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We revisit the quantum cosmological constant problem and highlight the important roles played by the
de Sitter (dS) horizon of zero-point energy. We argue that fields which are light enough to have a dS horizon
of zero-point energy comparable to the Friedmann-Lemaître-Robertson-Walker (FLRW) Hubble radius are
the main contributors to dark energy. On the other hand, the zero-point energy of heavy fields develop
nonlinearities on sub-Hubble scales and cannot contribute to dark energy. We speculate that our proposal
may provide a resolution for both the old and new cosmological constant problems by noting that there
exists a field, the (lightest) neutrino, which happens to have a mass comparable to the present background
photon temperature. The proposal predicts multiple transient periods of dark energy in the early and late
expansion history of the Universe, yielding a higher value of the current Hubble expansion rate which can
resolve the H0 tension problem.
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I. INTRODUCTION

The lambda–cold dark matter (ΛCDM) model has
emerged as a successful phenomenological model, explain-
ing the dynamics of the evolution of the cosmos with a
handful of free parameters [1,2]. Among the key unknown
ingredients are dark matter and dark energy. There are
hopes that the former may be addressed one way or another
by new physics beyond the Standard Model (SM) of
particle physics, while the latter has proven more elusive.
There have been numerous attempts to address the nature

of dark energy; for a review, see Refs. [3–5] and references
therein. One simple and natural possibility is that the dark
energy is simply a cosmological constant term, like what
Einstein initially introduced to construct a seemingly static
Universe. As is well known, the cosmological constant is
associated with big problems in theoretical physics; for a
classic review, see Ref. [6]. As we shall review below, it is
expected that the cosmological constant receives contribu-
tions from the zero-point energy of all fields in the SM. It is
usually argued that the zero-point energy density is of the
order M4, in which M is the UV cutoff of the theory. The
old cosmological constant problem is why it is not as large
as expected from the typical energy scale of high-energy
physics, like ðTeVÞ4 or M4

P, in which MP ∼ 1018 GeV is
the reduced Planck mass related to the Newton constant G
viaM2

P ¼ 1=8πG. The new cosmological constant problem
is why it is comparable to the energy density of matter at the
current epoch in cosmic history, entering into the dynamics

of the expansion of the Universe at redshift values
around zΛ ∼ 0.3.
A number of approaches were proposed to address the

cosmological constant problem(s). One approach is to
employ the fundamental symmetries, like supersymmetry.
In supersymmetric theories, there is a one-to-one relation
between the number of bosons and the number of fermions
which keeps the value of the cosmological constant zero.
Of course, nature is not seen to be supersymmetric on
energy scales below TeV, so supersymmetry cannot explain
the smallness of dark energy. The other approach is based
on ideas like quintessence [7,8], in which the dark energy is
dynamically evolving to its attractor value, which is zero.
However, these kinds of models cannot address the severe
fine-tunings involved, as one has to tune the model
parameters carefully in order to obtain a tiny value of dark
energy at the current epoch. Another class of solutions are
based on the self-tuning idea in the context of extra
dimensions [9–13]. These solutions are not convincing
either, as they either run into singularities or require the
fine-tuning of model parameters. A solution of a different
kind has been proposed based on the anthropic principle, in
which the cosmological constant should choose a range of
values that allow gravitationally bound objects like galaxies
to form to host the star formation required for the existence
of intelligent observers [6,14].
In this paper, we revisit the quantum cosmological

constant problem.We emphasize the important roles played
by the scale of the de Sitter (dS) horizon associated with the
zero-point energy. In particular, we compare the scale of its
Hubble radius with the Hubble radius of the Friedmann-
Lemaître-Robertson-Walker (FLRW) universe and argue*firouz@ipm.ir
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that the conventional treatment of the quantum cosmologi-
cal constant problem misses this important effect.
The rest of the paper is organized as follows: In Sec. II,

we review the cosmological constant problem and gather
some basic formulas. In Sec. III, we highlight the important
roles that the horizon scale of the patch of zero-point energy
plays, while in Sec. IV, we show why, unlike in conven-
tional treatment, the heavy fields cannot contribute to the
cosmological constant. In Sec. V, we calculate the zero-
point energy in a dS background, while in Sec. VI, we
present various cosmological implications of our proposal,
followed by the summary and discussions in Sec. VII.

II. THE COSMOLOGICAL CONSTANT PROBLEM

In this section, we briefly review the cosmological
constant problem. For a more extensive review, see
Refs. [6,15].
Numerous observations confirm the detection of dark

energy at a level comparable to the matter-energy density
today [2,16,17]. Therefore, the cosmological constant, if
not exactly zero by some symmetry considerations, is as
small as ρv ∼ ð10−3 eVÞ4. Now the big trouble with the
cosmological constant is what mechanism keeps it small
enough to be consistent with cosmic evolution.
In its simplest form, the cosmological constant is

associated with the problem that the zero-point energy
of the fields has quartic divergence with the UV energy
scale. To see it more specifically, consider a real scalar field
ϕ with the mass m described by the following simple
Lagrangian in flat spacetime:

S ¼
Z

d4x

�
−
1

2
∂μϕ∂

μϕ −
m2

2
ϕ2

�
: ð2:1Þ

The energy momentum tensor Tμν is given by

Tμν ¼ ∂μϕ∂νϕ − ημν

�
1

2
gαβ∂αϕ∂βϕþm2

2
ϕ2

�
: ð2:2Þ

In particular, the energy density ρ is given by

ρ ¼ T00 ¼ H ¼
_ϕ2

2
þ 1

2
δij∂iϕ∂jϕþm2

2
ϕ2; ð2:3Þ

in which H is the Hamiltonian density.
We expand the quantum field in terms of the creation and

the annihilation operators in Fourier space,

ϕðxÞ ¼ 1

ð2πÞ3=2
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ½eik·xak þ e−ik·xa†k�; ð2:4Þ

in which kμ ¼ ðωðkÞ;kÞ, ωðkÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and

½ak; a†q� ¼ δ3ðk − qÞ.

The effective energy density contributing to the Einstein
field equation is h0jρj0i≡ hρi, in which h0jXj0i means the
quantum expectation value of the quantum operator X with
respect to the vacuum. Using the form of the operator ρ
from Eq. (2.3), we obtain

hρi ¼ 1

2

Z
d3k
ð2πÞ3 ωðkÞ: ð2:5Þ

Performing the same calculation for the pressure p, we
obtain [15]

hpi ¼
�
1

3
⊥μνTμν

�
¼ 1

6

Z
d3k
ð2πÞ3

k2

ωðkÞ ; ð2:6Þ

in which ⊥μν ≡ ημν þ uμuν is a projection operator and
uμ ¼ ð1; 0Þ is the comoving four-velocity.
To perform the above integrals, one usually imposes a

hard UV momentum cutoff k ≤ M, and the integral in
Eq. (2.5) is estimated as

hρi ≃ M4

16π2
: ð2:7Þ

This is the usual representation of the old cosmological
constant problem. If one assumes M ∼MP, then the above
estimation yields a contribution to hρvi larger than the
observed value by some factor of 10120. Of course, if one
chooses a smaller UV energy scale, say the scale of SM
particle physics M ∼ 102 GeV, then the discrepancy
becomes less severe, but still the theoretical estimation is
larger by some 1056 orders of magnitude from the
observed value.
The above analysis can be repeated for other fields,

bosonic or fermionic, with the important distinction that for
fermionic fields one obtains a negative contribution in hρi.
This is because the fermionic fields, unlike the bosonic
fields, anticommute with each other.
However, as pointed out in Refs. [15,18–21], the hard

momentum cutoff implemented above is problematic, as it
does not respect the Lorentz invariance of the setup. In
other words, the hard cutoff only respects the Oð3Þ
invariance over the three-dimensional momentum space
while breaking the four-dimensional Oð1; 3Þ Lorentz
invariance. To see the fatal problem with this naive hard
momentum cutoff regularization, note that to leading order
we obtain hpi ≃M4=ð3 × 16π2Þ, which means that
hpi=hρi ≃ 1=3. On the other hand, the Lorentz invariance
of the vacuum requires that

hTμνi ¼ −ρvacημν; ð2:8Þ

which immediately enforces hpi ¼ −hρi. To bypass this
problem, one has to employ a regularization scheme which
respects the underlying Lorentz invariance. A good
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candidate is the dimensional regularization approach,
which keeps the four-dimensional Lorentz invariance
intact.
By performing the integral using the dimensional regu-

larization approach (or any Lorentz-invariant scheme) for
the massive real scalar field, one obtains [15,18–21]

hρi ¼ −hpi ¼ m4

64π2
ln

�
m2

μ2

�
; ð2:9Þ

in which μ is the renormalization scale.
There are a few comments in order concerning Eq. (2.9).

First, the requirement of Lorentz invariance hpi ¼ −hρi is
explicit. Second, the massless fields such as gravitons,
photons, or gluons do not contribute to the energy density
of the vacuum. This may be understood by noting that for
massless particles, the equation of state is simply p ¼ ρ=3,
so the requirement of Lorentz invariance hpi ¼ −hρi can
be met only if hρi ¼ 0. Third, depending on the renorm-
alization scale, the vacuum energy density can be either
positive (dS spacetime) or negative (AdS spacetime).
Again, this is unlike the conclusion based on a hard
momentum cutoff prescription in which the bosonic (fer-
mionic) fields always yield positive (negative) contribu-
tions to hρi. Finally, there is no quartic dependence on the
cutoff scale. This can reduce the naive fine-tuning of order
10−120 by many orders of magnitudes. As a rough estimate,
for the heavy SM fields with mass on the order of 102 GeV,
we obtain jhρij ∼ 1044 eV4, which is much smaller than the
naive estimation hρi ∼M4

P. However, it is still vastly larger
than the observed value of the vacuum energy density. In
addition, note that the contribution from the (lightest)
neutrino with mν ∼ 10−2 eV is hρi ∼m4

ν ∼ ð10−2 eVÞ4,
which is at the same order as the observed value of dark
energy. As we shall see, this is not an accident and will be
part of our solution for the cosmological constant problem.
Combining the contributions from all fields, bosonic and

fermionic, the total contribution in vacuum zero-point
energy is obtained to be [15,19]

hρi ¼
X
i

ni
m4

i

64π2
ln

�
m2

i

μ2

�
; ð2:10Þ

in which ni represents the degree of freedom (polarizations)
of each field. For example, for a real scalar field n ¼ 1, and
for a massive vector field n ¼ 3, while for a Dirac fermion
n ¼ −4. Note that while a fermionic field has an opposite
sign contribution in hρi compared to a bosonic field, it is

the combination ni lnðm
2
i

μ2
Þ which determines the sign of the

contribution of the corresponding field in hρi. For example,
if we take μ to be on the order of the electroweak symmetry
breaking scale, then all fermionic (bosnic) fields in the SM
spectrum contribute positively (negatively) in hρi.

As discussed above, we comment that while a hard
momentum cutoff breaks the underlying Lorentz invariance
and yields to a number of problems, such as quartic and
quadratic divergences in hρi, with careful considerations
one can still employ a hard momentum cutoff. For this
purpose, one has to implement noncovariant counterterms
in the Lagrangian to cancel the corresponding power-law
divergences in hρi. More specifically, expanding hρi in
terms of the momentum cutoff scale M, the leading
divergences are M4 and M2, followed by the logarithmic
contribution as in Eq. (2.9). The quartic divergence has the
equation of state of radiation, while the quadratic diver-
gence has that of a spatial curvature. As emphasized in
Ref. [15], it is only the logarithmic contribution which
has the equation of state of the vacuum, which is what is
captured by the dimensional regularization scheme.

III. THE QUESTION OF THE DS HORIZON

To calculate the vacuum energy density, we have
assumed a flat background yielding to Eq. (2.9). This
seems reasonable, as the energy density is a local quantity
which is not sensitive to the large-scale properties of the
cosmological background. Indeed, the combination of
Lorentz invariance and the equivalence principle guarantee
that the flat spacetime approximation to calculate the
vacuum energy density as given in Eq. (2.9) is valid.
However, there is a subtle issue that was not taken into
account when applying the estimated zero-point energy to
cosmology. In the presence of gravity—i.e., when the
Newton constant G is turned on—associated with each
positive vacuum energy is a horizon radius which controls
the causal properties of the corresponding dS spacetime.
However, in the usual treatment of the cosmological
constant problem, it is assumed that the entire observable
Universe with the current Hubble radius H−1

0 is simulta-
neously endowed with a vacuum energy density ρv given by
Eq. (2.9). This is equivalent to assuming that the quantum
zero-point energy fills the entire observable Universe in a
single patch of size H−1

0 . This is too much to ask.
The correct way of thinking about this problem is to look

at the Hubble radius associated with Eq. (2.10) for each
field. Let us denote ρvðmÞ and HðmÞ, respectively, as the
vacuum energy density and the Hubble rate of dS spacetime
created from the zero-point energy of each field with the
mass m. Then, we have 3M2

PH
2
ðmÞ ¼ ρvðmÞ ∼m4, yielding

HðmÞ ≃
m2

MP
: ð3:1Þ

This is one important relation to keep in mind. For example,
for an electron field with me ∼MeV, we obtain HðmeÞ∼
10−15 eV, yielding the Hubble radius H−1

ðmeÞ ∼ 109m.

Logically, this is the largest dS patch which the zero-point
energy associated with the electron field can cover
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coherently. On the other hand, the current Hubble radius is
H−1

0 ∼ Gpc ∼ 1026m. From the above simple estimation,
we conclude that the observable FLRW Universe encom-
passes as many as ðH−1

0 =H−1
ðmeÞÞ3 ∼ 1051 independent

patches with the size H−1
ðmeÞ. Demanding that as many as

1051 dS patches of the electron zero-point energy coher-
ently cover the entire observable Universe is too strong a
condition to be realistic. Considering fields heavier than the
electron, the situation becomes even worse—i.e,, the ratio
H−1

0 =H−1
ðmÞ becomes much larger.

The picture which emerges from the above discussions is
as follows: For heavy fields, the Hubble radius associated
with a dS spacetime generated from the zero-point energy is
much smaller than the Hubble radius of the observable
Universe, H−1

ðmÞ ≪ H−1
0 . Therefore, one needs as many as

Npatches ∼
�
HðmÞ
H0

�
3

∼
�

m
10−2 eV

�
6

ð3:2Þ

tiny dS patches to cover the current observable Universe.
As these tiny patches are created quantum mechanically,
they are uncorrelated, so they cannot provide a coherent
energy density to be the origin of the observed cosmo-
logical constant (or dark energy). This also provides an
interesting resolution for the cosmological constant prob-
lem: considering the light fields. Specifically, very light
fields have much smaller zero-point energy, but at the same
time they have a very large Hubble radius, which can
encompass the entire observable Universe in a single dS
patch. From Eq. (3.2), we see that the (lightest) neutrino
with the mass mν ∼ 10−2 eV has just the right scale to
address the cosmological constant problem in which
H−1

0 ∼H−1
ðmνÞ. In this view, the entire observable Universe

currently is within a single dS patch created by the zero-
point energy of the light neutrino field with the vacuum
energy density ð10−3 eVÞ4; see the left panel of Fig. 1 for a
schematic view. Correspondingly, the observed vacuum
energy density today with the fractional energy density [2]

Ωð0Þ
Λ ∼ 0.7 is sourced by the zero-point energy of the

lightest neutrino.
In the case of heavy fields, as the huge number of dS

patches in Eq. (3.2) are uncorrelated, one expects the full
volume between these regions to be highly inhomo-
geneous; for a schematic view, see the right panel of
Fig. 1. Consequently, one expects the variance in the energy
density to be large, yielding to a large density contrast,
δρvðmÞ
ρvðmÞ ∼ 1. In the next section, we calculate the variance and

the density contrast of the vacuum zero-point energy which
confirm the above conclusion. In addition, we calculate the
correlation length associated with the zero-point energy and
show that the correlation length is on the order of Compton
radius m−1.

However, before calculating the variance of the vacuum
energy density, let us check the accumulated energy
associated with the modes which are outside the correlation
length—i.e., the modes which have crossed the quantum
Compton radius with k ≤ m. Denoting this accumulated
energy by δρCðmÞ, we obtain

δρCðmÞ ¼ 1

2

Z
m

0

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

¼ m4

32π2
½3

ffiffiffi
2

p
− lnð1þ

ffiffiffi
2

p
Þ� ∼ 6m4

64π2
: ð3:3Þ

Now, we can compare the above value of the accumulated
energy density of the “long modes” with the supposedly
background vacuum energy density ρvðmÞ given in
Eq. (2.9). Assuming that there is no exponential hierarchy
between m and the renormalization scale μ, we obtain

δρCðmÞ
ρvðmÞ ∼ 1: ð3:4Þ

We conclude that the accumulated energy density of the
modes which are outside the correlation length m−1 is
comparable to the background vacuum energy density. This
rings the bell that the background space can be highly
inhomogeneous, and the nearby dS patches cannot provide
a coherent background for the large-scale Universe.

IV. DENSITY CONTRAST AND CORRELATION
LENGTH

The quantum average of the vacuum zero-point energy
density hρvi ¼ hHi for the real scalar field is given in

FIG. 1. A schematic view comparing the FLRW Hubble radius
H−1

F with the dS horizon of size H−1
ðmÞ associated with the zero-

point energy of the field with the mass m. Left: this is the case
when the field is light, so the FLRW horizon is within a single dS
patch of zero-point energy. Right: this represents the case when
the field is heavy, so its dS horizon is much smaller than the
FLRW horizon, such that a FLRW Hubble patch encompasses
many small patches of zero-point energy.
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Eq. (2.9). Now, for the moment, suppose we neglect the
contribution from the FLRW matter and radiation energy
density and assume that ρv is the dominant energy density
in cosmic expansion. In order for hρvi to be viewed as a
viable background energy density for the cosmic evolution,
we have to make sure that the variance in energy density is
small, yielding to a small density contrast δρv=hρvi ≪ 1.
Otherwise, a region with large density contrast δρv=hρvi ∼
1 develops inhomogeneities and may even collapse into
black holes.
In this section, we calculate explicitly the variance δρ2v ≡

hρ2vi − hρvi2 and the density contrast δρv=hρvi. First, we
present the analysis for the case of a real scale field, and
then we go to the case of a Dirac fermion field.

A. Real scalar field

First, we consider the case of a real scalar field with the
action (2.1). Let us denote the three different contributions
to energy density of the scalar field in Eq. (2.3) by ρ1, ρ2,
and ρ3 as follows:

ρ1 ≡
_ϕ2

2
; ρ2 ≡ 1

2
δij∂iϕ∂jϕ; ρ3 ≡m2

2
ϕ2: ð4:1Þ

To calculate hρii, we go to Fourier space and expand the field
in terms of the mode functions as in Eq. (2.4). Performing the
momentum integrals using the dimensional regularization
scheme to regularize the UV divergences (for a sample
analysis of dimensional regularization, see Sec. V), we obtain

hρ1i ¼
1

2

Z
d3q
ð2πÞ3

ωðqÞ
2

¼ m4

128π2
ln

�
m2

μ2

�
; ð4:2Þ

hρ2i ¼
1

2

Z
d3q
ð2πÞ3

q2

2ωðqÞ ¼
−3m4

128π2
ln

�
m2

μ2

�
; ð4:3Þ

hρ3i ¼
1

2

Z
d3q
ð2πÞ3

m2

2ωðqÞ ¼
4m4

128π2
ln

�
m2

μ2

�
: ð4:4Þ

Curiously, note that while all three operators ρ1, ρ2, and ρ3 are
positive definite and Hermitian operators, the expectation

value of ρ2 has the opposite sign compared to those of ρ1 and
ρ2. Furthermore, noting that hρi ¼ hρ1i þ hρ2i þ hρ3i, the
following relations hold, which will be useful later on:

hρi ¼ 2hρ1i ¼ −
2

3
hρ2i ¼

1

2
hρ3i: ð4:5Þ

Now, to calculate δρ2, we have

δρ2 ¼ hρ21i þ hρ22i þ hρ23i þ hρ1ρ2i þ hρ2ρ1i
þ hρ1ρ3i þ hρ3ρ1i þ hρ2ρ3i þ hρ3ρ2i
− ðhρ1i2 þ hρ2i2 þ hρ3i2Þ
− 2hρ1ihρ2i − 2hρ1ihρ3i − 2hρ2ihρ3i: ð4:6Þ

Note that since _ϕ and ϕ do not commute, we have
considered all possible orderings of the operators.
However, as we shall see, these orderings do not matter.
First, we note that ϕ is a free Gaussian field, so using the

standard Wick theorem (or by direct calculations), one can
show that

hρ2i i ¼ 3hρii2; i ¼ 1; 3: ð4:7Þ

However, the calculation of hρ22i is somewhat tricky.
Performing various contractions, we obtain

hρ22i¼hρ2i2þð2Þ1
4

Z
d3q1

ð2πÞ32ωðq1Þ
d3q2

ð2πÞ32ωðq2Þ
ðq1 ·q2Þ2

¼hρ2i2þ
�
2×

1

3

�
hρ2i2; ð4:8Þ

in which the factor 1=3 originates from an integral of the
form

Rþ1
−1 dðcos θÞ cos2 θ.

For the mix correlations, we calculate one case for
illustration, and the rest would be similar. For this purpose,
let us calculate hρ1ρ2i. To simplify the analysis, note that due
to translation invariance we can simply set x ¼ 0, obtaining

hρ1ρ2i ¼
i4

4

Z
d3qi

ð2πÞ32
ωðq1Þωðq2Þq3 · q4

2ωðqiÞ
h0jð−aq1 þ a†q1Þð−aq2 þ a†q2Þðaq3 − a†q3Þðaq4 − a†q4Þj0i

¼ 1

4

Z
d3q1

ð2πÞ32ωðq1Þ
d3q2

ð2πÞ32ωðq2Þ
½2ωðq1Þωðq2Þq1 · q2 þ ωðq1Þ2q2

2�: ð4:9Þ

On the other hand, due to rotation invariance, the integral
over q1 · q2 vanishes, and we obtain

hρ1ρ2i¼
1

4

Z
d3q1

ð2πÞ3
d3q2

ð2πÞ3
ωðq1Þ
2

q2
2

2ωðq2Þ
¼hρ1ihρ2i: ð4:10Þ

Similarly, we obtain

hρ2ρ3i ¼ hρ2ihρ3i: ð4:11Þ

Since _ϕ and ϕ do not commute, the calculation for hρ1ρ3i is
a bit different, yielding
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hρ1ρ3i ¼ hρ1ihρ3i −
m2

2

�Z
d3q1

ð2πÞ3
�

2

: ð4:12Þ

Regularizing the last term above which is UV divergent by
absorbing it into counterterms, we obtain

hρ1ρ3i ¼ hρ1ihρ3i ¼ hρ3ρ1i: ð4:13Þ

Combining all, we obtain

δρ2 ¼ 2ðhρ1i2 þ hρ2i2 þ hρ3i2Þ −
4

3
hρ2i2 ¼ 10hρi2;

ð4:14Þ

where to obtain the final result, the relations in Eq. (4.5)
have been used.
From the above expression, the density contrast (taking

both signs after the square root) is obtained to be

δρv
hρvi

¼ �
ffiffiffiffiffi
10

p
: ð4:15Þ

This is an interesting result. As argued before, the energy
density of the background constructed from the zero-point
energy is very inhomogeneous. This is in agreement with
the intuition that a large number of incoherent patches of
zero-point energy cannot cover the entire observable
Universe. Also, note that both signs are allowed, so we
can have either overdensity or underdensity. Specifically,
the quantity hρi þ δρ can take either sign, so some regions
of spacetime can be dS type, and some other parts AdS
(anti–de Sitter) type. The parts of the spacetime which are
AdS type may collapse due to instabilities.
The above conclusion that hρi þ δρ can be negative is

based on the hidden assumption that the statistical distri-
bution of ρ is mostly symmetric around its average value
hρi, so a large variance can yield to a negative local value of
hρi þ δρ. This is certainly the case for a Gaussian dis-
tribution, while for other distribution, like Poisson distri-
bution, it may not be the case. Therefore, the nature of the
distribution of ρ is an important question. In our setup with
a large uncorrelated dS patches of heavy fields created
quantum mechanically from the vacuum, it may be rea-
sonable to assume that ρ follows a normal (i.e., Gaussian)
distribution. But it would be interesting to calculate the
distribution of ρ from first principles. In the following
analysis, we assume a Gaussian-type distribution such that
hρi þ δρ can become negative for a large variance.
In the above analysis, we have neglected the conven-

tional matter and radiation energy density of the FLRW
Universe, ρF. Now, let us look at the total energy density
from the combination of the FLRWmatter-radiation ρF and
the vacuum energy density, defined via ρT ¼ ρF þ ρv in
which ρv is the vacuum energy density given in Eq. (2.9).
Note that ρF is independent of the zero-point energy,

so its quantum expectation is trivial—i.e., hρFi ¼ ρF.
Correspondingly, hρTi ¼ ρF þ hρvi and δρ ¼ δρv in which
δρv is as given in Eq. (4.14). Therefore, the total density
contrast is given by

δρT
hρTi

¼ δρv
ρF þ hρvi

¼ �
ffiffiffiffiffi
10

p hρvi
ρF þ hρvi

: ð4:16Þ

Demanding that the amplitude of the total density contrast
be small, j δρThρTi j < 1, we obtain

hρvi < ð
ffiffiffiffiffi
10

p
− 1Þ−1ρF ∼

ρF
2
: ð4:17Þ

This means that in order for the background consisting
of matter-radiation plus zero-point energy to be stable
for cosmological expansion, one requires that the vacuum
energy be less than the FLRW matter-radiation energy
density.
Motivated by the above analysis, it would be instructive

to calculate the fractional contrast in K≡ ρþ 3p, as the
quantity K (the strong energy condition with K ≥ 0) plays
key roles in gravitational collapse and black hole forma-
tions in the Hawking-Penrose theorem. One can check that
the vacuum pressure is given by

pv ¼ ρ1 −
ρ2
3
− ρ3; ð4:18Þ

so we have

K ¼ 4ρ1 − 2ρ3: ð4:19Þ

Now, repeating the same steps as in the case of ρ, one can
show that hKi ¼ −2hρvi and hK2i ¼ 44hρvi2. Combining
these two results, we obtain

δK2 ≡ hK2i − hKi2 ¼ 40hρvi2; ð4:20Þ

and

δK
hKi ¼ �

ffiffiffiffiffi
10

p
: ð4:21Þ

This suggests that the local curvature of the spacetime
fluctuates rapidly, in which some regions are expected to
become AdS type and may collapse to form black holes.
Having calculated the variance and the density contrast,

it is also instructive to calculate the correlation length
of the energy density. The correlation length is related to
the connected part of the correlation function as follows:
The two-point correlation function is given by hρðxÞρðyÞi.
Due to translation invariance, the correlation function
depends only on x − y, so we simply set y ¼ 0. The
connected part of the two-point correlation function is
given by

HASSAN FIROUZJAHI PHYS. REV. D 106, 083510 (2022)

083510-6



hρðxÞρð0Þic ≡ hρðxÞρð0Þi − hρ2i: ð4:22Þ

Performing the analysis similar to the case of variance,
one can calculate hρðxÞρð0Þic. The analysis is somewhat
involved. However, what we are interested in is the
correlation length ξ, which controls the exponential falloff
of the connected correlation function at a large distance:

hρðxÞρð0Þic → e−
r
ξ; ðr → ∞Þ: ð4:23Þ

To estimate ξ, let us look at hρ3ðxÞρ3ð0Þic, which is easier.
Upon performing the various contractions, we obtain

hρ3ðxÞρ3ð0Þic ¼
m4

2

�Z
d3q

ð2πÞ32ωðqÞ e
−iq·x

�
2

: ð4:24Þ

The above integral is well known in QFT, which yields [22]

hρ3ðxÞρ3ð0Þic ¼
m8

32π4

�
K1ðmrÞ
mr

�
2

; ð4:25Þ

in which K1ðxÞ is the modified Bessel function. Using
the asymptotic behaviour K1ðxÞ ∼ e−x, we obtain
hρ3ðxÞρ3ð0Þic ∼ e−2mr, yielding the correlation length
ξ ¼ 1=ð2mÞ. This is somewhat expected, as m is the only
mass scale relevant for this free QFT. Calculating the two-
point correlation functions for other components of the energy
density yields the same exponential behavior for large r.
Now having the correlation length at hand, we can

compare the Hubble radius of zero-point energy H−1
ðmÞ and

ξ, obtaining

ξ

H−1
ðmÞ

∼
HðmÞ
m

∼
m
MP

≪ 1: ð4:26Þ

This is in line with our intuitive argument in the previous
section. The correlation length of the zero-point energy
density is much smaller than the Hubble radius of each dS
patch, so the dS patches are practically uncorrelated. As
such, one cannot cover the entire FLRW horizon with a vast
number of uncorrelated dS patches (like the right panel of
Fig. 1) which are created quantum mechanically and yet
expect them to behave as a uniform cosmological constant.
As the above discussions suggest, the dS spacetime

created purely from the vacuum zero-point energy with
δρv=hρvi ∼�1 is unstable under perturbations. Does this
suggest that the locally formed AdS regions will collapse to
black holes? We cannot be sure about the answer to this
question (see Sec. VI for further discussions/speculations).
But suppose that some regions may collapse to form black
holes. It is therefore helpful to compare the Jeans length of
the corresponding gravitational instability and the horizon
size of the supposedly formed black holes. Assuming a
dS patch of size H−1

ðmÞ collapses into a black hole, the
mass of the corresponding black hole is on the order of

M ∼ ρvH−3
ðmÞ ∼M2

PH
−1
ðmÞ ∼M3

P=m
2. This yields to a

Schwarzschild radius rS ∼H−1
ðmÞ. In other words, the

Schwarzschild radius is nothing but the horizon radius
of the dS patch. On the other hand, the Jeans length of
perturbations is given by λJ ∼ cs=

ffiffiffiffiffiffiffiffi
Gρv

p
, in which cs is the

sound speed of perturbations. In our picture with
δρv=hρvi ∼�1, parts of spacetime fragment to AdS type
while other pars are dS type (though with a higher Hubble
expansion rate than the background dS). Assuming that the
sound speed of perturbations is not exponentially small, the
Jeans length is on the order of λJ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

P=ρv
p

∼H−1
ðmÞ ∼ rS.

Interestingly, we conclude that the Jeans length of gravi-
tational instability is on the same order as the black hole
horizon. This may support the conclusion that the dS
spacetime constructed from the vacuum zero-point energy
is unstable to fragmentations and the formation of black
holes of size H−1

ðmÞ. However, as just mentioned above, the

situation is more complicated, and we leave it as an open
question whether locally formed AdS regions from large
quantum fluctuations can collapse to form black holes.
Before closing this subsection, there is an important com-

ment in order. In our analysis, we have not taken into
account the backreactions of strong inhomogeneities on
the background geometry. As we have seen, for a pure
vacuum-dominated energy density, we have δρv=ρv ∼ 1.
Correspondingly, this induces strong inhomogeneities in
geometry. At the start, assuming a uniformly distributed
vacuumenergy,wehave assumed ahomogenous and isotropic
FLRW background determined by the induced Hubble
expansion rate HðmÞ. In the presence of strong inhomogene-
ities, this assumption is violated, and one has to consider a
general inhomogeneous and anisotropic background to prop-
erly take into account the strong inhomogeneities from the
vacuum fluctuations. This is a difficult and open question. On
the other hand, as we have stressed above, to have a consistent
background, we require a classical source of energy density,
ρF, such that the total density contrast δρv=ρT remains under
perturbative control. However, this assumption breaks down
when ρF falls off as the Universe expands and when ρF ∼ ρv.
At this stage, the inhomogeneities from vacuum fluctuations
cannot be neglected. This will bring up important questions,
which we will come back to in Sec. VI.

B. Dirac fermion field

Here we present the analysis of variance and density
contrast for a Dirac fermion field Ψ. In what follows, we
follow the notations of Weinberg [22].
Expressing the mode function in Fourier space, we have

Ψ¼
Z

d3q

ð2πÞ32
X
σ

½uðq;σÞeiq·xaðq;σÞþvðq;σÞe−iq·xb†ðq;σÞ�;

ð4:27Þ
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in which aðq; σÞ and bðq; σÞ are the annihilation operators
for the “particle” and “antiparticle,” and σ ¼ � 1

2
are two

spin polarizations, while uðq; σÞ and vðq; σÞ are the
corresponding mode functions. As usual, aðq; σÞ and
bðq; σÞ are anticommuting operators in which faðq; σÞ;
a†ðq0; σ0Þg ¼ δσσ0δðq − q0Þ and fbðq; σÞ; b†ðq0; σ0Þg ¼
δσσ0δðq − q0Þ, while the rest of the anticommutators
are zero.
The action of the field with the mass m is given by

S ¼ −
Z

d4xΨ̄ðγμ∂μ þmÞΨ; ð4:28Þ

in which γμ are the Dirac matrices satisfying the anti-
commutation relation

fγμ; γνg ¼ 2ημν; ð4:29Þ

while Ψ̄≡Ψ†β, in which the matrix β is given by β≡ iγ0.
The mode functions uðq; σÞ and vðq; σÞ satisfy the

following relations:

X
σ

uμðq; σÞūνðq; σÞ ¼
�
−iγμqμ þm

2q0

�
μν

; ð4:30Þ

and

X
σ

vμðq; σÞv̄νðq; σÞ ¼
�
−iγμqμ −m

2q0

�
μν

; ð4:31Þ

in which q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
is the energy of the particle.

Furthermore, the following relation is useful as well:

X
σ

v̄ðq; σÞγ0vðq; σÞ ¼ −2i: ð4:32Þ

Finally, the energy density ρ ¼ T00 is given by

ρ ¼ −
1

2
Ψ̄γ0∂0Ψþ 1

2
∂0Ψ̄γ0Ψ: ð4:33Þ

It is convenient to define the above two terms via ρ1 ≡
− 1

2
Ψ̄γ0∂0Ψ and ρ2 ≡ 1

2
∂0Ψ̄γ0Ψ (these values of ρi should

not be confused with ρi in the case of a real scalar field
studied in the previous subsection). One can check that
ρ2 ¼ ρ†1, so ρ ¼ ρ1 þ ρ†1. This shows, as expected, that ρ is
a Hermitian operator.

As a warmup, it is helpful to calculate hρi from
Eq. (4.33). We obtain hρi ¼ hρ1i þ hρ1i�, so we only need
to calculate hρ1i. Using the decomposition of the field in
terms of the mode functions in Eq. (4.27), we have

hρ1i ¼ −
1

2
h0jΨ̄γ0∂0Ψj0i

¼ −
i
2

Z
d3q
ð2πÞ3

X
σ

v̄ðq; σÞγ0vðq; σÞq0

¼ −
Z

d3q
ð2πÞ3 q

0: ð4:34Þ

As a result,

hρi ¼ 2hρ1i ¼ −4
Z

d3q
ð2πÞ3

q0

2
¼ −4

�
m4

64π2
ln
�
m2

μ2

��
:

ð4:35Þ

The above result confirms the factor 4, since we have four
independent degrees of freedom in the Dirac field. In
addition, compared to the case of a real scalar field given in
Eq. (2.5), we have an overall minus sign which is the
hallmark of the fermionic field.
To calculate hρ2i, note that hρ2i ¼ hρ1i�, hρ22i ¼ hρ21i�,

and hρ1ρ2i ¼ hρ1ρ2i� ¼ hρ2ρ1i, which will be handy in the
following analysis. Furthermore, in the analysis below, we
show that hρ21i and hρ1ρ2i are real, so using the above
mentioned relations, we obtain

hρ2i ¼ 2hρ21i þ 2hρ1ρ2i: ð4:36Þ

We calculate each term in turn. Due to translation invari-
ance, we set xμ ¼ 0 without loss of generality.
Starting with hρ21i, we have

hρ21i ¼
1

4
h0jðΨ̄γ0∂0ΨÞðΨ̄γ0∂0ΨÞj0i: ð4:37Þ

Using the decomposition in terms of mode functions from
Eq. (4.27) and performing all the possible contractions
involving the creation and annihilation operators, we end
up with two types of contributions in hρ21i. Denoting these
contributions as term A and term B, we have hρ21i≡ Aþ B,
in which

A≡ 1

4

X
σ1σ2

Z
d3q1

ð2πÞ3
d3q2

ð2πÞ3 q
0
1q

0
2v̄ðq1; σ1Þγ0uðq2; σ2Þūðq2; σ2Þγ0vðq1; σ1Þ ð4:38Þ

and
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B≡ −
1

4

X
σ1σ2

Z
d3q1

ð2πÞ3
d3q2

ð2πÞ3 q
0
1q

0
2v̄ðq1; σ1Þγ0vðq1; σ1Þv̄ðq2; σ2Þγ0vðq2; σ2Þ: ð4:39Þ

Using the relations (4.30) and (4.31), we obtain

A ¼ 1

4

Z
d3q1

ð2πÞ3
d3q2

ð2πÞ3 ðm
2 − q01q

0
2Þ

¼ m2

4

�Z
d3q
ð2πÞ3

�
2

−
1

4
hρ1i2; ð4:40Þ

where to obtain the last result, Eq. (4.35) for hρ1i has
been used.
Similarly, using the relation (4.32), for the B term we

obtain

B ¼
�Z

d3q
ð2πÞ3 q

0

�
2

¼ hρ1i2: ð4:41Þ

Combining the above two contributions, we obtain

hρ21i ¼ Aþ B ¼ m2

4

�Z
d3q
ð2πÞ3

�
2

þ 3

4
hρ1i2: ð4:42Þ

As promised, hρ21i is real, so we do not need to calculate
hρ22i, since hρ22i ¼ hρ21i� ¼ hρ21i. Furthermore, as in the case
of a scalar field, the first term above is UV divergent and
has to be absorbed into counterterms via regularization, so
after regularization we obtain hρ21i ≅ 3

4
hρ1i2.

Now, we calculate hρ1ρ2i, which is

hρ1ρ2i ¼ −
1

4
h0jðΨ̄γ0∂0ΨÞð∂0Ψ̄γ0ΨÞj0i: ð4:43Þ

Like in the previous case, after performing all contractions
involving the creation and the annihilation operators, we
have two different contributions in hρ1ρ2i. Incidentally,
one of these contributions is the B term above, while the
other contribution is new, denoted by the C term, so
hρ1ρ2i ¼ Bþ C, in which

C≡ −
1

4

X
σ1σ2

Z
d3q1

ð2πÞ3
d3q2

ð2πÞ3 ðq
0
2Þ2v̄ðq1; σ1Þ

× γ0uðq2; σ2Þūðq2; σ2Þγ0vðq1; σ1Þ: ð4:44Þ

Note that while the C term looks very similar to the A term,
they are different, as the latter has the product q01q

0
2, while

the former has ðq02Þ2 inside the double integrals.

Using the relations (4.30) and (4.31), we obtain

C ¼ −
m2

4

�Z
d3q1

ð2πÞ3
1

q01

��Z
d3q2

ð2πÞ3 q
0
2

�

þ 1

4

Z
d3q1

ð2πÞ3
Z

d3q2

ð2πÞ3 ðq
0
2Þ2: ð4:45Þ

Combining the two contributions B and C, we obtain

hρ1ρ2i ¼ hρ1i2 þ
m2

4

�Z
d3q
ð2πÞ3

1

q0

�
hρ1i

þ 1

4

Z
d3q1

ð2πÞ3
Z

d3q2

ð2πÞ3 ðq
0
2Þ2: ð4:46Þ

The last term above is again UV divergent and has to be
absorbed into counterterms, so we keep the first two terms
above in the regularized hρ1ρ2i.
Having calculated hρ21i and hρ1ρ2i and discarding the

two UV divergent terms as discussed above, from
Eq. (4.36) hρ2i is calculated to be

hρ2i ¼ 7

2
hρ1i2 þ

m2

2

�Z
d3q
ð2πÞ3

1

q0

�
hρ1i: ð4:47Þ

On the other hand, the integral in the second term above
is already calculated in the case of the real scalar field
in Eq. (4.4), which, combined with Eq. (4.35), can be
expressed in terms of hρ1i as

m2

2

�Z
d3q
ð2πÞ3

1

q0

�
¼ −2hρ1i: ð4:48Þ

Now, combining all the terms, we obtain

hρ2i ¼ 3

2
hρ1i2 ¼

3

8
hρi2: ð4:49Þ

Finally, the variance δρ2 ¼ hρ2i − hρi2 is obtained to be

δρ2 ¼ −
10

16
hρi2: ð4:50Þ

Surprisingly, the variance is negative. This may look
absurd; however, we already encountered seemingly neg-
ative values for the expectation values of positive definite
operators, such as the expectation value of hρ2i in Eq. (4.3)
for the case of a real scalar field. This phenomenon may be
attributed to regularization which absorbs positive-infinity
terms, leaving the finite possible negative terms.
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The amplitude of the zero-point density perturbation is
obtained to be

				 δρvρv

				 ¼
ffiffiffiffiffi
10

p

4
; ð4:51Þ

in which by j δρvρv
j we mean the amplitude with the minus

sign absorbed. Curiously, the factor
ffiffiffiffiffi
10

p
is common as in

the case of a real scalar field; see Eq. (4.15). The factor 1
4

may be attributed to the four degrees of freedom encoded in
the Dirac fermion field. Furthermore, by calculating the
variance of K (defined like in the case of a scalar field), we

obtain j δKhKi j ¼
ffiffiffiffi
10

p
4
.

As in the case of a scalar field, we see that the amplitude
of density contrast associated with the zero-point energy of
the fermionic field is on the order of unity. As before, we
conclude that the vacuum zero-point energy by itself cannot
be the dominant source of the cosmic energy density. One
requires a dominant (classical) source of energy density
like the matter-radiation energy density ρF with ρF > ρv at
each stage in cosmic expansion history to obtain a stable
cosmological background.
Finally, calculating the correlation length ξ of the zero-

point energy, one can check that, as in the case of a real
scalar field, ξ ∼m−1 as expected.

V. ZERO-POINT ENERGY IN DS BACKGROUND

The vacuum zero-point energy density [Eq. (2.9)] is
calculated assuming a flat background. As discussed
before, one expects this result to hold true for a curved
background as well. This is because general relativity is a
local theory, and the combination of the Lorentz invariance
and the equivalence principle guarantees the validity of
Eq. (2.9) even in a curved field space. Having said this, it is
a nontrivial exercise to see how this works in practice.
Specifically, the accumulated zero-point energy yielding to
Eq. (2.9) generates a dS background. At the same time, one
has to solve the mode function ϕðxμÞ in this dS spacetime
and then construct hT00i. Technically speaking, it seems
nontrivial how Eq. (2.9) emerges as the final result. This is
more intriguing for a dS spacetime, noting that a dS
spacetime is characterized by the size of its horizon,
H−1

ðmÞ in our notation, while Eq. (2.9) is indifferent to this
length scale.
In this section, we solve the mode function for a real

scalar field in a dS background and calculate the vacuum
zero-point energy. Note the nontrivial step that we have to
calculate the mode function in a dS space which itself is
created from the vacuum zero-point energy. In other words,
there is no background dS space other than what would be
generated from the vacuum zero-point energy in the first
place. This resembles a strong backreaction problem where
we have to create a background out of quantum perturba-
tions and at the same time solve the mode function in the

geometry of the created background. Then we have to
regularize the energy density to make sure the resultant
value of hρi agrees with its original value in the supposedly
created background. This seems like moving in a loop. For
relevant works, see also Refs. [15,23–25] and Chapter 6 of
Ref. [26], which study the analysis of zero-point energy in a
given curved background. For earlier works concerning the
renormalized stress energy tensor, see Refs. [27–30].
To treat the regularization properly, we employ dimen-

sional regularization for a free scalar field in a curved field
space with the spacetime dimension d, with the action

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂

μϕ −
m2

2
ϕ2

�
: ð5:1Þ

The background metric is given by a FLRW-type metric in
d dimensions,

ds2 ¼ −dt2 þ aðtÞ2dx2; ð5:2Þ

in which aðtÞ is the scale factor.
Using the conformal time dτ ¼ dt=aðtÞ and defining the

canonically normalized field σ via σ ≡ a
d−2
2 ϕ, the action

takes the following form:

S ¼ 1

2

Z
ddx

�
σ02 þ

�ðd − 4Þðd − 2Þ
4

�
a0

a

�
2

þ d − 2

2

a00

a
−m2a2

�
σ2
�
; ð5:3Þ

in which a prime denotes a derivative with respect to the
conformal time.
Going to the Fourier space and expanding the field σ in

terms of the creation and annihilation operators, we have

σðxμÞ ¼
Z

dd−1k

ð2πÞðd−1Þ=2 ðσkðτÞe
ik·xak þ σkðτÞ�e−ik·xa†kÞ:

ð5:4Þ

First, we have to solve the mode function σkðτÞ in a dS
spacetime. Considering a dS spacetime with the Hubble
expansion rate H, we have aHτ ¼ −1, where we have
taken −∞ < τ < 0. Note that since there is no rolling scalar
field (i.e., there is no inflaton field), the dS symmetry is
exact and in particular _H ¼ 0, yielding to a0 ¼ Ha2 and
a00 ¼ 2H2a3. Then the equation of motion for the mode
function σkðτÞ is given by

σ00k þ
�
k2 þ m2

H2τ2
−
ðd − 2Þ2
2τ2

�
σk ¼ 0: ð5:5Þ

As a check, note that if we set d ¼ 4, then the last term in
the bracket above yields the well-known contribution
−2=τ2, which is the hallmark of gravitational particle
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production in a dS background for the light scalar field
perturbations.
If we expect Eq. (2.9) to hold true, thenH ∼m2=MP, and

therefore H=m ∼m=MP ≪ 1. Therefore, we can safely
ignore the last term in Eq. (5.5) compared to the mass term.
Imposing the Bunch-Davies (Minkowski) vacuum for the
modes deep inside the dS horizon kτ → −∞,

σk ¼
1ffiffiffiffiffi
2k

p e−ikτ; ð5:6Þ

the solution of the mode function is given in terms of the
Hankel function of the first type as follows:

ϕkðtÞ ¼ a
2−d
2 σk ¼ ð−HτÞd−12

�
π

4H

�1
2

e−
π
2
νHð1Þ

iν ð−kτÞ; ð5:7Þ

where

ν≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H2
− 1

r
≃
m
H
: ð5:8Þ

Having calculated the mode function ϕkðτÞ, we can
calculate the vacuum energy density as follows:

hρi ¼ μ4−d

2a2

Z
dd−1k
ð2πÞd−1 ½jϕ

0
kðτÞj2 þ ðk2 þm2a2ÞjϕkðτÞj2�;

ð5:9Þ

in which μ is a mass scale to properly take care of the
energy dimension.
Defining the dimensionless variable x≡ −kτ, and sepa-

rating the angular and the radial contributions of the
integral, we obtain

hρi ¼ πμ4−d

8ð2πÞd−1 e
−πνHd

�Z
dd−2Ω

�

×
Z

∞

0

xd
�				 ddxH

ð1Þ
iν ðxÞ

				
2

þ
�
1þ ν2

x2

�
jHð1Þ

iν ðxÞj2
�
:

ð5:10Þ

In deriving the above expression, we have neglected the
time derivative of the prefactor ð−HτÞðd−1Þ=2 in the mode
function Eq. (5.7). One can check that this is a very good
approximation in the limit of interest here where ν ≫ 1.
The fractional errors induced in the final result are smaller
by a factor 1=ν2 ≪ 1.
The integral over the azimuthal directions in Eq. (5.10) is

given by [15]

Z
dd−2Ω ¼ 2πðd−1Þ=2

Γðd
2
− 1

2
Þ ; ð5:11Þ

where ΓðxÞ is the gamma function.
The final step is to perform the following integral:

I ≡
Z

∞

0

xd
�				 ddxH

ð1Þ
iν ðxÞ

				
2

þ
�
1þ ν2

x2

�
jHð1Þ

iν ðxÞj2
�
: ð5:12Þ

Fortunately, the above integral can be taken exactly,
yielding1

I ¼ ð1 − dþ 2iνÞ
4π5=2 sinh2ðνπÞΓ

�
−iν −

1

2
þ d

2

�
Γ
�
iνþ 1

2
þ d

2

�

× Γ
�
d
2
−
1

2

�
Γ
�
−
d
2

�
× C; ð5:13Þ

where C is given by

C≡ 2 coshðνπÞ cos
�
πð2iν − dÞ

2

�
cos

�
πð2iνþ dÞ

2

�

− cos

�
πd
2

��
cos

�
πð2iνþ dÞ

2

�
þ cos

�
πð2iν − dÞ

2

��
:

ð5:14Þ

The singular limit of the integral I governing the UV
divergence of the zero-point energy is controlled by the
term Γð− d

2
Þ in Eq. (5.13).

To perform the dimensional regularization, we expand
d ¼ 4 − ϵ in hρi, obtaining

hρi ¼ H4

2048π2
ð4ν2 þ 1Þð4ν2 þ 9Þ

×

�
−
4

ϵ
þ 2 ln

�
H2

4πμ2

�
þ ΔþOðϵÞ

�
; ð5:15Þ

where

Δ≡ 2Ψ
�
5

2
þ iν

�
þ Ψ

�
3

2
− iν

�

þ ð8γ − 12Þν2 þ 8iνþ 18γ − 15

ð4ν2 þ 9Þ ; ð5:16Þ

in which ΨðxÞ is the polygamma function and γ is the
Euler-Mascheroni constant. One can check that for the
large-ν limit (which is the case here), Δ → 4 lnðνÞ. Finally,
note that the 1

ϵ term in Eq. (5.15) originates from Γð− d
2
Þ,

which is divergent near d ¼ 4.

1We use the Maple computational package to perform the
integral.
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Now, expanding hρi to leading order in ϵ and taking the
limit ν ≃m=H ≫ 1, we obtain

hρi ¼ −
ν4H4

64π2

�
2

ϵ
− ln

�
H2ν2

4πμ2

�
þ � � �

�
; ð5:17Þ

where the terms in � � � are on the order of ν−2 and smaller,
which are subleading compared to the log term.
As expected, the divergent 1=ϵ term in Eq. (5.17)

represents the logarithmic divergence of hρi with the UV
scales. After regularizing this divergent term and absorbing
the factor 4π into our renormalization scale and noting that
ν ≃m=H, we recover the desired formula

hρvi ¼
m4

64π2
ln

�
m2

μ2

�
þOðm2H2Þ; ð5:18Þ

in agreement with Eq. (2.9) obtained in a flat background
up to subleading correctionsOðν−2Þ. It is intriguing that the
factorH drops out to leading order both in the prefactor and
inside the log term in Eq. (5.17).
There are a few comments in order. First, while the

leading order in Eq. (5.18) agrees with Eq. (2.9) in a flat
background, we see that there are subleading corrections as
well. These subleading corrections contain various even
powers of H, such as m2H2 and H4. This is because the dS
background has a curvature radius of order H−2, which
should enter the analysis. This is not inconsistent with our
starting argument based on the equivalence principle. More
specifically, the equivalence principle can pin down the
local term, which is independent of the curvature radius of
the spacetime. However, the subleading terms containing
powers of H involve the curvature radius of the spacetime,
and as such are inaccessible via the equivalence principle.
Second, for the massless term, the first two leading terms
vanish, and we end up with the H4 contribution in hρvi.
This is again a unique feature of the curved background,
which is not accessible for flat spacetime. Third, as shown
in Ref. [23], for the massless field with a quartic coupling λ,
the contribution hρv þ Pvi ∝ λH4, indicating the violation
of the weak energy condition. This is again a nontrivial
property of the vacuum stress energy tensor in a curved
background.
To complete this discussion, we also calculate the

density contrast δρ=hρi in this background. The analysis
is similar to that performed in Sec. IVA. As before, let us
define the three contributions ρi to energy density as in
Eq. (4.1), in which the specific forms of hρ1i, hρ2i, and hρ3i
are given in Eq. (5.9). In addition, by performing the
dimensional regularization for each component of hρii,
one confirms that the relations in Eq. (4.5) are valid here as
well with subleading corrections Oðν−2Þ. Furthermore, by
performing the same steps as in Sec. IVA, one can easily
check that hρ23i and hρ22i still satisfy the relations (4.7) and
(4.8), respectively. However, there are new contributions in

hρ21i due to the fact that ϕðxμÞ ¼ σðxμÞ=aðτÞ and _a ¼ aH.
One can check that the new contributions in hρ21i compared
to Eq. (4.7) are suppressed by the factor H2

m2 ≃ ν−2 ≪ 1,
so hρ21i ¼ hρ1i2ð3þOðν−2ÞÞ.
Correspondingly, combining all combinations in δρ as in

Eq. (4.14), the density contrast with a dS background is
obtained to be

δρv
hρvi

¼ �
ffiffiffiffiffi
10

p
þOðν−2Þ: ð5:19Þ

It is both interesting and reassuring that the expressions for
hρvi and δρv

hρvi match the corresponding formula in the flat

background up to subleading corrections Oðν−2Þ.
Similarly to the case of the flat background, one can also

calculate the correlation length associated with the zero-
point energy density fluctuations in the dS background.
The analysis is somewhat complicated due to technicalities
associated with the Hankel functions. Using the approxi-
mate relations of the Hankel functions, we have verified
that the correlation length of the zero-point fluctuation in
dS backgrounds is indeed ξ ∼ 1=m as with a flat back-
ground. This is consistent with our notion that the intrinsic
properties of the zero-point energy density fluctuation such
as its amplitude and the correlation length are local
phenomena and are insensitive to the large-scale structure
of spacetime.
Now equipped with the exact mode function in a dS

background, we can calculate the accumulated energy
density on the super-Compton scale δρC and compare
the result with its flat counterpart Eq. (3.3). Simply setting
d ¼ 4 in Eq. (5.10) and ν ≃m=H, we obtain

δρC ≃
H4

16π

Z
ν

0

x4
�				 ddxH

ð1Þ
iν ðxÞ

				
2

þ
�
1þ ν2

x2

�
jHð1Þ

iν ðxÞj2
�
;

≃
H4

16π

ν4

π
≃

m4

16π2
: ð5:20Þ

Interestingly, we see that the above value of δρC is in good
agreement with its flat counterpart given in Eq. (3.3).
As we have mentioned above, the correlation length of

zero-point energy density is ξ ∼ 1=m, so on length scales
far beyond this correlation length, the distribution of the
zero-point energy is expected to be uncorrelated. On
the other hand, from Eqs. (5.18) and (5.20), we see that
the accumulated energy density on super-Compton scales
(i.e., for modes with wavelength larger than ξ) is compa-
rable to the total zero-point energy, δρC=hρvi ∼ 1. This
again confirms that the zero-point energy of the heavy
fields cannot be used to cover the entire spacetime as a
background energy density. In other words, one needs to
impose hρvi ≪ ρT ≃ ρF in order to have a sensible cos-
mological background.
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VI. COSMOLOGICAL IMPLICATIONS

The results from the previous three sections exclude the
heavy fields with hρvi ≫ ρF from contributing to the
observed dark energy today. Originally, we came to this
conclusion based on the fact that one requires an enormous
number Npatches ≫ 1 of incoherent small patches of size
H−1

ðmÞ to cover the FLRW horizon today. This conclusion

was specifically confirmed in Sec. IV by looking at the
density contrast j δρvhρvi j ∼ 1. If the heavy fields do not

contribute to the current dark energy (cosmological con-
stant), then a natural question to ask now is what roles in
cosmology their vacuum energy density plays.
To answer the above question, we again employ the

picture based on the scale of dS horizons as presented in
Fig. 1. We consider the early stage in cosmic expansion
historywhen ρF ≫ ρv, soH−1

F ≪ H−1
ðmÞ, as in the left panel of

Fig. 1. In this situation, the observable Universe is inside the
horizon of the zero-point energy, but at the same time, since
ρv ≪ ρF, the contribution of ρv in expansion rate is too small
to be important. As time proceeds and ρF decreases further,
we approach the epoch when ρF ∼ ρv, and the zero-point
energy becomes relevant; we notice the effects of the
vacuum energy. As time goes by further, ρF falls off rapidly,
so we end up with the situation where ρv ≫ ρF, as in the
right panel of Fig. 1. In this case, the regions filled with the
zero-point energy develop strong inhomogeneities while
falling into the FLRWHubble horizon. The timescale for the
dS patches to create inhomogeneities is about 2=HðmÞ, as it
takes a period of about 1=HðmÞ for each dS horizon to enter
the FLRW horizon. Once the FLRW horizon grows large
enough (or equivalently when ρF ≪ ρv), more and more dS
patches enter the FLRW Hubble radius. The variance
condition (4.16) indicates that themass inside the dS patches
inside the FLRWHubble radius may collapse to form black
holes. However, as wementioned at the end of Sec. IVA, the
formation of black holes from the collapse of local AdS
regions created from inhomogeneities is far from obvious,
as the interplay between the turbulent dynamics of local
AdS and dS inhomogeneities is complicated. But if the
masses inside these patches collapse into black holes, their
contribution to the background cosmological dynamics is
expected to be in the form of matter. This indicates that the
resulting mass may behave like dark matter or the seeds of
dark matter.
Despite the above qualitative discussions, at this stage we

cannot bemore specific about the subsequent contribution of
the zero-point energy of heavy fields after the time when
H−1

F > H−1
ðmÞ. Different scenarios are possible, which we

study below using a phenomenological fluid description.

A. Phenomenological fluid description

As mentioned above, we do not know the detailed
mechanism which governs the contribution of the zero-point

energy of heavy fields after the time when H−1
F > H−1

ðmÞ.
Here, we consider a phenomenological approach and treat
the effects of heavy fields like a fluid with an undetermined
equation of state.
To be more specific, let us denote the energy density

of massive fields after the time when ρF is diluted
enough and ρF < ρm by ρ̃m. We also assume that each
component of effective energy density evolves separately
by its own energy conservation: _ρF þ 3HðρF þ pFÞ ¼ 0

and _̃ρm þ 3Hðρ̃m þ p̃mÞ ¼ 0, in which p̃m represents the
effective pressure of the new matterlike energy component.
Defining the equation of states via pF ≡ wFρF and p̃m≡
wmρ̃m, the total energy density now is ρT ¼ ρF þ ρ̃m,
yielding

ρTðtÞ ¼
�
ρm

�
aðtÞ
aðtmÞ

�
−3ð1þwmÞ þ ρFðtmÞ

�
aðtÞ
aðtmÞ

�
−3ð1þwFÞ�

;

ð6:1Þ

in which tm is the time when ρFðtmÞ ∼ ρm—i.e., when the
two Hubble radii H−1

F and H−1
ðmÞ nearly coincide.

Considering the numerical uncertainties, we set ρ̃mðtmÞ≡
κ0ρFðtmÞ in which κ0 is a numerical constant which may
depend on m. Then, the total energy density is given by

ρTðtÞ ¼ ρFðtmÞ
�

aðtÞ
aðtmÞ

�
−3ð1þwFÞ�

1þ κ0
�

aðtÞ
aðtmÞ

�
3ðwF−wmÞ�

:

ð6:2Þ

The above is a phenomenological description of the
contribution of the heavy fields after the time when
ρF < ρm. We have introduced the effective equation-of-
state parameter ωm to capture the uncertain behavior of the
zero-point energy associated with the massive fields. If
strong inhomogeneities with δρv=ρv ∼ 1 yield to black hole
formation, then ωm ¼ 0 and ρ̃m can play the roles of dark
matter. Of course, this is good news for this proposal, in
which case the nature of dark matter and dark energy is
unified, with both being generated dynamically from the
zero-point energy. However, the difficulty with ωm ≃ 0 is
that at early times in cosmic history, the produced dark
matter from the zero-point energy of electron and heavier
fields rapidly dominates over the radiation energy density,
long before the time of matter-radiation equality at the
temperature Teq ∼ 3 eV, altering the hot big bang cosmol-
ogy in various unwanted ways. One way out may be to
consider a situation in which the phenomenological param-
eter κ0 in Eq. (6.2) is (exponentially) small, so it will take a
long time for the seed of dark matter to take over the
radiation energy density. On the other hand, if ωm ≃ 1

3
, then

ρ̃m may behave like dark radiation. Considering the
uncertainties involved in the process, ωm may take different
values for various fields, so ρ̃m may behave differently
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during cosmic history, and we may have dark radiation,
dark matter, or stiff fluid with ωm ≲ 1.
Another possibility is that the effective fluid associated

with the zero-point energy is such that ωm ¼ ωF, so
ρ̃mðtÞ ∝ ρFðtÞ—i.e.,

ρ̃ðmÞðtÞ ¼ 3κM2
PH

2
F ¼ κρF; ð6:3Þ

in which κ is a numerical constant. This corresponds to a
tracking scenario in which the energy density of the heavy
fields at each stage in cosmic history tracks the background
FLRWenergy density. During the radiation-dominated era,
their energy densities follow that of a radiation energy
density, while during the matter-dominated era, they
behave like matter. This is an interesting case, so below
we concentrate on this scenario more closely.
The tracking scenario has interesting implications for the

current energy density of dark matter. To see this, let us
assume that ρF ¼ ργ þ ρb, in which ργ and ρb represent
the energy density of radiation and baryons. Specifically,
we assume that there is no conventional (say WIMP-like)
dark matter in our setup. Let us define the time of matter-
radiation equality at the redshift zeq as when ρbðzeqÞ ¼
ργðzeqÞ. Now, observe that what we mean by dark matter in
the ΛCDMmodel is the zero-point energy density given by
the heavy field in Eq. (6.3). Specifically, the current would-

be dark matter energy density is actually ρð0ÞDM ¼ ρ̃mðt0Þ ¼
κρð0ÞF ¼ κρð0Þb þ κρð0Þγ . Taking into account that the energy
densities of radiation and baryons fall off like a−4 and a−3,
respectively, we obtain

1þ zeq ¼
1

1þ κ

�
Ωð0Þ

M

Ωð0Þ
γ

− κ

�
; ð6:4Þ

in which Ωð0Þ
M ∼ 0.31 ðΩð0Þ

γ ∼ 10−4Þ is the fractional total
matter (radiation) energy density today as inferred from the
ΛCDM model. Now, defining zΛCDMeq as the time of matter-
radiation equality in the ΛCDM model and assuming
κ ∼Oð1Þ, we obtain

zeq ≃
zΛCDMeq

1þ κ
: ð6:5Þ

This means that in the current setup, the time of matter-
radiation equality is shifted toward a later epoch in cosmic
history. This is because we have assumed that the time of
matter-radiation equality happens when ρbðzeqÞ ¼ ργðzeqÞ.
Taking κ ≲ 1, we may have zeq ∼ few × 1000. However,
note that shifting zeq close to the time of the cosmic
microwave background (CMB) last scattering can be
dangerous for CMB observations. But we also note that
shifting the time of matter-radiation equality towards a later
epoch can play an important role in solving the H0 tension
problem.

The above conclusion about the roles of the heavy fields
may seem in conflict with our starting point that the
vacuum energy should be locally Lorentz invariant and
hpi ¼ −hρi, which is trivially violated for both radiation
and matter. The answer is that the relation hpi ¼ −hρi is
enforced locally, say deep inside each dS patch. However,
what we have in Eqs. (6.3) or (6.2) is the collective energy
density of a large number of patches of zero-point energy
inside the FLRW horizon, which may not be in conflict
with the local requirement hpi ¼ −hρi deep inside each
dS patch.

B. Selection rules

Based on the results from the previous sections, we end
up with an interesting “selection rule,” which works as
follows: At each stage in the cosmic epoch, only a field
with HðmÞ ∼HF and energy density hρvi ∼ ρF can be
relevant as the source of dark energy. Fields which are
much lighter (HðmÞ ≪ HF) are irrelevant in cosmic expan-
sion. This is simply because their contributions in hρvi as
given in Eq. (2.9) are exceedingly smaller than ρF, so as
to be unnoticeable. Finally, heavy fields with HðmÞ ≫ HF

cannot be the source of dark energy, while they may form
the seeds of dark matter from the start or track the
background FLRW energy density ρF and be the source
of dark matter after the time of matter-radiation equality.
Alternatively, they may behave like a stiff fluid with
ωm ≲ 1, in which case their contributions in background
energy density are diluted faster than radiation after the
time t > H−1

ðmÞ.
The above selection rule can easily address both the old

and the new cosmological constant problems. Recall that
the old cosmological constant problem is why ρv is not
large—i.e., why it is as small as ð10−3 eVÞ4. The new
cosmological constant problem is why the vacuum energy
density becomes comparable to the matter-energy density
at the current stage of the cosmic history. The resolution is
that there is a field in the SM field content, the lightest
neutrino,2 with the vacuum zero-point energy ρðνÞ ∼m4

ν

which happens to have a mass at the same order as
ρ1=4F0 ≃ ρ1=4c , in which ρc ∼ ð10−3 eVÞ4 is the critical energy
density. The entire FLRW Universe is currently within a
single patch of the lightest neutrino with the horizon radius
H−1

ðmνÞ. The current dark energy survives in the future for

another period of roughly 1=HðmνÞ ∼ 1=H0 ∼ 1010 years
before multiple dS patches of the lightest neutrino enter the
FLRW horizon. Of course, this conclusion about the future
dynamics of the Universe is based on the assumption that

2While the differences in neutrino mass squared are known,
the absolute masses and the mass of the lightest neutrino are not
exactly known; see Ref. [31]. Here we adopt the simple
assumption that the lightest neutrino has a mass on the order
of 10−2 eV [32,33].
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there is no light field in the beyond-SM sector (like a light
axion) with a mass lighter than 10−3 eV to contribute to the
future dark energy. We comment that the relations between
the zero-point energy of neutrinos and the observed dark
energy (cosmological constant) have been studied in differ-
ent contexts in the past in Refs. [34–38].
An immediate corollary of our selection rule is that at

early stages in cosmic history (i.e., for all times prior to the
time of matter-radiation equality), only fields with masses
on the order of the FLRW photon temperature could
contribute to dark energy in that epoch. This is because
the energy density of the FLRW background during the
radiation-dominated era is related to the photon temper-
ature via

ρF ¼ π2

30
g�T4; ð6:6Þ

in which g� is the effective relativistic degree of freedom at
the temperature T. Now, comparing the above equation
with Eq. (2.9) for the vacuum energy density, and noting
that for the field of interest HðmÞ ∼HF, we conclude that

m ∼ T: ð6:7Þ

If a field is much lighter than T, then its vacuum energy
density ∝ m4 is much smaller than T4 and cannot be
important in cosmic energy density. On the other hand, if a
field is much heavier than T, then based on the arguments
mentioned in previous sections, the dS horizon radius
associated with its vacuum energy density is much smaller
than the Hubble radiusH−1

F , and they collapse into a FLRW
horizon behaving like dark radiation, dark matter, or a stiff
fluid. Note that while Eq. (6.7) works well for the time prior
to matter-radiation equality, it also gives a reasonable
estimation for the relation between the mass of the lightest
neutrino and the energy scale of the current dark energy.
To see this, note that Tγ0 ∼ 10−4 eV which is only about 2
orders of magnitude below the expected mass of the lightest
neutrino. Of course, this is easily understandable, since
after the time of matter-radiation equality, the energy
density of radiation falls off by an additional factor of
1=a compared to the matter-energy density. This is why we
had to use the critical mass density ρc instead of T4

γ0 to
correctly estimate the magnitude of the current dark energy
density.
Since only fields with m ≠ 0 contribute to the vacuum

energy, we conclude that before the electroweak symmetry
breaking at the temperature TEW ∼ 160 GeV, all SM fields
were massless, and they did not contribute to dark energy.
Immediately after the electroweak phase transition, the
relevant fields are the top quark mt ≃ 170 GeV, the Higgs
field mH ∼ 125 GeV, and the three gauge bosons
mZ ≃ 91 GeV; mW� ≃ 80 GeV. The top quark and the
Higgs field are somewhat heavy, so they are at the threshold

of being able to contribute to dark energy at that time, while
the three gauge bosons have good chances to play impor-
tant roles as the source of dark energy. Of course, as the
temperature of the Universe falls below the mass of vector
bosons, their contribution in dark energy expires, and they
may contribute to dark radiation, dark matter, or behaving
like a stiff fluid.
This story is repeated when the background temperature

approaches the mass of other fundamental particles such
as mτ ≃ 1.7 GeV, mμ ≃ 105 MeV, and me ≃ 0.5 MeV.
Especially important is the time when the temperature is
around the MeV scale when big bang nucleosynthesis (BBN)
is at work. Changing the Hubble expansion rate of the
Universe at this epoch, either by a contribution from the dark
energy of the electron field or its contributions in the form of
dark radiation, can affect the dynamics of BBN. This issue
requires careful investigation, which can provide a nontrivial
check for the consistency of the whole picture presented here.
Another important time to look for is when the heavier
neutrino fields (i.e., not the lightest neutrino) with mass
m ∼ 0.1 eV become relevant to contribute to dark energy.
This occurs around T ∼ 10−2 eV and redshifts of z ∼ 102.
Based on the above discussions, we have transient

periods of dark energy for a few e-folds any time in cosmic
history when the condition m ∼ T is met, during which
the Hubble expansion rate stays nearly constant and then
falls off as in conventional big bang cosmology. These can
happen in cosmic history both after the surface of last
scattering (for heavier neutrinos) at redshift z ∼ 102, and
before the surface of last scattering (for e, μ, and τ fields) at
much higher redshifts. The curious conclusion is that since
the energy density is nearly constant for a few e-folds, the
value of the Hubble expansion rate today (and at the time
of last scattering) would be larger than what the standard
ΛCDM model predicts. Multiple transient periods of dark
energy both at early and intermediate cosmic expansion
history are a nontrivial prediction of the model that have
a good potential to solve the H0 tension problem [39–43].
In this view, our proposal can incorporate the early dark
energy (EDE) mechanism [44,45] which is proposed to
solve the H0 tension problem.

VII. SUMMARY AND DISCUSSIONS

In this work, we have revisited the quantum cosmologi-
cal constant problem. As already known in the literature,
the conventional approach of imposing a hard UV momen-
tum cutoff violates the underlying Lorentz invariance of
the vacuum. Employing a regularization scheme which
respects the underlying Lorentz invariance of the theory,
such as the dimensional regularization method, one obtains
that the energy density of each field scales like ρv ∼m4.
Furthermore, the condition of Lorentz invariance of the
vacuum, hpi ¼ −hρi, is manifest. Some noticeable con-
clusions are that the massless fields such as gravitons,
photons, and gluons do not contribute to the vacuum energy
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density. Furthermore, hρi runs logarithmically with the
renormalization scale, μ and depending on the ratio m=μ,
the value of the cosmological constant can be either
positive (dS) or negative (AdS).
We have highlighted that the dS horizon associated with

the zero-point energy plays important roles. For a field with
mass m, the associated dS space has a horizon radius
H−1

ðmÞ ∼MP=m2, whichwas not taken into account in previous
studies of the cosmological constant problems. In the conven-
tional approach, it is naively assumed that the entire observable
FLRW patch is covered by the vacuum energy density hρi ∼
m4 irrespective of the vast hierarchy between the two Hubble
radii H−1

F and H−1
ðmÞ. For the heavy fields with the large

hierarchy HðmÞ ≫ HF, this requires as many as ðHðmÞ
HF

Þ3 ≫ 1

independent patches of zero-point energy to fill the FLRW
patch. However, since the patches of zero-point energy are
created quantum mechanically, they are uncorrelated.
Therefore, one expects that a space filled with as many as

ðHðmÞ
HF

Þ3 uncorrelated patches of zero-point energy will be
highly chaotic and may even collapse to form black holes.
To support this picture, we have calculated the variance of
the zero-point energy for both the real scalar field and the
Dirac fermion field. In both cases, we have found that
jδρv=hρvij ∼ 1, supporting the above intuitive picture.
Furthermore, the correlation length of the fluctuations of
the zero-point energy is calculated to be on the order of
ξ ∼m−1. This results in the vast hierarchy ξ ≪ H−1

ðmÞ ≪ H−1
F .

It is shown that the accumulated energy density on super-
Compton scales—i.e., scales which are far beyond the
correlation length—is comparable to the would-be back-
ground vacuum energy density. This conclusion, in conjunc-
tionwith the above hierarchies among the three scales ξ,H−1

ðmÞ,
and H−1

F , is another sign that one cannot use the vacuum
energy density hρvi as the dominant background energy
density. To have a viable cosmological background, we have
to impose hρvi ≲ ρF at each stage in cosmic expansion history
inwhichρF is the nonvacuumenergydensity (i.e., the classical
energy density) of the background FLRW cosmology.
We have established a “selection rule” stating that at each

stage in cosmic expansion history, only fields with a mass
m satisfying the condition HðmÞ ∼HF can contribute to
dark energy in that epoch. Specifically, only fields with
mass on the order of the background photon temperature,
m ∼ T, are relevant as the source for dark energy. Lighter
fields carry too little energy (m4 ≪ T4) to be important in
the cosmic energy budget. On the other hand, heavy fields
with HðmÞ ≫ HF (or m ≫ T) cannot be the source of dark
energy, while they can be the seeds of dark matter, dark
radiation, or a stiff fluid with equation of state 1

3
< ωm ≤ 1.

We have speculated that both the old and new cosmo-
logical constant problems can be addressed readily.
Specifically, these puzzles are solved by noting that there
is a field in the SM spectrum, the lightest neutrino, which

happens to have a mass on the order of ρ1=4c ∼ 10−2 eV.
Another important implication is that at various stages in
cosmic history, the energy density experiences loitering
stages of dark energy in which the Hubble expansion rate
stays nearly constant for about one or two e-folds in the
expansion rate, and then the energy density falls off as in
the ΛCDM model. As a consequence, the Hubble expan-
sion rate at the time of CMB last scattering is expected to
be higher than what is inferred from ΛCDM model.
Currently, we are at the last transient stage associated with
the lightest neutrino. However, prior to this stage there were
two transient phases of dark energy happening at around
the mass scale of the heavier neutrinos at T ∼ 10−2 eV,
corresponding to the redshift z ∼ 102. This period will be
some time after the time of CMB decoupling. Multiple
transient phases of dark energy, both before and after the
surface of last scattering, yield to higher values of the
current Hubble expansion rate compared to what is inferred
from the ΛCDM model. In this view, our proposal can
incorporate the EDE proposal and has the potential to solve
the H0 tension problem. Another interesting prediction
of the model (as mentioned above) is that there may
be no dark matter. All matter is in the form of known
baryonic matter, while the role of dark matter is played
by the heavy fields which may track the background
FLRW energy density. As such, the time of matter-
radiation equality is shifted towards a later time in cosmic
history.
There are a number of open questions in this study. The

immediate one is how the collapse for the patches of zero-
point energy associated with heavy fields can happen. We
provided only a rough phenomenological picture of this
mechanism. This is an important question which controls
whether or not we have the tracking energy or a fluid with
the equation of state ωm ∼ 0. Another open question is the
natural value of the renormalization scale μ. Note that the
vacuum energy runs logarithmically with μ. Furthermore,
depending on the statistics of the field (i.e., being a boson
or a fermion) and on the ratio m=μ, the vacuum energy
can be either positive (dS) or negative (AdS). To solve
the cosmological constant problems, we have implicitly
assumed that the resulting vacuum energy is positive, so
taking the neutrinos as the relevant fields for this purpose,
we require μ > eV. If we take μ to be the scale of
electroweak symmetry breaking, say μ≳ 102 GeV, then
all fermionic (bosonic) fields add positive (negative) con-
tributions to the vacuum energy. If the energy density is
AdS type, then there may be a falloff period (instead of a
loitering phase) in the Hubble expansion rate at the
corresponding stage in cosmic history. This will modify
the inferred value of the Hubble expansion rate at the time
of CMB last scattering. Therefore, the dS and AdS
contributions for all SM degrees of freedom from the mass
scale 102 GeV after the electroweak symmetry breaking
down to the neutrino scale should be carefully included to
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see how dark energy and dark matter behave at each stage
in cosmic history.
Finally, it is important to examine the implications of the

scenario for other aspects of early-Universe cosmology.
Specifically, the interplay between this proposal and
cosmic inflation is an open and interesting question.
However, we comment that our proposal is not in conflict
with an early stage of inflation. More specifically, during
the slow-roll inflation driven by an inflaton field of mass m
and the potential V, the dominant energy is given by the
inflaton classical potential Vc, while the vacuum zero-point
energy is on the order of m4. Since for a rolling inflaton
Vc ≃ 3M2

PH
2 ≫ m4, the induced energy density from the

zero-point fluctuations during inflation is negligible.
Therefore, the quantum cosmological constant is not an
issue during inflation, and a large enough classical vacuum
energy during inflation is stable against quantum zero-point
corrections.
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Note added.—We have recently become aware3 of a series
of papers in Refs. [46–49] that question the assumption of
the homogeneity of the spacetime in the presence of the
vacuum zero-point energy. It is concluded, among other
things, that a uniform cosmological constant cannot cover
the large scale spacetime, and the local spacetime is very
inhomogeneous as in Wheeler’s spacetime foam. Using the
semiclassical GR, they have studied the cosmological
implications of their proposal such as in resolving the
old cosmological constant problem. Our analysis in Sec. IV
for the fluctuations in the zero-point energy density and
large density contrast is conceptually in line with their
investigation.
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