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The distribution of galaxies provides an ideal laboratory to test for deviations from General Relativity.
In particular, redshift-space distortions are commonly used to constrain modifications to the Poisson
equation, which governs the strength of dark matter clustering. Here, we show that these constraints rely on
the validity of the weak equivalence principle, which has never been tested for the dark matter component.
Relaxing this restrictive assumption leads to modifications in the growth of structure that are fully
degenerate with modifications induced by the Poisson equation. This in turns strongly degrades the
constraining power of redshift-space distortions. Such degeneracies can, however, be broken, and
tight constraints on modified gravity can be recovered by measuring gravitational redshift from the
galaxy distribution, an effect that will be detectable by the coming generation of large-scale structure
surveys.
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I. INTRODUCTION

One of the main goals of large-scale structure surveys is
to determine whether the laws of gravity at cosmological
scales are consistent with General Relativity (GR). This is
motivated by the fact that modified gravity theories are
able to explain the observed accelerated expansion of the
Universe at late time without a cosmological constant or a
dark energy component (see, e.g., Refs. [1,2] for reviews),
therefore providing a viable alternative to the standard
ΛCDM cosmological model.
Various theoretical frameworks have been developed in

recent years to test deviations from GR. A first possibility is
to adopt a model or a class of models (for example,
Horndeski models [3]) and to constrain the parameters
of this model. A second possibility is to parametrize
deviations from GR in a more phenomenological and
model-independent way, at the level of Einstein’s and
conservation equations, and to constrain these deviations
directly. In this paper, we concentrate on the second
approach, which has been extensively used in galaxy
clustering and weak lensing analyses [4–7].
Our goal is twofold. First, we will show that this

phenomenological approach leads to tight constraints on
deviations from GR with current data only when assuming
that the theory of gravity preserves the weak equivalence
principle (WEP). The WEP has been validated up to great

precision for the particles of the Standard Model (see, e.g.,
Ref. [8]), but it has never been tested for the unknown dark
matter component. We will show that when allowing dark
matter to violate the WEP current data cannot distinguish
between deviations in Einstein’s equations and violations
of the WEP due to unbreakable degeneracies. Second, we
will demonstrate that, with future galaxy surveys such as
DESI [9] and the SKA [10], we can rescue the constraints
on gravity modifications and simultaneously test the
validity of the WEP for dark matter. This is achieved by
introducing a new observable into the game: a measure-
ment of the distortion of time (also called gravitational
redshift) from galaxy clustering.

II. MODIFIED GRAVITY PARAMETRIZATION

First, we review the standard framework that is used to
constrain GR in large-scale structure analyses. At late time,
our Universe can be described by four fields: two metric
perturbations, Φ and Ψ, which encode deviations from a
homogeneous and isotropic geometry,1 and two fields that
describe fluctuations in the matter content of the Universe,
namely, the matter density fluctuations, δρ, and the matter
peculiar velocity, V. GR provides equations that relate
these four fields.
A simple and generic framework to parametrize devia-

tions from GR consists in modifying these equations with
two phenomenological functions. More specifically, the
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1We use the perturbed Friedmann metric: ds2 ¼ a2½−ð1þ
2ΨÞdτ2 þ ð1 − 2ΦÞdx2�, where τ denotes conformal time.
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functions μ and η are introduced in the Poisson equation
and the relation between the two gravitational potentials
(see, e.g., Ref. [11])

k2Ψ ¼ −4πGa2μðz; kÞδρ; ð1Þ

Φ ¼ ηðz; kÞΨ: ð2Þ

The other two equations, namely, the continuity equation
and the Euler equation, are typically left unmodified in this
approach. This implies that all constituents (standard
matter, dark matter, and photons) behave in the same
way under gravity, such that the WEP is preserved. One
can consequently work in the so-called Jordan frame,
where geodesics are not modified and all deviations from
GR are encoded in the modified Einstein’s equations (1)
and (2). Within this theoretical framework, the functions μ
and η have been constrained by redshift-space distortions
(RSDs) [6] and by gravitational lensing [4,5], with a
precision of 10%–30%.2

However, there is no observational evidence motivating
the assumption that dark matter obeys the WEP on
cosmological scales and indeed a violation of the WEP
arises in various modified gravity theories. This can occur
at the fundamental level, within GR if dark matter obeys a
dark (nongravitational) fifth force [16–19], or in modified
theories of gravity where dark matter and baryons are
coupled differently to gravity [20–22]. Alternatively, it can
appear as an effective violation, altering the way dark
matter falls in a gravitational potential. This happens, e.g.,
in theories with screened modifications of GR [23,24]
or with violations of the strong equivalence principle
(Nordtvedt effect [25]) if a large fraction of dark matter
were made of compact objects [26] as well as in models
with interacting dark matter and dark energy [27,28].
When relaxing the validity of the WEP, allowing dark

matter to behave differently than standard matter, then in
the Jordan frame of baryons, the Euler equation for dark
matter is modified and can generically be written as

V 0
dm þ Vdm −

k
H

Ψ ¼ Ebreak; ð3Þ

where Vdm denotes the dark matter velocity potential in
Fourier space. The exact functional form of Ebreak depends
on the mechanism responsible for the violation of the WEP.
In Ref. [29], it was shown that, if dark matter is non-
minimally coupled to a new degree of freedom such as a
scalar or vector field, one generically obtains

Ebreak ¼ −Θðz; kÞVdm þ k
H

Γðz; kÞΨ: ð4Þ

The term proportional to Γ encodes the strength of the fifth
force propagated by the new degree of freedom on dark
matter, whereas the term proportional to Θ is a friction term
describing the impact of the new degree of freedom on the
redshifting of the velocity. For specific models, these
functions can be related to the fundamental parameters
in the Lagrangian [29].
Our goal is to determine how the phenomenological

modifications can be constrained by large-scale structure
surveys. Note that, in practice, in a large majority of
models, only one set of parameters appears: in modified
gravity theories with universal coupling to all matter
components, only μ and η are relevant (Γ and Θ are zero),
whereas in models with a dark fifth force acting solely on
dark matter, only Γ and Θ are relevant (μ and η are equal
to 1). However, since our goal is to determine if observa-
tions are able to distinguish between these two types of
models, it is essential to include all parameters in the
analysis and investigate whether observations can constrain
them separately. Additionally, there are also classes of
models encoding the most general scenario where all
modifications are allowed, e.g., Ref. [21].
Galaxy clustering can be used to probe the growth of

density fluctuations. To determine how this growth is
affected by deviations from GR and by a fifth force, we
combine Eqs. (3), (4), and (1) with the continuity equation,
to obtain an evolution equation for the dark matter density.
For simplicity, we assume in the following that the growth
and velocity of galaxies, δg and Vg, are driven by that of
dark matter such that δg ¼ bδ ¼ bδdm and Vg ¼ V ¼ Vdm,
where b is the galaxy bias. In Appendix A, we show that
modifying these relations to include a fraction of baryons
does not impact the results of our analysis. We obtain

δ00 þ
�
1þH0

H
þΘ

�
δ0−

3

2

Ωm;0

a

�
H0

H

�
2

μðΓþ1Þδ¼ 0; ð5Þ

where a prime denotes derivatives with respect to ln a. We
see that the growth of density fluctuations, which can be
probed with galaxy clustering, is directly sensitive to the
functions μ, Θ, and Γ. On the contrary, galaxy clustering
is not sensitive to η, which can, however, be constrained
by weak lensing [4]. It is clear from Eq. (5) that there is a
complete degeneracy between Γ and μ. This reflects the fact
that the clustering of dark matter can be enhanced in two
ways: either by adding a fifth force acting on dark matter
(Γ > 0) or by increasing the depth of the gravitational
potential associated to a given density distribution (μ > 1),
which in turn increases the infall and clustering of dark
matter. In addition, we expect from Eq. (5) a further
degeneracy between μðΓþ 1Þ and the parameter Θ, which
tends to slow down dark matter clustering through friction.

2The recent observation of the speed of gravitational waves
[12] does not put direct constraints on μ and η. It is only in the
case of specific models that these observations can be used to
constrain the sign of these functions (see, e.g., Table 1 in
Ref. [13]) or their amplitude for some subcases [14,15].
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To further simplify the analysis, it is common to assume
that μ, Θ, and Γ are independent of k; see, e.g., Ref. [6].
This is motivated by the fact that in the quasistatic
approximation the k-dependence can usually be neglected
[21,22,29]. Moreover, one usually assumes that the mod-
ifications evolve proportionally to the background evolu-
tion of dark energy [30–32], i.e., that they become relevant
only during the phase of accelerated expansion of the
Universe, such that

μðzÞ¼ 1þμ0ΩΛðzÞ=ΩΛ;0;

ΘðzÞ¼Θ0ΩΛðzÞ=ΩΛ;0 and ΓðzÞ¼Γ0ΩΛðzÞ=ΩΛ;0: ð6Þ

III. GALAXY CLUSTERING OBSERVABLE

We now study how galaxy clustering can constrain the
parameters μ, Θ, and Γ. Galaxy surveys map the distribu-
tion of galaxies and provide measurements of the galaxy
number counts fluctuations

Δ≡ Nðn; zÞ − N̄ðzÞ
N̄ðzÞ ; ð7Þ

where N is the number of galaxies per pixel detected in
direction n and at redshift z and N̄ denotes the average
number per pixel. In the linear regime, the observable Δ is
given by [33–35]

Δðn; zÞ ¼ bδ −
1

H
∂rðV · nÞ þ 1

H
∂rΨþ 1

H
_V · n

þ
�
1 − 5sþ 5s − 2

Hr
−

_H
H2

þ fevol
�
V · n; ð8Þ

where r is the comoving distance to the galaxies and a dot
denotes derivatives with respect to conformal time. The
parameter H denotes the Hubble parameter in conformal
time, s is the magnification bias, and fevol is the evolution
bias. The first term contains the effect of matter density
perturbations, while the second term encodes the well-
known redshift-space distortions [36].3 These two terms are
significantly larger than the others and are the only ones
that are measurable with current surveys. The third term on
the first line encodes the contribution from gravitational
redshift, which changes the apparent size of a redshift bin
located inside a gravitational potential. This effect is

directly proportional to the metric potential Ψ, since it is
due to the distortion of time inside a gravitational well. The
last two terms are Doppler effects. Note that all the terms
beyond the first two have been called “relativistic dis-
tortions” in the literature, even though only gravitational
redshift is truly a general relativistic effect.4

The standard approach to extract information from
Δðn; zÞ consists in measuring the two-point correlation
function ξ≡ hΔðn; zÞΔðn0; z0Þi. The first two terms in
Eq. (8) only generate a monopole, quadrupole, and hex-
adecapole in the correlation function. The contributions
from relativistic distortions to these multipoles have been
shown to be negligible [38], and in the flat-sky approxi-
mation, they can be written as

ξ0ðz; dÞ ¼
�
b̃2ðzÞ þ 2

3
b̃ðzÞf̃ðzÞ þ 1

5
f̃2ðzÞ

�
μ0ðz�; dÞ;

ξ2ðz; dÞ ¼ −
�
4

3
f̃ðzÞb̃ðzÞ þ 4

7
f̃2ðzÞ

�
μ2ðz�; dÞ;

ξ4ðz; dÞ ¼
8

35
f̃2ðzÞμ4ðz�; dÞ; ð9Þ

where fðzÞ≡ d lnðδÞ
d lnðaÞ is the growth rate of structure, f̃ðzÞ≡

fðzÞσ8ðzÞ, b̃ðzÞ≡ bðzÞσ8ðzÞ, and

μlðz�; dÞ ¼
Z

dkk2

2π2
Pδδðk; z�Þ
σ28ðz�Þ

jlðkdÞ: ð10Þ

Here, we have introduced a redshift z�, chosen to be well
before cosmic acceleration started such that the deviations
in Eq. (6) vanish. The functions μlðz�; dÞ are therefore fully
determined by early-Universe physics and are tightly con-
strained by CMB observations [5]. The amplitude of the
multipoles is then directly sensitive to the growth rate
f̃ðzÞ ¼ fðzÞσ8ðzÞ, which is affected by the parameters μ0,
Θ0, and Γ0 through Eq. (5). The multipoles can therefore be
used to constrain these parameters.
The relativistic distortions, i.e., the last three terms in

Eq. (8), have the particularity to generate odd multipoles in
the correlation function [40–42] (or similarly in the power
spectrum [43]). To detect these oddmultipoles, it is necessary
to cross-correlate two distinct populations of galaxies, for
example, a bright (B) and faint (F) population. The dominant
odd multipole is the dipole, which is too small to be detected
in current surveys [44], but is expected to be robustly detected
with DESI [45,46] and SKA2 [29,47]. This dipole depends
differently on modified gravity parameters from the even
multipoles, and thus plays a fundamental role in breaking
parameter degeneracies.

3Note that, technically, RSDs are due to the velocity of
baryons, as they are the component that emits light. However,
it was shown in Ref. [37] that, since baryons are confined in
galaxies, RSD correlations are only sensitive to the velocity of the
galaxy center of mass, which is dominated by the dark matter
velocity. Here, we equate these two velocities, Vg ¼ Vdm. In
Appendix A, we study the case where the center of mass velocity
is determined by a superposition of baryons and dark matter,
showing that the results are very similar.

4Gravitational lensing and other relativistic distortions con-
tribute to Δ [33–35], but their impact on observations in the
redshift range relevant for this work is negligible [38,39].
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By combining Eqs. (3) and (8), we can write the
relativistic distortions as

Δrel ¼ Ebreak

H
þ
�
5s − 2

Hr
− 5s −

_H
H2

þ fevol
�
V · n: ð11Þ

We note that the gravitational redshift and Doppler terms
combine into a contribution that is directly proportional to
Ebreak. The dipole is then given by

ξ1ðz; dÞ ¼
H
H0

ν1ðd; z�Þ
�
5f̃ðb̃BsF − b̃FsBÞ

�
1 −

1

rH

�

þ 3f̃2Δs
�
1 −

1

rH

�
þ f̃Δb̃

�
2

rH
þ

_H
H2

�

þ Δb̃
�
Θf̃ −

3

2

Ωm;0

a
H2

0

H2
Γμσ8ðzÞ

��

−
2

5
Δb̃ f̃

d
r
μ2ðd; z�Þ; ð12Þ

where Δb̃ ¼ b̃B − b̃F, Δs ¼ sB − sF, and

ν1ðz�; dÞ ¼
Z

dkk
2π2

H0

Pδδðk; z�Þ
σ28ðz�Þ

j1ðkdÞ: ð13Þ

Here, we have assumed that fevol ¼ 0 for simplicity. This
parameter will be directly measurable from the data [48].
The last term in Eq. (12) proportional to μ2 arises from the
wide-angle contribution [40]. We note that μ,Θ, and Γ enter
the dipole in two ways: first, through their impact on f̃
(as in the even multipoles) but also directly through the
term in the third line of Eq. (12), arising from the breaking
of the WEP.

IV. CURRENT AND FUTURE CONSTRAINTS
ON MODIFIED GRAVITY

Given the expressions for the even and odd multipoles
of the galaxy correlation function, we now investigate their
constraining power on the parameters μ0, Θ0, and Γ0. We
first only include the even multipoles, as in standard large-
scale structure analyses, and study how the constraints on
μ0 are degraded if one does not impose the validity of the
WEP. We then add the dipole and show that it allows us to
recover tight constraints on all three parameters.

A. Specifications for the analysis

We consider both current data from SDSS-IV (including
SDSS, BOSS, and eBOSS) and future data expected from
the coming generation of large-scale structure surveys. We
focus on two future catalogs: the Bright Galaxy Sample
(BGS) of DESI, which will observe 10 million galaxies up
to z ¼ 0.5, and the SKA phase 2, which will observe close
to a billion galaxies up to z ¼ 2. The survey specifications

are taken from Refs. [9,10], respectively. The fiducial
cosmology is fixed to the latest Planck values [5]. Note
that we keep the background parameters fixed, as done in
Ref. [6] for computing the constraints on μ0, in order to
obtain a fair comparison with current analyses. We let
the bias vary according to the fitting functions given in
Refs. [9,10] and marginalize over it: bBGS ¼ b0δð0Þ=δðzÞ
for DESI, involving one free parameter with fiducial value
b0 ¼ 1.34, and bSKA ¼ b1 expðb2zÞ for SKA2, involving
two free parameters with fiducial values b1 ¼ 0.554 and
b2 ¼ 0.783. We choose z� ¼ 10 and fix the minimum
separation dmin ¼ 20 Mpc=h, such that nonlinear effects
are negligible [49]. We include shot noise and cosmic
variance in the variance of the multipoles (see Appendix C
of Ref. [29]) and account for cross-correlations between
different multipoles.

B. Constraints from even multipoles

We first use the measurements of f̃i ¼ fðziÞσ8ðziÞ from
the even multipoles of SDSS-IV (see Table 3 in Ref. [6]) to
constrain μ0, Θ0, and Γ0. When the WEP is enforced, we
can directly translate the constraints on f̃i into constraints
on μ0, and we find σμ0 ¼ 0.21.5 On the other hand, when
dropping the assumption that the WEP is valid, the full
degeneracy between μ0 and Γ0 implies that only the sum
μ0 þ Γ0 (and not μ0 alone) can be constrained by RSD
measurements. We therefore calculate a Fisher matrix for
the parameter space fμ0 þ Γ0;Θ0g. The joint constraints
are shown in Fig. 1. We see a strong degeneracy between
μ0 þ Γ0 andΘ0, which is due to the fact thatΘ0 slows down
the growth of structure, while μ0 þ Γ0 accelerates it. As
a consequence, the marginalized constraint on μ0 þ Γ0 is
very large: σμ0þΓ0

¼ 6.05, i.e., 30 times larger than the
original constraints on μ0.
The same degeneracy affects constraints from future

surveys. Our results are summarized in Table I, again

FIG. 1. In blue, we show constraints on Θ0 and Γ0 þ μ0 from
the RSD measurements of f̃i given in Ref. [6]. The red line
corresponds to the much tighter constraint on μ0 under the
restrictive assumption that the WEP is valid.

5This is comparable to the value σμ0 ¼ 0.25 obtained in
Ref. [6] when combining RSDs and weak lensing.
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showing a significant degradation of the constraints when
allowing for a violation of the WEP. Hence, even multi-
poles are able to provide tight constraints on μ0 only under
the restrictive assumption that dark matter obeys the WEP.
In other words, if future surveys detect deviations from
ΛCDM in the growth of structure, we will not be able to
distinguish whether they are due to a modification of
gravity or to a dark fifth force acting on dark matter.
Finally, let us mention that we have assumed μ0, Γ0, and

Θ0 to be scale independent. Allowing for a scale depend-
ence would not break the degeneracies, unless when
considering very specific models where μ0 has a known
scaling (such as in fðRÞ gravity models; see Refs. [50,51])
different from the one of Θ0 and Γ0.

C. Adding the dipole as a deus ex machina

We now combine the even multipoles and the dipole. We
fix the bias difference to the value measured in BOSS for
luminous red galaxies, Δb ¼ 1 [44], and let the free bias
parameters vary separately for the bright and faint galaxy
populations. The magnification bias is computed for the
two populations using a Schechter function for the lumi-
nosity function [38]; see Appendix B for details.
The marginalized constraints are presented in Table II,

and the joint constraints for SKA2 are plotted in Fig. 2. The
bounds on σμ0þΓ0

are only marginally improved by adding
the dipole. However, the dipole gives a decisive contribu-
tion by breaking the degeneracies, allowing us to constrain
the three parameters individually. This arises from the
gravitational redshift term ∂rΨ that enters the dipole
through Ebreak and leads to a further dependence on the
parameters μ0, Θ0, and Γ0 that is not present in the even
multipoles. Gravitational redshift will therefore play a
crucial role in future surveys, since it can distinguish

between a modification of gravity, μ0 ≠ 0, and a dark fifth
force acting on dark matter, Γ0 ≠ 0, Θ0 ≠ 0. Moreover, in
models where gravity is coupled differently to standard
matter and dark matter, in which case all parameters have
nonzero values (see, e.g., Ref. [21]), gravitational redshift
can constrain all modifications separately.
Since we are introducing two additional parameters, we

expect that the bounds on μ0 are not as tight as in the RSD-
only analyses with no violation of the WEP. Nevertheless,
when diagonalizing the Fisher matrix, we always identify a
combination of parameters that is very tightly constrained.
For the baseline SKA2 analysis, this combination is
λ1¼0.62μ0þ0.62Γ0−0.48Θ0, with an error σλ1 ¼ 0.002,
i.e., twice smaller than the original error on μ0 (see the first
line of Table I). This indicates that the dipole contains
additional information on deviations from ΛCDM with
respect to the even multipoles.
Finally, we have checked that the analysis holds if we

add a fraction of baryons (obeying the WEP) to the density
and velocity evolution (see Appendix A). The results are
presented in Table II and show that also in this case we
obtain tight constraints on the individual parameters μ0, Γ0,
and Θ0.

V. CONCLUSION

Our paper describes severe issues in testing gravity with
upcoming large-scale structure surveys that previous work
failed to see. Much effort has been devoted to designing
and building these surveys, and it is therefore crucial to
analyze the data in an optimal way to obtain robust
constraints. Currently, constraints on modified gravity
are obtained through RSD measurements, which directly

TABLE I. The RSD constraints on μ0, restricted to models
where the WEP is valid, are degraded into much wider bounds on
μ0 þ Γ0 when dropping this requirement.

SDSS-IV DESI SKA2

σμ0 (restricted to WEP validity) 0.21 0.02 0.004
σμ0þΓ0

(no assumption on WEP) 6.05 0.63 0.062

TABLE II. Forecasted constraints on μ0 þ Γ0, the individual
parameters fμ0, Γ0, Θ0g and the best-measured eigenvector λ1
when adding the relativistic dipole to RSD measurements.

DESI SKA2 SKA2 with baryons

σμ0þΓ0
0.60 0.062 0.077

σμ0 1.79 0.147 0.147
σΓ0

1.84 0.158 0.186
σΘ0

0.73 0.079 0.093

σλ1 0.01 0.002 0.002

FIG. 2. Forecasted constraints on μ0, Θ0, and Γ0 for SKA2,
combining the even multipoles and the dipole.
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probe the dynamical evolution of dark matter clustering,
and are therefore sensitive to deviations in the Poisson
equation, encoded in the parameter μ.
We have shown that the clustering of dark matter is also

affected by violations of the WEP. In particular, a fifth force
acting on dark matter would enhance its clustering, whereas
friction generated by an additional degree of freedomwould
suppress it. Since RSDs are only sensitive to the growth rate
of cosmic structures, they cannot distinguish between these
different effects. Therefore, constraints on the parameter μ
are completely spoiled by allowing for violations of the
WEP for dark matter. Moreover, this loss of constraining
power onμ propagates and spoils the constraints on η, i.e., on
the anisotropic stress, since gravitational lensing can only
measure the combination Σ ¼ μð1þ ηÞ.
Luckily, as in all good plays, a deus ex machina rescues

the situation: gravitational redshift in the galaxy number
counts, which will be measurable with upcoming surveys.
Since gravitational redshift is sensitive to the way photons
escape from a gravitational potential, combining it with
RSDs (which probe the way dark matter falls in the
potential) allows us to robustly constrain deviations from
the WEP and therefore to recover tight bounds on all
parameters.
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APPENDIX A: IMPACT OF A FRACTION
OF BARYONS

As shown in Ref. [37], the velocity that is relevant in RSD
correlations is the velocity of the galaxy center of mass.
In our analysis, we have assumed that this velocity is
completely determined by the velocity of darkmatter, which
is a good approximation since the galaxy mass is largely
dominated by dark matter. Here, we study how the con-
straints change if we include the impact of baryons on the
center of mass velocity.More precisely, wemodel the center
of mass velocity as a weighted average of the contributions
from the dark matter and baryonic components (see also
Ref. [53]): V ¼ xVdm þ ð1 − xÞVb, where x≡ ρdm=ρm is
the fraction of dark matter inside a galaxy. Similarly, the
matter density is given by δ ¼ xδdm þ ð1 − xÞδb.

This leads to a system of coupled differential equations,

δ̈dm þHð1þ ΘÞ_δdm
−
3

2
H2ΩmðzÞμð1þ ΓÞ½xδdm þ ð1 − xÞδb� ¼ 0; ðA1Þ

δ̈b þH_δb −
3

2
H2ΩmðzÞμ½xδdm þ ð1 − xÞδb� ¼ 0; ðA2Þ

which can be solved numerically using δdm ¼ δb as the
initial condition at z�, when violations of the WEP are
negligible; see Eq. (6).
When including the impact of a fraction of baryons into

our analysis, we expect a small degradation of the con-
straints. This is because only a part of the total matter
(the dark matter component) is affected by the breaking of
the WEP, leading to a factor x < 1 in front of the last term
within the square brackets in Eq. (12). For our computa-
tions, we set x ¼ 0.85, which is a typical value for
individual massive galaxies [54] and also roughly corre-
sponds to the cosmic average [5].
The results are presented in Table II, indeed showing a

small degradation of the constraints on Θ0 and Γ0 of
roughly 18%. On the other hand, the bounds on μ0 are not
significantly affected.

APPENDIX B: MAGNIFICATION
AND EVOLUTION BIASES

Galaxy surveys are usually flux limited; i.e., they detect
only galaxies with a flux above a given threshold F�. This
generates additional fluctuations in the galaxy number
counts, which have been calculated, e.g., in Refs. [34,40].
Here, we derive how this effect impacts two populations of
galaxies.
We denote by NBðz;nÞ the number of bright galaxies

per pixel, i.e., the number of galaxies above a chosen flux
limit Fcut:

NBðz;nÞ≡ Nðz;n; F ≥ FcutÞ: ðB1Þ

Since light propagation is affected by inhomogeneities, Fcut
corresponds to a different luminosity threshold in different
directions: Lcutðz;nÞ ¼ L̄cutðzÞ þ δLcutðz;nÞ. Here, L̄cut
denotes the luminosity threshold associated to Fcut in a
homogeneous Universe, and δLcut is the departure from this
average due to fluctuations. We obtain

NBðz;nÞ¼Nðz;n;L≥ L̄cutðzÞþδLcutðz;nÞÞ

≃Nðz;n;L≥ L̄cutðzÞÞ−
5

2
sðz;LcutÞ

δLcut

L̄cut
; ðB2Þ

where
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sðz; LcutÞ≡ −
2

5

∂

∂Lcut
Nðz; L ≥ LcutÞ: ðB3Þ

On the other hand, the faint galaxies have a flux smaller
than Fcut but larger than the flux threshold of the survey F�:

NFðz;nÞ≡ Nðz;n; Fcut > F ≥ F�Þ
¼ Nðz;n; F ≥ F�Þ − Nðz;n; F ≥ FcutÞ
≃ Nðz;n; L̄cut > L ≥ L̄�Þ

−
5

2
sðz; L�Þ

δL�
L̄�

þ 5

2
sðz; LcutÞ

δLcut

L̄cut
; ðB4Þ

where

sðz; L�Þ≡ −
2

5

∂

∂L�
Nðz; L ≥ L�Þ: ðB5Þ

For a fixed flux, the fluctuations in luminosity are
directly related to the fluctuations of the luminosity dis-
tance, which have been calculated in Refs. [55,56]:

δLcut

L̄cut
¼ δL�

L̄�
¼ 2

δdLðz;nÞ
d̄LðzÞ

: ðB6Þ

Here, we are only interested in the terms contributing to
the dipole, i.e., those proportional to the peculiar velocity.
Inserting Eq. (B6) into (B2) and (B4), we find that the flux
thresholds generate fluctuations inΔ for the bright and faint
populations of the form

Δmag
B;F ¼ −5sB;FðzÞ

�
1 −

1

rH

�
V · n; ðB7Þ

where

sBðzÞ≡ sðz; LcutÞ; ðB8Þ

sFðzÞ≡ sðz; L�Þ − sðz; LcutÞ: ðB9Þ

To calculate sBðzÞ and sFðzÞ for SKA2, we use the fitting
function for sðz; LÞ given in Ref. [57], with a flux
sensitivity limit F� of 5 μJy. We then choose the flux
cut Fcut in each redshift bin such that we have the same
number of bright and faint galaxies. For DESI, we use the
model developed in Ref. [38] for the magnification bias of
the BGS with a magnitude limit m� ¼ 19.5, and we set the
magnitude cut by again imposing the same number of
bright and faint galaxies. The resulting magnification bias
functions for the bright and faint populations of both
surveys are shown in Fig. 3.6

The number counts fluctuations Δrel also depend on
the evolution bias fevol; see Eq. (8). The evolution bias
describes the evolution of the galaxy population with time,
while taking the selection function into account [34].
For the forecasts, we use fevolB ¼ fevolF ¼ 0. Once data are
available, the magnification bias and the evolution bias can
be measured from the average number of galaxies.
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