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Purely geometrical arguments show that there exist classes of homospectral inflationary cosmologies, i.e.,
different expansion histories producing the same spectrum of comoving curvature perturbations. We develop
a general algorithm to reconstruct the potential of minimally coupled single scalar fields from an arbitrary
expansion history. We apply it to homospectral expansion histories to obtain the corresponding potentials,
providing numerical and analytical examples. The infinite class of homospectral potentials depends on two
free parameters, the initial energy scale and the initial value of the field, showing that, in general, it is
impossible to reconstruct a unique potential from the curvature spectrum unless the initial energy scale and
the field value are fixed, for instance, through observation of primordial gravitational waves.
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I. INTRODUCTION

Using purely geometrical arguments, it has been shown
[1] that there exist infinite classes of homospectral infla-
tionary cosmologies, whereby different expansion histories
produce the same spectrum of comoving curvature pertur-
bations. This is because the equation for the evolution of
comoving curvature perturbations is completely determined
by a function zðtÞ of the scale factor aðtÞ, involving first- and
second-order time derivatives. This implies an infinite class
of expansion histories giving the same zðtÞ, corresponding
to different initial values of the first derivative of the scale
factor, or in physical terms, to the initial energy scale.
In this paper, we aim to bridge the gap between geometry

and physics by developing a general algorithm to recon-
struct the potential of minimally coupled single scalar fields
from any arbitrary expansion history, which we can then
apply to generate homospectral expansion histories. The
infinite class of homospectral potentials obtained in this
way, each corresponding to a different initial energy scale,
defines models with the same spectrum of curvature
perturbations, showing that, in general, it is impossible to
reconstruct a unique potential from the curvature spectrum,
unless the initial energy scale is fixed (for instance, through
observation of primordial tensor perturbations). We show
that for any spectrum of comoving curvature perturbations
there exists an infinite class of homospectral single-field
models and explicitly compute the corresponding potentials.
As an example, we explicitly reconstruct numerically

some homospectral potentials from their corresponding
expansion histories. Our arguments are model independent
and can be generalized to other more complicated

theoretical scenarios for which the Sasaki-Mukhanov equa-
tion [2–4] applies, since the origin of the existence of these
homospectral models is geometrical, and the evolution of
comoving curvature perturbations is completely determined
by the expansion history.

II. CONSTRUCTION OF
HOMOSPECTRAL MODELS

The construction of homospectral models is based on the
fact that the primordial spectrum of curvature perturbations
is completely determined by a function zðtÞ defined below,
but that there is an infinite set of scale factor functions aðtÞ
corresponding to the same zðtÞ, due to the freedom in the
choice of the initial value of the Hubble parameterHi. From
now on a subindex i denotes values of quantities evaluated
at the initial time.
The equation for curvature perturbations on comoving

slices Rc is [2–6]

R00
cðkÞ þ 2

z0

z
R0

cðkÞ þ c2sk2RcðkÞ ¼ 0; ð1Þ

where k is the comoving wave number, cs is the sound
speed, and primes indicate derivatives with respect to
conformal time dτ≡ dt=a. It can be seen that the functions
z and cs completely determine the spectrum. They can be
written in terms of the scale factor aðtÞ as [1]
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where dots indicate derivatives with respect to cosmic time,

ϵ≡ −
_H
H2

ð3Þ

is the slow-roll parameter, and H ≡ _a=a is the Hubble
parameter.
For a given function z1, the scale factor evolution is not

uniquely determined. From the above relation, we get, in
fact, a second-order differential equation for the scale factor

a2 −
a3ä
_a2

¼ 1

2
z21c

2
s;1 ¼ a21ϵ1: ð4Þ

The initial value of the scale factor has no physical
importance since it can always be arbitrarily rescaled, but
the initial condition for the first time derivative is physically
important since it corresponds to considering background
histories with different initial Hubble parameters Hi, and
hence different initial energy scales.
We will parametrize this difference in the initial energy

scale with the dimensionless quantity H2;i=H1;i, where the
subscripts stand for two different members of the same
homospectral class. This freedom in choosing the initial
value of Hi while keeping the same evolution of the
function zðtÞ is the origin of the existence of an infinite
set of expansion histories producing the same spectrum of
curvature perturbations, which was found in some specific
classes of models in Refs. [1,7,8].

III. RECONSTRUCTION OF THE POTENTIAL
FROM THE EXPANSION HISTORY

The Friedmann and acceleration equations for the
inflaton field ϕ are given, respectively, by

�
_a
a

�
2

¼ 1

3M2
Pl

�
VðtÞ þ 1

2
_ϕ2

�
; ð5Þ

ä
a
¼ 1

3M2
Pl

½VðtÞ − _ϕ2�; ð6Þ

where MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass and V
is the potential energy. Combining these, we obtain the
useful relation

VðtÞ ¼ M2
Plð3H2 þ _HÞ ¼ M2

Pl

�
2

�
_a
a

�
2

þ ä
a

�
; ð7Þ

which relates directly the physics, i.e., the potential VðtÞ, to
the geometry, i.e., the scale factor aðtÞ, and allows us to
reconstruct the potential, producing a given expansion
history. As a final step to get the potential as a function
of the field, it is necessary to determine the function ϕðtÞ
and invert it to get tðϕÞ.

Summarizing, these are the steps for obtaining the
potential VðϕÞ from a given expansion history aðtÞ:

(i) Compute VðtÞ from aðtÞ using Eq. (7).
(ii) Substitute VðtÞ in one of the Einstein’s equations

and solve for ϕðtÞ.
(iii) Invert ϕðtÞ to get VðϕÞ ¼ VðtðϕÞÞ.

Note that the last step gives a unique potential only if there
is a one-to-one correspondence between ϕ and t, so that, for
example, for an oscillatory ϕðtÞ the reconstructed potential
could be nonunique.

IV. HOMOSPECTRAL POTENTIALS

The procedure to obtain a homospectral potential from
a given expansion history a1ðtÞ can be summarized as
follows:

(i) Compute a homospectral expansion history a2ðtÞ
from a1ðtÞ using the procedure developed in Ref. [1],
based on choosing a different initial valueH2;i of the
Hubble parameter.

(ii) Compute V2ðϕÞ from a2ðtÞ following the algorithm
outlined in Sec. III.

In order to show a concrete example, we will choose a
scale factor given by [1]

a1ðtÞ ¼ a1;i½1þ ϵcH1;iðt − tiÞ�1=ϵc ; ð8Þ

which corresponds to ϵ1ðtÞ ¼ ϵc, with ϵc constant and
cs ¼ 1. Although we are choosing a specific form for
a1ðtÞ, the reader should keep in mind that our treatment
is completely model independent and could be applied to
any function aðtÞ. Moreover, notice that, in the limit ϵc → 0,

a1ðtÞ → a1;ieH1;iðt−tiÞ; ð9Þ

which will be useful to find analytic solutions for the
homospectral models as shown in the next section.
We show the results for the numerical reconstruction of

the homospectral potentials in Figs. 1 and 2, where we use
as time variable N ≡ lnða=aiÞ, the number of e-folds since
the beginning of the computation. The values of the
parameters used in the figures are ϵc ¼ 10−4, cs ¼ 1,
ti ¼ 0, a1;i ¼ 1, and ϕ1;i ¼ 10MPl.
Note that, for a given initial Hi, ϕ2ðtiÞ could be different

from ϕ1ðtiÞ, since the choice of the initial value of field is an
arbitrary initial condition for the Einstein’s equations. This
freedom corresponds to obtaining the same aðtÞ by slow
rolling down different potentials in different field ranges and
implies that, while the homospectral expansion histories are
a “one-parameter” class, the homospectral potentials are a
“two-parameter” class; i.e., even for the same value of Hi,
there can be an infinite class of different potentials giving
rise to the same curvature perturbation spectrum. We will
explore this extra degeneracy in a separate work, while in
this paper we will set ϕ2ðtiÞ ¼ ϕ1ðtiÞ. Examples of different
homospectral potentials are shown in Fig. 2.
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In order to check that the homospectral potentials indeed
correspond to the same spectra, we substitute the different
reconstructed potentials into Eqs. (5) and (6), solve for
aðtÞ and ϕðtÞ, and compute zðtÞ. The plots of z show
that all these models do indeed have the same spectra,
since they correspond to the same functional behavior of
zðtÞ [1].
To align the spectra to the same cosmological scales, it is

necessary that inflation ends after the appropriate number
of e-foldings. This typically requires some other mecha-
nism to intervene, such as a hybrid-inflation-style phase
transition. There will, however, usually be models among
the class where inflation ends through ϵ reaching unity after
an appropriate time; see Fig. 3 for examples. In a sense,
those models would be more compelling accounts of the
observed spectrum, as they do not need anything extra to
self-consistently end inflation.

FIG. 2. As Fig. 1, showing the potential as a function of the
scalar field. The field range for different lines correspond to the
same e-folds interval plotted in the final panel of Fig. 1.

FIG. 1. As a function of e-foldsN for different homospectral models, we show (from top left to bottom right) the scale factor a, Hubble
parameter H, slow-roll parameter ϵ, function z whose lines by construction coincide, scalar field ϕ, and its potential V (dimensionful
quantities are shown in reduced Planck units). In the plots, we use H2;i=H1;i ¼ 1, 0.98, 1.02 for the blue, red, and green lines,
respectively.
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V. ANALYTIC APPROXIMATIONS
FOR THE HOMOSPECTRAL MODELS

We have shown in the previous section some examples
of homospectral potentials reconstructed numerically
from different expansion histories, while in this section
we will derive some approximate analytical solutions of
the reconstruction equations to provide further insight. Let
us begin by finding an analytic expression for V1ðϕÞ using
Eq. (8), following the same procedure outlined previously.
First, we substitute a1ðtÞ into Eq. (7), obtaining

V1ðtÞ ¼
M2

PlH
2
1;i

ð1þ ϵcH1;itÞ2
ð3 − ϵcÞ; ð10Þ

which substituted in one of the Einstein’s equations gives
the following solution for ϕ1ðtÞ:

ϕ1ðtÞ ¼ ϕ1;i −

ffiffiffiffi
2

ϵc

s
MPl ln½1þ ϵcH1;it�: ð11Þ

Finally, we invert the previous equation to obtain t ¼
tðϕ1Þ and then replace it in V1ðtÞ, yielding

V1ðϕÞ ¼ M2
PlH

2
1;ið3 − ϵcÞe

ffiffiffiffiffi
2ϵc

p
ðϕ−ϕ1;iÞ=MPl : ð12Þ

To obtain an analytic approximation for the scale factor
of the homospectral models a2, it is convenient to rewrite
Eq. (4) as

ä2 ¼
�
_a2
a2

�
2

ð1 − fðtÞÞa2; ð13Þ

where

fðtÞ≡
�
a1
a2

�
2

ϵ1: ð14Þ

Equation (13) has a solution of the form

a2ðtÞ ¼ C2 exp

�Z
t

1

1R
x
1 ðC1 þ fðyÞÞdy dx

�
; ð15Þ

where C1 and C2 are constants of integration. In the case of
Eq. (8), a valid approximation for fðtÞ under slow-roll
approximation is given by

fðtÞ ≈
�
eH1;iðt−tiÞ

eH2;iðt−tiÞ

�
2

ϵc ¼ e−2H1;iðH2;i=H1;i−1Þðt−tiÞϵc: ð16Þ

Using this approximation, with ti ¼ 0 and a2;i ¼ a1;i, we
find this solution for Eq. (13)

a2ðtÞ ¼ a1;i

�
1

α − 1
ðαe2H1;iðH2;i=H1;i−1Þt − 1Þ

�
1=αϵc

; ð17Þ

where

α≡ 2ðH2;i=H1;i − 1Þ
ϵcðH2;i=H1;iÞ

þ 1; ð18Þ

with H2;i=H1;i ≠ 1. In the limit ϵc → 0, the analytic
solution in Eq. (17) can be written as

a2ðtÞ ¼ a1;ieH2;it; ð19Þ

in agreement with Eq. (9).
Using the approximation for the scale factor in Eq. (17),

the slow-roll parameter ϵ2 is given by

ϵ2ðtÞ ¼ ϵce−2H1;iðH2;i=H1;i−1Þt: ð20Þ

In Fig. 4 we compare the numerical solution of Eq. (13)
and the corresponding analytic solution in Eq. (17) with
a1;i ¼ 1. As it can be seen, the approximation is in good
agreement with the numerical results. In Fig. 5 we compare
the slow-roll parameter ϵ2 using the numerical solution and
the approximation in Eq. (20).
In the case of power-law inflation [9], for which a1 ¼

ðt=tiÞp with p > 1, the approximation

fðtÞ ∼
�
t
ti

�
β

ð21Þ

is also accurate. Nonetheless, we use aðtÞ given in Eq. (8)
since in the power-law inflation case the analytical treat-
ment is more cumbersome.
Now that we have an analytical approximation for the

homospectral scale factors a2ðtÞ, we can compute analyti-
cally the corresponding potentials V2ðϕÞ, using the same

FIG. 3. The slow-roll parameter ϵ is plotted as a function of
e-folds N showing models among the class where inflation ends
through ϵ ¼ 1. In the plots, we use H2;i=H1;i ¼ 0.960, 0.964,
0.968 for the blue, red, and green lines, respectively.
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algorithm used for the numerical reconstruction. First, we
substitute a2ðtÞ given by Eq. (17) into Eq. (7), obtaining

V2ðtÞ ¼
�
2H1;iðH2;i=H1;i − 1Þe2H1;iðH2;i=H1;i−1ÞtMPl

αe2H1;iðH2;i=H1;i−1Þt − 1

�
2

× ½3 − ϵce−2H1;iðH2;i=H1;i−1Þt�: ð22Þ

Second, we substitute V2ðtÞ into one of the Einstein
equations and solve the differential equation for ϕ2ðtÞ with
ϕ2ðtiÞ ¼ ϕ1ðtiÞ. In this case, we were able to find an
analytic expression for ϕ2ðtÞ given by

ϕ2ðtÞ ¼ ϕ2;i − signðH2;i=H1;i − 1ÞMPl

ffiffiffiffiffiffiffi
2

ϵcα

s

× ln
�ð ffiffiffi

α
p

eH1;iðH2;i=H1;i−1Þt − 1Þð ffiffiffi
α

p þ 1Þ
ð ffiffiffi

α
p

eH1;iðH2;i=H1;i−1Þt þ 1Þð ffiffiffi
α

p
− 1Þ

�
: ð23Þ

Finally, we invert ϕ2ðtÞ and replace tðϕ2Þ in V2ðtÞ
obtaining

V2ðϕÞ ¼
�
MPlH2;i

4α

�
2

e−2Φ
�
ð ffiffiffi

α
p þ 1ÞeΦ þ ð ffiffiffi

α
p

− 1Þ
�

2

×

�
3

�
ð ffiffiffi

α
p þ 1ÞeΦ þ ð ffiffiffi

α
p

− 1Þ
�

2

− αϵc

�
ð ffiffiffi

α
p þ 1ÞeΦ − ð ffiffiffi

α
p

− 1Þ
�

2
�
; ð24Þ

where

Φ≡
ffiffiffiffiffiffiffi
αϵc
2

r ðϕ − ϕ2;iÞ
MPl

: ð25Þ

The only approximation made to obtain the potential in
Eq. (24) is the one in Eq. (16). Notice also that, although α
can be negative for H2;i=H1;i < 1, all previous results are
real valued. As a consistency check, it is easy to verify that,
in the limitH2;i=H1;i → 1, Eqs. (23) and (24) coincide with
Eqs. (11) and (12), respectively.
In Fig. 6 we plot the comparison between the numerically

and analytically computed homospectral potentials, during
an interval of 60e-folds. As can be seen, the analytic
approximation is in good agreement with the numerical
results. In Fig. 7 we plot the analytically computed

FIG. 4. The percentage difference Δ≡ jðanum − aanaÞ=anumj ×
100% is plotted for different models of the same homospectral
class as a function of the e-folds number. In the plots, we use
H2;i=H1;i ¼ 0.98ð1.02Þ for the red (green) lines and ϵc ¼
10−4ð10−6Þ in the top (bottom).

FIG. 5. The numerical (black) and analytic (red and green)
slow-roll parameters ϵ are plotted for the same homospectral
class. In the plots, we use H2;i=H1;i ¼ 0.98ð1.02Þ in the top
(bottom) and ϵc ¼ 10−4.
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homospectral potentials VðϕÞ in Eqs. (24) and (12) as in
Fig. 2, extending the range of the field beyond the 60 e-folds
interval. As explained previously, there is an extra degen-
eracy for homospectral potentials, related to the choice of ϕi,
which we will investigate in a separate work.

VI. CONCLUSIONS

Using purely geometrical arguments, it has been shown
that there exist classes of homospectral inflationary
cosmologies, i.e., different expansion histories producing
the same spectrum of comoving curvature perturbations.
In this paper, we develop a general algorithm to recon-
struct the potential of minimally coupled single scalar
fields from an arbitrary expansion history, and we then
apply it to homospectral expansion histories to obtain
homospectral potentials, providing some numerical and
analytical examples.
The infinite class of homospectral potentials depends on

two free parameters, the initial energy scale and the initial
value of the field, showing that, in general, it is impossible

to reconstruct a unique potential from the curvature
spectrum, unless the initial energy scale and the field value
are fixed, for instance, through observation of primordial
gravitational waves.
Our arguments are model independent and can be

generalized to any other theoretical scenarios for which
the Sasaki-Mukhanov equation applies, since the origin of
the existence of these homospectral models is geometrical,
and the evolution of comoving curvature perturbations is
completely determined by the expansion history.
In the future, it will be interesting to develop similar

reconstruction algorithms for other inflationary models,
such as, for example, Horndeski’s theory, but in those
cases the presence of a time-varying sound speed will add
further degeneracy. This degeneracy could be further
increased by the presence of effective entropy or
anisotropy terms in the equation for curvature perturba-
tions [10], which could be studied using the momentum
effective sound speed [11–13].
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FIG. 6. The numerical (black) and analytic (red and green)
potentials as functions of ϕ are plotted for the same homospectral
class. In the plots, we use H2;i=H1;i ¼ 0.98ð1.02Þ in the top
(bottom).

FIG. 7. The analytic potential is plotted for different models of
the same homospectral class as a function of the field ϕ. In the
plots, we use H2;i=H1;i ¼ 1, 0.98, 1.02 for the blue, red, and
green lines, respectively.
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