errors that are computed from the diagonal terms of
the covariance matrix expected for the SDSS and HSC-Y1
data, although the neighboring bins are highly correlated with
each other.
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(beff ) for massive halos hosting SDSS-like galaxies
(∼1013 h−1M⊙), because a model with higher σ8 leads
to more evolved large-scale structure at an observed red-
shift, thus the abundance of massive halos gets increased at
the redshift, and such halos become less biased tracers,
resulting in a lowered bias amplitude compared to that for
the fiducial model. For ΔΣ, the first effect is more
significant; an increase of σ8 leads to an increase of the
amplitude of ΔΣ over all the scales we consider. For wp,
these competing effects almost cancel out on large scales,
R≳ a few Mpc in the 2-halo term, and the increase of σ8
does not largely change the amplitude on the large scales.
Nevertheless we should emphasize that the change of σ8
causes a scale-dependent modification in these observables,
especially wp, in contrast to the linear theory that predicts a
constant (scale-independent) shift in the ratio at these large
scales (also see Fig. 6 in [26] for the similar discussion).
We checked that the scale-dependent changes are from a
combination of the effects of σ8 changes on matter
clustering (ξmm) and the halo bias function (see Fig. 19
in Appendix A). These effects are automatically built in
the DARK EMULATOR predictions. Also note that the
positive- and negative-side changes of σ8 cause an asym-
metric change in wp at large scales. On the other hand, the

1-halo term amplitude of wp is boosted because the increase
of σ8 leads to the increased abundance of massive halos,
more satellite galaxies reside in such halos, and their
correlations add. Thus the change of σ8 leads to character-
istic modifications of the amplitude and scale dependence
inΔΣ and wp. The notable features around R ∼ 90 h−1Mpc
are due to the effect on BAO features [63], but this is not
relevant for our results because we use the information of
ΔΣ and wp on scales up to 30 h−1 Mpc for the fiducial
choice, so do not include the BAO information in parameter
estimation.
Next we discuss the results for the change of Ωm, for a

fixed σ8. First, an increase of Ωm leads to a faster evolution
of clustering growth for models with a fixed σ8 (the fixed
normalization today), so this leads to the smaller amplitude
of ξmm at this redshift (z ¼ 0.251). However, recalling that
ΔΣ ∝ Ωmhγþi ∼ Ωmδrevfourrmm, an increase of Ωm leads to
higher amplitudes in ΔΣ due to the prefactor, while it leads
to smaller amplitudes in wp. In addition, the change of Ωm

causes a scale-dependent modification in both ΔΣ and wp.
In Fig. 3 we study how a change in each of the HOD

parameters alters ΔΣ and wp for the Planck cosmology.
Here we employ the same HOD parameters for the LOWZ

FIG. 3. Dependence of ΔΣ and wp on changes to HOD parameters can be seen in the top and the bottom panels, respectively. Here the
fiducial HOD parameters are chosen to resemble the SDSS LOWZ-like galaxy sample at z ¼ 0.251 for the Planck cosmology. When
one HOD parameter is changed, the other parameters are fixed to their fiducial values. Solid line shows the result for an increase
(positive-side change) of each HOD parameter from its fiducial value, while dashed line is the result for the decrease. From light- to
dark-color lines show the results for the fractional change of each HOD parameter by �20% and �40%, respectively. The left panel
shows the dependences of the central HOD parameters, Mmin and σlogM, while the right panel shows the results for the satellite HOD
parameters, M1; κ and α. The error bars are the same in the previous figure.
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galaxies as in Fig. 2, and vary only one HOD parameter for
each result, where other parameters are fixed to their
fiducial values. The figure shows that, when each of the
central HOD parameters is varied, it causes a significant
change over all the scales including both the 1- and 2-halo
terms, because the change in the parameter leads to a
change in the mean halo mass. More precisely, an increase
in Mmin or a decrease in σlogM leads to an increase in the
mean halo mass, leading to the increased amplitudes in ΔΣ
and wp. The fractional changes in ΔΣ and wp at large
separations in the 2-halo term regime are roughly given as
δwp=wp ≃ 2δΔΣ=ΔΣ, reflecting the facts ξgg ≃ b2effξmm and
ξgm ≃ beffξmm at the large scale limit as we discussed above.
In addition, it is clear that the 1-halo term amplitude of ΔΣ
is sensitive to the central HOD parameters, physically to the
mean mass of halos hosting the galaxies in a sample.
Hence, combining the 2-halo term amplitudes ofΔΣ andwp

allows one to break degeneracies between the bias param-
eter and other parameters, and then adding the 1-halo term
information of ΔΣ can constrain the HOD parameters and
then tighten the determination of the large-scale bias. The
satellite HOD parameters change the relative contribution
of massive halos to ΔΣ and wp as satellite galaxies
preferentially reside in massive halos. In particular, the
parameter M1, which determines the amplitude of the
satellite HOD, causes a decent change in the large-scale
amplitudes of ΔΣ and wp. The effects of other parameters
are relatively mild.
Comparing Figs. 2 and 3 manifests that the cosmological

parameters and the HOD parameters lead to different
changes in ΔΣ and wp. Hence combining these observables
in the 1- and 2-halo term regimes allows for an efficient
determination of the cosmological parameters, by breaking
the parameter degeneracies. These figures nicely illustrate
the complementarity ofΔΣ and wp, which is the main focus
of this paper.

D. Observational effects: Geometrical
cosmology dependence, photo-z,

multiplicative shear bias, and RSD

In this section we discuss the four observational effects,
i.e., the geometrical dependence of the observables on
cosmology, photometric redshift errors of source galaxies,
multiplicative shear bias, and redshift-space distortion effect.
When comparing the measured signals with the model
templates, we need to include these effects in the model
templates, and here we describe how to do this.

1. Geometrical cosmology dependence

The observables we consider in this paper areΔΣðRÞ and
wpðRÞ, which are different from other possible choices of
the lensing and clustering observables such as γþðθÞ and
wpðθÞ. Measurements of ΔΣ and wp require an observer to
assume a reference cosmology to perform a correction of

the lensing efficiency Σcrðzl; zsÞ [see Eq. (1)] as well as the
conversion of angular scales (θ) and redshift differences to
the projected separation (R) and radial separation (π).
However, the assumed cosmology generally differs from
the true underlying cosmology, and this dependence needs
to be taken into account. We use the method in Ref. [64] to
include this effect.
For a flat-geometry ΛCDM model, the relevant param-

eter is only Ωm (or Ωde that is the density parameter of dark
energy), because it affects the angular and radial distances
(the lensing efficiency also depends on the combination of
angular diameter distances and the overall factor of Ωm).
Note that the dependence on h is taken out from the
observables because all the quantities are measured in units
of h−1 Mpc or hM⊙ Mpc−2 for wp and ΔΣ, respectively.
The Ωm dependences of ΔΣ and wp through this effect turn
out to be very small, but add a slight sensitivity ofΩm in the
theoretical templates.

2. Photometric redshift errors

Photometric redshift errors of source galaxies are one of
the most serious systematic errors in the weak lensing
measurements. An accuracy of photometric redshifts (here-
after often simply photo-z), delivered from a set of broad-
band filters (grizy in the HSC data), is limited, and can
never be perfect, compared to spectroscopic redshifts,
although the photo-z accuracies are calibrated using the
COSMOS catalog [65]. For lens redshift we assume
spectroscopic redshifts as we will focus on the spectro-
scopic SDSS-like galaxies. Here we discuss how we can
treat a possible uncertainty of source redshifts in the
observable ΔΣ. In this paper we use the method proposed
in Oguri and Takada [21]. In this method we use a “single”
population of source galaxies, selected based on the photo-
z, and then use the relative strengths ofΔΣ for multiple lens
samples at different redshifts to calibrate the photo-z
uncertainty of source galaxies in a statistical sense.
In the presence of a redshift distribution of source

galaxies, an estimator of ΔΣðRÞ from the measured
ellipticity component of each source galaxy is given,
e.g., by Eq. (11) in Ref. [24], as

cΔΣðRÞ ¼ 1

2R

P
l;swls½hΣ−1

cr ils�−1elsþP
l;swls

; ð23Þ

where R is the “responsivity” that is needed to convert the
measured galaxy ellipticity, defined in terms of ða2 − b2Þ=
ða2 þ b2Þ (a, b is the major, minor axes when the galaxy
shape is approximated by an ellipse), to the lensing shear,
defined in terms of ða − bÞ=ðaþ bÞ [23,43,66]; esþ is the
tangential ellipticity component of the sth source galaxy
with respect to the lth lensing galaxy; wls is the weight (see
below). The summation

P
l;s runs over all pairs of source

and lens galaxies that are in a given bin of projected
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separation, R ¼ χðzlÞΔθ. The measured lensing signal is
for the effective redshift of lens galaxies, z̄l.
In a case that we have only the posterior distribution of

photometric redshift for each source galaxy, the “effective”
lensing efficiency needs to be estimated as

hΣ−1
cr ils ≡

Z
∞

0

dzsΣ−1
cr ðzl; zsÞpðzsÞ; ð24Þ

where pðzsÞ is the posterior distribution of redshift for the
sth source galaxy that satisfies the normalization conditionR∞
0 dzspðzsÞ ¼ 1. Note that we set Σ−1

cr ðzl; zsÞ ¼ 0 when
zs < zl. We employ the weight wls, motivated by the
inverse-variance weight, to have a higher signal-to-noise
ratio for the weak lensing measurement [67–69]:

wls ¼
½hΣ−1

cr iðl;sÞ�2
e2rms þ σ2e

; ð25Þ

where erms is the rms intrinsic ellipticity per component and
σe is the measurement error of ellipticity for the sth source
galaxy.
Thus, in an estimator of ΔΣ, the quantities hΣ−1

cr ils and
wls depend on photometric redshifts of source galaxies
via pðzsÞ for individual source galaxies. If the estimated
redshift distribution of source galaxies is systematically
offset from the underlying true distribution, then the
measured ΔΣ has a systematic bias (offset) from the true
one (even if the assumed cosmological model for the ΔΣ
estimation is the true cosmology). Following the method in
Refs. [21,70], we take into account the systematic offset by
introducing additional nuisance parameter, Δzph, to shift
the posterior distribution of source redshift for all source
galaxies as

pðzsÞ → pðzs þ ΔzphÞ: ð26Þ

The above method is a statistical method to correct for a
possible residual difference between the true redshift
distribution of source galaxy and the assumed distribution.
Hence the parameter Δzph is designed to model a change in
hΣ−1

cr i due to the difference, and does not necessarily model
a change in the mean and/or shape of source redshift
distribution. This can be found from the following simple
example. Consider the case that the lens galaxies are at a
single redshift of zl ¼ 0.5 and the photo-z posterior is
approximated by a Gaussian with mean zs ¼ 1.3 and
σðzsÞ ¼ 0.1. Then we compute the effective source redshift
zs;eff that provides the same Σ−1

cr as the average hΣ−1
cr ils.

However, if the true photo-z posterior distribution is given
by the Gaussian distribution with the same mean, but wider
width σðzsÞ ¼ 0.2, we find the effective redshift is changed
by Δzs;eff ¼ −0.025, which is smaller than the prior width
σðΔzphÞ ¼ 0.04 or 0.1, used in our cosmology analysis.
Thus even if the shift in Eq. (26) cannot model a change in

the width or shape of the photo-z posterior distribution, the
effect can be safely captured by a change in hΣ−1

cr i, therefore
the parameter Δzph, as long as the change is covered by the
prior width of Δzph.
With this shift in the photo-z posterior, we can repeat the

computations of hΣ−1
cr ils and wls for the pairs of source and

lens galaxies in actual SDSS and HSC-Y1 datasets. We
found that the lensing profile after shifting the source
redshift distribution is well approximated by the following
multiplicative form as

cΔΣðR; z̄l;ΔzphÞ ≃ fphðR; z̄l;ΔzphÞcΔΣðR; z̄l;Δzph ¼ 0Þ;
ð27Þ

where fphðR; z̄l;ΔzphÞ is the multiplicative factor to model
the effect of systematic photo-z error, and z̄l is the mean of
lens redshifts. Here we stress, by notation “ b, ” that the
above correction is made for the measured ΔΣ. By using a
single population of source galaxies, we notice that the shift
Δzph leads to changes in the amplitudes of ΔΣ for each of
the multiple lens samples (LOWZ and the two subsamples
of CMASS, divided into two redshift bins) depending on
the lens redshift (z̄l). Conversely, we can use the relative
variations in the ΔΣ amplitudes at different lens redshifts to
calibrate out Δzph, simultaneously with cosmological
parameter estimation. This is a self-calibration method of
photo-z errors as proposed in Oguri and Takada [21]. In the
above equation, we explicitly include the R dependence in
the calibration factor, which could arise because the shift
could change relative contributions of different lens-source
pairs to the lensing efficiency hΣ−1

cr ils. However, the R
dependence, albeit very weak, appears only for the highest-
redshift lens sample (CMASS2 in our sample, as we will
define later).
For our method, we multiply the inverse of the calibra-

tion factor in Eq. (27) with the theoretical template of ΔΣ,
rather than correcting for the measurement, for an assumed
Δzph:

ΔΣðRÞ → ΔΣðRÞ=fphðR;ΔzphÞ: ð28Þ

We then include Δzph as additional nuisance parameter
when carrying out the parameter inference. This is better
because we will use the same covariance matrix in our
parameter inference, which allows for apple-to-apple com-
parison of the performance for different setups (because
this method does not change the error bars of ΔΣ in each
R bin).

3. Multiplicative shear errors

An accurate weak lensing measurement requires an
exquisite, accurate characterization of individual galaxy
shapes. This is not straightforward [43], and an imperfect
shape measurement leaves a residual systematic error in the
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weak lensing measurements. Systematic errors in shape
measurements are usually modeled by “multiplicative”
and “additive” biases in the measured galaxy ellipticities,
given as γ → ð1þmÞγ þ c, where m and c are the multi-
plicative and additive bias parameters, respectively [71].
Since the spatial positions of lensing galaxies on the sky are
considered random with respect to the positions of source
galaxies, the galaxy-galaxy weak lensing is not affected by
the additive bias [43]. Hence, in the presence of the multi-
plicative shear bias, we modify the theoretical template as

ΔΣðRÞ → ð1þmÞΔΣðR;m ¼ 0Þ: ð29Þ

By working on the single sample of source galaxies, we can
employ the singlem parameter for all the lensing profiles at
multiple lens redshifts. This is another advantage of the
method of Ref. [21]. This is a good approximation as long as
source galaxies are well separated from lens redshifts; this is
the case as long as we can ignore a contamination of source
galaxies into lens redshifts due to photo-z errors. To make
this method work, in actual data, we will employ a
conservative cut of source galaxy redshifts to ensure that
source galaxies are well separated from lens redshifts [45].

4. Redshift-space distortion

To model the projected correlation function of galaxies,
we ignored the RSD effect that is caused by peculiar
velocities of galaxies. For our default choice of the projected
length, πmax ¼ 100 h−1 Mpc, however, the RSD effect is not
negligible. We follow the method proposed in Ref. [50]. We
employ the linear Kaiser formula [72] to model the RSD
effect. We follow Eqs. (51)–(54) in Ref. [50] to model the
redshift-space two-point correlation function of galaxies using
the Kaiser RSD β factor, given by β≡ ð1=beffÞd lnD=d ln a,
where beff is the effective linear bias for a sample of galaxies
[see Eq. (19)] and D is the linear growth factor. Then we
modify the theoretical template of wp as

wpðRÞ → fRSDðR; πmaxÞwpðR; β ¼ 0Þ; ð30Þ
where fRSDðR; πmaxÞ is the correction multiplicative factor
to account for the RSD effect. This factor depends on the
projected separation R and the projection length πmax for an
assumed cosmology. For our default choice of πmax ¼
100 h−1Mpc, the linearKaiser factor is a good approximation
to model the RSD effect on wp (see also [26]).

III. N-BODY SIMULATIONS, DARK EMULATOR,
AND MOCK CATALOGS OF HSC-

AND SDSS-LIKE GALAXIES

In this paper we use two types of mock catalogs of
SDSS- and HSC-like galaxies. First, we use high-resolution
N-body simulations, with periodic boundary conditions,
and the halo catalogs to generate the mock catalogs of
SDSS galaxies. We then measureΔΣ andwp from the mock

catalogs to define the mock signals that we use in
cosmology challenges. Second, we also use the mock
catalogs of SDSS- and HSC-like galaxies built in the
light-cone simulations, including the simulated lensing
signals on the HSC-like source galaxies, and use those
catalogs to estimate the covariance matrix of the observ-
ables. These mocks are the same as those used in our
companion paper, Sugiyama et al. [26]. In this section, we
describe details of N-body simulations and the mock
catalogs.

A. N-body simulations and Dark Emulator

In this paper we extensively use DARK EMULATOR

developed in Nishimichi et al. [41], which is a software
package enabling fast, accurate computations of halo
clustering quantities for a given cosmological model.
Here we will briefly review DARK EMULATOR. They
constructed an ensemble of cosmological of N-body
simulations, each of which was performed with 20483

particles for a box with 1 or 2 Gpc=h on a side length, for
101 cosmological models within the flat wCDM cosmol-
ogies. The wCDM cosmology is parametrized by six cos-
mological parameters, p¼ fωb;ωc;Ωde; lnð1010AsÞ;ns;wg,
where ωbð≡Ωbh2Þ and ωcð≡Ωch2Þ are the physical density
parameters of baryon and CDM, respectively, h is the
Hubble parameter, Ωde ≡ 1 − ðωb þ ωc þ ωνÞ=h2 is the
density parameter of dark energy for a flat-geometry
universe, As and ns are the amplitude and tilt parameters
of the primordial curvature power spectrum normalized at
kpivot ¼ 0.05 Mpc−1, and w is the equation of state param-
eter for dark energy, respectively. For the N-body simu-
lations, they included the neutrino effect fixing the neutrino
density parameter ων ≡Ωνh2 to 0.00064 corresponding to
0.06 eV for the total mass of three neutrino species. They
included the effect of massive neutrinos only in the initial
linear power spectrum (see [41] for details). To carry out
“cosmology challenges” in the following, we employ the
fiducial Planck cosmology that is characterized by the
parameter values in Table I. We use the N-body simulation
realizations of 1 h−1Gpc box size for the fiducial Planck
cosmology to construct the mock catalogs for SDSS-like
galaxies. The mass of simulation particle for the fiducial
Planck simulations is m ¼ 1.02 × 1010 h−1M⊙. In the fol-
lowing we use halos with mass greater than 1012h−1 M⊙,
corresponding to about 100 simulation particles.
For each N-body simulation realization (each redshift

output) for a given cosmological model, they constructed a
catalog of halos using ROCKSTAR [73] that identifies halos
and subhalos based on clustering of N-body particles in
phase space (position and velocity space). The spherical
overdensity mass, with respect to the halo center that is
defined from the maximum mass density, M ≡M200 m ¼
ð4π=3ÞR3

200 m × ð200ρ̄m0Þ, is used for definition of halo
mass, where R200 m is the spherical halo boundary radius
within which the mean mass density is 200 times ρ̄m0.
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By combining the outputs of N-body simulations and the
halo catalogs at multiple redshifts in the range z ¼ ½0; 1.48�,
they built an emulator, named DARK EMULATOR, which
enables fast and accurate computations of the halo mass
function, halo-matter cross-correlation, and halo autocorre-
lation as a function of halo masses, redshift, separat-
ions, and cosmological models. It was shown that DARK

EMULATOR achieves a sufficient accuracy for these statistical
quantities for halos of 1013 M⊙, which is a typical mass of
host halos of SDSS galaxies, compared to the statistical
measurement errors of ΔΣ and wp expected from the HSC
and SDSS data, as shown in Fig. 31 of the paper Ref. [41]. In
summary, DARK EMULATOR outputs the following
(1) dnh

dM ðM; z;pÞ: the halo mass function for halos in the
mass range ½M;M þ dM� at redshift z.

(2) ξhmðr;M; z;pÞ: the halo-matter cross-correlation
function for a sample of halos in the mass range
½M;M þ dM� at redshift z.

(3) ξhhðr;M;M0; z;pÞ: the halo-halo auto-correlation
function for two samples of halos with masses
½M;M þ dM� and ½M0;M0 þ dM0� at redshift z.

for an input set of parameters, halo mass M (and M0 for
the correlation function of two halo samples), redshift z, and
cosmological parametersp. In addition, theDARKEMULATOR

package outputs auxiliary quantities, based on emulation,
such as the linear halo bias (the large-scale limit of the halo
bias), the linear mass power spectrum, the linear rms mass
fluctuations of halo mass scale M (σLmðMÞ), and σ8. The
supporting range of each of cosmological parameters for
DARK EMULATOR is given in Table I. These ranges are
sufficiently broad, e.g., to cover the range of cosmological
constraints from the current state-of-the-art large-scale
structure probe such as the Subaru HSC cosmic shear

results [4,5]. In this paper we will use DARK EMULATOR to
perform Markov chain Monte Carlo (MCMC) analyses of
cosmological parameters by comparing the model templates
ofΔΣ andwp with themock signals expected from the SDSS
and HSC data.

B. Mock catalogs for the SDSS-like galaxies
for the mock signals of ΔΣ and wp

1. Mock catalogs of SDSS LOWZ-
and CMASS-like galaxies

We use the N-body simulation realizations and the halo
catalogs for the Planck cosmology to build mock catalogs
of galaxies that resemble spectroscopic galaxies in the
SDSS-III BOSS DR11 sample [74]. We consider three
galaxy samples in three redshift bins: “LOWZ” galaxies in
the redshift range z ¼ ½0.15; 0.30� and two subsample of
“CMASS” galaxies that are obtained from subdivision of
CMASS galaxies into two redshift bins, z ¼ ½0.47; 0.55�
and z ¼ ½0.55; 0.70�. Here we consider luminosity-limited
samples rather than flux-limited samples for these galaxies
(see [45] for details; also, see [24] for a similar discussion
on the stellar-mass limited sample). The luminosity-limited
sample is considered as a nearly volume-limited sample in
each redshift bin, and we expect that properties of galaxies
do not strongly evolve within the redshift bin, which is
desired because we ignore the redshift evolution of cluster-
ing observables within the redshift bin for each sample.
Table II summarizes characteristics of each galaxy sample.

TABLE I. The value of each cosmological parameter for the
fiducial Planck cosmology which we use in the following
cosmology challenges (we will study whether the method can
recover the true values within the credible interval). The column,
labeled as “supporting range,” gives the supporting range of each
parameter in DARK EMULATOR that outputs the halo clustering
quantities for a flat-geometry wCDM model specified by a set of
six cosmological parameters fΩde; lnð1010AsÞ;ωb;ωc; ns; wg
each of which should be in the supporting range. Here σ8 and
S8 ≡ σ8ðΩm=0.3Þ0.5 are derived parameters, and the values in the
table are those for the fiducial Planck cosmology.

Parameters Fiducial value Supporting range [min,max]

Ωde 0.6844 [0.54752, 0.82128]
lnð1010AsÞ 3.094 [2.4752, 3.7128]

ωb 0.02225 [0.0211375, 0.0233625]
ωc 0.1198 [0.10782, 0.13178]
ns 0.9645 [0.916275, 1.012725]
w −1 ½−1.2;−0.8�
σ8 0.831 derived
S8 0.852 derived

TABLE II. Specifications of the mock galaxy catalogs that
resemble the LOWZ and CMASS galaxies for the spectroscopic
SDSS DR11 data. For the CMASS sample we consider two
subsamples divided into two redshift ranges. We give the redshift
range and the comoving volume for each sample, assuming
8300 deg2 for the area coverage. The column denoted as
“representative redshift” is a representative redshift of each
sample which we assume to represent the clustering observables
for each sample (i.e., ignore redshift dependences of the ob-
servables within the redshift bin). The lower columns, below
double lines, denote the HOD parameters used to build the mock
catalogs of each sample from N-body simulations for the Planck
cosmology. Note that Mmin and M1 are in units of h−1 M⊙.

LOWZ CMASS1 CMASS2

Redshift range [0.15, 0.35] [0.47, 0.55] [0.55, 0.70]
Representative redshift 0.251 0.484 0.617
Volume [ðh−1 GpcÞ3] 0.67 0.81 2.00

HOD parameters Fiducial values

logMmin 13.62 13.94 14.19
σlogM 0.6915 0.7919 0.8860
κ 0.51 0.60 0.066
logM1 14.42 14.46 14.85
α 0.9168 1.192 0.9826

COSMOLOGICAL INFERENCE FROM AN EMULATOR BASED … PHYS. REV. D 106, 083519 (2022)

083519-13



To build the mock catalogs for each galaxy sample, we
first perform a fitting of the HOD model predictions to the
projected correlation function wp that is actually measured
from the SDSS data for each sample, assuming the Planck
cosmology model, and then estimate the HOD parameters
for the best-fit model. Note, however, that we here use the
analytical halo model method used in More et al. [25], and
did not use the weak lensing profile to further constrain the
HOD parameters. The fiducial HOD model is the same as
that described in Sec. II B. Table II gives the best-fit HOD
parameters for each sample.
We use the outputs of N-body simulations at z ¼ 0.251,

0.484, and 0.617 as representative redshifts of the galaxy
samples to build the mock catalogs. We then populate
galaxies into halos of each realization for the Planck cos-
mology, using the best-fit HOD parameters in Table II (see
also [44,51] for details of the method). For our default
mocks, we assume the NFW profile for the radial distri-
bution of satellite galaxies. The default mock is the same
as the default HOD model used in the theoretical template
(see Sec. II B), so we will use the default mock to perform a
sanity check of whether we can recover the true cosmo-
logical parameters, i.e., the parameter values of Planck
cosmology, in the parameter estimation by comparing
model templates with the mock signals measured from
the default mocks. In the default mocks, we neither include
the off-centering effect of central galaxies, an incomplete-
ness effect of central galaxies, nor the redshift-space
distortion effect. For other mocks, we include these effects
one by one, and then study the impact of each effect on
parameter estimation.

2. Mock signals of ΔΣ and wp

We generate the mock signals of ΔΣ and wp for the
SDSS-like galaxies, by measuring those clustering observ-
ables from each of the mock catalog realizations for
the Planck cosmology as we described in the preceding
section. In doing this, we take an advantage of the periodic
boundary conditions in each mock, which allows for a fast
computation of the clustering quantities using the FFT
algorithm. In addition, the measured clustering quantities
are not affected by the window function thanks to the
periodic boundary conditions. We here describe details of
the measurement method of ΔΣ and wp from each mock
catalog [44,51].
For ΔΣ, we first project the matter (N-body) particles

and galaxies along one axis of N-body cubic box assuming
that the axis is along the line-of-sight direction, and assign the
matter particles and galaxies to the46; 3322 two-dimensional
grids using the nearest grid point interpolation kernel. We
then Fourier transform the matter and galaxy density fields
and take a product of the two, Re½δ̃2Dg ðk⊥Þδ̃2Dm ð−k⊥Þ�, where
k⊥ is the two-dimensional wave vector. We perform the
inverse 2D Fourier transform to obtain

ξ2DgmðRÞ ¼
Z

d2k⊥
ð2πÞ2 e

ik⊥·RRe½δ̃2Dg ðk⊥Þδ̃2Dm ð−k⊥Þ�; ð31Þ

where R is the two-dimensional separation vector
perpendicular to the projection direction. We perform the
azimuthal angle average in an annulus of each radial bin and
then obtain the two-dimensional galaxy-matter cross corre-
lation function, ξ2DgmðRÞ.
We compute the projected surface mass density profile

around galaxies from ξ2DgmðRÞ, according to Eq. (3), as

ΣgmðRÞ ≃ ρ̄m0ξ
2D
gmðRÞ: ð32Þ

The above surface mass density differs from Eq. (3) by a
constant additive term (spatially homogeneous term), as
this is okay because such a constant term is irrelevant to the
weak lensing shear or the excess surface mass density
profile. To achieve higher spatial resolution, we measure
ΣgmðRÞ using the folding method of the FFT box [75].
Following the method described in Refs. [76,77], we per-
form multiple measurements in which we fold the box
different times (we denote the folding times as nfold). We
have six measurements of nfold ¼ f0; 1; 2; 3; 4; 5g for
each catalog, while the grid number 46; 3322 is kept
unchanged at each FFT step. It means that we have
measurements that have finer resolutions by up to a factor
of 25 ¼ 32. We then combine the ΣgmðRÞ signals obtained
by stitching the six measurements between the five boun-
dary scales f0.125; 0.25; 0.5; 0.1; 0.2g h−1Mpc. Then we
compute the excess surface mass density profile, ΔΣðRÞ
from ΣðRÞ, according to Eq. (1). In each measurement, to
achieve better statistics we perform three measurements
using the projection along x-, y-, or z-axis directions, and
use the average of the three results as the measured signal of
ΔΣ for the realization.
For wp, we first assign the mock galaxies to the 10243

three-dimensional FFT grids using the nearest grid point
kernel. We then Fourier transform the number density field,
and take its square amplitudes jδ̃gðkÞj2 for each wave
vector k. By performing the inverse Fourier transform, we
obtain the estimate of the correlation function at each
spatial separation r ¼ ðR; πÞ,

ξggðrÞ ¼
Z

d3k
ð2πÞ3 e

ik·rjδ̃gðkÞj2: ð33Þ

Then we estimate the projected correlation function, wpðRÞ,
from the azimuthal angle average in the circular annulus of
each radial bin R and the line-of-sight projection over
π ¼ ½0; πmax�, according to Eq. (7).
We use 19 and 22 independent realizations that are built

using the different seeds of the initial conditions forΔΣ and
wp, respectively [41,78]. We then measure the average
mock signals of ΔΣ and wp for each of the galaxy samples
(Table II). These correspond to 19 and 22 ðh−1GpcÞ3
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volumes, respectively, that are larger than the volume of
any of the three redshift slices in Table II by at least a factor
of 11. Recalling that the overlapping area of HSC-Y1 data
and SDSS is only about 140 sq. deg., compared to the
SDSS area coverage of 8300 sq. deg., the effective volume
for the ΔΣmeasurement of each sample is smaller than that
of wp by a factor of 60. Hence the simulation volume used
for the mock signal of ΔΣ is larger than that of the ΔΣ
measurement by at least a factor of 650. Thus by using the
mock signals for the larger volumes in cosmology chal-
lenges, we can minimize any unwanted bias in estimated
parameters due to sample variance. In this way we can
evaluate the performance of each method, i.e., the ability to
recover the true cosmological parameters, without being
affected by the sample variance.
The data points in each panel of Fig. 4 show the mock

signals of ΔΣ and wp for each of the LOWZ, CMASS1, and
CMASS2 samples (see Table II) for the Planck cosmology.
The error bars in each bin are the statistical errors expected
for the SDSS and HSC-Y1 surveys as wewill explain below.
The figure shows that a sufficient number of the realizations
of the mock catalogs lead to well-converged, smooth signals
in each bin, and the statistical scatters appear to be negligible.
This allows us to robustly evaluate the performance of the
method for cosmological parameter estimation.

C. Light cone mock catalogs of HSC- and SDSS-like
galaxies for estimating the covariance

As we described in Sec. II A, ΔΣ is independent of
source redshift, and depends only on the galaxy-matter

cross correlation at lens redshift. Based on this fact, we
construct the best available, accurate mock signal for ΔΣ
from the mock catalogs of SDSS-like galaxies as we
described above. However, the lensing effects on the same
population of source galaxies by foreground structures at
different redshifts, from the redshifts of SDSS galaxies,
cosmic shear causes statistical scatters in the observed
galaxy ellipticities. We need to properly take into account
these effects. In this subsection, we describe the mock
catalogs of HSC- and SDSS-like galaxies that are built in
the light cone simulations, and then use the mock catalogs
to model the covariance matrices of ΔΣ and wp.
To construct the mock catalogs in a light cone volume,

we use the full-sky, light cone simulations generated in
Takahashi et al. [79]. The light cone simulation consists of
multiple spherical shells with an observer being at the
center of the sphere, and each spherical shell contains the
lensing fields and the halo distribution, where the lensing
fields at the representative redshift of the shell can be used
to simulate the lensing distortion effect on a galaxy at the
position by foreground structure if the galaxy is located
within the shell. The halo distribution in each shell reflects
a realization of halos in large-scale structure at the redshift
corresponding to the radius of the shell (the distance from
an observer to the shell). In this paper we use 108
realizations of the full-sky simulations.
As described in Appendix B in detail, we populate

HSC- and SDSS-like galaxies in the full-sky, light cone
simulation. For the HSC galaxies, we use the actual HSC
shape catalog [43], used for the HSC-Y1 weak lensing

FIG. 4. Mock signals of ΔΣ and wp for the SDSS LOWZ, CMASS1, and CMASS2 galaxies at the representative redshifts, z ¼ 0.251,
0.484, and 0.617, respectively. The signals are computed from the mock catalogs of the galaxies that are constructed by applying the
HOD model (Table II) to halo catalogs in high-resolution N-body simulations (see text for details). The error bars in each bin denote the
statistical errors expected from the SDSS DR11 data (8300 sq. deg.) and the HSC-Y1 data (140 sq. deg.), which are the square root of
the diagonal components of each covariance matrix that is estimated from the mock catalogs of HSC and SDSS galaxies in the light cone
simulations. Here we multiply R by ΔΣðRÞ and wpðRÞ for illustrative purpose.
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measurements [4], and populate each galaxy into the
corresponding shell in the light cone simulation according
to its angular position (RA and dec) and photometric
redshift (best-fit photo-z). Then we simulate the lensing
signal on each galaxy using the lensing information of
light cone simulation. Thus the mock HSC catalog includes
properties of actual data (the angular positions and the dis-
tributions of ellipticities and photo-zs) as well as the
geometry and masks of the HSC footprints. Since the
HSC-Y1 data still has a small area coverage (140 sq. deg.),
we identify 21 footprints of the HSC-Y1 data in each of the
all-sky, light-cone simulation realizations [80,81]. We thus
generate 2268 mock catalogs of the HSC data in total.
For the SDSS galaxies, we populate galaxies into halos

in the light cone simulation based on the HOD method.
We built mock catalogs for each of the three SDSS-like
galaxies (LOWZ, CMASS1, and CMASS2) in their cor-
responding redshift ranges in the assigned survey regions of
the SDSS DR11 survey footprints. Given the large survey
area of SDSS data (about 8000 sq. deg.), we identify only
one SDSS region in each realization of the light cone
simulations, and thus build 108 mock catalogs for each of
the SDSS galaxies in total.
Each of our mock catalog realizations in the light-cone

volume not only contains the angular and redshift (radial)
distributions of HSC and SDSS galaxies, but also contains
the lensing effects on each source galaxy by the SDSS
galaxies and other foreground structures at different red-
shifts from the SDSS redshift. We then perform measure-
ments of ΔΣ and wp from each realization using the same
analysis pipelines that are used in the actual measurements
of the real HSC and SDSS data. Finally we estimate the
covariance for the galaxy-galaxy weak lensing ΔΣ and
galaxy-galaxy clustering wp for each of the SDSS LOWZ,
CMASS1, and CMASS2 galaxies, from the scatters among
the 2268 measurements. The covariance matrices of ΔΣ for
the different galaxy samples at different lens redshifts have
cross-covariance components because the measurements
use the same source galaxies and are affected by weak
lensing due to the same foreground structure (cosmic shear)
in each light cone simulation realization. Our covariance
properly takes into account the cross-covariance.
The error bars in each bin in Fig. 4 are estimated from the

covariance matrices we described above. The figure shows
that the HSC-Y1 data allows for a significant detection of
the lensing signals at each bin. Table III gives the
cumulative signal-to-noise (S/N) ratios expected for mea-
surements of ΔΣ and wp from the HSC-Y1 and SDSS
data and the joint measurements. Here, as for our default
choice of the range of separation scales, we adopt 3 ≤
R=½h−1 Mpc� ≤ 30 for ΔΣ and 2 ≤ R=½h−1Mpc� ≤ 30 for
wp, respectively. The table gives the cumulative S/N ratio
integrated over the separation ranges properly taking into
account the covariance and the cross-covariance matrices. It
is clear that wp has a grater S/N ratio value than ΔΣ does by

a factor of 4, because of the much wider area coverage of
SDSS data compared to the HSC-Y1 data by a factor of 60.
Nevertheless, we will show later that combining ΔΣ and wp

is crucial to lift parameter degeneracies and obtain useful
cosmological constraints.
In the following, we do not include the cosmology

dependence of the covariance matrix, motivated by the
discussion in [82]. Hence the differences in the perfor-
mance of different setups/methods that we will show below
are purely from the differences in the model or setups.

IV. METHODOLOGY FOR COSMOLOGY
CHALLENGES

The purpose of this paper is to study whether the halo
model based method can recover the true cosmological
parameters from a hypothetical parameter inference,
i.e., comparing the theoretical templates with the mock
signals, taking into account the error covariance in the
likelihood analysis. Here we describe our methodology to
perform cosmology challenges. We employ different setups
of the analysis method to quantify the impact of various
effects on cosmological parameter estimation, and describe
each setup and its purpose.

A. Parameter estimation method

We assume that the likelihood of the mock signals given
the model parameters follows a multivariate Gaussian
distribution:

lnLðdjθÞ ¼−
1

2

X
i;j

½di− tiðθÞ�ðC−1Þij½dj− tjðθÞ�þ const:;

ð34Þ

where d is the mock data vector, t is the model vector
computed from the theoretical template as a function of the
model parameters (θ), C−1 is the inverse of the covariance

TABLE III. The cumulative signal-to-noise (S=N) ratios of ΔΣ,
wp and the joint measurements for the LOWZ, CMASS1, and
CMASS2 samples, which are estimated using the mock signals
and the covariance matrices. Here we define the “cumulative”
S=N over the ranges of R=½h−1 Mpc� ¼ ½3; 30� and [2, 30] for ΔΣ
and wp, respectively, which are our baseline choices of the radial
range (see text for details). For the “total” S=N ofΔΣwe take into
account the cross-covariances between ΔΣs of different galaxy
samples. We assume that the wp signals for the three samples are
independent from each other, and ignore the cross-covariances
between ΔΣ and wp.

LOWZ CMASS1 CMASS2 Total

ΔΣ 8.64 8.86 8.48 14.7
wp 32.9 32.1 30.4 54.7
joint (ΔΣþ wp) 34.0 33.3 31.6 56.6
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matrix, and the summation runs over the indices, i, j,
correspond to the dimension of the data vector. In our
baseline analysis we use, as the data vector, ΔΣðRÞ
given in nine radial bins, logarithmically evenly spaced
over 3 ≤ R=½h−1Mpc� ≤ 30, and wpðRÞ in 16 radial bins
over 2 ≤ R=½h−1Mpc� ≤ 30, respectively, for each galaxy
sample [83]. Thus we use 75 data points in total
(3 × ð9þ 16Þ ¼ 75). Note that, for our default analysis,
we do not include the abundance information of galaxies
(n̄g) in parameter inference. Even if we employ a weak
prior on the abundance (e.g., 50% of the number density),
the following results remain almost unchanged, but
will come back to a question of whether a mild use of
the abundance information can improve the parameter
estimation.
For the model parameters (θ) in Eq. (34), we consider the

two cosmological parameters, Ωde and lnð1010AsÞ, and 5
HOD parameters for each of the LOWZ, CMASS1, and
CMASS2 samples (Table II). Hence we have 17 parameters
(2þ 3 × 5 ¼ 17) in total. Since the clustering observables
are primarily sensitive to the amplitude parameters Ωde and
As for the flat ΛCDM cosmology, we consider only the two
parameters, and fix other cosmological parameters to their
values of the Planck cosmology in parameter inference.
Hence the degrees of freedom for the fiducial analysis is
Ndof ¼ Nd − Np ¼ 75 − 17 ¼ 58. If we include further
nuisance parameters to model the photo-z errors and/or
the shear multiplicative bias, we include up to 19 param-
eters (i.e., 1 or 2 additional parameters). For a given set of
the model parameters, we can compute the model vector t
at each radial bin.
We then perform parameter estimation based on the

Bayesian inference:

PðθjdÞ ∝ LðdjθÞΠðθÞ; ð35Þ
where PðθjdÞ is the posterior distribution of θ and ΠðθÞ is
the prior distribution. Throughout this paper we employ a
flat prior on each model parameter as given in Table IV. We
checked that the priors of the cosmological parameters are
wide enough, and the following results for the posterior
distribution are not affected by the prior range.
We draw samples from the posterior distribution of

parameters, given the mock signals, with the help of
nested sampling as implemented in the publicly available
package MULTINEST (Multiodal nested sampler) [84]
together with the package MONTE PYTHON [85] to sample
the posterior distribution of the parameters. In the fol-
lowing we mainly focus on the posterior distributions of
Ωm, σ8 and S8 ≡ σ8ðΩm=0.3Þ0.5. These are derived param-
eters from the cosmological parameters we use [Ωde,
lnð1010AsÞ], and we employ the definition of S8 following
Hikage et al. [4] so that the forecast of S8 estimation from
our method is compared to the previous results.
In this paper we adopt the mode of the marginalized 1D

or 2D posterior distribution to infer the central value(s) of

the parameter(s), and the highest density interval of the
marginalized posterior to infer the credible interval of the
parameter(s). We often report the best-fit parameters that
correspond to a model at the maximum likelihood in a
multidimensional parameter space. As stressed in [26]
(see also [86]), a point estimate of parameter is not
useful, because it is sensitive to the degree of degeneracies
between parameters. For example, even if we consider an
ideal case that the input signals are from the model
predictions, the central value of a parameter, estimated
from the mode of the marginalized posterior distribution,
does not necessarily recover the true value as a result of
marginalization of the parameters, if the target parameter is
highly degenerate with other parameters. Rather a more
useful quantity is the credible interval. Hence in the
following we will mainly focus on the credible interval,
and evaluate each method/setup to study whether the true
value of the cosmological parameters are recovered to
within the 68% credible interval. We are not interested in an
accuracy of recovery of the HOD parameters, and we will
not pay much attention to the HOD parameters.

B. Validation strategy against analysis setups:
Scale cuts, parameter degeneracies,
observational effects, and RSD

An advantage of the emulator based halo model is that
DARK EMULATOR gives an accurate prediction of the halo
correlation functions (ξhm and ξhh) including all the non-
linear effects down to small scales (nonlinear clustering,
nonlinear bias, and the halo exclusion effect) and their
dependences on cosmological models within wCDM
framework. To evaluate the performance of the emulator

TABLE IV. Prior range of each model parameter. In cosmology
challenges of parameter estimation, we consider two cosmologi-
cal parameters, Ωde, and lnð1010AsÞ, and consider 5 HOD
parameters for each of the LOWZ, CMASS1, and CMASS2
samples. Hence we have 17 model parameters in total for the
baseline method. For an extended method, we also include the
nuisance parameters to model the effects of photo-z errors (ΔzphÞ
and the multiplicative shear bias (mγ) for which we employ the
Gaussian prior with width given in the number in the table.

Parameters Prior range [min,max]

Ωde [0.54752, 0.82128]
lnð1010AsÞ [2.4752, 3.7128]

logMmin [12.0,14.5]
σ2logM [0.01,1.0]

logM1 [12.0,16.0]
κ [0.01,3.0]
α [0.5,3.0]

Δzph Gauss: 0.04 or 0.1
mγ Gauss: 0.01
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based method, we study various setups as summarized in
Table V.
One question we want to address in this paper is; which

scale cuts for ΔΣ and wp are adequate in parameter
estimation? Since ΔΣ and wp have higher signal-to-noise
ratios at smaller scales, we want to include the information
of ΔΣ and wp down to smaller scales in the nonlinear
1-halo term regime. However, such smaller scales are more
affected by nonlinear physics, especially galaxy physics, so
it would be difficult to accurately model the clustering
signals on very small scales. Including such small-scale
information might cause a bias in the estimated cosmo-
logical parameters. We should avoid such a failure situation
as much as possible. To estimate appropriate scale cuts,
we will study the performance of the method adopting
different scale cuts of (0.5,0.75), (1,1.5), (2,3), or (8,12)
(in units of h−1 Mpc) for wp and ΔΣ, respectively, where
(2,3) is our fiducial choice unless explicitly stated. For all
the cases we adopt Rmax ¼ 30 h−1Mpc for the maximum
scale up to which we include the information of ΔΣ and wp

for parameter estimation. Thus we do not include the
BAO information for all the analyses. To study the impact
of the maximum scale, we also study the setup for
Rmax ¼ 70 h−1Mpc, fixing other parameters to those in
the fiducial setups.
For the setups labeled as “ΔΣ alone” and “wp alone,” we

study the parameter constraints if using either of ΔΣ or wp

alone. Comparing this result with the baseline method
manifests complementarity of ΔΣ and wp in the cosmo-
logical parameter estimation.
To study the impact of the observational effects on

parameter estimation, we include the geometrical depend-
ence ofΩm and introduce additional parameter to model the

photo-z error and/or multiplicative shear bias, as discussed
in Secs. II D 1–II D 3.
For the setup labeled as “RSD,” we study the impact of

RSD effect. In the theoretical template we model the RSD
effect using the linear RSD model. Then we compare the
theoretical template with the mock catalog including the
full RSD effects, and then assess whether the theoretical
model is still applicable to a realistic setup, without any
significant bias or degradation in the estimated parameter.
Finally, we show a forecast of how the anticipated

full HSC dataset covering 1400 sq. deg., about a factor
of 10 larger area than the HSC-Y1 data, can improve the
cosmological constraints. To do this forecast, we simply
scales the covariance of ΔΣ by the area factor between the
HSC-Y1 and full datasets.

C. Validation strategy against uncertainties
in galaxy-halo connection

The HOD model is an empirical prescription of the
galaxy-halo connection. Our expectation is that we could
recover the underlying cosmological parameters as long as
a sufficient number of galaxy-halo connection parameters
are introduced and then the effects are marginalized over
when estimating cosmological parameters. To assess the
“robustness” of our emulator based halo model against
uncertainties in galaxy-halo connection, we use a wide
variety of mock galaxy catalogs to study whether the
baseline method can recover the true cosmological param-
eters for the different catalogs, as summarized in Table VI.
Figure 5 compares the mock signals of ΔΣ and wp for

different mocks relative to those of the fiducial mock.
Here all the mocks, except for the “cent-incomp.” and
“FOF-halo” mocks, are built using the same HOD as that
of the fiducial mocks, but using different ways of

TABLE V. A summary of the analysis setups.

Setup Scale cut Sample parameters Note

½h−1 Mpc�
Baseline (2,3) ðΩm; σ8Þ þ HOD (17 paras.) Fiducial mock (Rmax ¼ 30 h−1 Mpc)

+RSD (2,3) � � � Include RSD effect in the fiducial mock

Scale cuts (0.5,0.75) � � � � � �
(1,1.5) � � � � � �
(8,12) � � � � � �

Rmax ¼ 70 h−1 Mpc (2,3) � � � Use up to Rmax ¼ 70 h−1 Mpc

ΔΣ alone (2,3) � � � � � �
wp alone (2,3) � � � � � �
Ωm-goem. (2,3) � � � Via (Σcr; R)
Photo-z error (Δzph) (2,3) þΔzph Only in model
Shear-m (Δmγ) (2,3) þΔmγ Only in model
Ωm;geom þ Δzph þ Δmγ (2,3) þðΩm;geom;Δzph;ΔmγÞ Only in model

Full HSC (2,3) – Use 0.1 × CovΔΣ mimicking the full HSC data
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populating galaxies into individual halos, as described
below. The variety in the target observables for a fixed
HOD is possible, because the HOD only specifies the
average number of galaxies per halo in each mass bin, but

there are many different ways to populate galaxies into
halos leading to different spatial distributions (clustering
properties) of galaxies, even for the same HOD. The
different mock catalogs lead to modifications in the

TABLE VI. A summary of the mock catalogs we use in this paper to assess “robustness” of the baseline method against variations in
galaxy-halo connection. All the mock catalogs, except for “cent-imcomp.” and “FOF-halo” catalogs, have the same HOD in
average sense, but leads to modifications inΔΣ and wp in their amplitudes and scale-dependences. The column “satellite gals.” denotes a
model of the spatial distribution of satellite galaxies in the host halo. In the columns of ΔΣ and wp, “✓” or “–” denote whether they are
modified from the fiducial mock or not, respectively.

Model HOD Satellite gals. ΔΣ wp Description

fiducial fid. NFW – – Fiducial model
RSD fid. NFW – ✓ Include the RSD effect in w

sat-mod fid. NFW ✓ ✓ Populate satellites irrespectively of centrals
sat-DM fid. DM part. ✓ ✓ Populate satellites according to N-body particles
sat-sub fid. Subhalos ✓ ✓ Populate satellites according to subhalos
off-cent1 fid. NFW ✓ ✓ All centrals off-centered, with Gaussian profile
off-cent2 fid. NFW ✓ ✓ A fraction (0.34) of “off-centered” centrals, assuming Gaussian profile
off-cent3 fid. NFW ✓ ✓ Similar to “off-cent1”, but with NFW profile
off-cent4 fid. NFW ✓ ✓ Similar to “off-cent2”, but with NFW profile
cent-incomp. hNci mod. NFW ✓ ✓ Include an “incomplete” selection of centrals
FOF-halo mod. FOF halos ✓ ✓ Use FOF halos to populate galaxies
assembly-b-ext fid. NFW ✓ ✓ Populate galaxies according to concentrations of host halos
assembly-b fid. NFW ✓ ✓ Similar to “assembly-b-ext”, but introduce scatters
baryon fid. NFW ✓ – Mimic the baryonic effect of ILLUSTRIS on the halo mass profile

FIG. 5. The mock signals of ΔΣ and wp relative to those for the fiducial mock, for each of variants of the mock catalogs in
Table VI. The error bars are the same as Fig. 2.
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amplitudes and scale-dependences of ΔΣ and wp in a
complex way, compared to the fiducial mock. One of
the most important systematic effects is the assembly
bias effect, and we also use the mock catalogs, labeled
as “assembly-b-ext” and “assembly-b,” to test the
performance of our method against the assembly bias
effect.
In the following we describe details of each mock.

Readers, who are interested in the results, can skip this
section and directly go to Sec. V.

1. Satellite galaxies

Even if the HOD model is fixed, there are several ways
of populating satellites in halos in each simulation reali-
zation. To study the impact of variations in the distribution
of satellite galaxies, we construct several mocks, for the
same HOD as that of the fiducial mock.
The “sat-mod” mock is a slight modification from the

fiducial mock. In this mock we populate satellite
galaxies in halos irrespective of whether each halo already
hosts a central galaxy. In this mock there are halos which
host only satellite galaxy(ies) inside, without a central
galaxy. Here we assume that the radial distribution of
satellite galaxies follows the NFW profile as in the
fiducial mock.
For the “sat-DM” mock, we populate satellite galaxy

(ies) in each host halo by randomly assigning each satellite
to dark matter particles in the halo, in contrast to the NFW
profile.
For the “sat-subhalo” mock, we populate satellite

galaxy(ies) in each host halo by randomly assigning each
satellite to subhalo(s) in the host halo, which are taken from
the ROCKSTAR output.

2. Off-centering effects of “central” galaxies

For the fiducial mocks, we assume that “central”
galaxies are located at the center (the highest mass density)
of each host halo. However, a central galaxy in a host halo
can be “off-centered” as a result of merger or accretion in a
hierarchical structure formation [58,59]. To mimic this
possible effect, we generate mock catalogs including the
off-centering effects of central galaxy in each halo. Note
here that we mean, by “central” galaxies, galaxies that are
populated into halos according to the central HOD, and the
central galaxies can be off-centered from the true halo
center. More physically speaking, a galaxy which resides in
the most massive subhalo can be considered as a central
galaxy, but the galaxy can be off-centered due to the
physical effects we discussed above.
We generate four kinds of mock catalogs including the

off-centering effects, following the method in Kobayashi
et al. [51] (see also [21]). The off-cent1 mock is
designed to include the maximum possible amount of
off-centering effect, where we assume that all central
galaxies are off-centered from the true halo center of each

host halo. We assume that the average radial profile of
off-centered galaxies with respect to the halo center
follows a Gaussian profile with width Roff ¼ 2.2, i.e.,
given by p̃offðkÞ ∝ exp½−k2ðRoffrsÞ2=2� for the radial
profile in Fourier space, where Roff is a parameter to
characterize the typical off-centering radius relative to the
scale radius (rs) of the NFW profile. When we populate a
central galaxy in each halo, we randomly draw an off-
centering radius from the Gaussian profile, and then place
the galaxy into the spherical shell of the off-centering
radius in the host halo (with randomly choosing the
angular position for the azimuthal angles). Then we
populate satellite galaxies in the same way as that for
the fiducial mock.
For the “off-cent2” mock, we assume that a fraction

of central galaxies are off-centered. Following the impli-
cation found in More et al. [25,58] for the SDSS galaxies,
we assume qoff ¼ 0.34 of the central galaxies are off-
centered, while the remaining galaxies (1 − qoff ¼ 0.66)
are at the halo center. We then populate satellite galaxies in
the same way as that for the fiducial mock.
The “off-cent3” mock is very similar to the off-

cent1 mock, but we populate the off-centered “central”
galaxies into halos assuming that the off-centered galaxies
follow the NFW profile of the host halo, similarly to
satellite galaxies.
The “off-cent4” mock is very similar to the off-

cent2 mock, but we populate the off-centered galaxies
assuming the NFW profile as in off-cent3 mock.

3. FOF halos

Dark matter halos are neither uniquely defined objects
nor have a clear boundary with the surrounding structure. In
this paper we use those identified by the ROCKSTAR

algorithm with the spherical-oversensity (SO) masses in
each simulation realizations as our default choice (see
Sec. III A). For the “FOF halo” mock, we use halos that
are identified by the friends-of-friends (FOF) method with
linking length bFOF ¼ 0.2, in simulation realizations. The
FOF halos do not necessarily have a one-to-one corre-
spondence to the fiducial halos. The mass of each FOF halo
is different from the SO mass even if the corresponding
halos are identified, because their boundaries are different.
Figure 6 compares the mass function of halos measured
using the SO halo mass definition or the FOF definition
from the same N-body simulation realization, at three
redshifts corresponding to those for LOWZ, CMASS1,
and CMASS2, respectively. The figure shows a sizable
difference in the halo mass functions over the range of mass
scales we consider.
To generate the “FOF-halo” mock we treat the FOF

halo mass of individual halos, as the mass argument for the
mean HOD functions, and then populate galaxies in FOF
halos using the same HOD method as that for the
fiducial mock.
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4. Assembly bias effect

The “assembly bias” effect refers to the fact that the
clustering amplitudes of galaxies or halos at large scales
depends on a secondary parameter other than the halo mass,
especially depending on the assembly history of galaxies/
halos [87–89]. The assembly bias is one of the most
important physical effects causing a violation of the simple
halo model picture, which assumes that clustering proper-
ties of halos are determined solely by halo mass. To study
whether or not cosmology inference based on our method is
robust against the assembly bias effect, we use the mocks
generated following the method in Kobayashi et al. [44].
This is one of the most important tests we address in
this paper.
The “assembly-b-ext” mock is intended to study

the worst case scenario for the assembly bias effect. To
make this mock, we first, for each halo, calculate the
fraction of mass enclosed within a sphere of 50% of the
halo radius R200 to the whole halo mass M200. We denote
this inner mass fraction as fin. We use this quantity as a
proxy of the halo concentration, i.e., the higher fin means
the higher concentration. Then we make a ranked list of
halos in which we sort the halo by ascending order of fin in
each narrow bin of halo masses. We populate central
galaxies, according to the central HOD, into halos from
the top of the list (from the lowest-concentration halo) in
each mass bin. We then populate satellite galaxies in halos
that already host central galaxies using the satellite HOD.
For the mock generated in this way, we can have a
maximum effect of the assembly bias in the large-scale
clustering amplitudes for all the three galaxy samples.

As can be found from Fig. 5, wpðRÞ has larger amplitudes at
large separations, by up to a factor of 1.6 than that of wp in
the fiducial mock, which is quite substantial.
For the mock assembly-b, we introduce a scatter to

fin of each halo:

log10 fscatterin ¼ log10 fin þ ϵ: ð36Þ

We assign a random scatter, ϵ, to each halo drawn from a
zero-mean Gaussian distribution with σ, where σ is a
parameter to control the amount of the scatter. We adopt
σ ¼ 0.1 to generate the assembly-b mock for all the
three galaxy samples, which still leads to a significant
boost in the clustering amplitudes in wp by up to a factor of
1.3 (therefore about halved strength compared to the
assembly-b-ext mock) than that of wp in the fidu-
cial mock. This might be more realistic for host halos of
the SDSS galaxies (∼1013h−1 M⊙), although the assembly
bias effect has not been detected at a high significance from
the real data. Note that the mean HOD is not modified from
the fiducial mocks with these procedures.

5. Baryonic effect

The baryonic effects inherent in galaxy formation/evo-
lution, which we are missing in our N-body simulations,
are another important physical systematic effect, and we
need to quantify their impact on the parameter inference in
our cosmology challenges. Although the baryonic effects
are still difficult to accurately model from the first prin-
ciples, one should keep in mind some conservation proper-
ties in the distribution of galaxies. First, massive galaxies
like the SDSS LOWZ/CMASS galaxies are likely to form
at the same peaks of primordial density fluctuations even in
the presence of baryonic physics. Hence the distribution of
massive galaxies relative to the total matter distribution,
i.e., the bias function, is not largely changed by baryonic
physics [19,90]. On the other hand, the baryonic physics
causes a redistribution of matter around each galaxy, e.g.,
due to various effects such as dissipative contraction and
supernova/AGN feedbacks. For this reason, the radial
profile of matter distribution around a galaxy would likely
be modified.
We follow the method in Schneider and Teyssier [48]

(see also [49]) to include baryonic effects to the mock
signals. The notable feature of this model is that the model
explicitly imposes the mass conservation around halos, and
models the baryonic effects as a redistribution of the
surrounding matter around each halo (more exactly the
halo profile). We tuned the model parameters so that
the model prediction reproduces the baryonic effect on
the lensing profile, ΔΣ, in the original ILLUSTRIS hydro-
simulation [18] that implemented too large baryonic effect
than implied by observations, as explicitly demonstrated in
Fig. 7. Hence the baryonmocks are considered as a worst
case of the baryonic effect on the weak lensing profile.

FIG. 6. The ratio of the halo mass function of FOF halos to that
of SO halos in each mass bin. The data points show the results at
three redshifts z ¼ 0.251, 0.484, and 0.617, corresponding to the
representative redshifts of LOWZ, CMASS1, and CMASS2,
respectively. The data point in each bin is the mean of the ratios
among 19 realizations of 1ðh−1 GpcÞ-size box simulations, and
the error bar is the error on the mean among 19 realizations,
which is computed from the scatters among 19 realizations,
divided by

ffiffiffiffiffi
19

p
.
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For wp, we use the mock signal for the fiducial mocks;
that is, we do not include a possible effect of the baryonic
physics on the distribution of galaxies in the host halo.

D. Cross-correlation coefficients in the mocks

All the mock catalogs we use in this paper have a
property that the cross-correlation coefficient, rccðrÞ≡
ξgm=½ξggξmm�1=2 ≃ 1 at the limit of large scales, greater
than the size of massive halos, say at ≳10 h−1Mpc, as
shown in Fig. 8. This property is expected if galaxy physics
is confined to local, small scales, and because the clustering
amplitudes at larger scales than the scale of galaxy physics
are governed by gravity alone (and properties of primordial

fluctuations) and then behave as a linear biasing relation to
the underlying matter distribution at the large scales.
Encouragingly this is confirmed recently by using the
hydrodynamical simulation ILLUSTRISTNG in Ref. [62],
where various galaxy samples, which are selected based
on host halos and the various environment parameters,
display rcc ≃ 1 at r≳ 10 h−1 Mpc. The DARK EMULATOR

outputs also predict r≡ ξhm=½ξhhξmm�1=2 ≃ 1 for halo cor-
relation functions at scales greater than the size of halos.
However, even for the scales where rcc ≃ 1, this does not
mean that the linear theory serves as an accurate theoretical
template [26]. It is important to include the nonlinear
clustering, the nonlinear halo bias and the halo exclusion
effect in the theoretical template.
We also note that rcc can be greater than unity; rcc ≥ 1,

which occurs in the 1-halo term regime where the sub-
Poisson nature hNgðNg − 1Þi ≠ hNgi2 becomes important
due to a finite number statistics of galaxies in the same host
halo [25,34,37].

V. RESULTS

In this section we show the main results of this paper,
which are assessment and validation of the emulator based
halo model method for cosmology inference. Here we
mean by “validation” whether the method can recover the
true cosmological parameters, Ωm0; σ8, and S8, to within
68% credible intervals, after marginalization over the HOD
parameters (galaxy-halo connection parameters). Note that
we will not focus on the accuracy of recovering the HOD
parameters.

A. Validation of the baseline method, complementarity
of ΔΣ and wp, and tests with different scale cuts

First we perform a sanity check; we study whether our
baseline method (see Table V) can recover the true
cosmological parameters when comparing the theoretical
templates to the mock signals measured from the fidu-
cial mock that is based on the same HOD model used in

FIG. 7. We use the method in Schneider and Teyssier [48] to
model the baryonic effect on the galaxy-galaxy weak lensing
profile, ΔΣ, where the mass conservation around halos hosting
galaxies is explicitly imposed. We tune the model parameters to
reproduce the baryonic effect that is seen in the ILLUSTRIS

hydrosimulation [18]. Shown is the ratio of ΔΣ for the matched
host halos of SDSS-like galaxies in the simulations with and
without the baryonic effect, which is taken from Fig. 12 in
Leauthaud et al. [91]. Our method nicely capture the baryonic
effect, but we note that this would be a worst case of the baryonic
effect, because the ILLUSTRIS (not ILLUSTRISTNG) employed the
too large baryonic effect (especially AGN feedback).

FIG. 8. Cross correlation coefficients, defined as rðξÞcc ðrÞ≡ ξgmðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξggðrÞξmmðrÞ

p
, for different mock catalogs of SDSS-like galaxies

we use in this paper.
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the theoretical template. Different model parameters affect
the observables in a complex way, so it is not obvious
whether the baseline method can recover the true cosmo-
logical parameters, after projecting the posterior distribu-
tion in a multidimensional parameter space onto a subspace
including the cosmological parameters. In fact, as discussed

in Refs. [26,86], the modes of the marginalized posterior
distribution of cosmological parameters could be biased
from the true values, if the parameters suffer from severe
degeneracies.
Figure 9 shows the results. Here we employ Rcut ¼ 2 and

3h−1Mpc for the scale cuts for wp and ΔΣ above which we

FIG. 9. Marginalized posterior distribution in each 2D subspace of the parameters, obtained from the projected correlation function
information alone (wp; orange-color contours), the lensing information alone (ΔΣ; blue) and the joint constraints (green), respectively.
The inner and outer contours show the 68% and 95% credible regions, respectively. We adopt the baseline setup for which we employ
Rcut ¼ 2 and 3 h−1 Mpc for the scales cuts of wp and ΔΣ, respectively. For the mock signals, we use the signals measured from the
fiducial mocks which are generated using the same HOD model as those in the theoretical templates. Here we include 17 model
parameters in the parameter inference: two cosmological parameters (Ωm and σ8) plus five HOD parameters for each of the three galaxy
samples (LOWZ, CMASS1, and CMASS2). Here we show, as an example, the results for the central HOD parameters for the CMASS1
sample at z ¼ 0.484, i.e., Mmin and σlogM. The vertical and horizontal dashed lines denote the input parameter value used in the mock
catalog.
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include the clustering and lensing information in parameter
inference (see Table V). The figure nicely shows that the
lensing and clustering information are complementary to
each other, and combining the two lifts the parameter
degeneracies. Thus Fig. 9 gives a validation of the baseline
method; the baseline method can recover the cosmological
parameters if properties of the galaxy clustering for SDSS-
like galaxies are close to the fiducial HOD model we
employed. The baseline method achieves a precision of
σðS8Þ ≃ 0.035 for the SDSS and HSC-Y1 data. In the
following we show mainly the results for the joint probes
combining the information ofΔΣ and wp. For completeness
of our discussion, in Fig. 22 we show the posterior dis-
tribution of the parameters including all the HOD param-
eters for the CMASS1-like galaxy sample.
What is the impact of HOD parameters on cosmological

parameter estimation? To answer this question, in Fig. 10
we show the results when fixing the HOD parameters to
their fiducial values. It is clear that the HOD parameters
cause significant degradations in the cosmological param-
eters; for example, the marginalized error of Ωm is enlarged
by a factor of 3 when including the HOD parameters.
However, this is a price one has to pay to obtain robust
constraints on cosmological parameters when including the
small-scale information. If one uses a more aggressive
method, e.g., by using a less flexible model of galaxy-halo
connection (such as fixing some HOD parameters), then
one could suffer from severe biases in cosmological
parameters.

Our results might also be compared to a more
conservative approach, e.g., a method using only the
clustering observables at large scales, i.e., not including
the small-scale information. In Fig. 11 we compare the
results from the halo model method, studied in this paper,
with those from the PT based method studied in Sugiyama
et al. [26]. They employed the “minimal”-bias model using
the fully nonlinear matter power spectrum and the linear
bias parameter (b1): ξgm ¼ b1ξNLmm and ξgg ¼ b21ξ

NL
mm, where

the halofit model is used to model the nonlinear ξNLmm. It was
shown that, as long as the conservative scale cuts Rcut ¼ 12

and 8 h−1Mpc for ΔΣ and wp are employed and the bias
parameter is treated as a free parameter, then the minimal
bias method passes all the validation tests against a variety
of the mock catalogs including the assembly bias mock.
Hence, the results for the minimal bias method can be con-
sidered as conservative, yet robust parameter constraints
that can be extracted from the SDSS and HSC-Y1 data. The
figure clearly shows that including the small-scale infor-
mation and the halo bias information can improve cosmo-
logical constraints compared to the conservative method.

FIG. 10. Similar to the previous figure, but shown are the
results when fixing the HOD parameters in the model templates
to their fiducial (input) values. The green contours (labeled as
“baseline”) are the same as those in Fig. 9.

FIG. 11. Similar to Fig. 9, but the figure compares the
marginalized posterior distributions obtained from the HOD
based method, studied in this paper, and the perturbation theory
(PT) inspired method in Sugiyama et al. [26]. Here we apply both
the methods to the same fiducial mock signals. For the PT
method, we model the matter-galaxy cross-correlation (ξgm) and
the galaxy autocorrelation (ξgg) by the nonlinear matter auto-
correlation multiplied by a linear bias parameter: ξgm ¼ b1ξNLmm

and ξgg ¼ b21ξ
NL
mm. We then treat b1 as a free parameter in the

parameter inference, and employ the scale cuts of Rcut ¼ 12 and
8 h−1 Mpc forΔΣ and wp, respectively, compared to Rcut ¼ 3 and
2 h−1 Mpc for the halo model based method. The green contours
are the same as those in Fig. 9.
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In particular, the halo model based method gives a factor of
2 or 3 improvement in the marginalized error of σ8 or S8,
respectively, compared to that for the minimal bias method.
Thus the halo model method has a potential to obtain the
improved cosmological constraints, if the model is flexible
enough to describe variations in galaxy clustering at small
scales down to a few Mpc, which we will test later.
In Fig. 12 we give a summary of the performance for

different setups. The second to the fourth row, lying between
the horizontal dashed lines, show the results when using the
different scale cuts, ðRΔΣ

cut ; R
wp
cutÞ ¼ ð0.5; 0.75Þ; ð1.0; 1.5Þ, or

ð8; 12Þh−1Mpc, instead of (2,3) as our fiducial choice. For
the fiducial mocks, these smaller scale cuts apparently
recover the cosmological parameters; the true value of each
parameter is within the 68% credible interval. However, a
closer look also reveals that the size of the credible interval is
not significantly improved by including the smaller infor-
mation. We also checked that, when applying the smaller
scale cuts to other mock catalogs rather than the fiducial
mocks, those lead to a larger bias in the cosmological
parameters compared to the baseline method. Hence, with
these results, we conclude that the fiducial scale cuts of
ð2; 3Þ h−1 Mpc are reasonable. On the other hand, the row
labeled as “Rmax ¼ 70 h−1Mpc” shows the results when
including the information of ΔΣ and wp up to Rmax≃
70h−1Mpc instead of our default choiceRmax¼30h−1Mpc.
Note that this maximum scale is still below the BAO scales,
andwedonot include theBAO information. It is clear that the
larger-scale information does not improve the cosmological
parameter estimation, and 30 h−1Mpc seems sufficient for
the signal-to-noise level expected for theHSC-SDSS analysis.

B. Comparison with analytic halo model

In Fig. 13, we compare the results for our baseline
method with those obtained by comparing the model
predictions of analytical halo model [92] in More et al.

FIG. 12. Summary of the estimation of each cosmological parameter, Ωm, σ8, or S8ð≡σ8Ω0.5
m Þ, for the different setups in Table V. The

blue dot in each row denotes the mode of the marginalized posterior distribution of each parameter, and the error bar denotes the 68%
credible interval, which is computed from the highest density interval of the marginalized 1D posterior distribution. The vertical red line
denotes the true value used in the mock catalog, and the shaded region denotes the 68% credible interval for the baseline setup for
comparison.

FIG. 13. Similar to Fig. 9, but the plot shows the results for the
baseline method with those obtained by using the analytic halo
model in More et al. [25]. Here we used the same scale cuts,
Rcut ¼ 2 and 3 h−1 Mpc, for wp and ΔΣ, respectively, for both
methods.
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[25] with the mock signals from the fiducial mocks.
The analytical halo model was constructed by calibrating
the standard halo model [34] with N-body simulation
results available at that time, e.g., to include the halo
exclusion effect and the nonlinear halo bias effect (see
Ref. [50] for details). For example, the analytical halo
model uses the fitting formula of halo bias developed in
Refs. [93,94], but several recent studies point out an
inaccuracy in the fitting formula, up to 5% in the bias
amplitude (see the bottom panel of Fig. 22 in Ref. [41]; see
also Refs. [95–97]). For the analytical halo model, we did
not include the off-centering effect or incompleteness effect
as in our baseline method.
The figure shows sizable differences in all the cosmo-

logical parameters between our emulator based method and
the analytical halo model. The 1D posterior distribution
shows that the analytical halo model cannot recover the true
values of σ8 and S8 to within the 68% credible interval. In
addition, the degeneracy directions in the projected two
parameter subspace are quite different. Figuring out the
cause of the difference is beyond the scope of this paper, but
here at least we would like to stress that the emulator-based
halo model displays a better performance.

C. The impacts of observational effects:
The geometrical correction, photo-z errors,

shear multiplicative bias, and RSD

As discussed in Sec. II D, various observational effects
could affect the cosmological inference from the measured
ΔΣ and wp. For the results discussed up to the preceding
subsections, we ignored these effects, and in this section we
study the impact of these effects.
The rows with labels starting from “Ωm − geom:” to

“þRSD” in Fig. 12 show the results when including each or
all of these observational effects. First let us discuss the
results for “þRSD.” For this test we use the mock catalogs
where we use the fiducial HOD to populate galaxies into
the simulation realizations and include the RSD effects due
to the peculiar velocities of individual galaxies [44,51].
Then we perform the cosmology inference by com-
paring the theoretical templates, including the linear
Kaiser effect (Sec. II D 4), with the mock signals. The
figure shows that the linear Kaiser model can properly take
into account the RSD effect for our fiducial projection
length (πmax ¼ 100 h−1Mpc), and there is no degradation
in the parameter estimation. This is similar to the result in
Sugiyama et al. [26]. Although the RSD effect itself carries
the dependence onΩm (more exactly via the growth rate), it
leads to only slight improvement in Ωm.
Now we discuss the results for “Ωm − geom:,” which

refers to the fact that a reference cosmology needs to be
assumed to measure ΔΣðRÞ and wpðRÞ from direct observ-
ables, and the assumed cosmology generally differs from
the underlying true cosmology. Exactly speaking, for a flat-
geometry ΛCDM model, we have to “remeasure” ΔΣðRÞ

and wpðRÞ every time Ωm is varied in parameter estimation.
This might be time consuming, and indeed More [64]
showed that this conversion can be safely done by a
multiplicative factor taking into account the geometrical
dependence, which we employ in this paper. Figure 12
shows that including the Ωm geometrical dependence does
not cause a bias in the cosmological parameters. However, a
closer look shows that including this dependence slightly
enlarges the credible interval. This happens as follows. If
we assume a slightly larger value of Ωm, then it leads to the
smaller amplitude in the model prediction of wp (recall that
the current constraint is mainly from the wp information).
However, when assuming such a model with increased Ωm
in the measurements, it leads to the smaller amplitudes in
the measured wp as shown in Fig. 2. Thus the dependences
of Ωm are compensated to some extent in the model and the
measurement. This is the reason that the credible interval of
Ωm is slightly degraded.
Next we discuss the impacts of photo-z errors and the

multiplicative shear bias, which are among the most
important systematic errors in the weak lensing measure-
ments. As discussed in Secs. II D 2 and II D 3, we introduce
nuisance parameters, denoted as Δzph and Δmγ , to model
these effects. To do this we employ the parameters to model
the systematic effects that could be present for the actual
HSC data. For a sample of source galaxies, we assume
that source galaxies are selected based on their photo-zs
satisfying a conservative cut that the photo-z posterior
distribution of individual galaxies satisfies

R
∞
0.75 dzpðzÞ ≥

0.99 [98,99], where the lower cutoff of the integration,
z ¼ 0.75, is well above the redshifts of CMASS galaxies
(the maximum redshift cut of CMASS galaxies is 0.7 as
shown in Table II). After using the reweighting method in
[4] to infer the intrinsic redshift distribution of source
galaxies, we compute the average of the lensing critical
surface density over the source distribution, hΣ−1

cr i, which is
used in the ΔΣ measurement for each sample of lensing
galaxies (LOWZ, CMASS1, and CMASS2). Then, by
shifting the posterior distribution of all the source galaxies
by the same amount, Δzph, we repeat the same calculation
of hΣ−1

cr i to estimate a shift in the ΔΣ signal. After
computing these quantities for multiple values of Δzph,
we include Δzph to compute the shift in ΔΣ from an
interpolation of the precomputed values of hΣ−1

cr i. In this
paper we study the impact of photo-z errors on parameter
estimation by adopting the Gaussian prior with width
σðΔzphÞ ¼ 0.04 or 0.1. Here σðzphÞ ¼ 0.04 corresponds
to the quoted errors of photo-z estimation for the source
galaxies, estimated using the same method in [4]. We also
adopt a very conservative prior of σðΔzphÞ ¼ 0.1, which is
about a factor of 2.5 larger than the quoted errors. Figure 12
shows that the cosmological parameters remain almost
unchanged by the photo-z errors. Thus, as claimed in Oguri
and Takada [21], a self-calibration of the photo-z errors
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seems to work very well, by using the single sample of
source galaxies and utilizing the dependence of lensing
efficiency on lens redshifts.
For a multiplicative shear bias, Δmγ , we employ the

Gaussian prior σΔmγ
¼ 0.01 as recommended based

on dedicated image simulations of HSC galaxies in
Mandelbaum et al. [43,100]. Figure 12 shows that the
multiplicative shear bias does not either affect the cos-
mological parameters. Thus, the method of Oguri and
Takada [21] allows us to self-calibrate both the photo-z
errors and the multiplicative bias errors. The row denoted as
“Ωm þ Δzph þ Δmγ” shows the results including all these
three effects. The results are not so different from the
baseline method ignoring these effects. Hence we conclude
that these observational effects are not a severe source of
systematic errors causing a sizable bias in the cosmological
parameters.
When including these observational effects, the baseline

method can achieve a precision of σðS8Þ ≃ 0.042.

D. Tests and validations against uncertainties
in galaxy-halo connection

In this section, to assess the performance of the halo
model method against uncertainties in the galaxy-halo
connection, we perform the parameter inference against
various mock catalogs (Table VI). Note that we here

employ the fiducial HOD model (five parameters model),
which does not include the off-centering effect, the incom-
pleteness effect, the baryonic effect, nor the assembly bias
effect. Here we address whether the fiducial halo model can
recover the true cosmological parameters to within the
credible intervals after marginalizing over the HOD param-
eters. Even if we use a weak prior on the number density of
galaxies (the abundance), e.g., 50% or 5% of the number
density, the following results remain almost unchanged.
Figure 14 gives a summary of the results. The figure

shows that, except for the assembly bias mocks (and the
extreme off-centering mock, off-cent1, for Ωm0 and
σ8), the halo model method with the baseline setup recovers
the input cosmological parameters to within the 68%
credible interval. We should also note that S8 is better
recovered compared to Ωm0 or σ8. This is an encouraging
result, because S8 is close to the primary parameter
combination that determines the amplitudes of wp and
ΔΣ. We below discuss the results for some variants of the
mocks in more detail.
Figures 15 and 16 show the marginalized distributions

of the cosmological parameters for the off-cent,
FOF-halo, and cent-incomp. mocks (see Table VI).
For most cases except for the off-cent1mock, where all
the central galaxies are off-centered, the halo model method
recovers the true cosmological parameters within 68%
credible interval. As shown in Fig. 5, the off-cent1

FIG. 14. A summary of the performance of the baseline method against different mock catalogs. The circle shows the mode of the
marginalized posterior distribution of each cosmological parameter, and the error bar denotes the 68% credible interval. The vertical
solid line denotes the true value of each parameter. The shaded region denotes the 68% credible interval for the fiducial mock, for
comparison. The columns labeled as “assembly-b: (8,12)” and “assembly-b-ext: (8,12)” show the results when the larger scale
cuts of (8,12) h−1 Mpc are employed for wp and ΔΣ.
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mock gives smaller amplitudes in ΔΣ at scales around
the scale cut (Rcut ¼ 3 h−1Mpc), but does not change
the wp amplitude at scales greater than the scale cut
(R ¼ 2 h−1Mpc). The smaller lensing amplitude leads
to an underestimation in the average mass of host halos.

Since smaller-mass halos give a smaller bias amplitude for
a fixed cosmology, this would lead to a lower σ8 to
reproduce the amplitude of wp in the mock signal (see
Fig. 2). This explains a negative bias in σ8 for the off-
cent1 mock. We confirmed that, if we employ the larger
scale cut for ΔΣ, then the bias in σ8 is mitigated. For the
FOF-halomock, our method nicely recovers S8, although
we find sizable biases in Ωm0 and σ8.
In Fig. 17, we show the results for the baryon,

assembly-b, and assembly-b-ext mocks. The fig-
ure shows that the assembly bias mocks lead to biases in the
cosmological parameters, greater than the credible interval.
Thus the assembly bias is indeed the most dangerous
systematic effect, which violates the scaling relation of halo
bias with halo mass. However, we note that, in this paper,
the result is considered as the worst-case scenario, because
we include the maximum possible effect of the assembly
bias in the assembly-b-ext mock, where we populate
galaxies into halos assuming a fully deterministic assign-
ment of centrals in ascending order of halo concentration:
we populate galaxies from the lowest concentration halos in
each mass bin. The impact of the assembly bias for more
realistic galaxies, even if exists for SDSS galaxies, would
be much smaller than what is shown in this paper.
Nevertheless, this possible impact of the assembly bias
needs to be kept in mind.

FIG. 15. Marginalized posterior distributions of the cosmo-
logical parameters when applying the halo model method to the
mock catalog where the off-centering effect of central galaxies is
included (Table VI). For comparison, we show the result for the
fiducial mock, the same as the green contours in Fig. 9.

FIG. 16. Similar to the previous figure, but shown is the result
for the FOF and cent-incomp. mocks.

FIG. 17. Similar to the previous figure, but shown is the
marginalized posterior distributions for the baryon mocks and
the assembly bias mocks (assembly-b and assembly-b-
ext).Here theassembly-b-ext is theworst (extreme) effect of
assembly bias,where the large-scale amplitude ofwp ismodified by
a factor of 1.6 (see Fig. 4). In theassembly-bmock, the boost in
the amplitude is halved, which is still larger than what is expected
for an actual data, even if exists.
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To tackle the possibility that the actual galaxy sample is
suffering from the assembly bias effect, we here propose a
practical solution to assess its impact or mitigate it in
parameter estimation. In Fig. 18, we show the results when
using different scale cuts, (4,6) or ð8; 12Þ h−1Mpc, for wp

and ΔΣ, instead of our fiducial choice (2,3). Note that
(8,12) is the choice of the minimal bias method in
Sugiyama et al. [26] (also see Figs. 11 and 14). The figure
clearly shows that the posterior distribution systematically
moves with varying the scale cuts, and then the choice of
(8,12) recovers the true cosmological parameters. In this
case, the method does not use the 1-halo term signal of ΔΣ,
and tries to fit the mock signals by the model templates,
where rcc ≃ 1 is satisfied. Thus, if we observe a similar
systematic shift in the parameter constraints with varying
the scale cuts, it could be a bias due to assembly bias.
Although such a shift can be caused by other observational
effects, observing this signature means that we need to
investigate the origin of the shift before unblinding an
analysis.

VI. DISCUSSION AND CONCLUSION

In this paper we have in detail studied the performance of
the halo model based method for cosmological para-
meter estimation. We used DARK EMULATOR to model
the halo clustering quantities (halo mass function, halo

autocorrelation function, and halo-matter cross correla-
tion), where the emulator includes, by design, all nontrivial
effects such as nonlinear clustering, nonlinear halo bias and
halo exclusion effect that are otherwise difficult to ana-
lytically model. We combined DARK EMULATOR with the
HOD method to model clustering observables of galaxies
for which we consider the projected correlation function,
wpðRÞ, and the galaxy-galaxy weak lensing ΔΣðRÞ in this
paper. Then we validate the emulator-based halo model
method by studying whether to recover the cosmological
parameters from MCMC analyses by comparing the model
predictions with the mock signals for the spectroscopic
SDSS galaxies and the HSC-Y1 galaxies.
The main results of this paper are summarized as

follows:
(1) Our method using DARK EMULATOR allows for

computations of wp and ΔΣ at a few CPU seconds
for each model, which is equivalent to a factor of
million reduction in computation time compared to
the standard method (run N-body simulations, pop-
ulate galaxies in halos, and then measure the galaxy
clustering observables from the mocks). With this
emulator, we can perform the MCMC analysis in
practice.

(2) Changes in the cosmological parameters cause
characteristic changes in the amplitudes and scale
dependences of wp and ΔΣ via a combination of
various effects: nonlinear clustering, nonlinear halo
bias and halo exclusion effect (Fig. 2).

(3) We showed that the halo model based method can
recover the underlying cosmological parameters,
especially S8 ¼ σ8Ω0.5

m0, after marginalization over
the galaxy-halo connection (HOD) parameters, for a
variety of mock catalogs except for the mocks
including an extreme effect of assembly bias, for
the nominal choices of scale cuts, ðRwp

cut; R
ΔΣ
cut Þ ¼

ð2; 3Þh−1Mpc (Figs. 12 and 14). The baseline
method can achieve a precision of σðS8Þ ≃
0.035–0.042 for the SDSS and HSC-Y1 datasets.
This method allows for tight constraints on the cos-
mological parameter, because the small-scale infor-
mation of ΔΣðRÞ at scales, 3 ≤ R=½h−1Mpc�≲ 10,
can be used to infer the average mass of host halos of
the SDSS galaxies, yielding useful information on
the galaxy bias that is sensitive to the large-scale
amplitudes of wp and ΔΣ.

(4) The halo model method suffers from sizable biases
in the cosmological parameters if the SDSS galaxies
have a significant assembly bias (although we
consider the extreme mocks including the maximum
amount of the assembly bias effect in this paper)
(Figs. 14 and 17). Even if this is the case, we showed
that the cosmological parameters can be recovered if
employing sufficiently large scales cuts of Rcut ≳
10 h−1Mpc, where the cross-correlation coefficient

FIG. 18. Similar to the previous figure, but we here study how
biases in the cosmological parameters can be mitigated by using
the different scale cuts, (4,6) or ð8; 12Þ h−1 Mpc for wp and ΔΣ,
respectively, instead of the baseline setup (2,3). The true
cosmological parameters are recovered if using the large-scale
cuts such as (8,12); that is, if we do not include the 1-halo term
contribution.
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rccðrÞ≡ ξgmðrÞ=½ξggðrÞξmmðrÞ�1=2 ≃ 1 (Fig. 18).
This is equivalent to the case that we do not include
the small-scale lensing information in the cosmo-
logical parameter estimation. However the price to
pay is that the statistical accuracy of cosmological
parameter determination is degraded, leading to
σðS8Þ ≃ 0.07 (see Fig. 14). Thus in practice we
should monitor whether the cosmological parame-
ters have a systematic shift with different scale cuts,
as a test of the assembly bias effect inherent in actual
data (Fig. 17).

(5) We used the method using a single population of
source galaxies to measure the galaxy-galaxy weak
lensing for multiple lens galaxies at different red-
shifts (LOWZ, CMASS1, and CMASS2) over the
range of redshifts, z ¼ ½0.15; 0.7�. This method
allows for self-calibration of the photometric redshift
errors and the multiplicative shear bias (Fig. 12).

Hence we conclude that we can safely apply the halo
model based method to actual SDSS and HSC-Y1 data. The
cosmological constraints from actual observational data are
presented in a following paper [45].
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APPENDIX A: COSMOLOGICAL DEPENDENCE
OF THE 2-HALO TERM OF GALAXY

CORRELATION FUNCTIONS

The cosmological information in the joint probes cos-
mology using ΔΣ and wp lies in the 2-halo terms of ΔΣ
and wp. In particular, an advantage in the use of DARK

EMULATOR is that it includes all the nonlinear effects
such as the nonlinear matter clustering, the nonlinear halo
bias and the halo exclusion effect that are very difficult
to accurately calibrate unless N-body simulations are
employed as done in DARK EMULATOR. In this appendix,
we study how these nonlinear effects cause scale-dependent

variations in the 2-halo term by changes in the cosmologi-
cal parameters.
Figure 19 shows how a change in σ8 or Ωm0 causes a

scale-dependent change in the 2-halo term of the three-
dimensional correlation function, ξgg;2h, while other param-
eters including the HOD parameters are kept to their
fiducial values. Note that we use DARK EMULATOR to
compute these results, and we here focus on the galaxy
autocorrelation function because most of the cosmological

FIG. 19. Fractional changes in the 2-halo term of the three-
dimensional galaxy-galaxy correlation function relative to that for
the fiducial model, when varying either of σ8 or Ωm0. Note that
other model parameters keep fixed to their fiducial values. The
middle panel shows the fractional change for the ratio ξgg;2h=ξmm,
because the ratio becomes scale independent if the linear theory
holds, which predicts ξgg ¼ b2ξmm with a scale-independent
coefficient b. The lower panel shows the result for the two-point
correlation function of central galaxies that includes only the
2-halo term by definition. The different lines show the results
when �5% and �10% changes in σ28 and Ωm0, and the solid or
dashed lines correspond to the results when increasing or
decreasing the parameter by the amount from the fiducial value.
Here we consider the HOD for LOWZ-like galaxies at z ¼ 0.25.
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information for the SDSS and HSC datasets are from wp,
which is obtained from the projection of ξgg. First, for
comparison, the upper panel shows the change in the matter
correlation function, ξmm, relative to that for the fiducial
model (Planck cosmology). The figure shows that a change
in σ8 causes a fairly sale-independent change in ξmm at
scales r≲ 70 h−1Mpc, which we consider throughout this
paper. On the other hand, a change in Ωm0 causes a scale-
dependent change in ξmm.
The middle panel shows the fractional change in

ξgg;2h=ξmm relative to the ratio for the fiducial model.
Note that we here consider the fiducial model of
HOD for LOWZ-like galaxies at z ¼ 0.25. The reason
we consider this ratio is that, if ξgg follows the linear
theory prediction as given by ξgg ¼ b2ξmm with a scale-
independent coefficient b, then the change becomes scale
independent for the change in the cosmological parameters.
Here, for the sake of clarity, we consider only the 2-halo
term of ξgg using Eq. (16). The figure shows that a change
in σ8 causes a scale-dependent change in the ratio, which
should arise from the scale-dependent change in the halo
bias and the halo exclusion effect by the change in σ8. The
change in Ωm0 is also found to cause a scale-dependent
change in the ratio, again via the dependence of halo bias
on Ωm0. Thus DARK EMULATOR includes these complex
dependences of ξgg on the cosmological parameters. For
further comparison, the lower panel shows the results for
ξgg;cc, i.e., the two-point correlation function of central
galaxies, which includes only the 2-halo term by definition.
The results appear to be similar to those in the middle panel.
Thus DARK EMULATOR includes these complex depend-

ences of the galaxy-galaxy correlation function on the
cosmological parameters (σ8 and Ωm0). These dependences
are difficult to accurately calibrate analytically, e.g., by the
perturbation theory, and the accurate calibration requires
the use of N-body simulations as done in the development
of DARK EMULATOR. These complex cosmological depend-
ences of ξgg are an advantage of our method.

APPENDIX B: COVARIANCE ESTIMATION
BASED ON MOCK CATALOGS

In this appendix, we describe the estimation of statistical
uncertainties in the galaxy-galaxy weak lensing profile
(ΔΣ) by using a set of synthetic observational datasets, i.e.,
the covariance matrix.
A robust estimation of the covariance matrix is one of the

most important subjects in modern cosmology in practice
(e.g., see Refs. [101–105]). In this paper, we use a set of
numerical simulations in Ref. [79] to construct realistic
mock catalogs of galaxy shapes as well as the tracers of
large-scale structures. We then adopt the same analysis
pipeline to measure ΔΣ from the mock catalogs as we do
for actual measurements. Our mock measurements of the
lensing signals have 2268 realizations in total, allowing us
to evaluate the covariance matrix of ΔΣ for the SDSS-like

galaxies at multiple redshifts in a rigorous way. In the
following, we describe how to produce mock catalogs from
the simulations incorporated with observational data and
show the validation of our mock lensing analyses.

1. Massive production of mock catalogs

a. Full-sky simulations of lensing and halos

We first briefly introduce the full-sky ray-tracing
simulations and the halo catalogs in the line-cone simu-
lation realization, developed in Ref. [79] (the full-sky
simulation data are freely available from [106]). The
full-sky simulations are based on a set of N-body simu-
lations with 20483 particles in cosmological volumes.
Reference [79] adopted the standard ΛCDM cosmology
with the following cosmological parameters: the CDM
density parameter Ωcdm ¼ 0.233, the baryon density Ωb ¼
0.046, the matter density Ωm ¼ Ωcdm þΩb ¼ 0.279, the
cosmological constant ΩΛ ¼ 0.721, the Hubble parameter
h ¼ 0.7, the amplitude of density fluctuations σ8 ¼ 0.82,
and the spectral index ns ¼ 0.97. Note that the cosmological
model in the simulation is consistent with the Wilkinson
microwave anisotropy probe nine-year cosmology [107].
Full-sky weak gravitational lensing simulations have

been performed with the standard multiple lens-plane
algorithm [108–110]. In this simulation, one can take into
account the light-ray deflection on the celestial sphere by
using the projected matter density field given in the format
of spherical shell (see the similar approach for Ref. [111]).
The simulations used the projected matter fields in 38 shells
in total, each of which was computed by projecting N-body
simulation realization over a radial width of 150 h−1Mpc,
in order to make the light cone simulation covering a
cosmological volume up to z ¼ 5.3. As a result, the lensing
simulations consist of the shear field at each of 38 different
source redshifts with angular resolution of 0.43 arcmin.
Each simulation data is given in the HEALPIX format [112].
The radial depth between nearest source redshifts is set to
be 150 h−1Mpc in comoving distance, corresponding to
the redshift interval of 0.05–0.1 for z≲ 1.
In each output of the N-body simulation, Ref. [79]

identified dark matter halos using the ROCKSTAR algo-
rithm [73]. In the following, we define the halo mass
by using the spherical overdensity criterion: M200 m ¼
200ρ̄m0ð4π=3ÞR3

200 m. Individual halos in N-body boxes
are assigned to the pixels in the celestial sphere with the
HEALPIX software. It should be noted that the N-body
simulations allow us to resolve darkmatter halos withmasses
greater than a few times 1012h−1 M⊙ with more than 50N-
body particles at redshifts z < 0.7, which is a typical redshift
range of massive galaxies in the SDSS BOSS survey.

b. Shapes of background galaxies

For shapes of background galaxies, we use the mock
catalogs produced in Ref. [81]. The mocks are specific to
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cosmological analyses with the Subaru HSC-Y1 shape
catalog [113] by taking into account various observational
effects as the survey footprints, inhomogeneous angular
distribution of source galaxies, statistical uncertainties in
photometric redshift estimate, variations in the lensing
weight, and the statistical noise in galaxy shape measure-
ments including both intrinsic shapes and the measurement
errors. We produced 2268 mock catalogs from 108 full-sky
ray-tracing simulations of gravitational lensing in Ref. [79]
by using a similar approach developed in Refs. [80,114].
We properly incorporated with the simulated lensing shear
and the observed galaxy shape on an object-by-object basis,
enabling the mock to share exactly the same information of
angular positions, redshifts, the lensing weights and the
shear responsivity with the real catalog. The further details
are found in Ref. [81]. The mock shape catalogs are
publicly available at [115].

c. Mock catalogs of lensing galaxies,
SDSS-like galaxies

For the foreground galaxies to be used in the galaxy-
galaxy lensing analysis, we produce the mock galaxy
catalogs assuming the HOD method as summarized in
Sec. III B. As in the mock galaxy shape catalogs, we first
extract 2268 realizations of the HSC-Y1 survey windows
from 108 full-sky halo catalogs in Ref. [79]. We then
populate galaxies into halos using the fiducial HOD
method whose parameters are chosen to mimic LOWZ
and CMASS galaxies in the redshift range of 0.15 < z <
0.35, 0.43 < z < 0.55, and 0.55 < z < 0.70, but spanning
the entire SDSS BOSS footprint. The HOD method is used
to populate mock LOWZ and CMASS galaxies in halos of
each of the light cone simulation realization.
Besides, we include the redshift-space distortion effects

in mock LOWZ and CMASS galaxies. Along the line of
sight of each host halo, we set the radial velocity of the
central galaxy to be the same as one of its host halo, while
we assign the random velocities to the satellites by
following a Gaussian distribution with width given by
the virial velocity dispersion.

2. Validation of our covariance estimation

In this section, we validate the performance of our
covariance estimation with the mock measurements of
galaxy-galaxy lensing signals. For comparison, we pre-
dict the Gaussian covariances of the lensing signals by a
halo-model framework developed in Ref. [69]. In this
framework, we can properly take into account the weight
function related to the conversion between the lensing shear
and the excess surface mass density in the covariance
matrix. It would be worth noting that the covariance model
has been extensively validated with a set of numerical
simulations for a variety of the weight functions in the
lensing analysis (see Ref. [69] for details).

Figure 20 shows the comparison of the variance of the
lensing signal in each of three redshift bins with the
simulation results and their Gaussian predictions. In each
panel, the simulation results are shown in the colored
points, while the solid and dashed lines represent the
Gaussian covariances with and without the shape noise,
respectively. The figure clearly shows that the sample
variance caused by the line-of-sight large scale structures
dominates the mock variance, and the shot noise is
dominant at the length scale less than 10 h−1Mpc.
We then study the off-diagonal elements of the mock

covariance matrices. The left panels in Fig. 21 summarize
the comparison of the cross correlation coefficient in
the covariance for the lensing signals at the lens red-
shift 0.43 < z < 0.55. This figure shows that our simple
Gaussian prediction provides a reasonable agreement
with the off-diagonal elements of the mock covariance,

FIG. 20. Comparison of the diagonal components in the
covariance matrices for the galaxy-galaxy lensing signals. From
top to bottom, we show the variances of the lensing signals at
three different redshift bins (the lower panel corresponds to the
case at the higher redshift). The points represent the simulation
results based on 2268 realizations, while the solid lines stand for
the Gaussian predictions developed in Ref. [69]. In each panel,
the dashed line shows the variance in the absence of shape noises,
highlighting the contribution from uncorrelated large-scale struc-
tures along a line of the sight. Note that we define ΔΣ in units of
hM⊙pc−2 in this figure. Hence, the unit in each vertical axis is
given by MpcðM⊙ pc−2Þ.
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indicating the super-sample covariance (SSC) [116] is not
important to our galaxy-galaxy lensing analyses. The SSC
is expected to arise from the four-point correlation among
super- and subsurvey modes [116,117], and the recent
simulations have shown that the SSC in the halo-matter
cross correlation becomes important only at 1h−1Mpc
[118]. At the scale of R ∼ 1 h−1Mpc, the statistical
uncertainties in our lensing analyses are mostly determined
by the shot noise terms.
The right panel of Fig. 21 shows the cross correlation

coefficient of the mock covariance matrix across three
redshift bins. The lower triangular panel shows the simu-
lation results, while the upper panels represent the differ-
ence between the simulation results and the Gaussian
predictions. We find the large cross correlation coefficients
in the radius range of R > 10h−1 Mpc with a level of ∼0.5
at most for single redshifts and the cross covariance

between two different redshifts is less prominent. Our
Gaussian covariance is in good agreement with the sim-
ulation results, allowing us to explain the mock covariance
with a 20% level accuracy.

APPENDIX C: POSTERIOR DISTRIBUTION OF
PARAMETERS IN A FULL-DIMENSION

PARAMETER SPACE

For comprehensiveness of our discussion, in Fig. 22 we
show the posterior distribution for all the parameters
including all the HOD parameters for the CMASS1-like
galaxies. The results for the LOWZ- and CMASS2-like
galaxies at different redshifts are similar to this plot. Even if
we use the joint information of wp and ΔΣ, each of the
HOD parameters is not well constrained, but the cosmo-
logical parameters are recovered.

FIG. 21. Comparisons of the off-diagonal elements in the covariance matrices with the simulation results and their Gaussian
predictions. The left panels show the cross correlation coefficient in the covariance at the medium redshift bin (in the redshift range of
0.43 < z < 0.55) as a function of radii. In the left, the points show the simulation results, while the lines are for the Gaussian predictions.
Each small panel in the left represents the scale dependence of the cross correlation coefficient. In the right, we show the cross
correlation coefficients in the full covariance across three redshift bins. The lower triangular panels show the simulation results, while
the upper one displays the difference between the simulation results and the Gaussian predictions. In the right, we use the labels of
“LOWZ,” ”CMASS1,” and “CMASS2” from the lowest to the highest redshift bins. Note that we limit the length scales to be in
the range of R > 10 h−1 Mpc in the right panels to focus on the sample covariance. The diagonal elements in the right is set to 1
by construction.
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