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Linear cosmological observables can be used to probe elastic scattering of dark matter (DM) with
baryons. Availability of high-precision data requires a critical reassessment of any assumptions that
may impact the accuracy of constraints. The standard formalism for constraining DM-baryon scattering
prerecombination is based on assuming a Maxwell-Boltzmann (MB) velocity distribution for DM.
This assumption is not always physically justified, and does not allow for probing DM self-interactions
simultaneously with its interactions with baryons. Lifting the MB assumption requires solving the full
collisional Boltzmann equation (CBE), which is highly nontrivial. Earlier work proposed a more tractable
Fokker-Planck (FP) approximation to the CBE, but its accuracy remained unknown. In this paper, we
numerically solve the exact CBE for the first time, in a homogeneous expanding background. We consider
DM-baryon scattering cross sections that are positive power-laws of relative velocity. We derive analytical
expressions for the collision operator in the case of isotropic differential scattering cross sections. We then
solve the background CBE numerically, and use our solution for the DM velocity distribution to compute
the DM-baryon heat-exchange rate, which we compare against those obtained with the MB assumption
and FP approximation. Over a broad range of DM-to-baryon mass ratios, we find that the FP approximation
leads to a maximum error of 17%, significantly better than the up to 160% error introduced by the MB
assumption. While our results strictly apply only to the background evolution, the accuracy of the FP
approximation is likely to carry over to perturbations. This motivates its implementation into cosmological
Boltzmann codes, where it can supersede the much less accurate MB assumption, and allow for a more
general exploration of DM interactions with baryons and with itself.
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I. INTRODUCTION

The synchronous advance of cosmology, astrophysics,
and particle physics is now being propelled forward like
never before. With unprecedented precision, experiments
can access increasingly distant realms of the universe—
seeking evidence of existing theoretical predictions, while
inevitably observing phenomena yet to be explained by
theory. The quest to understand dark matter (DM) is one of
the key motivations driving this concerted effort.
Interactions between Standard Model (SM) particles and

DM could provide insights into the nature of DM. Probes
of such interactions include direct-detection experiments
searching for nuclear recoil from scattering events [for a
review, see [1]]. The parameter space probed by these
experiments is currently limited to DM masses above a
few GeV for DM-nucleon scattering, and above a few
MeV for DM-electron scattering [2]; moreover, such
experiments are only sensitive to cross sections below

the direct-detection “ceiling” [e.g., [3–5]]. A natural
extension beyond the terrestrial search for DM-baryon
scattering is to analyze its effects on cosmological and
astrophysical observables [6].
Heat and momentum exchange between DM and bary-

ons due to their elastic scattering modifies the cosmological
thermal history and structure formation away from the
standard ΛCDM paradigm. The cosmic laboratory offers
probes of such deviations across the entire history of the
universe, constraining parameter space complementary to
that of direct detection. DM candidates which scatter with
baryons prerecombination can extract heat from the pho-
ton-baryon plasma, thus generate spectral distortions in the
cosmic microwave background (CMB) [7,8]. Additionally,
such scattering leads to momentum exchange between the
DM and photon-baryon fluids, which can smooth out the
growth of small-scale primordial fluctuations over time,
alter lensing, polarization, and temperature anisotropies
of the CMB, as well as small-scale matter overdensities
[e.g., [9–15]]. Effects on the small-scale linear matter
power spectrum propagate to nonlinear, low-redshift
observables (z≲ 10) such as the Ly-α forest and galaxy

*ssg487@nyu.edu
†yah2@nyu.edu

PHYSICAL REVIEW D 106, 083515 (2022)

2470-0010=2022=106(8)=083515(19) 083515-1 © 2022 American Physical Society

https://orcid.org/0000-0001-5640-8636
https://orcid.org/0000-0003-0533-0319
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.083515&domain=pdf&date_stamp=2022-10-18
https://doi.org/10.1103/PhysRevD.106.083515
https://doi.org/10.1103/PhysRevD.106.083515
https://doi.org/10.1103/PhysRevD.106.083515
https://doi.org/10.1103/PhysRevD.106.083515


distribution [9–20]. Efficient DM-baryon interactions post-
recombination can modify the spin temperature of neutral
hydrogen, in turn affecting the 21-cm signal [6,21–25].
Lastly, in addition to these cosmological probes, several
astrophysical tests have been proposed [26–33].
Almost all existing limits on DM-baryon scattering

obtained using the astrophysical and cosmological probes
mentioned above rely on the key assumption that the
DM has a thermal, Maxwell-Boltzmann (MB) velocity
distribution.1 This assumption dramatically simplifies cal-
culations, as it allows one to compute heat and momentum
exchange rates for DM-baryon scattering by solving
ordinary differential equations. The MB assumption, how-
ever, is strictly justified only when the DM particles either
self-interact efficiently and are hence thermalized, or
efficiently scatter with baryons so as to be equilibrated
with them. Typically, DM is initially coupled to baryons
and eventually decouples from them. In such cases, a
necessary condition for the MB assumption to be accurate
is that, at least until some time after DM-baryon decou-
pling, the DM-DM interaction rate remains much greater
than the expansion rate, and thus, much greater than the
DM-baryon interaction rate. Such a condition would be
satisfied, for instance, if the DM is part of a larger and
possibly strongly interacting dark sector, which is itself
weakly coupled to the SM. But this is certainly not a
universal prediction of DM models, and it is also possible
that DM self-interactions are suppressed relative to DM-
baryon interactions (see, e.g., Refs. [36,37] for an explicit
model). In such cases, the MB assumption may result in
inaccurate predictions for heat and momentum exchange
rates, and ultimately for astrophysical and cosmological
observables probing DM-baryon interactions.
With multiple observational sources of high-precision

data at our disposal (especially Planck’s CMB power
spectra [38]), ensuring the accuracy of methods used to
calculate DM-baryon scattering constraints is critical.
Beyond improving modeling accuracy, relaxing the MB
assumption would open up the possibility of simultane-
ously and agnostically probing DM-baryon interactions
and DM self-interactions, hence exploring DM properties
in more detail. This will be especially relevant for upcom-
ing and planned CMB missions, which could probe
DM-baryon interactions well below current cosmological
limits [39]. In the case of a positive detection of DM-baryon
interactions, the natural next step would be to study DM
self-interactions, which is not doable within the existing
framework for linear-cosmology observables.
Going beyond the MB assumption is a highly non-trivial

task, as it requires solving the collisional Boltzmann

equation (CBE) for the full DM velocity distribution, rather
than merely following its average and variance. Currently, a
method that solves the inhomogeneous and anisotropic
CBE and can be integrated into Boltzmann codes such as
CAMB [40] or CLASS [41] does not exist. A formalism to
approximate the DM-baryon collision operator with a
Fokker-Planck (FP) diffusion operator was developed in
Ref. [42] (hereafter, Paper I). Although it is significantly
more complex than the MB approximation, the numerical
solution of the Boltzmann-FP equation is much more
tractable than that of the full CBE. In Paper I it was shown
that, in an isotropic and homogeneous background, up to
Oð1Þ differences can arise between the heat-exchange
rates calculated using the MB assumption and those
obtained from solving the Boltzmann-FP equation. While
the FP approximation is likely more accurate than the MB
assumption, as it involves solving—even if approximately—
for the full DM phase-space density rather than assuming a
specific shape, its accuracy remains to be quantified. Indeed,
for DM particles lighter than the SM particles with which
they scatter, DM-baryon scattering is not a diffusive process,
and the FP approximation could be, in principle, just as
inaccurate as the much simpler MB assumption. The regime
of light DM is where an exact implementation of the CBE
would be especially useful.
In this paper, we take the first step toward quantifying

the accuracy of the FP approximation against an exact
method. We do so by solving the full CBE for an isotropic
DM velocity distribution in a spatially homogeneous
(unperturbed) background, accounting for DM-baryon
elastic scattering through an exact collision operator.2

We limit ourselves to the regime of negligible DM self-
interactions, thereby obtaining the maximal error in the FP
or MB methods. We consider DM scattering elastically
with baryons with a cross section scaling as a power law
of relative velocity, σðvÞ ∝ vn, where n is an integer. This
class of models has been widely analyzed and constrained
with cosmological data [e.g., [7,8,11–15,21–23,43]]. We
focus on models with even and positive powers n∈
f0;2;4g for simplicity. Such models arise from effective
field theory and are studied in the context of direct detection
[[13] and references therein]. In these models, elastic
DM-baryon scattering is most efficient early in the radia-
tion-dominated era and becomes inefficient well before
recombination (z ≫ zrec), for currently allowed cross sec-
tions. Models with n < 0 exhibit late-time DM-baryon
scattering (z≲ zrec), when bulk DM-baryon relative velocity
becomes supersonic and structure formation is no longer
linear, leading to additional complications.
For the first time, we derive analytical expressions for

differential elastic scattering rates, as a function of initial
and final DM velocities, in the case of isotropic differential1One notable exception is Ref. [34], where the authors account

for the possibility of a nonthermal background velocity distri-
bution for a DM particle with a small effective electric charge,
produced by the freeze-in mechanism [35].

2The code used for this work is available at the GitHub
respository suroorseherg/dm-b_scatt.
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scattering cross sections. We express these rates in terms of
rescaled velocities, allowing us to factorize the collision
operator into a precomputable time-independent piece,
and an overall time-dependent prefactor. We then numeri-
cally solve the full CBE for an isotropic DM velocity
distribution, in a homogeneous expanding background.
From this solution, we extract the DM-baryon heat-
exchange rate, and compare it with those obtained within
the MB and FP approximations. For the broad range of
DM-baryon mass ratios we consider, we find that the FP
approximation is systematically and significantly more
accurate than the MB approximation: the heat-exchange
rate obtained in the FP approximation differs by no more
than 17% from the one obtained from the exact solution
of the CBE, in contrast with the up to 160% inaccuracy of
the MB approximation.
It is important to note that our quantitative results only

apply to the background evolution and heat-exchange
rate, not to the momentum-exchange rate which is most
relevant to all structure-based observables. Still, our
findings should hold qualitatively for momentum-
exchange rate, and suggest important implications.
First, the at most order-unity error we find for the
background heat-exchange rate in the MB approximation
is reassuring for existing upper limits relying on this
simple method, as there is no reason to expect momentum-
exchange rates to be vastly more inaccurate. Second,
our results bode well for the higher accuracy of the FP
approach in general, and motivate the implementation of
the perturbed Boltzmann-FP hierarchy derived in Paper I
in cosmological Boltzmann codes. Third, and most
importantly, the non-negligible difference between the
strong-self-interaction limit (captured accurately in the
MB approximation) and the negligible-self-interaction
limit (which only the exact CBE can accurately describe)
indicate that there is room for exploring DM self-
interactions on top of its interactions with baryons.
Beyond a mere improvement of accuracy, the FP or exact
methods thus hold the promise of opening new avenues
for testing properties of DM which are not accessible
within the MB approximation. This will be especially
relevant with the high-precision upcoming surveys like
the Rubin and Simons Observatories [44,45], for which it
will be imperative to develop a not only more accurate, but
also a more general formalism for DM interactions.
The remainder of this paper is organized as follows. In

Sec. II, we introduce our notation, the general theoretical
formalism, and explain the MB and FP methods. In Sec. III,
we describe our method of exactly solving the CBE. We
describe and discuss our results in Sec. IV, and conclude
in Sec. V. Appendices A and B provide derivations of the
analytic differential scattering rates, for isotropic differ-
ential scattering cross sections, and Appendix C provides
analytic expressions for the dimensionless rates of velocity
diffusion.

II. THEORY

A. Basic notation

Throughout the paper, we use “χ” to represent DM,
assumed to be nonrelativistic, “s” for a nonrelativistic SM
scatterer like an electron, proton or helium nucleus,3 and
“b” for the combined fluid of the SM scatterer species. We
denote the DM and scatterer’s number densities by nχ and
ns, respectively, and their mass densities by ρχ ¼ mχnχ and
ρs ¼ msns, wheremχ is the DM particle mass, andms is the
scatterer’s mass. We also define M ≡ms þmχ to be the
total mass of the DM-scatterer system. We denote scatterer
velocities by v⃗s and DM velocities by v⃗≡ v⃗χ, dropping the
χ subscript for compactness. We label quantities calculated
via our exact implementation, the MB assumption, or FP
approximation with the superscripts “ex,” “MB,” and “FP,”
respectively. General quantities which are not associated
with any particular method (exact, MB, or FP) are denoted
without any superscript.

B. Relevant quantities and observables

Cosmological probes of DM-baryon scattering are very
sensitive to two quantities: the rates of heat and momentum
exchange between DM and baryons. While these are not
observables per se, they have such a direct impact on
various observable quantities that we refer to them, for
short, as “observables”—explicitly, the heat-exchange rate
is the most closely related to CMB spectral distortions
[7,8], while the momentum-exchange rate is the quantity
most relevant to CMB-anisotropy and large-scale structure
observables [11,13].
Both heat- and momentum-exchange rates depend

on fχðv⃗Þ, the probability distribution function of DM
velocities, normalized as4Z

d3v fχ ðv⃗Þ ¼ 1: ð1Þ

Given fχðv⃗Þ, we may define the DM bulk velocity V⃗χ and
temperature Tχ as follows

V⃗χ ≡
Z

d3v v⃗ fχðv⃗Þ; ð2Þ

Tχ ¼
1

3
mχ

Z
d3v ðv⃗ − V⃗χÞ2fχðv⃗Þ: ð3Þ

The observables of interest are then

_P⃗χ

���
scat

≡ ρχ
_V⃗χ

���
scat

; ð4Þ

3We restrict ourselves to redshifts z ≪ 109 when the CMB
temperature is well below the mass of each of these species.

4The DM phase-space density is then ðnχ=m3
χÞfχðv⃗Þ.
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_Qχ

���
scat

≡ 3

2
nχ _Tχ

���
scat

; ð5Þ

which are the volumetric rates of momentum- and heat-
exchange, respectively. In these expressions, the subscript
“scat” means that one is to only account for the rate of
change of V⃗χ and Tχ due to DM-baryon scattering (and not,
e.g., due to cosmological expansion).
Before we proceed, let us introduce some useful nota-

tion. For a particle of mass m and velocity v⃗, we denote by
fMBðv⃗; V⃗; T=mÞ the Maxwell-Boltzmann distribution with
bulk velocity V⃗ and temperature T, given by

fMBðv⃗; V⃗;T=mÞ≡ 1

ð2πT=mÞ3=2 exp
�
−
m
2T

ðv⃗− V⃗Þ2
�
: ð6Þ

Baryons efficiently scatter with one another and thus have
thermal (MB) velocity distributions, all with the same
bulk velocity V⃗e ¼ V⃗p ¼ V⃗He ≡ V⃗b, and all with the same
temperature Te ¼ Tp ¼ THe ≡ Tb:

fsðv⃗sÞ ¼ fMBðv⃗s; V⃗b; Tb=msÞ; s ∈ fe; p;Heg: ð7Þ

In general DM cannot be assumed to have a MB distri-
bution of velocities. However, in the limit that it is tightly
coupled to baryons (e.g., at sufficiently early times), its
distribution does tend to the equilibrium MB distribution
with bulk velocity V⃗b and temperature Tb, which we denote
for short by

feqχ ðv⃗Þ≡ fMBðv⃗; V⃗b; Tb=mχÞ: ð8Þ

Importantly, momentum- and heat-exchange rates are
entirely determined by the deviations of fχ from equilib-
rium with the baryons, Δfχ ≡ fχ − feqχ .
While the DM distribution function is not itself observ-

able, its evolution does determine the momentum and heat-
exchange rates, as we will see in detail below. In the
following sections we describe three different approaches
to computing fχ , and thus observable quantities.

C. Exact method: Collisional Boltzmann equation

1. General equation

The DM velocity distribution evolves according to the
collisional Boltzmann equation (CBE),

n−1χ
d
dt

����
free

½nχfχðv⃗Þ� ¼ Cχs½fχ �ðv⃗Þ þ Cχχ ½fχ �ðv⃗Þ; ð9Þ

where d=dtjfree is the time derivative along free (collision-
less) trajectories, Cχs½fχ � is the DM-baryon collision
operator, and Cχχ ½fχ � is the DM-DM collision operator.

In a homogeneous universe expanding with Hubble rate H,
for nonrelativistic particles we have, explicitly,

d
dt

����
free

≡ ∂

∂t
−Hv⃗ ·

∂

∂v⃗
: ð10Þ

The collision operators account for the evolution of fχðv⃗Þ
beyond free-streaming, due to scattering processes. The
DM-baryon scattering operator is a linear integral operator,
given by

Cχs½fχ �ðv⃗Þ ¼
Z

d3v0½fχðv⃗0ÞΓχs ðv⃗0 → v⃗Þ

− fχðv⃗ÞΓχsðv⃗ → v⃗0Þ�; ð11Þ

where Γχsðv⃗ → v⃗0Þ is the differential rate at which DMwith
initial velocity v⃗ scatters into final velocity v⃗0, per final
velocity volume. The first term in Eq. (11) represents the
rate at which χ-particles acquire velocity v⃗ after scattering
with baryons, and the second term represents the rate at
which χ-particles with initial velocity v⃗ scatter and acquire
a different final velocity v⃗0 ≠ v⃗. This operator conserves
probability (or equivalently the number of particles), as can
be seen by evaluating its effect on fχðv⃗Þ integrated over all
v⃗ at a given instance in time:Z

d3vCχs½fχ �ðv⃗Þ ¼ 0: ð12Þ

Given that baryons are thermalized, the differential scatter-
ing rates satisfy detailed balance:

feqχ ðv⃗ÞΓχsðv⃗ → v⃗0Þ ¼ feqχ ðv⃗0ÞΓχsðv⃗0 → v⃗Þ: ð13Þ

It follows that

Cχs½feqχ �ðv⃗Þ ¼ 0; ð14Þ

which is a restatement of the fact that if DM is in
equilibrium with baryons (i.e., has a MB distribution at
temperature Tχ ¼ Tb), its distribution is not changed by
scattering with baryons.
We will not explicitly compute the DM-DM scattering

operator Cχχ ½fχ �ðv⃗Þ in this paper, but let us simply mention
some of its properties. It is an integral operator quadratic,
and thus nonlinear, in fχ . It also conserves DM number,
and vanishes when applied to any MB distribution, at an
arbitrary temperature Tχ (which may or may not be the
same as Tb).
To compute the momentum- and heat-exchange rates,

in general, one therefore has to first solve the collisional
Boltzmann equation, which is an integro-differential equa-
tion. This equation is linear in fχ when DM-DM inter-
actions are negligible.

SUROOR SEHER GANDHI and YACINE ALI-HAÏMOUD PHYS. REV. D 106, 083515 (2022)

083515-4



2. Background equation

Both baryon and DM distribution functions can be split
into a homogeneous and isotropic background piece, and
an inhomogeneous, anisotropic perturbation: fχðv⃗; x⃗Þ ¼
fχðvÞ þ δfχðv⃗; x⃗Þ, and similarly for baryons. For small
perturbations, as is the case in the early Universe, the
evolution of the background distributions does not depend
on perturbations (the converse, however, is not true). While
the perturbations determine the rate of momentum
exchange, most relevant to structure-based observables,
their treatment is more complex than that of the back-
ground. As a first step, we focus on the evolution of f̄χðvÞ
in this work, from which we will extract the background
heat-exchange rate.
We may convert the 3-dimensional Boltzmann equation

into a 1-dimensional equation, by defining the following
quantities:

f1Dχ ðvÞ≡ 4πv2fχðvÞ; ð15Þ

Γ1D
χs ðv → v0Þ≡ ðv0Þ2

Z
d2v̂
4π

Z
d2v̂0 Γχsðv⃗ → v⃗0Þ: ð16Þ

The 1-dimensional velocity distribution f1Dχ ðvÞ is such
that

R
dv f1Dχ ðvÞ ¼ 1, and the differential scattering rate

Γ1D
χs ðv → v0Þ has dimensions of rate per final velocity

magnitude interval. Note that, given that the background
baryon distribution is isotropic, Γχsðv⃗ → v⃗0Þ is a function of
v, v0 and v̂ · v̂0 alone, and as a consequence it suffices to
integrate Γχsðv⃗ → v⃗0Þ over the directions of final velocities
to obtain Γ1D

χs ðv → v0Þ, i.e., the averaging over v̂ in Eq. (16)
is redundant.
The evolution of f1Dχ ðvÞ can then be obtained by

replacing fχðv⃗Þ with f1Dχ =ð4πv2Þ in the Boltzmann equa-
tion. Using the fact that v ∝ 1=a along free trajectories
(where a is the scale factor), and focusing on DM-baryon
interactions only, we arrive at

a
d
dt

����
free

½a−1f1Dχ ðvÞ� ¼ C1D
χs ½f1Dχ �ðvÞ; ð17Þ

where the 1-dimensional collision operator is

C1D
χs ½f1Dχ �ðvÞ ¼

Z
dv0 ½f1Dχ ðv0ÞΓ1D

χs ðv0 → vÞ

− f1Dχ ðvÞΓ1D
χs ðv → v0Þ�: ð18Þ

3. Background heat-exchange rate

Upon solving for the evolution of f1Dχ ðvÞ, one may
obtain the background heat-exchange rate from

_Qχ ¼
1

2
ρχ

Z
dv v2 C1D

χs ½f1Dχ �ðvÞ: ð19Þ

For the specific case of a cross section5 scaling as
σχsðvÞ ¼ σnvn, this can be rewritten as [42]

_Qχ ¼ cnσn
ρsρχ
M

�
Tb

ms

�nþ1
2

Z
dvf1Dχ ðvÞ

×

�
3
Tb

M 1F1

�
−
nþ 3

2
;
3

2
;−

ms

2Tb
v2
�

− v21F1

�
−
nþ 1

2
;
5

2
;−

ms

2Tb
v2
��

; ð20Þ

where 1F1 is the confluent hypergeometric function of the
first kind, and

cn ≡ 2
nþ5
2

3
ffiffiffi
π

p Γ
�
n
2
þ 3

�
; ð21Þ

where Γ is the Gamma function. Since the scattering
operator vanishes for the equilibrium distribution, one
may also obtain _Qχ by substituting f1Dχ ðvÞ → Δf1Dχ ðvÞ≡
4πv2½fχðvÞ − feqχ ðvÞ� in Eq. (20). This is numerically more
robust at early times when DM is close to equilibrium with
baryons.

D. Fokker-Planck approximation

1. General description

The numerical solution of the exact Boltzmann equation
is challenging, as the exact collision operator Cχs½fχ �
renders it an integro-differential equation. In Paper I, a
diffusion approximation to the collision operator was
derived, in the form of the Fokker-Planck (FP) operator

CFP
χs ½fχ �ðv⃗Þ≡ 1

2

∂

∂vi

�
Dijðv⃗Þ

�
∂

∂vj
fχðv⃗Þ

þmχ

Tb
ðv − VbÞjfχðv⃗Þ

��
; ð22Þ

where the symmetric tensor Dijðv⃗Þ is a velocity-dependent
effective diffusion tensor. In the absence of DM-DM
collisions, an approximate solution for the DM distribution,
fFPχ is then obtained from solving

n−1χ
d
dt

����
free

½nχfFPχ ðv⃗Þ� ¼ CFP
χs ½fFPχ �ðv⃗Þ: ð23Þ

5More precisely, it is the momentum-exchange cross section
that is relevant in this case.

NUMERICAL SOLUTION OF THE EXACT BACKGROUND … PHYS. REV. D 106, 083515 (2022)

083515-5



With this approximate collision operator, the Boltzmann
equation becomes a partial differential equation. Upon
discretization, its numerical solution involves solving a
system of coupled ODEs with a sparse, tri-diagonal
coupling matrix, rather than a full coupling matrix as is
the case for the exact collision operator.
The FP operator given in Eq. (22) automatically con-

serves particle number and satisfies the detailed balance
relation given by Eq. (14). In addition, the effective
diffusion tensor Dijðv⃗Þ was constructed in Paper I so that
CFP
χs results in exact momentum and heat-exchange rates

for a given DM distribution. Explicitly, CFP
χs would give the

same result as the exact collision operator if inserted in
Eq. (19) to compute _Qχ , for any given fχðv⃗Þ. However,
the DM distribution fFPχ ðv⃗Þ obtained by solving the
Boltzmann-Fokker-Planck equation (23) need not be an
accurate estimate of the true DM distribution fχðv⃗Þ. As a
consequence, there is no guarantee that the FP approxi-
mation produces accurate heat- and momentum-exchange
rates, unless DM-baryon scattering is truly a diffusive
process. We now discuss the regime where DM-baryon
scattering can be considered diffusive.

2. Expected regime of validity of the FP approximation

DM-baryon scattering can be considered to be diffusive
when individual scattering events change the DM velocity
by less than the characteristic width

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tχ=mχ

p
of the DM

velocity distribution. The change in DM velocity after a
scattering event is given by:

Δv⃗χ ¼
ms

M
vχsðn̂0 − n̂Þ; ð24Þ

where vχs ≡ jv⃗χ − v⃗sj is the magnitude of the DM-baryon
relative velocity (before or after scattering, as it is a
conserved quantity), and n̂; n̂0 are its directions before and
after scattering, respectively. For typical DM and baryon
velocities, vχs ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tχ=mχ þ Tb=ms

p
. Therefore, the magni-

tude of the velocity change, relative to the characteristic
width of the DM distribution, is approximately

jΔv⃗χ jffiffiffiffiffiffiffiffiffiffiffiffiffi
Tχ=mχ

p ∼
ms

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Tb

Tχ

mχ

ms

s
: ð25Þ

Since Tχ ≤ Tb, we thus find jΔv⃗χ j=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tχ=mχ

p ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=M

p
.

Hence, scattering is not diffusive for ms ≳mχ. When
ms ≪ mχ , scattering is technically diffusive only as long
as Tχ ≫ ðms=mχÞTb, which holds until long after DM-
baryon thermal decoupling. By the time this condition is no
longer met, the DM velocity distribution is much narrower
than the baryon thermal velocities, at which point the heat-
exchange rate no longer depends on the details of the DM
distribution (see Paper I for a detailed explanation).

From the discussion above, the FP approximation is
guaranteed to be accurate for heavy DM particles with mass
mχ ≫ ms (recalling that this discussion strictly applies to
models which start initially coupled and eventually decou-
ple, and not necessarily to models with n < 0). Light DM
particles (mχ ≲ms) are difficult to probe with direct-
detection experiments, and cosmological probes are thus
most useful for this mass regime. However, the accuracy of
the FP approximation for mχ ≲ms is a priori unknown.
The purpose of this work is to quantify its accuracy via
comparison against exact results.

E. Maxwell-Boltzmann approximation

The assumption widely made in the literature is that DM
has a MB velocity distribution. In this case, the evolution
of fχ reduces to solving for its mean velocity and temper-
ature, both of which satisfy ordinary differential equations
(ODEs). These ODEs can be derived either from the full
Boltzmann collision operator, or the FP operator, given that
the latter is constructed to give the same momentum
and heat-exchange rates, for a given fχ . Note that these
equations are independent of DM-DM scattering, since the
DM-DM scattering operator preserves anyMB distribution.
Specifically for σχsðvÞ ¼ σnvn, the background evolu-

tion of the effective DM temperature under the MB
assumption is given by

d
dt

ða2TMB
χ Þ ¼ a2RnðTMB

χ Þ × ðTb − TMB
χ Þ; ð26Þ

RnðTχÞ≡ 2cnσnns
mχms

M2

�
Tχ

mχ
þ Tb

ms

�nþ1
2

; ð27Þ

where σn is a constant, and cn was defined in Eq. (21). The
volumetric heating rate is then simply

_QMB
χ ¼ 3

2
nχRnðTMB

χ Þ × ðTb − TMB
χ Þ: ð28Þ

The MB approximation is accurate in the limit that DM
self-interactions are efficient at redistributing its velocities
toward the maximum-entropy MB distribution, or when
DM is tightly coupled to baryons. However, if DM self-
interactions are negligible, and/or DM is not in tight
thermal contact with baryons, the DM distribution need
not be MB. For this reason, we distinguish TMB

χ —the
solution of Eq. (26)—from Tχ , the true DM temperature,
defined from its true distribution function through Eq. (3).

F. Summary of previous results and goal
of the present work

In Paper I, the MB approximation was compared against
the FP approximation for the background DM velocity
distribution and resulting heat-exchange rate, i.e., for a
homogeneous and isotropic universe.
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First, it was found that the MB approximation and FP
solutions are close to one another forms=mχ ≪ 1. Given that
this is the regime in which the FP approximation is accurate
(Sec. II D 2), this implies that the MB approximation is also
accurate for ms=mχ ≪ 1. This agreement between the MB
and FP solutions is, however, specific to the background
evolution, and somewhat of a mathematical coincidence.
Indeed, in the FP approximation, the background DM
distribution f̄χðvÞ satisfies a 1-dimensional diffusion equa-
tion. For ms=mχ ≪ 1, the typical DM velocities are much
smaller than the baryon thermal velocities, and as a conse-
quence, the relevant diffusion coefficients are effectively
constant over the range of relevant velocities. The solution
of a 1-dimensional diffusion equation with constant coef-
ficients is aGaussian, i.e., aMBdistribution. Importantly, and
as argued in Paper I, theMBdistribution is an invalid solution
in the presence of perturbations (see also [46]).
Second, it was found in Paper I that the differences

between the MB approximation and FP solutions are
significant for ms ≳mχ, and can grow to order unity for
ms ≫ mχ . In particular, it was found that the MB approxi-
mation results in systematic overestimation of the heat-
exchange rate, compared to the FP approximation.
However, there is no guarantee that the FP solution is
itself accurate in this regime.
Our goal is therefore to quantify the accuracy of the FP

approximation in the regime ms ≳mχ , in which scattering
is nondiffusive. The metric of accuracy that we use is the
difference between heat-exchange rates calculated in the FP
approximation and those obtained with the exact solution
of the integro-differential CBE. We now go on to describe
our procedure and numerical methods in detail.

III. EXACT SOLUTION OF THE BACKGROUND
COLLISIONAL BOLTZMANN EQUATION

We are interested in quantifying the maximal error that
the MB approximation induces when computing the heat-
exchange rate. As a consequence, we focus on the limiting
case where DM self-interactions are completely negligible.
We also exclusively consider the background evolution in
this paper.

A. Differential scattering rates

The differential rate at which DM particles of mass mχ ,
with initial and final velocities v⃗ and v⃗0 respectively, scatter
with baryons of mass ms and velocity distribution fsðv⃗sÞ is
given by

Γχsðv⃗ → v⃗0Þ ¼ ns

Z
d3vsfsðv⃗sÞvχs

Z
d2n̂0

dσχs
d2n̂0

× δð3Þ
�
v⃗0 − v⃗ −

ms

M
vχsðn̂0 − n̂Þ

�
; ð29Þ

where the 3-dimensional Dirac delta function δð3Þ imposes
energy and momentum conservation.
Let us now compute the 1-dimensional differential

scattering rate Γ1D
χs ðv → v0Þ defined in Eq. (16). Since v⃗0

only appears in the Dirac function, we start by factorizing it
in terms of its radial and angular parts:

δð3Þ
�
v⃗0 − v⃗ −

ms

M
vχsðn̂0 − n̂Þ

�
¼ 1

v02
δð1Þ½v0 − vf�δð2Þ½v̂0 − v̂f�; ð30Þ

v⃗f ≡ v⃗þms

M
vχsðn̂0 − n̂Þ: ð31Þ

Therefore, we find, upon integrating over v̂0 [dropping the
redundant v̂ integral in Eq. (16)],

Γ1D
χs ðv→v0Þ≡ns

Z
d3vsfsðv⃗sÞvχs

Z
d2n̂0

dσχs
d2n̂0

δð1Þ½v0−vf�:

ð32Þ

Note that the final value of this function is independent
of v̂, even though the integrand depends on it through
vχs ≡ jv⃗ − v⃗sj and vf.
For a generic differential scattering cross section, we see

that the calculation of Γ1D
χs ðv → v0Þ involves an effectively

4-dimensional integral, for each pair of initial and final
velocities. However, in the special case where the differ-
ential cross section is isotropic, i.e.,

dσχs
d2n̂0

¼ σχsðvχsÞ
4π

; ð33Þ

we show in Appendix A that Γ1D
χs ðv → v0Þ can be reduced to

a one-dimensional integral.
In general, the cross section may have features at

characteristic relative velocities (for instance, if the scatter-
ing process is mediated by a particle with a finite mass). In
this paper, however, we assume a differential cross section
σχsðvχsÞ ¼ σnvnχs with n ≥ 0, achieved, e.g., through
scattering via a sufficiently heavy mediator. Therefore,
the only characteristic velocity in Eq. (32) is then set by
the temperature of baryons. As a consequence, we may
factorize the time dependence of Γ1D

χs ðv → v0Þ as follows:

Γ1D
χs ðv → v0Þ ¼

ffiffiffiffiffiffi
mχ

Tb

r
RnðTbÞ eΓðu → u0Þ; ð34Þ

u≡
ffiffiffiffiffiffi
mχ

Tb

r
v; ð35Þ

where the rate Rn was defined in Eq. (27), and
RnðTbÞ≡ RnðTχ ¼ TbÞ. The dimensionless coefficients

NUMERICAL SOLUTION OF THE EXACT BACKGROUND … PHYS. REV. D 106, 083515 (2022)

083515-7



eΓðu → u0Þ do not explicitly depend on time: they only
depend on the rescaled DM velocities u, u0, as well as on
ms, mχ and the index n. This factorization allows us to
speed up the numerical solution of the Boltzmann equation,
as we can precompute eΓðu → u0Þ on a grid of ðu; u0Þ, and
need not recompute it at every time step. In the case of
isotropic differential cross sections, we have moreover
found explicit analytic expressions for eΓðu → u0Þ for
n ¼ 0, 2, 4, which we provide in Appendix B. We show
the differential scattering rates for n ¼ 0 in Fig. 1, for
ms=mχ ¼ 30−1; 1; 30. Although the reason is made clear
later in Sec. IV B, we point out here that for heavy (top
panel) and light DM (bottom), the dispersion of the curves
around v0 ¼ v is smaller than it is for intermediate-mass
DM (middle). The differential scattering rates for n ¼ 2
and 4 are qualitatively similar to n ¼ 0.

B. Dimensionless form of the Boltzmann equation

Before proceeding with the numerical methods per se,
let us first rewrite the collisional Boltzmann equation in a
way most amenable to efficient numerical integration.
First, given the factorization of the differential scattering

rates [Eq. (34)], it is more appropriate to work with the
rescaled velocity variable introduced in Eq. (35) and the
corresponding rescaled distribution function

efðuÞ≡ ffiffiffiffiffiffi
Tb

mχ

s
f1Dχ ðvÞ: ð36Þ

We focus on the redshift range z ≫ 200, during which the
baryon temperature follows closely the radiation temper-
ature, Tb ¼ Tr ∝ 1=a. As a consequence, the Boltzmann
equation for f̃ðuÞ becomes

a1=2
d
dt

����
free

½a−1=2efðuÞ� ¼ RnðTbÞeC½ef�ðuÞ; ð37Þ

where the dimensionless collision operator is

eC½ef�ðuÞ≡ Z du0½efðu0ÞeΓðu0 → uÞ − efðuÞeΓðu → u0Þ�: ð38Þ

Noting that u ∝ a−1=2 along free trajectories (assuming,
again, that Tb ¼ Tr ∝ 1=a at the times of interest), we have

d
dt

����
free

¼ ∂

∂t
−
1

2
Hu

∂

∂u
¼ H

�
∂

∂ ln a
−
1

2
u
∂

∂u

�
; ð39Þ

and therefore

a1=2
d
dt

����
free

½a−1=2efðuÞ� ¼ H

�
∂efðuÞ
∂ ln a

−
1

2

∂ðuefðuÞÞ
∂u

�
; ð40Þ

FIG. 1. Differential scattering rates Γ1D
χs ðv → v0Þ as a function

of rescaled v0 for n ¼ 0 andms=mχ ¼ 30−1 (top panel),ms=mχ ¼
1 (middle), and ms=mχ ¼ 30 (bottom). All solid curves are
normalized by

R
dv0Γ1D

χs ðv → v0Þ. The different colors corre-
spond to different initial velocities, whose rescaled valuesffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mχ=Tb

p
v ∈ f2.5−2; 2.5−1; 1; 2.5; 2.52g are indicated by dashed

vertical lines.
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where partial derivatives with respect to a are at constant u,
and reciprocally.
Equation (37) is a linear and homogeneous integro-

differential equation. For positive n, it should be solved
with initial condition fχðtinitÞ ¼ feqχ , i.e.,

efðu; tinitÞ ¼ efeqðuÞ
≡

ffiffiffi
2

π

r
u2 exp

�
−
u2

2

�
: ð41Þ

The collision operator vanishes for the equilibrium distri-
bution efeqðuÞ, i.e., eC½efeq�ðuÞ ¼ 0. Using the linearity of eC,
and the fact that ∂a

efeq ¼ 0 (at constant u), we may
therefore rewrite Eq. (37) as the following equation for
Δef ≡ ef − efeq [using Eq. (40)]:

∂Δef
∂ ln a

¼ RnðTbÞ
H

eC½Δef� þ 1

2

∂

∂u
½uðefeq þ ΔefÞ�: ð42Þ

This equation is an inhomogeneous integro-differential
equation, but with vanishing initial conditions, i.e.,
Δf̃ðu; tinitÞ ¼ 0. A numerical solution of Eq. (42) should
therefore be able to extract more accurately the deviations
of fχ from equilibrium with baryons, which fully determine
the heat-exchange rate.
Equation (42) is valid at z ≫ 200, during which we

may assume that Tb ¼ Tr ∝ 1=a. This equation can be
further simplified if we focus on the radiation-dominated
era, during which the expansion rate is given by
H ¼ H0

ffiffiffiffiffiffi
Ωr

p
a−2. Note that this assumption is not required

by our approach, but will simply allow us to present results
in a more concise way. In this case, we may rewrite Eq. (42)
in terms of the variable

y≡ a=aχb; ð43Þ

where aχb is the characteristic thermal decoupling scale
factor, defined as [7,42]

a
nþ3
2

χb ≡ 2cnσn
ns;0

H0Ω
1=2
r

�
M2

msmχ

�n−1
2

�
Tr;0

M

�nþ1
2

; ð44Þ

where ns;0 ≡ a3ns is the abundance of scatterers at the
present time and Tr;0 ≡ aTb is the CMB temperature today.
In terms of the variable y, the collisional Boltzmann equation
[Eq. (42)] then takes on the particularly simple form

∂Δef
∂ ln y

¼ y−
nþ3
2 eC½Δef� þ 1

2

∂

∂u
½uðefeq þ ΔefÞ�: ð45Þ

In the next section we discuss our numerical method for
solving this equation.

C. Numerical implementation of the collisional
Boltzmann equation

We solve Eq. (45) over the domain u ∈ ðumin; umaxÞ≡
ð10−6; 8Þ. We discretize this range into N ¼ 1272 loga-
rithmically spaced bins, ui ¼ uminei d ln u, with i ¼
0;…; N − 1, and d ln u ¼ 0.0125. We also defineefi ≡ efðuiÞ, Δefi ≡ ΔefðuiÞ, and eΓij ≡ eΓðui → ujÞ, for
i; j ¼ 0;…; N − 1. The discretized form of the collision
operator [Eq. (38)] is then

eC½Δef�ðuiÞ ¼XN−1

j¼0

MijΔefj; ð46Þ

Mij ≡ d ln u

�eΓjiuj − δij
X
k

eΓikuk

�
: ð47Þ

The matrix M is time invariant and needs to only be
computed once at the beginning of the numerical imple-
mentation. The gradient operator on the right-hand side of
Eq. (45) is discretized as

∂ðuefÞ
∂u

����
i
¼ 1

2ui d ln u

×

8>><>>:
ðu0ef0 þ u1ef1Þ i ¼ 0

ðuiþ1
efiþ1 − ui−1efi−1Þ 1 ≤ i ≤ N − 2

−ðuN−2efN−2 þ uN−1efN−1Þ i ¼ N − 1

≡ Xiþ1

j¼i−1
αijefj; where α0;−1 ¼ αN−1;N ¼ 0: ð48Þ

This implementation is second-order accurate, and
enforces number-conservation within machine precision,

i.e.,
P

i ui d ln u ∂ðuefÞ
∂u

����
i
¼ 0.

With this discretization, we may transform the integro-
partial-differential equation (45) into a system of coupled
linear ODEs for the functions ΔefiðyÞ:
∂Δefi
∂ ln y

¼ y−
nþ3
2

XN−1

j¼0

MijΔefj þ 1

2

Xiþ1

j¼i−1
αijðefeqj þ ΔefjÞ: ð49Þ

We solve these coupled ODEs using solve_ivp in
scipy’s integrate package [47]. Since this system
of equations is prone to instabilities at early times, we use
the implicit “BDF” (backward differentiation formula)
method which is designed for stiff systems [48–50]. We
fix the various parameters for solve_ivp as follows.
The time range (or t_span) is logarithmically spaced, and
given by ðln yinit; ln yfinalÞ ¼ ðln 10−2; ln 103Þ. The initial
conditions are given by ΔefiðyinitÞ ¼ 0 [Eq. (41)]. The
maximum logarithmic y-interval (max_step) is set to
10−2, the relative tolerance (rtol) is 10−3, and the
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absolute tolerance atol is set to 0 so that the error <
atol + rtol*abs(Δefi) is dominated by rtol.
Finally, after solving for ΔefiðyÞ, we obtain _Qex

χ ðyÞ by
rewriting Eq. (20) in a dimensionless form as,

_Qex
χ

3
2
nχHTb

ðyÞ ¼ ðmχ=MÞn−12
3y

nþ3
2

Z
duΔefexðu; yÞ

×

�
3
mχ

M 1F1

�
−
nþ 3

2
;
3

2
;−

ms

2mχ
u2
�

− u21F1

�
−
nþ 1

2
;
5

2
;−

ms

2mχ
u2
��

: ð50Þ

We compute the integral as a simple Riemann sum.

1. Convergence and accuracy tests

We have checked that our results are converged, as _Qex
χ

changes at most by 0.05% if we halve max_step, and
at most by 0.02% when we halve d ln u. We performed
these convergence tests for ms=mχ ¼ 30, 1, and 30−1 and
all n ∈ f0; 2; 4g.
Another condition we checked for is that probability (or

number of DM particles) is conserved at each time step,
for all values of n and ms=mχ that we consider. Explicitly,
we found that

P
jujΔefjðyÞP
jujjΔefjðyÞj ≤ 10−5 ∀ y; ð51Þ

for n ¼ 4, and in fact is ≲10−7 for n ¼ 2, and ≲10−8
for n ¼ 0.
We also checked that our results are converged with

respect to rtol (forms=mχ ¼30;1;30−1 and n∈f0;2;4g),
and find that _Qex

χ changes at most by 0.05% when rtol is
reduced by a factor of 10.
As an additional sanity check, we have confirmed that

our implementation does recover the evolution of TMB
χ

when we force the DM velocity distribution to be MB. This
check was performed as follows. We initialize the compu-
tation with the same initial conditions,ΔefiðyinitÞ ¼ 0. After
each logarithmic interval of d ln y ¼ 10−2, we compute the
DM temperature from

TχðyÞ ¼ TbðyÞ
�
1þ 1

3

X
i

ΔefiðyÞu3i d ln u

�
: ð52Þ

Then we enforce efðyÞ to be MB-distributed at the temper-
ature TχðyÞ, i.e., set

ΔefiðyÞ ¼ efMB
i ðyÞ

���
Tχ

− efeqi ; ð53Þ

efMB
i ðyÞ

���
Tχ

≡
ffiffiffi
2

π

r �
Tb

Tχ

�3
2

u2i exp
�
−
Tb

Tχ

1

2
u2i

�
: ð54Þ

This step is equivalent to enforcing strong DM self-
interactions, which reshuffle DM velocities into the
maximum-entropy distribution. Lastly, we input this new
ΔefiðyÞ into solve_ivp as the initial condition for the
next logarithmic y-step, and iterate until yfinal. We perform
this procedure for n ¼ 2, ms=mχ ∈ f30−1; 1; 30g, extract
the evolution of TχðyÞ, and compare it to TMB

χ (the latter is
obtained by numerically solving Eq. (26) using solve_
ivp with the same parameters as prescribed in the last
section). We find that the fractional difference between the
two is always ≤ 0.7%.

IV. RESULTS

A. Description of the results

We solve the collisional Boltzmann equation for fχðvÞ as
described in Sec. III C, and compute the corresponding
heat-exchange rate _Qex

χ , for a range of mass ratios
30−1 ≤ ms=mχ ≤ 102, and for n ∈ f0; 2; 4g.
We also compute the corresponding quantities f̄FPχ ðvÞ

and _QFP
χ within the Fokker-Planck approximation, using

the code described in Paper I. Lastly, we compute _QMB
χ by

rewriting Eq. (28) in a dimensionless form with variables
XMB ≡ TMB

χ =Tb and y as (following Paper I),

_QMB
χ

3
2
nχHTb

¼ d
dy

ðyXMBÞ

¼
�
1þ ðms=mχÞXMB

1þms=mχ

�nþ1
2 1 − XMB

y
nþ3
2

ð55Þ

with the initial condition XMBðyinitÞ ¼ 1. As mentioned
earlier, DM-baryon scattering in models with n ≥ 0 decou-
ples well before recombination, and so our analysis is valid
for z ≫ zrec.
We show the fractional differences between _QMB

χ and

the exact _Qex
χ in the left column of Fig. 2. These look

qualitatively and quantitatively similar to Fig. 3 in Paper I,
where the relative difference between _QMB

χ and _QFP
χ is

shown: the fractional difference is small for ms=mχ ≲ 1,
and increases with ms=mχ , reaching order unity for
ms ≫ mχ and for indices n ≥ 2.
The right column of Fig. 2 explains this similarity: there,

we show the relative difference between _QFP
χ and _Qex

χ .
We see that this fractional difference never exceeds 17%
across all mass ratios and power-law indices considered.
This indicates that the FP method fares well even in the
regime where DM-baryon scattering is not, a priori,
diffusive.
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FIG. 2. Relative differences between heat-exchange rates _Qχ obtained via different methods discussed in this paper, as a function of
the scale factor, a, normalized by the DM-baryon thermal decoupling time, aχb [Eq. (44)]. Each row is for a particular value of n, and
each colored curve represents a particular mass ratio 30−1 ≤ ms=mχ ≤ 102. The vertical line marks a ¼ aχb. Left: the fractional

difference between _Qχ obtained using the MB assumption [Eq. (55)] and our exact implementation [Eq. (50)]. These results are similar

to the relative difference between _QMB
χ and _QFP

χ shown in Fig. 3 of Paper I. Right: the fractional difference between _Qχ obtained using
the FP approximation (taken from Paper I) and our exact method. The FP method gives highly accurate background heat-exchange rates
when ms=mχ ≪ 1 and ms=mχ ≫ 1. We see that the largest error in _QFP

χ (reached for ms=mχ ∼ 3) is lower than the largest error in _QMB
χ

by a factor of ∼2 for n ¼ 0 (top row), and by as much as a factor of ∼10 for n ¼ 4 (bottom row).
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FIG. 3. Visualization of our numerical results, showing the time-evolution of f̄exχ , plotted as a function of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχ=TMB

χ

q
v for different

ms=mχ ∈ f10−2; 1; 102g (increasing from left to right) and different n ∈ f0; 2; 4g (increasing from top to bottom). Each panel comprises
two subplots: the top subplot of f̄exχ (blue-purple curves) and a smaller bottom subplot showing deviations of the FP solution from the
exact one, fFPχ − fexχ (pink curves). The progression from light-colored curves to darker ones represents time-evolution from initial
ainit=aχb ¼ 10−2 to final afinal=aχb ¼ 103. The black dotted curve (amidst the fexχ curves) is the MB distribution fMB

χ at temperature TMB
χ .

As explained in Secs. IVA and IV B, both the FP and MB solutions approximate the exact background distribution well for ms ≪ mχ

(leftmost column), but the FP approximation closely tracks the exact distribution even forms ≫ mχ (rightmost column)—when the MB
solution is highly inaccurate.
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Interestingly, the right panel of Fig. 2 shows that the FP
approximation is most accurate not only in the regime
ms ≪ mχ , where this accuracy is expected, but also in the
opposite regime ms ≫ mχ , where, naively, we would have
expected it to be the least accurate. Instead, our results
indicate that the FP approximation is least accurate for
intermediate mass ratios, ms=mχ∼ few.
This surprising result is not the outcome of chance

cancellations in the heat-exchange rate, but rather comes
from the accuracy of f̄FPχ ðvÞ itself. We demonstrate this
in Fig. 3, where we explicitly show f̄exχ and its deviation
from f̄FPχ for ms ≪ mχ (left column), mχ ¼ ms (middle
column), and ms ≫ mχ (right column) for each value of n.
We see that the FP approximation produces an accurate
DM distribution function (jfFPχ − fexχ j ≪ 1), not only for
ms ≪ mχ as expected, but for ms ≫ mχ as well. When
ms ≪ mχ , the exact distribution (blue-purple curves) stays
close to the MB solution (dotted black curve). In the regime
where ms ≫ mχ , the exact distribution deviates signifi-
cantly from MB, but is well recovered by the FP approxi-
mation. The largest deviations jfFPχ − fexχ j ∼Oð10–20%Þ
occur for the intermediate mass ratio ms ∼mχ .
Before discussing the mass dependence of the results in

Sec. IV B below, let us quickly comment on the time-
dependence of the relative differences shown in Fig. 2.
We can see that both the MB and FP approximations are
typically least accurate around the time of thermal decou-
pling a ∼ aχb (broadly speaking), although with different
maximum errors, and with a different mass dependence.
This can be understood quite simply: well before decou-
pling, the heat-exchange rate approaches the quasisteady-
state value _Qχ →

3
2
nχHTb, regardless of the method; well

after decoupling, the heat-exchange rate becomes indepen-
dent of the details of DM velocity distribution, and thus of
the method used to compute it, as discussed in Paper I.

B. Understanding the results

First, let us understand the reason behind the accuracy
of the FP solution in the regime ms ≫ mχ . In Sec. II D 2,
we determined the regime of validity of the diffusion
approximation by considering the typical magnitude of
the velocity vector change per scattering, jΔv⃗j≡ jv⃗0 − v⃗j.
This is an accurate indicator for 3-dimensional diffusion
in velocity (vector) space. However, when focusing on the
background DM distribution, what is relevant is, instead,
the typical change in velocity magnitude per scattering,
jΔvj≡ jv0 − vj. If this change is small relative to the
characteristic width of f̄χðvÞ, then DM-baryon scattering
is indeed diffusive in the 1-dimensional space of velocity
magnitudes. Given that jΔvj ≤ jΔv⃗j by the triangle
inequality, it is possible for DM-baryon scattering to
be diffusive in one dimension even if it is not diffusive in
three dimensions.

Let us estimate jΔvj for ms ≫ mχ. Again, we start from
the change in DM velocity during a scattering event:

v⃗0 ¼ v⃗þms

M
vχsðn̂0 − n̂Þ ¼ v⃗þms

M
ðvχsn̂0 − v⃗χsÞ; ð56Þ

where we recall that v⃗χs ≡ v⃗ − v⃗s is the initial DM-baryon
relative velocity. The ratio of the characteristic baryon and
DM velocities is vs=vχ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTb=TχÞ=ðms=mχÞ
p

. Therefore,
if ms ≫ mχ , and as long as Tb=Tχ ≪ ms=mχ , we find that
vs ≪ vχ . Thus, for typical velocities,

v⃗χs ¼ v⃗
�
1þO

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTb=TχÞ=ðms=mχÞ

q 		
: ð57Þ

Substituting ms=M ¼ 1 − mχ=M ¼ 1 þ Oðmχ=msÞ in
Eq. (56), we see that the term −v⃗χs nearly cancels the
term v⃗, and we are left with

v⃗0 ≈ v n̂0; ð58Þ

up to relative corrections of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tbmχ=Tχms

p
.

Therefore, we see that in the regime ms ≫ mχ , and as
long as Tb=Tχ ≪ ms=mχ , elastic scattering merely changes
the directions of DM velocities, without changing their
magnitudes. That is, jv0−vj≪vχ , even though jv⃗0− v⃗j∼vχ
is not small.6 This result can be seen in Fig. 1, which shows
that the differential scattering rates Γ1D

χs ðv → v0Þ are nar-
rowly distributed around v0 ≈ v for ms ≪ mχ as well as for
ms ≫ mχ , while they are broad for ms ∼mχ.
To make this point more quantitative, in Appendix C we

compute the following dimensionless quantities:

Δ2
3DðvÞ≡

hσχsvχsðΔv⃗Þ2i
hσχsvχsiv2

; ð59Þ

Δ2
1DðvÞ≡

hσχsvχsΔðv2Þi
hσχsvχsiv2

: ð60Þ

These quantities determine whether DM-baryon scattering
is a diffusive process in three dimensions and one dimen-
sion, respectively. We show Δ2

1D and Δ2
3D evaluated at

vχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tb=mχ

p
in Fig. 4, as a function of ms=mχ , and for

n ∈ f0; 2; 4g. We see that Δ2
1D ≤ Δ2

3D for all mass ratios, as
expected from the triangle inequality. We see that both
quantities are small for ms=mχ ≪ 1, indicating that scatter-
ing is diffusive in both one and three dimensions for heavy
DM. For ms=mχ ∼ 1, both quantities are larger than unity,

6In this regime, one can think of DM particles as fast ping-
pong balls, and baryons as slow-moving billiard balls: upon
scattering with the billiard balls, the ping-pong balls change their
direction of motion with very little change to their velocity
magnitude.
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and increasingly so with larger indices n, indicating
that scattering is nondiffusive in both one and three
dimensions for comparable DM and baryon masses.
Lastly, for ms=mχ ≫ 1, Δ2

1D ≪ 1 and Δ2
3D → 2, indicating

that scattering is diffusive in one dimension but not in three
dimensions.
These considerations explain, a posteriori, why the FP

approximation is most accurate for ms ≪ mχ as well as
ms ≫ mχ for the background (1D) DM distribution and
heat-exchange rate. Interestingly, even in the regime where
ms ∼mχ , and DM-baryon scattering is non-diffusive in both
one and three dimensions (especially so for n ¼ 4), the FP
approximation gets the heat-exchange rate within ∼20%
accuracy for n ¼ 4, within ∼10% for n ¼ 2, and within a
few percent for n ¼ 0. This bodes well for its accuracy when
treating inhomogeneities and anisotropies in 3D.
Our focus in this paper is on the accuracy of the FP

approximation, but it is worth recalling in which regimes
the MB approximation is accurate, and why that is. As we
discussed above, there is a physically well-defined regime of
accuracy for the FP approximation, which is when scattering
is diffusive (be it in 1D or 3D). In contrast, regimes in which
the MB approximation is accurate do not arise from the
satisfaction of a physical criterion, but rather from an
interesting and purely mathematical coincidence, which is
that the solution of a 1D diffusion equation with a uniform
(velocity-independent) diffusion coefficient is a Gaussian
(see Paper I and [46]). This explains why the background
MB approximation is closest to the FP solution (thus to the
exact result) for ms ≪ mχ, since the diffusion coefficient
is nearly independent of vχ across the width of the DM
velocity distribution in this mass regime. It also explains why

the background MB approximation is rather accurate for
all masses for n ¼ 0, and decreasingly accurate with
increasing n; indeed, the diffusion coefficients become
steeper functions of DM velocity with increasing n—had
we considered the case n ¼ −1, we would have found that
the background MB solution is exactly equal to the FP
solution for all masses, as the diffusion coefficients are
strictly constant in that case. As discussed in Paper I, such a
mathematical coincidence does not carry over to the aniso-
tropic diffusion equation. Therefore, there is no guarantee
that the perturbed MB approximation is accurate for any
mass ratio and for any index n. In particular, our results for
the background heat-exchange rate should not be taken as a
hint that the MB momentum-exchange rate might be
accurate beyond the order-unity level in any situation: it
probably is not, even for n ¼ 0, and even for ms ≪ mχ.

V. CONCLUSIONS

We have quantified the accuracy of the Fokker-Planck
(FP) approximation of the Boltzmann collision operator
for elastic DM-baryon scattering in a homogeneous and
isotropic background. The models we studied in this work
have an isotropic differential scattering cross section
proportional to an even and positive power in DM-baryon
relative velocity (dσχs=d2n̂0 ∝ vnχs, n ≥ 0). We worked in
the limit where DM-DM scattering is negligible, and thus
found the maximal error in the DM-baryon heat-exchange
rate induced by the FP approximation. We have addition-
ally determined the maximal error arising from assuming a
thermalized or Maxwell-Boltzmann (MB) DM velocity
distribution. The MB assumption is ubiquitously used in
the literature and is the limiting regime where either DM-
baryon or DM-DM scattering ensues with perfect efficiency
at any given time.
Considering an isotropic differential DM-baryon

scattering cross section for simplicity, we have reduced
the differential scattering rate—which is generally a 4D
integral—to a 1D integral. Furthermore, we have found
fully analytical expressions for the differential scattering
rate in models where the differential cross section is a
positive and even-integer power law in the DM-baryon
relative velocity.
In order to quantify accuracy, we compared background

heat-exchange rates obtained from the FP and MB methods
with those obtained from our exact implementation. The
errors arising in the FP method are no more than 3%, 10%,
and 17%, for n ¼ 0, 2, 4, respectively, in contrast with
errors of up to 6%, 50%, and 160%, for the MB approxi-
mation. This significant improvement is a positive indicator
for the accuracy of the FP approximation in the presence
of anisotropies and inhomogeneities as well, where one
can then extract a potentially more accurate momentum-
exchange rate than that within the MB assumption.
Reassuringly, maximum errors of order unity in the MB
heat-exchange rate suggest similar errors for the

FIG. 4. Dimensionless amplitude of 3-dimensional (solid lines)
and 1-dimensional (dashed lines) DM velocity diffusion, as a
function of scatterer-to-DM mass ratio ms=mχ , evaluated at
vχ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tb=mχ

p
, and for power-law indices n ¼ 0 (red), n ¼ 2

(purple) and n ¼ 4 (blue). Having Δ2
3D ≪ 1 indicates diffusive

DM-baryon scattering in 3-dimensional velocity (vector) space,
and Δ2

1D ≪ 1 indicates diffusive DM-baryon scattering in
1-dimensional velocity (magnitude) space.
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momentum-exchange rate and cosmological upper limits
on σn. Nevertheless, the non-negligible differences between
the exact and MB heat-exchange rates (especially for
n ≥ 2) indicate that current analyses are missing non-
negligible aspects of DM-baryon scattering. Besides, as
we argued here and in Paper I, the MB approximation is
sometimes accurate for the background solution (especially
for n ¼ 0) due to a mathematical property of the solution of
one-dimensional diffusion equations; however this prop-
erty does not carry over to three dimensions, and the MB
approximation is likely inaccurate at the order-unity level
for the momentum-exchange rate.
Our quantitative results strictly only apply to models

with an isotropic DM-baryon differential cross section.
However, the qualitative conclusions should remain
unchanged for arbitrary cross sections, which will require
more involved numerical evaluation of the differential
scattering rate. For simplicity, we have also assumed a
radiation-dominated universe throughout our calculations
(which is valid for the models we study, given current upper
limits on the cross sections), but the modification to a
generic expansion rate is straightforward and we have
checked that it does not affect our results in any significant
way. We limit our study to the period of photon-baryon
thermal coupling, valid up until redshift z ∼ 200. Since
the models we consider undergo DM-baryon decoupling
when z ≫ 200 (deep in the radiation-dominated era), this
assumption does not affect our results.
The most significant limitation of this work is that it

only applies to background quantities and cannot straight-
forwardly be extrapolated to perturbations, relevant to
CMB-anisotropy and large-scale structure observations. In
particular, one cannot use our reported fractional errors in
MB and FP heat-exchange rates to estimate the errors in the
MB and FP momentum-exchange rates with respect to the
corresponding rate obtained from an exact calculation.7 It is
reasonable to expect that the accuracy of momentum-
exchange rates should mirror that of the heat-exchange
rates. In particular, we can expect that the Boltzmann-FP
hierarchy derived in Ref. [42] should provide significantly
more accurate momentum-exchange rates than those tradi-
tionally obtained within the MB assumption. This expect-
ation is reinforced by the fact that, for the background
evolution, the FP approximation remains quite accurate even
in the regime where scattering is physically non-diffusive.
Still, for a rigorous confirmation of this projection, one
would have to implement and solve the exact collisional
Boltzmann equation, accounting for inhomogeneities and
perturbations, a task well beyond the scope of this study.

A more tractable next step may be to compare the exact and
FP solutions of a simplified anisotropic problem, for instance
one in which the DM-baryon bulk relative velocity is
imposed rather than being solved self-consistently.
Ultimately, a comprehensive analysis will include both

DM-baryon and DM-DM scattering as prescribed by the
respective model-dependent cross sections. This would
require implementing a non-linear collision operator in
conjunction with the evolution equations for perturbations.
It is in this highly nontrivial scenario that the Fokker-Planck
approximation can potentially bring about significant sim-
plifications, while producing more accurate results than
current methods. Once this full framework is implemented,
itwill openupnewwindows into themicrophysical properties
of dark matter. Next-generation missions such as the Rubin
Observatory [17,51], the SimonsObservatory [45] andCMB-
Stage IV experiments [39] are forecasted to be sensitive to
DM-baryon cross sections about 2, 8, and 26 times smaller,
respectively, than currentPlanck limits, promising at the very
least much tighter limits, as well as the tantalizing possibility
of a detection. This makes it all the more critical that the
standard formalism be generalized to be able to account for
DM self-scattering. Themethods and results presented in this
work are important steps toward achieving this goal.
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APPENDIX A: SIMPLIFIED EXPRESSIONS FOR
Γ1D
χ s ðv → v0Þ IN THE CASE OF ISOTROPIC

SCATTERING

The goal of this appendix is to derive analytic expres-
sions for the angle-integrated differential scattering rate
Γ1D
χs ðv → v0Þ given in Eq. (32), in the case of isotropic

differential scattering cross section, i.e., for dσχs=d2n̂0 ¼
σχsðvχsÞ=4π.
We start by rewriting the Dirac delta as

δð1Þ½v0 − vf� ¼ 2v0δð1Þ½v02 − v2f�: ðA1Þ

We then rewrite the vector v⃗f defined in Eq. (31) as

v⃗f ¼
ms

M
vχsn̂0 þ x⃗; ðA2Þ

x⃗≡ v⃗ −
ms

M
v⃗χs; ðA3Þ

7It is well known that, if the DM has a MB distribution,
the heat- and momentum-exchange rates are proportional to the
difference of DM-baryon temperatures and bulk velocities,
respectively, and that the proportionality coefficients are related
by simple mass ratios. Such simple relationships no longer hold
when one lifts the MB assumption.
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and rewrite the argument of the Dirac delta as follows:

v02 − v2f ¼ 2
ms

M
vχsxðX − n̂0 · x̂Þ;

X≡ v02 − x2 − ðms
M vχsÞ2

2ms
M vχsx

:

We therefore have isolated the dependence in n̂0 as follows

δð1Þ½v0 − vf� ¼
M
ms

v0

vχs

1

x
δð1Þ½X − n̂0 · x̂�: ðA4Þ

Under the assumption that the differential cross section is
isotropic, we may therefore compute the innermost integral
in Eq. (32):

I ≡
Z

d2n̂0
dσχs
d2n̂0

δð1Þ½v0 − vf�

¼ σχsðvχsÞ
M
2ms

v0

vχs

1

x
Θð1 − X2Þ; ðA5Þ

where Θ is the Heaviside step function imposing that the
integral is nonzero only when jXj < 1. A straightforward
analysis shows that this condition is satisfied provided

jv0 − ðms=MÞvχsj < x < v0 þ ðms=MÞvχs: ðA6Þ

Moreover, using the definition of x⃗ [Eq. (A3)] we have

x ¼
����v2 þ �ms

M
vχs

�
2

− 2
ms

M
vχsvμ

����1=2
⇒ μ ¼ v2 þ ðms

M vχsÞ2 − x2

2 ms
M vχsv

; ðA7Þ

where μ≡ v̂ · n̂. Imposing jμj < 1 gives additional limits
on x,

jv − ðms=MÞvχsj < x < vþ ðms=MÞvχs: ðA8Þ

Hence, we find that

I ¼ σχsðvχsÞ
M
2ms

v0

vχs

1

x
if x1 < x < x2; ðA9Þ

and vanishes otherwise, where

x1 ≡max

�����v −ms

M
vχs

����; ����v0 −ms

M
vχs

�����;
x2 ≡min ðv; v0Þ þms

M
vχs: ðA10Þ

The condition x1 < x2 imposes a lower bound on vχs:

vχs >
M
2ms

jv0 − vj: ðA11Þ

We may therefore rewrite Eq. (32) as

Γ1D
χs ðv → v0Þ

¼ nsM
2ms

v0
Z

d3v⃗χsfsðjv⃗χs − v⃗jÞσχsðvχsÞ

×
1

x
Θ
�
vχs −

M
2ms

jv0 − vj
�
Θðx − x1ÞΘðx2 − xÞ;

ðA12Þ

where we changed integration variables from v⃗s to v⃗χs.
Next, we evaluate the v⃗χs integral by orienting the polar
vector along v̂, with μ ¼ v̂ · n̂ ¼ v̂ · v̂χs. Then

R
d3vχs →

2π
R
dvχsv2χs

R
1
−1 dμ. We change integration variables

μ → x, with [Eq. (A7)]

dμ ¼ M
msvχsv

xdx: ðA13Þ

Lastly, we recall that baryons have a MB velocity distri-
bution, which we rewrite in terms of vχs and x variables as
follows:

ð2π Tb=msÞ3=2fMB
s ðjv⃗χs − v⃗jÞ

¼ exp

�
−

ms

2Tb
jv⃗ − v⃗χsj2

�
¼ exp

�
mχ

2Tb
v2 −

M
2Tb

x2 −
msmχ

2MTb
v2χs

�
: ðA14Þ

Combining everything, we obtain

Γ1D
χs ðv → v0Þ

¼ nsffiffiffiffiffiffi
8π

p ðTb=msÞ3=2
�
M
ms

�
2 v0

v
exp

�
mχ

2Tb
v2
�

×
Z

∞

jv0−vj
2ms=M

dvχsvχsσχsðvχsÞ exp
�
−
msmχ

2MTb
v2χs

�
×
Z

x2

x1

dx exp

�
−

M
2Tb

x2
�
: ðA15Þ

The x-integral is analytic, and we thus arrive at

Γ1D
χs ðv → v0Þ ¼ ns

4

ffiffiffiffiffiffi
M
ms

s
M
Tb

v0

v
exp

�
mχ

2Tb
v2
�
γðv; v0Þ;

ðA16Þ

where the function γðv; v0Þ is symmetric in initial and final
velocities, and defined as
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γðv; v0Þ≡
Z

∞

Mjv0−vj
2ms

dvχsvχsσχsðvχsÞ exp
�
−
msmχ

2MTb
v2χs

�

×

�
erf

� ffiffiffiffiffiffiffiffi
M
2Tb

s
x2

�
− erf

� ffiffiffiffiffiffiffiffi
M
2Tb

s
x1

��
: ðA17Þ

Given that γðv; v0Þ is symmetric in v ↔ v0, we only need
to calculate it for v ≤ v0. In that case, x2 ¼ vþ ðms=MÞvχs,
independent of vχs. To determine x1, consider the following
quantity: �

v0 −
ms

M
vχs

�
2

−
�
v −

ms

M
vχs

�
2

¼ ðv0 − vÞ
�
ðv0 þ vÞ − 2

ms

M
vχs

�
: ðA18Þ

Therefore, if v0 ≥ v, we find

x1 ¼

8>><>>:
���v0 − ms

M vχs
��� if vχs ≤ M

2ms
ðvþ v0Þ���v − ms

M vχs
��� otherwise:

ðA19Þ

Using v ≤ v0, the absolute values can be computed explic-
itly, and we have

x1 ¼
(
v0 − ms

M vχs if vχs ≤ M
2ms

ðvþ v0Þ
ms
M vχs − v otherwise:

ðA20Þ

With this, we may make the integral in Eq. (A17) fully
explicit:

γðv; v0Þ ¼v<v0
Z

∞

v0þv
2ms=M

dvχs vχs σχsðvχsÞ exp
�
−
msmχ

2MTb
v2χs

� 
erf

" ffiffiffiffiffiffiffiffi
M
2Tb

s �
ms

M
vχs þ v

�#
− erf

" ffiffiffiffiffiffiffiffi
M
2Tb

s �
ms

M
vχs − v

�#!

þ
Z v0þv

2ms=M

v0−v
2ms=M

dvχs vχs σχsðvχsÞ exp
�
−
msmχ

2MTb
v2χs

� 
erf

" ffiffiffiffiffiffiffiffi
M
2Tb

s �
vþms

M
vχs

�#
− erf

" ffiffiffiffiffiffiffiffi
M
2Tb

s �
v0 −

ms

M
vχs

�#!
:

ðA21Þ

In summary, for the case where the differential scattering
cross section is isotropic, we have simplified the differential
scattering rate to a one-dimensional integral.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR
γðv;v0Þ FOR POWER-LAW CROSS SECTIONS

WITH n ∈ f0;2;4g
We now provide fully analytical expressions for γðv; v0Þ

in the case where σχsðvÞ ¼ σnvn, with n ∈ f0; 2; 4g.
First, we rewrite Eq. (A21) in terms of the rescaled

velocity w ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
M=Tb

p
v. We moreover change integration

variables to x≡ ðms=MÞ ffiffiffiffiffiffiffiffiffiffiffiffi
M=Tb

p
vχs ¼ msvχs=

ffiffiffiffiffiffiffiffiffiffi
MTb

p
. We

then obtain

γnðv; v0Þ ¼ σn

� ffiffiffiffiffiffiffiffiffiffi
MTb

p
ms

�
nþ2

αnðw;w0; mχ=msÞ; ðB1Þ

where αnðw; w0; rÞ is symmetric in w, w0, and

αnðw;w0; rÞ

¼w<w0
Z

∞

w0þw
2

dx xnþ1e−rx
2=2

�
erf

�
xþ wffiffiffi

2
p

�
− erf

�
x − wffiffiffi

2
p

��
þ
Z w0þw

2

w0−w
2

dx xnþ1e−rx
2=2

�
erf

�
xþ wffiffiffi

2
p

�
− erf

�
w0 − xffiffiffi

2
p

��
:

ðB2Þ

The functions αn satisfy the simple recurrence relation:

αnþ2ðw;w0; rÞ ¼ −2 ∂rαnðw;w0; rÞ: ðB3Þ
We thus start by computing α0, which we may express
compactly as follows:

α0ðw;w0;rÞ ¼w<w0 1

r
ffiffiffiffiffiffiffiffiffiffi
1þr

p ½gðw;w0;rÞ−gð−w;w0;rÞ

þgðw0;w;rÞ−gðw0;−w;rÞ�; ðB4Þ
where

gðw1;w2;rÞ≡exp

�
−

r
rþ1

w2
1

2

�
erf

�ðr−1Þw1þðrþ1Þw2

2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffi
rþ1

p
�
:

ðB5Þ
From Eq. (B3), it is then straightforward to obtain analytic
expressions for α2 and α4.
Putting everything together, we find that the differential

scattering rate can be written as Eq. (34), with

eΓðu → u0Þ ¼ 1

8cn

�
M2

msmχ

�
2
�
mχ

ms

�
n=2þ1 u0

u
eu

2=2

× αn

 ffiffiffiffiffiffi
M
mχ

s
u;

ffiffiffiffiffiffi
M
mχ

s
u0;

mχ

ms

!
: ðB6Þ
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APPENDIX C: 3-D AND 1-D VELOCITY
DIFFUSION EFFICIENCY

In this appendix we compute the average ðΔv⃗Þ2 and
Δðv2Þ per scattering, relevant to our discussion of Eqs. (59)
and (60). During an individual scattering with a baryon
with velocity v⃗s, the DM velocity changes by

v⃗0 ¼ v⃗þms

M
jv⃗ − v⃗sjðn̂0 − n̂Þ; ðC1Þ

where n̂ and n̂0 are the initial and final directions of the
DM-baryon relative velocity. In what follows we denote by
hXiY the average of X over the distribution of Y.
Assuming for simplicity that the scattering is forward-

backward symmetric (the result can be easily generalized
otherwise), so that hn̂0 · n̂in̂0 ¼ 0, we then get

hðv⃗0 − v⃗Þ2in̂0 ¼ 2

�
ms

M

�
2

jv⃗ − v⃗sj2: ðC2Þ

Assuming the cross section scales as σχsðvχsÞ ¼ σnvnχs, the
average of this quantity per scattering is then

hðv⃗0 − v⃗Þ2i ¼ 2

�
ms

M

�
2 hjv⃗ − v⃗sjnþ3iv⃗s
hjv⃗ − v⃗sjnþ1iv⃗s

: ðC3Þ

For an isotropic MB distribution of baryon velocities,
we find

hjv⃗ − v⃗sjpiv⃗s ¼
1

2

1

ðpþ 2Þ

ðvþ vsÞpþ2 − jv − vsjpþ2

vvs

�
vs

¼
�
Tb

ms

�
p=2

λp
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ms=Tb

p
v
	
; ðC4Þ

λpðwÞ≡ 1

pþ 2

1

w
1ffiffiffiffiffiffi
2π

p
Z

∞

0

dx x e−x
2=2

× ððxþ wÞpþ2 − jx − wjpþ2Þ

¼ 1

w
1ffiffiffiffiffiffi
2π

p
Z

∞

0

dx e−x
2=2

× ððxþ wÞpþ1 − ðx − wÞjx − wjpÞ; ðC5Þ

where the second equality was obtained by integrating by
parts. Explicitly, we have

λpðwÞ ¼
1

w
1ffiffiffiffiffiffi
2π

p
Z

w

0

dx e−x
2=2ððxþwÞpþ1 þ ðw− xÞpþ1Þ

þ 1

w
1ffiffiffiffiffiffi
2π

p
Z

∞

w
dx e−x

2=2ððxþwÞpþ1 − ðx−wÞpþ1Þ:

ðC6Þ

We therefore have

Δ2
3DðvÞ≡ hðv⃗0 − v⃗Þ2i

v2

¼ 2

�
ms

M

�
2 λnþ3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=Tb

p
vÞ

ðms=TbÞv2λnþ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=Tb

p
vÞ : ðC7Þ

We can evaluate this quantity for a typical initial DM
velocity around decoupling, v ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tb=mχ

p
:

Δ2
3D

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tb=mχ

q 	
¼ 2

msmχ

M2

λnþ3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=mχ

p Þ
λnþ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=mχ

p Þ : ðC8Þ

Let us now compute the change in velocity magnitude
squared. Assuming again forward-backward symmetric
scattering, we have

hv02 − v2in̂0 ¼ 2

�
ms

M

�
2

jv⃗ − v⃗sj2 − 2
ms

M
ðv⃗ − v⃗sÞ · v⃗: ðC9Þ

We rewrite the second term as

ðv⃗ − v⃗sÞ · v⃗ ¼ 1

2
jv⃗ − v⃗sj2 þ

1

2
ðv2 − v2sÞ; ðC10Þ

so that

hv02 − v2i ¼ msðms −mχÞ
M2

hjv⃗ − v⃗sjnþ3iv⃗s
hjv⃗ − v⃗sjnþ1iv⃗s

þms

M
v2ϒnðvÞ;

ϒnðvÞ≡ hðv2s − v2Þjv⃗ − v⃗sjnþ1iv⃗s
v2hjv⃗ − v⃗sjnþ1iv⃗s

: ðC11Þ

Computing the average over baryons velocities, we obtain

ϒnðvÞ ¼
κnþ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=Tb

p
vÞ

ðms=TbÞv2λnþ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=Tb

p
vÞ ; ðC12Þ

κpðwÞ≡ 1

pþ 2

1

w
1ffiffiffiffiffiffi
2π

p
Z

∞

0

dx x e−x
2=2ðx2 − w2Þ

× ððxþ wÞpþ2 − jx − wjpþ2Þ: ðC13Þ

From this we may obtain the characteristic relative change
of velocity magnitude squared per scattering:

Δ2
1DðvÞ≡ hv02 − v2i

v2
: ðC14Þ

Again, we evaluate this at v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tb=mχ

p
, and obtain

Δ2
1D

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tb=mχ

q 	
¼ ðms −mχÞmχ

M2

λnþ3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=mχ

p Þ
λnþ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=mχ

p Þ

þmχ

M

κnþ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=mχ

p Þ
λnþ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=mχ

p Þ : ðC15Þ

SUROOR SEHER GANDHI and YACINE ALI-HAÏMOUD PHYS. REV. D 106, 083515 (2022)

083515-18



[1] T. Marrodán Undagoitia and L. Rauch, J. Phys. G 43,
013001 (2016).

[2] O. Abramoff et al. (Sensei Collaboration), Phys. Rev. Lett.
122, 161801 (2019).

[3] G. Zaharijas and G. R. Farrar, Phys. Rev. D 72, 083502
(2005).

[4] M. S. Mahdawi and G. R. Farrar, J. Cosmol. Astropart.
Phys. 12 (2017) 004.

[5] T. Emken and C. Kouvaris, J. Cosmol. Astropart. Phys. 10
(2017) 031.

[6] V. Gluscevic et al., Bull. Am. Astron. Soc. 51, 134 (2019),
https://baas.aas.org/pub/2020n3i134.

[7] Y. Ali-Haımoud, J. Chluba, and M. Kamionkowski, Phys.
Rev. Lett. 115, 071304 (2015).

[8] Y. Ali-Haımoud, Phys. Rev. D 103, 043541 (2021).
[9] X. Chen, S. Hannestad, and R. J. Scherrer, Phys. Rev. D 65,

123515 (2002).
[10] K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell, and

M. Kamionkowski, Phys. Rev. D 70, 083501 (2004).
[11] C. Dvorkin, K. Blum, and M. Kamionkowski, Phys. Rev. D

89, 023519 (2014).
[12] V. Gluscevic and K. K. Boddy, Phys. Rev. Lett. 121, 081301

(2018).
[13] K. K. Boddy and V. Gluscevic, Phys. Rev. D 98, 083510

(2018).
[14] W. L. Xu, C. Dvorkin, and A. Chael, Phys. Rev. D 97,

103530 (2018).
[15] K. K. Boddy, V. Gluscevic, V. Poulin, E. D. Kovetz, M.

Kamionkowski, and R. Barkana, Phys. Rev. D 98, 123506
(2018).

[16] E. O. Nadler, V. Gluscevic, K. K. Boddy, and R. H.
Wechsler, Astrophys. J. Lett. 878, L32 (2019).

[17] K. Maamari, V. Gluscevic, K. K. Boddy, E. O. Nadler, and
R. H. Wechsler, Astrophys. J. Lett. 907, L46 (2021).

[18] E. O. Nadler et al. (DES Collaboration), Phys. Rev. Lett.
126, 091101 (2021).

[19] D. V. Nguyen, D. Sarnaaik, K. K. Boddy, E. O. Nadler, and
V. Gluscevic, Phys. Rev. D 104, 103521 (2021).

[20] K. K. Rogers, C. Dvorkin, and H. V. Peiris, Phys. Rev. Lett.
128, 171301 (2022).

[21] J. B. Muñoz, E. D. Kovetz, and Y. Ali-Haımoud, Phys. Rev.
D 92, 083528 (2015).

[22] J. B. Muñoz, C. Dvorkin, and A. Loeb, Phys. Rev. Lett. 121,
121301 (2018).

[23] J. B. Muñoz and A. Loeb, Nature (London) 557, 684 (2018).
[24] S. Furlanetto et al., arXiv:1903.06212.

[25] K. Short, J. L. Bernal, K. K. Boddy, V. Gluscevic, and L.
Verde, arXiv:2203.16524.

[26] G. D. Starkman, A. Gould, R. Esmailzadeh, and S.
Dimopoulos, Phys. Rev. D 41, 3594 (1990).

[27] B. Qin and X.-P. Wu, Phys. Rev. Lett. 87, 061301 (2001).
[28] R. H. Cyburt, B. D. Fields, V. Pavlidou, and B. Wandelt,

Phys. Rev. D 65, 123503 (2002).
[29] L. Chuzhoy and A. Nusser, Astrophys. J. 645, 950

(2006).
[30] G. D. Mack, J. F. Beacom, and G. Bertone, Phys. Rev. D 76,

043523 (2007).
[31] J. Hu and Y.-Q. Lou, Mon. Not. R. Astron. Soc. 384, 814

(2008).
[32] J. B. Muñoz and A. Loeb, J. Cosmol. Astropart. Phys. 11

(2017) 043.
[33] D. Wadekar and G. R. Farrar, Phys. Rev. D 103, 123028

(2021).
[34] C. Dvorkin, T. Lin, and K. Schutz, Phys. Rev. Lett. 127,

111301 (2021).
[35] C. Dvorkin, T. Lin, and K. Schutz, Phys. Rev. D 99, 115009

(2019).
[36] G. R. Farrar, arXiv:1708.08951.
[37] G. R. Farrar, Z. Wang, and X. Xu, arXiv:2007.10378.
[38] N. Aghanim et al. (Planck Collaboration), Astron. As-

trophys. 641, A6 (2020).
[39] Z. Li, V. Gluscevic, K. K. Boddy, and M. S. Madhavacheril,

Phys. Rev. D 98, 123524 (2018).
[40] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).
[41] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart.

Phys. 07 (2011) 034.
[42] Y. Ali-Haımoud, Phys. Rev. D 99, 023523 (2019).
[43] K. K. Boddy, G. Krnjaic, and S. Moltner, Phys. Rev. D 106,

043510 (2022).
[44] Ž. Ivezić et al., Astrophys. J. 873, 111 (2019).
[45] P. Ade et al. (Simons Observatory Collaboration), J.

Cosmol. Astropart. Phys. 02 (2019) 056.
[46] E. Bertschinger, Phys. Rev. D 74, 063509 (2006).
[47] P. Virtanen et al., Nat. Methods 17, 261 (2020).
[48] Wikipedia contributors, Backward differentiation formula—

Wikipedia, the free encyclopedia (2021) [Online; accessed
8-March-2022].

[49] L. F. Shampine and M.W. Reichelt, SIAM J. Sci. Comput.
18, 1 (1997).

[50] Wikipedia contributors, Stiff equation—Wikipedia, the free
encyclopedia (2022) [Online; accessed 8-March-2022].

[51] A. Drlica-Wagner et al., arXiv:1902.01055.

NUMERICAL SOLUTION OF THE EXACT BACKGROUND … PHYS. REV. D 106, 083515 (2022)

083515-19

https://doi.org/10.1088/0954-3899/43/1/013001
https://doi.org/10.1088/0954-3899/43/1/013001
https://doi.org/10.1103/PhysRevLett.122.161801
https://doi.org/10.1103/PhysRevLett.122.161801
https://doi.org/10.1103/PhysRevD.72.083502
https://doi.org/10.1103/PhysRevD.72.083502
https://doi.org/10.1088/1475-7516/2017/12/004
https://doi.org/10.1088/1475-7516/2017/12/004
https://doi.org/10.1088/1475-7516/2017/10/031
https://doi.org/10.1088/1475-7516/2017/10/031
https://baas.aas.org/pub/2020n3i134
https://baas.aas.org/pub/2020n3i134
https://baas.aas.org/pub/2020n3i134
https://doi.org/10.1103/PhysRevLett.115.071304
https://doi.org/10.1103/PhysRevLett.115.071304
https://doi.org/10.1103/PhysRevD.103.043541
https://doi.org/10.1103/PhysRevD.65.123515
https://doi.org/10.1103/PhysRevD.65.123515
https://doi.org/10.1103/PhysRevD.70.083501
https://doi.org/10.1103/PhysRevD.89.023519
https://doi.org/10.1103/PhysRevD.89.023519
https://doi.org/10.1103/PhysRevLett.121.081301
https://doi.org/10.1103/PhysRevLett.121.081301
https://doi.org/10.1103/PhysRevD.98.083510
https://doi.org/10.1103/PhysRevD.98.083510
https://doi.org/10.1103/PhysRevD.97.103530
https://doi.org/10.1103/PhysRevD.97.103530
https://doi.org/10.1103/PhysRevD.98.123506
https://doi.org/10.1103/PhysRevD.98.123506
https://doi.org/10.3847/2041-8213/ab1eb2
https://doi.org/10.3847/2041-8213/abd807
https://doi.org/10.1103/PhysRevLett.126.091101
https://doi.org/10.1103/PhysRevLett.126.091101
https://doi.org/10.1103/PhysRevD.104.103521
https://doi.org/10.1103/PhysRevLett.128.171301
https://doi.org/10.1103/PhysRevLett.128.171301
https://doi.org/10.1103/PhysRevD.92.083528
https://doi.org/10.1103/PhysRevD.92.083528
https://doi.org/10.1103/PhysRevLett.121.121301
https://doi.org/10.1103/PhysRevLett.121.121301
https://doi.org/10.1038/s41586-018-0151-x
https://arXiv.org/abs/1903.06212
https://arXiv.org/abs/2203.16524
https://doi.org/10.1103/PhysRevD.41.3594
https://doi.org/10.1103/PhysRevLett.87.061301
https://doi.org/10.1103/PhysRevD.65.123503
https://doi.org/10.1086/504505
https://doi.org/10.1086/504505
https://doi.org/10.1103/PhysRevD.76.043523
https://doi.org/10.1103/PhysRevD.76.043523
https://doi.org/10.1111/j.1365-2966.2007.12755.x
https://doi.org/10.1111/j.1365-2966.2007.12755.x
https://doi.org/10.1088/1475-7516/2017/11/043
https://doi.org/10.1088/1475-7516/2017/11/043
https://doi.org/10.1103/PhysRevD.103.123028
https://doi.org/10.1103/PhysRevD.103.123028
https://doi.org/10.1103/PhysRevLett.127.111301
https://doi.org/10.1103/PhysRevLett.127.111301
https://doi.org/10.1103/PhysRevD.99.115009
https://doi.org/10.1103/PhysRevD.99.115009
https://arXiv.org/abs/1708.08951
https://arXiv.org/abs/2007.10378
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevD.98.123524
https://doi.org/10.1103/PhysRevD.66.103511
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1103/PhysRevD.99.023523
https://doi.org/10.1103/PhysRevD.106.043510
https://doi.org/10.1103/PhysRevD.106.043510
https://doi.org/10.3847/1538-4357/ab042c
https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.1103/PhysRevD.74.063509
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://arXiv.org/abs/1902.01055

