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The spatial curvature (ΩK) of the Universe is one of the most fundamental quantities that could give a
link to the early universe physics. In this paper we develop an approximate method to compute the
nonlinear matter power spectrum, PðkÞ, for “nonflat” ΛCDM models using the separate universe (SU)
ansatz which states that the effect of the curvature on structure formation is equivalent to that of
background density fluctuation (δb) in a local volume in the “flat” ΛCDM model, via the specific
mapping between the background cosmological parameters and redshifts in the nonflat and flat models.
By utilizing the fact that the normalized response of PðkÞ to δb (equivalently ΩK), which describes how
the nonzero ΩK alters PðkÞ as a function of k, is well approximated by the response to the Hubble
parameter h within the flat model, our method allows one to generalize the prediction of PðkÞ for flat
cosmologies via fitting formulas or emulators to that for nonflat cosmologies. We use N-body
simulations for the nonflat ΛCDM models with jΩK j ≤ 0.1 to show that our method can predict
PðkÞ for nonflat models up to k ≃ 6 hMpc−1 in the redshift range z ≃ ½0; 1.5�, to the fractional accuracy
within ∼1% that roughly corresponds to requirements for weak lensing cosmology with upcoming
surveys. We find that the emulators, those built for flat cosmologies such as EuclidEmulator, can
predict the nonflat PðkÞ with least degradation.
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I. INTRODUCTION

The spatial curvature of the Universe (hereafter denoted
as its contribution relative to the present-day critical
density, ΩK) is one of the most fundamental quantities
in an isotropic and homogeneous universe in the context of
general relativity [1]. The curvature also has a close
connection to the physics of the early universe. An infla-
tionary universe scenario predicts that the apparent curva-
ture, inferred from an observable universe, should be close
to a flat geometry (ΩK ≈ 0), even if its exact value is
nonzero [2,3]. If the universe arose form the decay of a false
vacuum via quantum tunneling, as inspired by the land-
scape of string cosmology vacua, it leads to an open-
geometry universe (ΩK > 0) [4,5]. Depending on the
details of the early universe physics, the curvature can
be large enough, such as jΩKj ≃ ½10−4; 10−2�, to be

measurable by cosmological observations [6,7].1

Therefore, an observational exploration of the curvature
is an important direction to pursue with ongoing and
upcoming cosmology datasets [e.g., [8,9]].
The curvature affects cosmological observables in two

ways. First is its geometrical effect. The most promising
observables are the baryon acoustic oscillations (BAO)
imprinted onto the cosmic microwave background (CMB)
anisotropies [10] and the distribution of galaxies [11].
Although the BAO scale [more exactly the sound horizon,
as proposed by the pioneer works [12,13]] is set by the
physics in the early universe, where the curvature’s effect is
negligible, the angular extent (and redshift difference) of
the BAO scale, inferred from the CMB and galaxy
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1If the curvature is as small as jΩK j ∼ 10−5, we cannot
distinguish between the global curvature and the primordial
curvature “perturbations.” Hence, the target goal for a hunt of
the nonzero curvature is in the range jΩK j≳ a few × 10−5.
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observables, are determined by light propagation, which in
turn allows us to infer the curvature parameter from the
measured cosmological distances. Second, the curvature
affects the growth of cosmic structure; since the time
evolution of density fluctuation field arises from competing
effects between the gravitational pulling force and the
cosmic expansion, the curvature leaves a characteristic
signature in the growth history of large scale structure via
its effect on the cosmic expansion [e.g., [14]].
The geometrical constraint, inferred from the primary

CMB anisotropy information of the Planck data [15], is
given as ΩK ¼ −0.044þ0.018

−0.015 (68% CL, Planck TT, TE,
EEþ lowE), implying a 2σ hint of the close geometry,
although the constraint suffers from a severe parameter
degeneracy (e.g., with the Hubble parameter h). The joint
CMB and galaxy BAO measurements give the tightest
constraint on ΩK , consistent with a flat geometry: ΩK ¼
−0.0001� 0.0018 [16]. Ideally we want to use only galaxy
BAO measurements at multiple redshifts to constrain the
curvature, without employing the CMB prior on the BAO
scale, to address whether the CMB and galaxy datasets
have consistency within ΛCDM cosmologies, as motivated
by the possible tensions between the CMB (early-time) and
late-time universe datasets [e.g., see [17], for the recent
review].
On the other hand, the growth constraint on the curvature

is still in the early stage. Weak lensing and galaxy
clustering, observed from wide-area galaxy surveys, are
powerful methods to constrain cosmological parameters.
However, most of the previous cosmological analyses
assume a flat geometry and focus on the parameters to
characterize the clustering amplitudes such as S8 and Ωm
[e.g., see [18], for the attempt to constrain ΩK from the
weak lensing data]. Although the curvature effect on the
linear growth factor is accurately known, the linear-regime
information is weaker than the BAO constraint. To obtain a
tighter constraint on the curvature, we need an accurate
model of the clustering observables that are applicable to
the nonlinear regime. N-body and hydrodynamical simu-
lations of cosmic structure formation are among the most
powerful, accurate method for such a purpose. However,
simulations are still expensive to construct the theoretical
templates, especially in a multidimensional parameter
space such as the vanilla ΛCDM model plus the curvature
parameter. A more practical method at this stage is using
the fitting formula or “emulation” based method [e.g., [19–
30]]. However, such efforts developing the emulation
method are usually done assuming flat-geometry cosmol-
ogies due to the computational expense.
Hence the purpose of this paper is to develop, as the first

step, an approximate method for computing the nonlinear
matter power spectrum, PðkÞ, for nonflat cosmologies,
which is the fundamental quantity for weak lensing
cosmology [31,32]. In fact the existing weak lensing
measurements have been used to obtain tight constraints

on the cosmological parameters [33–38]. The current and
upcoming weak lensing surveys require a 1%-level or even
better accuracy in the theoretical template of PðkÞ up to
k ∼ 1 hMpc−1 in order not to have a significant bias in
cosmological parameters such as dark energy parameters
[39]. In this paper we employ the separate universe (SU)
approach to study PðkÞ for nonflat ΛCDM cosmologies.
The SU ansatz states that the effect of the curvature on
structure formation in a given nonflat ΛCDM model is
equivalent to the effect of the long-wavelength (super-box)
density fluctuation on the evolution of short-wavelength
(sub-box) fluctuations in the counterpart flat-geometry
ΛCDM model [40–44], where the cosmological parameters
and redshifts in between the nonflat and flat models have to
be mapped in the specific way. To study structure formation
in the two mapped models, it is useful to use the “response”
function of PðkÞ which quantifies how PðkÞ responds to the
long-wavelength density fluctuation or equivalently the
nonzero curvature, as a function of k. To develop ourmethod,
we further utilize the approximate identity that the response
of PðkÞ to the curvature, normalized relative to the response
in the linear regime, is approximated by the normalized
response of PðkÞ to the Hubble parameter h [43]. By using
the response to h, we can express PðkÞ for a target nonflat
ΛCDM model in terms of quantities for the corresponding
flat ΛCDM model. That is, our method allows us to extend
fitting formula or emulator, developed for flat-geometry
cosmologies, to predicting PðkÞ for nonflat model, which
eases the computational cost for constructing the theoretical
templates.Wewill validate ourmethod using a set ofN-body
simulations for flat and nonflat ΛCDM models with
jΩKj ≤ 0.1. We will also assess the performance of the
publicly available emulator for computing PðkÞ for nonflat
models.
This paper is organized as follows. In Sec. II we first

review the SU approach and then describe our approximate
method for computing the nonlinear matter power spectrum
for nonflatΛCDMmodels. In Sec. III we describe details of
N-body simulations for flat and nonflat ΛCDM models. In
Sec. IV we present the main results of this paper. We first
validate the approximation for the normalized growth
response as we described above, and then show the
accuracy of our method for predicting the nonlinear matter
power spectrum for nonflat ΛCDM model. Section V is
devoted to discussion and conclusion. In Appendix we give
justification of our method based on the halo model.
Throughout this paper we use notations Ωm and ΩΛ to
denote the density parameters for nonrelativistic matter and
the cosmological constant, respectively.

II. SU ESTIMATOR OF PðkÞ FOR
NONFLAT ΛCDM MODEL

In this section we develop a method to compute PðkÞ for
nonflat ΛCDM model, from quantities for the correspond-
ing flat ΛCDM model based on the SU approach [40–47].
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A. Preliminary

Before going to our method we would like to introduce a
motivation to use the SU approach. One might naively think
thatwe can use aTaylor expansion ofPðk; z;ΩKÞ treatingΩK
as an expansion parameter; Pðk; z;ΩKÞ ≈ Pðk; zÞjΩK¼0þ
ð∂P=∂ΩKÞjΩK¼0ΩK , where Pðk; zÞjΩK¼0 is the power spec-
trum for a flat model. However, there is no unique way to
define this partial derivative operation. In particular, we have
to satisfy the identity ΩK ¼ 1 − ðΩm þΩΛÞ and vary cos-
mological parameters other than ΩK simultaneously. In
addition, there is ambiguity in how the time variable is
matched between the flat and curved models. The simplest
examples are tomatch the redshift, or the physical time,while
thesemight not be optimal. As aworking example, we utilize
the SU approach for connecting the power spectra for nonflat
and flat ΛCDM models.

B. SU approach for PðkÞ
The effect of curvature (ΩK) on structure formation

appears only in the late universe. In other words, the
curvature does not affect structure formation in the early
universe such as CMB physics (as long as the curvature
parameter is small as indicated by current observations).
Hence throughout this paper we employ models where
structure formation in the early universe is identical. This is
equivalent to keeping the parameters,

fωc;ωb; As; nsg; ð1Þ

fixed, where ωcð≡Ωch2Þ and ωbð≡Ωbh2Þ are the physical
density parameters of CDM and baryon, respectively, and
As and ns are the amplitude (at the pivot scale kpivot ¼
0.05 Mpc−1) and the spectral tilt of the power spectrum of
primordial curvature perturbations. Note that, when we
include massive neutrinos, throughout this paper we fix the
sum of neutrino masses so that the early universe physics
remains unchanged [e.g., see Refs. [26,48], for the
method]. The linear matter power spectrum is given as

PLðk; zÞ ¼
�
DðzÞ
DðziÞ

�
2

PLðk; ziÞ; ð2Þ

where zi is the initial redshift in the linear regime satisfying
zi ≫ 1 yet well after the matter-radiation equality such that
residual perturbations in radiation do not play a role and
DðzÞ is the linear growth factor.2 The superscript “L” stands

for the linear-theory quantities. In our method, we keep the
linear power spectrum at zi, PLðk; ziÞ, fixed.
Let us consider a nonflat ΛCDM model, denoted as

ΩK-ΛCDM, as a target model for which we want to
estimate the nonlinear matter power spectrum at z in the
late universe. The background expansion for this target
ΩK-ΛCDM model is specified by

ΩK-ΛCDM∶fΩK; hg: ð3Þ

Once the parameters in Eqs. (1) and (3) are specified, the
other parameters in ΩK-ΛCDM cosmology are fully fixed;
Ωm ¼ ðωc þ ωbÞ=h2 for the density parameter for matter,
andΩΛ ¼ 1 −ΩK −Ωm for the cosmological constant. The
following discussion can be applied only to ΛCDM model,
so we do not consider a model with dynamical dark energy
[e.g., see [49], for discussion on the SU approach for
dynamical dark energy model].
The SU approach gives a mapping between nonflat

ΛCDM and flat ΛCDM models by assigning the degree
of ΩK in the former cosmology to the background density
fluctuation, denoted as δbðtÞ, in the latter flatΛCDMmodel.
We call the “fake” flat-ΛCDM model as fΛCDM model.
Following Li et al. [42], in the SU approach the physical
matter densities in the two models are related as

ρ̄mðtÞ ¼ ρ̄mfðtÞ½1þ δbðtÞ�: ð4Þ

Here and throughout this paper we assume δbðtÞ evolves
according to the linear growth factorDfðtÞ as δbðtÞ ∝ DfðtÞ,
and we denote quantities in the fΛCDMmodel by subscript
“f.” Equation (4) gives

Ωmh2

aðtÞ3 ¼ Ωmfh2f
afðtÞ3

½1þ δbðtÞ�; ð5Þ

whereΩm and h(Ωmf and hf) are defined at a ¼ 1 (af ¼ 1).
Note that a ¼ 1 and af ¼ 1 correspond to different cosmic
times for δb ≠ 0. We set af to agree with a at very high
redshift in the early universe, where jδbðtÞj ≪ 1, which leads
toΩmfh2f ¼ Ωmh2. This condition gives a mapping between
the scale factors:

afðtÞ½1þ δbðtÞ�−1=3 ¼ aðtÞ: ð6Þ

Here we assume that ΩK-ΛCDM universe and the fake flat
universe share a common cosmic time, hence the mapping
between quantities in the two universes should be found at
the same cosmic time (t). Equation (6) allows us to find the
scale factor afðtÞ in fΛCDM model, corresponding
to aðtÞ in ΩK-ΛCDM model, at the same cosmic time.
Equivalently we can derive the mapping for redshift as
ð1þ zfÞ½1þ δbðzfÞ�1=3 ¼ 1þ z. The redshift zf in the fake

2In reality, at the typical starting redshifts of simulations, the
residual radiation perturbations are not completely negligible,
leaving scale-dependent corrections to the linear growth factor.
Here we assume a situation that, as usually done when setting up
the initial conditions of an N-body simulation, one can first
evolve the baryon and CDM perturbations until today (well after
the two components catch up with each other), and then trace
back the “single-fluid” perturbation to the initial redshift by using
the linear growth factor for a given cosmological model.
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universe corresponding to the target redshift z can be found
by solving numerically Eq. (6).
The difference of the first Friedmann equations of

ΩK-ΛCDM model and fΛCDM model yields the equation
for the curvature. Evaluating this at an early time ti gives

δbðtiÞ
afðtiÞ

¼ −
3ΩK

5Ωm
: ð7Þ

Please see Ref. [44] (also see Ref. [42]) for a more complete
derivation. This can be rewritten as

δbðtÞ
DfðtÞ

¼ −
3ΩK

5Ωm
; ð8Þ

where the linear growth factor is normalized as
DfðtiÞ ¼ afðtiÞ. We note that there is a one-to-one corre-
spondence between ΩK and δbðtÞ. Since the expansion
history of the target ΩK-ΛCDM cosmology is different
from the fΛCDM cosmology, we expect that the parameter
hf is also modified by δb. If we set hf ≡ hð1þ δhÞ, the
condition Ωmfh2f ¼ Ωmh2 yields a mapping for Ωmf as

Ωmf ¼ Ωmð1þ δhÞ−2: ð9Þ

Since dark energy is assumed to be a cosmological
constant, there is no perturbation in the dark energy
induced by δb. Hence ΩK-ΛCDM model and fΛCDM
model share the same ρΛ, which leads

ΩΛf ¼ ΩΛð1þ δhÞ−2: ð10Þ

The flat-geometry condition for fΛCDM model, i.e.,
ΩKf ¼ 0 (or Ωmf þΩΛf ¼ 1), gives the following identity:

δh ¼ ð1 −ΩKÞ1=2 − 1: ð11Þ

These results indicate that for linear matter power spectrum
fixed by Eqs. (1) and (2), the remaining two degrees of
freedom, ΩK and h are fully specified by δb [Eqs. (8) and
(11)] in the SU approach. Conversely, we can recast the
effect of ΩK on structure formation as the effect of δb on a
local volume in a fake flat universe.
According to the SU approach [42,43], the power

spectrum at z in ΩK-ΛCDM model can be approximated
by the power spectrum at zf in fΛCDM model as

P̃ðk;z;ΩKÞ≃Pfðk;zf;δbÞ

≃Pfðk;zfÞjδb¼0
þ∂Pfðk;zf;δbÞ

∂δb

����
δb¼0

δb

¼Pfðk;zfÞjδb¼0

�
1þ∂ lnPfðk;zf;δbÞ

∂δb

����
δb¼0

δb

�
;

ð12Þ

where δb ≡ δbðzfÞ. The relation between z and zf is given
by Eq. (6). We often call ∂PfðkÞ=∂δb the growth “response”
which describes how the power spectrum at k responds to
the long-wavelength mode δb in fΛCDM model. We have
put the tilde symbol ∼ in P̃ðk; z;ΩKÞ to explicitly denote
that P̃ is an “estimator” of the nonlinear matter power
spectrum for ΩK-ΛCDM model. Note that we need to
compute these quantities at k in the comoving wave
numbers of the target ΩK-ΛCDM model, so we need not
include the dilation effect, i.e., the mapping between
comoving wave numbers in between the nonflat and flat
models, differently from the method in Ref. [42].

1. h response

So far, we have revisited the basic equations of the SU
approach. As explained earlier, the SU response is not the
unique way to induce perturbations to a flat fiducial
cosmology for fixed values of parameters in Eq. (1), that
fully specify the linear matter power spectrum. Here we
consider a simple example of perturbing h while the spatial
flatness is kept.
For convenience of our discussion, we introduce the

normalized response, from Eq. (12), as

P̃ðk; z;ΩKÞ ≃ Pfðk; zfÞ
�
1þ 26

21
Tδbðk; zfÞδbðzfÞ

�
; ð13Þ

with

Tδbðk;zfÞ≡
�
2
∂ lnDfðzfÞ

∂δb

�−1∂ lnPfðk;zf;δbÞ
∂δb

����
δb¼0

: ð14Þ

The normalized response has an asymptotic behavior of
Tδb → 1 at the linear limit k → 0, because PfðkÞ ∝
ðDfÞ2PLðk; ziÞ in such linear regime [see Eq. (2)]. The
coefficient, 26=21, in the second term in the square bracket
on the rhs comes from the linear limit of k → 0 [40,41].
As we will show below or discussed in Ref. [43] (around

Fig. 6 in the paper), we propose that the power spectrum for
the target ΩK-ΛCDM model is well approximated by
replacing the normalized response to δb with the normal-
ized response with respect to h within the flat model:

P̃ðk; z;ΩKÞ ≃ Pfðk; zfÞ
�
1þ 26

21
Thðk; zfÞδbðzfÞ

�
; ð15Þ

with

Thðk; zfÞ≡
�
2
∂ lnDfðzfÞ

∂hf

�−1 ∂ lnPfðk; zfÞ
∂hf

; ð16Þ

where the partial derivative ∂=∂hf is the derivative with
respect to hf, while keeping the other cosmological
parameters [Eq. (1)] fixed to their fiducial values; more
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explicitly we vary h with keeping Ωmh2 fixed, and
accordingly we have to change Ωm (and ΩΛ from the
identityΩΛ ¼ 1 −Ωm for flat models). Here we defined the
normalized response satisfying ThðkÞ → 1 at k → 0. If
Tδbðk; zfÞ ≃ Thðk; zfÞ for an input set of k and zf as we will
show below, we can use Eq. (15) to approximate the
nonlinear matter power spectrum at z for the target
ΩK-ΛCDM model.

C. Linear limit

The SU picture has an analogy with the spherical
collapse model [50–52], where a spherical tophat over-
or underdensity fluctuation is embedded into the FRW
homogeneous background and then the time-evolution of
the tophat interior density can be fully tracked up to the
fully nonlinear regime. As described in Wagner et al. [44],
we can derive a mapping between the full growth factor of
such a spherical tophat density and the linearly extrapolated
density fluctuation δb up to the full order of δb. In the SU
setup this is equivalent to expressing the growth factor of
density fluctuations in a local volume with δb, denoted as
D̃fðzf; δbÞ, in terms of the growth factor in the background
of the fake universe [from Eq. (C.17) in Ref. [53]]:

D̃fðzf; δbÞ ≃DfðzfÞ
�
1þ 13

21
δb þ

71

189
δ2b þ

29609

130977
δ3b

�
;

ð17Þ

where δb ¼ δbðzfÞ. Comparison of Eqs. (13) and (17)
clarifies that the expression of Eq. (13) corresponds to the
linear-order expansion of the linear growth factor in terms of
δb, because Pfðk; zf; δbÞ ∝ D̃fðzf; δbÞ2 at the linear limit.
The coefficient 26=21 on the right-hand side (rhs) in Eq. (15)
comes from the first-order expansion of the linear growth
factor in Eq. (17): ðD̃f=DfÞ2 ≃ 1þ ð26=21Þδb. Because we
know the exact mapping between the linear growth factors in
the ΩK-ΛCDM and fΛCDM models, we can fully account
for the mapping at the linear limit. We will later include this
linear-limit correction.
Figure 1 shows the accuracy of the approximation of the

growth factor, ½D̃fðzf; δbÞ=Dðz;ΩKÞ�2 when truncated at
some finite order in δb, as a function of the input ΩK in the
x-axis, where Dðz;ΩKÞ is the true growth factor for
ΩK-ΛCDM model. The value of δb is specified by the
input ΩK in the x-axis, from Eq. (8). The dashed, solid, and
dotted curves show the ratio when including only the zeroth
term, or up to the 1st or 2nd term, respectively, in the square
bracket of the rhs of Eq. (17). The 1st-order expansion
(solid curve) corresponds to the approximation of the
power spectrum, P̃ðk; z;ΩKÞ=Pðk; z;ΩKÞ [Eq. (13)] at
linear limit (k → 0). Encouragingly, the 1st-order approxi-
mation (solid curve) is accurate to within about 2% in the

fractional amplitude for the range of jΩKj < 0.1, which is
very broad compared to the current constraint, jΩKj < 0.1
(2σ level) from the Planck CMB data alone [15]. Note that,
if we do not take into account the mapping of redshifts
ðzf ↔ zÞ or we forcibly use the power spectrum at z in the
fake universe, the accuracy of the 1st-order approximation
is significantly degraded. We also note that the results are
similar for other redshifts, but have better accuracy with the
increase of redshift.

D. Summary: Estimator of PðkÞ for nonflat ΛCDM
By combining Eqs. (15) and (17), we propose the

following approximation to compute the nonlinear matter
power spectrum at z for ΩK-ΛCDM model that is specified
by the parameters ðΩK;Ωm; hÞ:

P̃ðk; zÞ ≃ Pfðk; zfÞ
�

DðzÞ
DfðzfÞ

�
2

×

�
1þ 26

21
fThðk; zfÞ − 1gδbðzfÞ

�
; ð18Þ

with

FIG. 1. An accuracy of the approximation that gives the growth
factor for ΩK-ΛCDM model in terms of the growth factor for the
corresponding flat ΛCDM model and the Taylor expansion of δb
in the SU approach [Eq. (17)]. Here δb is related to the curvature
parameter ΩK, in the x-axis, of each ΩK-ΛCDM model, via
Eq. (8). Note that we consider zf ¼ 0 and fixed the other
cosmological parameters Ωmf and hf as Ωmf ¼ 0.3156 and hf ¼
0.6727 in the flat ΛCDM model. Here we assess ½D̃fðzf; δbÞ=
Dðz;ΩKÞ�2, where Dðz;ΩKÞ is the true growth factor for each
ΩK-ΛCDM model, because the ratio corresponds to the linear
limit of the approximation of matter power spectrum we study in
this paper. The dashed, solid, and dotted curves denote the results
for the approximations obtained when including the zeroth-,
first-, or second-order expansion of δb in Eq. (17).

SEPARATE UNIVERSE APPROACH TO EVALUATE NONLINEAR … PHYS. REV. D 106, 083504 (2022)

083504-5



δbðzfÞ ¼ −DfðzfÞ
3ΩK

5Ωm
;

ð1þ zfÞ½1þ δbðzfÞ�1=3 ¼ 1þ z;

Thðk; zfÞ ¼
�
2
∂ lnDfðzfÞ

∂hf

�−1 ∂ lnPfðk; zfÞ
∂hf

: ð19Þ

Note that the parameters (hf;Ωmf;ΩΛf) for fΛCDMmodel
are given by Eqs. (9), (10), and (11), and the other
cosmological parameters to specify the transfer function
and the primordial perturbations (ωc;ωb; As; ns) are kept
fixed in the ΩK-ΛCDM and fΛCDM models.
We employed the modification of Eq. (18) from Eq. (15)

to fully take into account the modification in the linear
growth factor up to the full order of δb; Eq. (18), by design,
reproduces the underlying true power spectrum for
ΩK-ΛCDM model at the linear limit, i.e., P̃ðk; zÞ ¼
Pðk; zÞ at k → 0 [also from Eq. (2)].
All the terms on the rhs of Eq. (18), except for DðzÞ, are

given by quantities for the flat-geometry fΛCDM model,
which are specified by the cosmological parameters of
ΩK-ΛCDM model. That is, if Eq. (18) is a good approxi-
mation, we can evaluate the nonlinear matter power
spectrum for an arbitrary ΩK-ΛCDM model from the
quantities for the counterpart flat model in the SU
approach. For example, if we use the fitting formulas or
emulators of nonlinear matter power spectrum calibrated
for flat ΛCDM cosmologies, we can compute the nonlinear
matter power spectrum for the target ΩK-ΛCDM model.
This would be a useful approximation, and we will below

give validation of our method, and quantify the accuracy of
our method.

III. SIMULATION DATA

A. N-body simulations

To validate our method [Eq. (18)], we use cosmological
N-body simulations. Our simulations follow the method in
Nishimichi et al. [26], and we here give a brief summary of
the simulations used in this paper.
We use GADGET-2 [54] to carry outN-body simulation for

a given cosmological model. The initial conditions
are set up at redshift zi ¼ 59 using the second-order
Lagrangian perturbation theory [55,56] implemented by
Nishimichi et al. [57] and then parallelized in Valageas and
Nishimichi [58]. We use the public code CAMB [59] to
compute the transfer function for a given model, which is
used to compute the input linear power spectrum. For all
simulations in this paper, we use the same simulation box
size in Gpc (i.e., without h in the units) and the same
number of particles: L ¼ 1 h−1f Gpc ≃ 1.49 Gpc (without h
in units) and Np ¼ 20483, which correspond to the particle
Nyquist wave number, k ¼ 6.4 hfMpc−1. In the following
we will show the results at wave numbers smaller than this
Nyquist wave number.
In this paper we use simulations for five different

cosmological models, denoted as “fiducial” flat ΛCDM,
“ΩK-ΛCDM1,” “ΩK-ΛCDM2,” “ΩK-ΛCDM3,” and
“h-ΛCDM” models, respectively, as given in Table I. Here
the cosmological parameters for the “fiducial” model
are chosen to be consistent with those for the Planck 2015

TABLE I. Details of N-body simulations for different cosmological models. The columns “ΩK” and “h” give their values of the
curvature parameter and Hubble parameter that are employed in each simulation, while we fix other cosmological parameters
fωc;ωb; As; nsg, which are needed to specify the linear power spectrum for the initial conditions, to the values for the fiducial Planck
cosmology (see text for details). Ωm and ΩΛ are specified by a given set of ΩK and h, because we keep Ωmh2 fixed and
ΩΛ ¼ 1 − Ωm − ΩK. The column “Nreal” denotes the number of realizations, with different initial seeds, used for each model. The
column “Angulo-Pontzen” gives whether or not we employ the “paired-and-fixed”method in [61] to reduce the sample variance effect in
small k bins for the power spectrum measurement: we adopt the method for “Yes,” while not for “No.” For the paired-and-fixed method,
it uses the paired (2) simulations by design (see text for details). The column “redshift (z)” gives the redshifts of simulation outputs: for
ΩK-ΛCDM model, we properly choose the redshifts corresponding to the same cosmic time for each of redshifts, z ¼
f0.0; 0.549; 1.025; 1.476g in the “fiducial” model in the SU approach (see around Eq. (6) in Sec. II B). All the simulations are
done in the fixed comoving box size without h in its units, i.e., L ≃ 1.49 Gpc (corresponding to 1 h−1f Gpc for the fiducial model) and
with the same particle number, i.e., Np ¼ 20483.

Name ΩK h Nreal Angulo-Pontzen Redshift (z)

Flat (fiducial) 0 0.6727 2 Yes. f0.0; 0.549; 1.025; 1.476g
ΩK-ΛCDM1

0.00663 0.6749 10 No. f−0.0033; 0.544; 1.018; 1.467g
−0.00672 0.6705 10 No. f0.0033; 0.554; 1.031; 1.484g

ΩK-ΛCDM2
0.05 0.6902 2 Yes. f−0.027; 0.518; 0.992; 1.443g
−0.05 0.6565 2 Yes. f0.023; 0.576; 1.053; 1.505g

ΩK-ΛCDM3
0.1 0.7091 2 Yes. f−0.059; 0.482; 0.955; 1.405g
−0.1 0.6414 2 Yes. f0.043; 0.600; 1.079; 1.531g

h-ΛCDM 0 0.6927 10 No. f0.0; 0.549; 1.025; 1.476g
0 0.6527 10 No. f0.0; 0.549; 1.025; 1.476g
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best-fit cosmology [60]. The cosmological parameters for
each of the nonflat cosmological models are chosen so that it
has the fiducial ΛCDM model as the “fake” flat ΛCDM
model in the SU approach. We use paired simulations for
“ΩK-ΛCDM1” model to compute the power spectrum
response with respect to δb (Tδb ), where the curvature
parameters are specified by δb ¼ �0.01 at zf ¼ 0. The
“h-ΛCDM” model is for computing the response with
respect to h (Th): here, we chose a step size of δh ¼
�0.02 for the numerical derivative. Note that the setup of
these simulations is designed to compute the “growth”
response by taking the numerical derivative at fixed comov-
ing wave numbers k [see Sec. III B in Ref. [42]]. We also use
the simulations for nonflatΛCDMmodelswithΩK ¼ �0.05
or �0.1, named as “ΩK-ΛCDM2” and “ΩK-ΛCDM3,” to
assess how our method can approximate the matter power
spectrum for nonflat models.
Table I gives the values ofΩK and h, and we use the fixed

values of other cosmological parameters, given as
ðωc;ωb;As;nsÞ¼ ð0.1198;0.02225;2.2065×10−9;0.9645Þ,
which specify the transfer function and the primordial
power spectrum, or equivalently the linear matter power
spectrum. Note that we also include the effect of massive
neutrinos on the linear matter power spectrum, assuming
Ωνh2 ¼ 0.00064 corresponding to mν;tot ¼ 0.06 eV, the
lower limit inferred from the oscillation experiments [see
Ref. [26], for details]. Hence the physical density parameter
of total matter is Ωmh2 ¼ ωc þ ωb þ ων. Note that Ωm and
ΩΛ are specified by a given set of the parameters for each
model: Ωm ¼ Ωmfh2f=h

2 and ΩK ¼ 1 − ðΩm þ ΩΛÞ. For
each model, we use the outputs at 4 redshifts, zf ≃ 0, 0.55,
1.03, and 1.48. Since the fiducial flat ΛCDM model is the
fake flat model in the SU method, each redshift for the
fiducial flat model corresponds to a slightly different
redshift in each nonflat model, which is computed
from Eq. (6).
Note that all the N-body simulations for different

cosmological models are designed to have the fixed mass
resolution, mp ≃ 1.52 × 1010 M⊙ (in units without h).
Hence the comoving mass density in the N-body box is
kept fixed: ρ̄m0 ¼ Npmp=Vcom ≃ 3.96 × 1011 M⊙Mpc−3.
We utilize this fact to define a sample of halos in the same
mass bins, in units of M⊙, for all the cosmological models.
This makes it easier to compute the response of halo mass
function with respect to δb or h, which is used to study the
power spectrum responses based on the halo model (see
Appendix).
Furthermore, we use simulations that are run using the

“paired-and-fixed” method in Angulo and Pontzen [61],
where the initial density field in each Fourier mode is
generated from the fixed amplitude of the power spectrumffiffiffiffiffiffiffiffiffiffi
PðkÞp

and the paired simulations with reverse phases, i.e.,
δk and −δk, are run. The mean power spectrum of the
paired runs fairly well reproduces the ensemble average of

many realizations even in the nonlinear regime [61,62]. The
paired-and-fixed simulations allow us to significantly
reduce the sample variance in the power spectrum estima-
tion. The column “Angulo-Pontzen” in Table I denotes
whether we use the paired-and-fixed simulations. For the
paired-and-fixed simulations, “2” on the column Nreal
denotes one pair of the paired-and-fixed simulations.

B. Measurements of power spectrum
and growth response

To calculate the power spectrum from each simulation
output, we assign the particles on 20483 grids using the
cloud-in-cells (CIC) method [63] to obtain the density field.
After performing the Fourier transform, we correct for the
window function of CIC following the method described in
Takahashi et al. [23]. In addition, to evaluate the power
spectrum at small scales accurately, we fold the particle
positions into a smaller box by replacing x → x%ðL=10nÞ,
where the operation a%b stands for the reminder of the
division of a by b. This procedure leads to effectively 10n

times higher resolution. Here we adopt n ¼ 0, 1. We use the
density fluctuation δk up to half the Nyquist frequency
determined by the box size L=10n with the grid number,
and we will show the results at wave numbers smaller
than k ¼ 6.4 hfMpc−1.
Since we use the fixed box size and the same particle

number, we use the same k binning to estimate the average of
jδkj2 in eachkbin to estimate the bandpower.We thenuse the
two-side numerical derivative method to compute the power
spectrum responses. To reduce statistical stochasticity (or
sample variance), we employ the same initial seeds as those
for the “fiducial” model. The column “Nreal” in Table I
denotes the number of realizations for paired simulations,
where each pair uses the same initial seeds. ForΩK-ΛCDM1
and h-ΛCDMmodels, we further run 9 paired simulations to
estimate the statistical scatters; hence we use 10 paired
simulations in total to estimate the power spectrum responses
at each redshift, Tδbðk; zfÞ and Thðk; zfÞ.

IV. RESULTS

A. Power spectrum responses

In Fig. 2 we study the normalized growth responses of
matter power spectrum, TδbðkÞ and ThðkÞ, at the four
redshifts, which are computed from theN-body simulations
for ΩK-ΛCDM1 and h-ΛCDM models, respectively, in
Table I. It is clear that the approximate identity of Tδb ≈ Th

holds over the range of scales and for all the redshifts.
To be more precise, the two responses agree with each
other to within 2(16)% in the fractional amplitudes for
k≲ 1ð6.4Þ hfMpc−1. Our results confirm the result of Li
et al. [43] (see Fig. 6 in the paper). However, a closer look
of Fig. 2 reveals a slight discrepancy at k≳ 1 hfMpc−1. As
we showed in Appendix, the responses at these small scales

SEPARATE UNIVERSE APPROACH TO EVALUATE NONLINEAR … PHYS. REV. D 106, 083504 (2022)

083504-7



are mainly from modifications in the mass density profiles
of halos. Hence we conclude that the identity of Tδb ≈ Th is
not exact, but approximately valid for models around the
fiducial ΛCDM models we consider.
Since δb and h are varied at fixed initial power spectrum,

their impact on the power spectrum in the linear regime at a
fixed comoving scale comes solely from changing the
linear growth factor D. Since we normalize the response to
account for this linear dependence on D, the data points
converge to unity at the low-k limit by design.
For the quasi nonlinear regime, the perturbation theory

of structure formation predicts that the higher-order loop
corrections to the power spectrum are well approximated by
a separable form in terms of time and scale: an exact result
for the Einstein-de Sitter (EdS) cosmology, which is
usually generalized to ΛCDM cosmology by replacing
the scale factor a with the linear growth factor D. Possible
corrections to this arising from the nonseparability is

known to have a weak dependence on ΩmðzÞ, and this
can be usually ignored in the modeling of mildly nonlinear
regime [64–67]. Under this approximation, the nonlinear
power spectrum is fully specified by its linear counterpart
evaluated at the same redshift. Therefore the perturbation
theory also predicts that Tδb ≈ Th should be valid due to the
matched shape of the linear power spectrum.
The agreement Tδb ≈ Th in the nonlinear regime suggests

that nonlinear matter power spectrum is approximately
given by a functional form of the input linear power
spectrum, Δ2

NLðkÞ ¼ FNL½Δ2
LðkÞ� (Δ2 ≡ k3PðkÞ=2π2Þ, as

implied by the stable clustering ansatz for a CDM model
[19,68–71]. If the ansatz holds, the identity Tδb ¼ Th holds
exactly. In Appendix, we also show that the approximation
Tδb ≈ Th can be found from the halo model picture, which
is derived using the growth responses of the halo mass
function and the halo mass density profile to δb and h that
are estimated from N-body simulations. Thus the results of

FIG. 2. Normalized growth response of matter power spectrum with respect to δb and h, TδbðkÞ and ThðkÞ, at the four redshifts as
denoted by the legend in each panel. The horizontal line denotes the linear limit: Tδb ; Th ¼ 1. We use the 10 paired simulations for
ΩK-ΛCDM1 and h-ΛCDMmodels in Table I to compute these responses. The circle or triangle symbols denote the mean of Tδb or Th in
each k bin, and the error bars (although not visible in some k bins) denote the statistical errors for simulation box with side length
L ¼ 1 h−1f Gpc, which are estimated from the standard deviations among the 10 paired simulations. Note that the range of y-axis is
different in different panels.
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Fig. 2 suggest that the stable clustering ansatz is approx-
imately valid.
Before proceeding, we comment on the normalized

growth response to the primordial power spectrum amplitude
As: TAs

ðk; zfÞ≡ ½2∂ lnDfðzfÞ=∂As�−1∂ lnPfðk; zfÞ=∂As. A
change in As does not alter the shape of the linear matter
power spectrum. If the stable clustering is exact, one would
expect TAs

¼ Tδb . However, as shown in Fig. 6 of Li et al.
[43] [also see [53]],TAs

shows a sizable discrepancy fromTδb

(or Th) at k≳ 0.1 hfMpc−1. This means that a change in As

leads to a larger change in the transition scale (kNL) between
the linear and nonlinear regimes, or a larger change in the
halo profile (e.g., the halo concentration). Hence, we again
stress that TδbðkÞ ≈ ThðkÞ is an approximate identity around
the ΛCDM model.
In Fig. 3 we assess the accuracy of the publicly available

fitting formula of PðkÞ for predicting the normalized
growth response. Here we employ the two versions of
Halofit in Smith et al. [20] (Smithþ 03) and Takahashi
et al. [23] (Takahashiþ 12), respectively, and the HMcode
in Mead et al. [28] (Meadþ 20). All the fitting formulas are
primarily functionals of the linear power spectrum at the
target redshift (although each formula includes terms that
have an extra dependence on cosmological parameters).
Among these fitting formulas, only Smithþ 03 Halofit
was calibrated against N-body simulations for models
including nonflat CDM model. Note that we here compute

TδbðkÞ from Eq. (13) based on the SU method; we compute
P̃ðk; zÞ for varied ΩK-ΛCDM models assuming that the
fitting formula is valid for nonflat cosmologies, respec-
tively, and then compute TδbðkÞ from numerical derivative.
Here we adopt δb ¼ �0.01 at zf ¼ 0. On the other hand,
for ThðkÞ, we vary only h with keeping the linear matter
power spectrum fixed (keeping Ωmh2 fixed as discussed
around Table I) in flat models, and then compute ThðkÞ
from numerical derivative of the fitting formula predictions,
where we adopt variations of δh ¼ �0.02. The figure
shows that none of the fitting formulas reproduces the
approximate identity of Tδb ≈ Th in nonlinear regime at the
level that we see in the responses measured from N-body
simulations [also see Ref. [27], for the similar discussion].
This implies that the fitting formulas have a degraded
accuracy for nonflat cosmologies in the nonlinear regime,
because the response to δb is equivalent to the dependence
of PðkÞ on ΩK . Nevertheless it is intriguing to find that
Smithþ 03 and Takahashiþ 12 Halofit give a closer
prediction to the simulation result for the response to h,
than that to δb. In particular, the result for Smithþ 03
Halofit appears to be promising, including a better
agreement over the transition scales between the linear and
nonlinear regimes.
In Fig. 3, we also show the response computed using

RESPRESSO [72]. It reconstructs the nonlinear power
spectrum from an input linear power spectrum at a target
redshift for a target cosmological model based on the
perturbation theory motivated method starting from a
nonlinear matter power spectrum at a fiducial cosmology
measured from N-body simulations at a different redshift.
The output redshift of the nonlinear matter power spectrum

FIG. 3. Comparison of the simulation results of Th and Tδb at
zf ¼ 0 with the predictions computed from the public codes of
nonlinear matter power spectrum: “Smithþ 03 Halofit” [20],
“Takahashiþ 12 Halofit” [23], “Meadþ 20 HMcode” [28],
and “Nishimichiþ 17 RESPRESSO” [72]. Here we used the
public codes to compute the normalized responses from numeri-
cal derivative of the power spectrum predictions with models
varying ΩK or h (see text for details). The solid and dashed lines
show the model predictions for Th and Tδb , respectively. The
triangle symbols are the same as in Fig. 2. We omit the simulation
result for Tδb as it is very close to the triangle symbols, to avoid
crowdedness in the figure.

FIG. 4. Similar to the previous figure, but this figure compares
the simulation result for Th at zf ¼ 0 with those computed from
the public emulator of the nonlinear matter power spectrum:
CosmicEmu [24], NGenHalofit [29] and EuclidEmula-
tor [30]. These emulators are designed to compute the power
spectrum for flat-geometry CDM cosmologies, so here we
compare the results for Th.
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at a fiducial cosmology is chosen to minimize the differ-
ence of the linear power spectra for target and fiducial
cosmologies. The difference in the nonlinear power spectra
in k bin between the two cosmologies is computed by
summing up the contributions from the band power of the
linear power spectrum in each q bin. To do this, the
diagrams in the perturbative expansion relevant to the
response of the nonlinear power spectrum to the linear
counterpart are precomputed at different values of Ωm, and
this lookup table is inferred along a path between the
fiducial and the target cosmology. However, since the
fiducial cosmology adopted in RESPRESSO is identical
to ours and all cosmologies considered in this paper share
the same shape of the linear power spectrum, the difference
in the linear power spectrum in q bin between the two
cosmologies vanishes. In this case, the difference in the

nonlinear power spectra in k bin between the two cosmol-
ogies vanishes and the estimated response can only be
sourced by the time evolution of the nonlinear power
spectrum for the fiducial cosmology. Hence, Fig. 3 clearly
shows that the response to the redshift fails to reproduce the
response to h (or δb) in the nonlinear regime. Note that
RESPRESSO outputs the predictions up to k ∼ 1 hMpc−1.
Since RESPRESSO needs only the linear power spectrum
of the target cosmology as input, its prediction is unique for
models with the same linear power spectrum (e.g., two
models with different values of As, but evaluated at
different redshifts to match the normalization of the linear
power spectrum), even when the growth history is different.
Hence Th and Tδb computed by RESPRESSO are indis-
tinguishable except for the slight difference due to numeri-
cal accuracy. However, since RESPRESSO is motivated by

FIG. 5. An assessment of the accuracy of our method (Eq. (18) for predicting PðkÞ for nonflat ΛCDM models. The different symbols
in each panel denote PðkÞ, directly estimated from N-body simulations for nonflat models with ΩK ¼ �0.05 and �0.1 (ΩK-ΛCDM2

and ΩK-ΛCDM3 models in Table I), at each of the four redshifts, while the lines denote the results from our method, P̃ðkÞ in Eq. (18).
Note that we used the simulation results for Pfðk; zfÞ and Thðk; zfÞ in Eq. (18). For the simulation results we used the “paired-and-
fixed” method in Angulo and Pontzen [61] to reduce the stochasticity. For comparison we also show the simulation result for the flat
fiducial simulation by triangle symbols. For illustrative purpose we show kαPðk; zÞ where the power index α for each redshift output is
chosen in that the y-range is narrower in the linear scale. The lower plot in each panel shows the ratio between the simulation result and
our method. The horizontal lines denote �1% fractional accuracy.
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the perturbation theory, these predictions begin to differ
from the responses measured from N-body simulations
around k ∼ 0.2 hMpc−1, which corresponds to the scale
where the perturbation theory fails. This is similar to the
results from Ref. [53] (see Fig. 2 in the paper), where the
perturbation theory (1-loop) predictions were used to
compute the response up to quasi nonlinear regime.
These results indicate that the perturbation theory moti-
vated model fails to predict the responses in the nonlinear
regime. That is, as we discussed above, the nonlinear power
spectrum has other dependencies besides the linear power
spectrum (also see Appendix for the similar discussion).
In Fig. 4 we use the publicly-available emulators of PðkÞ,

built for flat cosmologies, to assess accuracy for predicting
the response to h. Here we used CosmicEmu [24],
NGenHalofit [29], and EuclidEmulator [30]. The
later two emulators fairly well reproduce the simulation
results, although a jagged feature in the numerical deriva-
tive is seen, probably due to a k-binning issue (or
interpolation issue) in the output.

B. Accuracy of the approximation
of PðkÞ for nonflat ΛCDM

In this section we assess an accuracy of the approxima-
tion [Eq. (18)] to evaluate PðkÞ for ΩK-ΛCDM model, by
comparing the predictions based on the method with the
power spectra directly measured from N-body simulations
for ΩK-ΛCDM model.
The data points in Fig. 5 show PðkÞ estimated from the

simulations, in Table I, for ΩK-ΛCDM models with
ΩK ¼ �f0.05; 0.1g, at each of the four redshifts. The
curves in each panel show the predictions computed based
on Eq. (18), where we used the normalized response Th,
computed from the simulations (the results in Fig. 2), and
the power spectrum Pfðk; zfÞ computed from the fΛCDM
simulation (the triangle symbols). The figure shows that the
estimator reproduces the simulation result at an accuracy
better than ∼1% in the amplitude over the wide range of
wave numbers, except for ∼2% accuracy for ΩK ¼ 0.1 at
k ∼ 1 hfMpc−1 that corresponds to the largest δb. The 1%

FIG. 6. Similar to the previous figure, but this figure compares the nonlinear matter power spectra that are computed from our method
and the public codes, for the ΩK-ΛCDM3 model with ΩK ¼ �0.1. Here we consider Halofit [23], HMcode [28] and RESPRESSO
[72]. The solid line in each panel is the same as in the previous figure, while the other lines denote the results computed from the codes,
where we used the direct predictions for nonflat models. The horizontal dashed and solid lines denote �1% and �2% fractional
accuracy, respectively.
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accuracy at k ∼ 1 h−1f Mpc roughly meets requirements on
PðkÞ for upcoming weak lensing surveys [39].
In Fig. 6, we compare the performance of the estimator

predictions [Eq. (18)] with public codes for each cosmo-
logical model. Here we consider two fitting formulas,
Halofit in Takahashi et al. [23] and HMcode [28]. In
addition, we consider RESPRESSO [72]. Although these
models are calibrated under ΩK ¼ 0, we use their direct
predictions for nonflat cosmologies using an extrapolation
to ΩK ≠ 0. While the accuracy of Halofit, HMcode and
RESPRESSO vary with the redshift, the estimator predic-
tion displays a better performance than the public codes
especially in the nonlinear regime.
Now we study the accuracy of the emulators of PðkÞ,

calibrated only for flat cosmologies, to predict PðkÞ for
nonflat models, based on our method [Eq. (18)]. Before
going to the result, in Fig. 7, we assess the performance of
the emulators by comparing the predictions with the
simulation results for the fiducial flat model. All the

emulators reproduce the simulation results to within
∼2% up to k ∼ 1 hfMpc−1.
In Fig. 8 we apply our method to theEuclidEmulator

for predicting PðkÞ for the nonflat models withΩK ¼ �0.1,
compared to the simulation results, where we use the
emulator to compute Thðk; zfÞ and Pfðk; zfÞ and then plug
those into Eq. (18) to obtain P̃ðk; zÞ for the targetΩK-ΛCDM
model. The predictions by EuclidEmulator are in good
agreementwith the simulations at zf ¼ 0 towithin∼2% even
for the relatively large jΩKj models, while the accuracy is
degraded especially at high-k for zf ≃ 1.5. The nice agree-
ment for zf ¼ 0 is encouraging, and the accuracy of the
emulator for the high redshift might need to be further
studied.

V. DISCUSSION AND CONCLUSION

In this paper we have developed an approximate method
to compute the nonlinear matter power spectrum, PðkÞ, for

FIG. 7. Comparison of nonlinear power spectra for flat cos-
mology at zf ¼ 1.476 (top) zf ¼ 0 (bottom) computed from our
simulations and the public emulators. Here we consider Cos-
micEmu [25], NGenHalofit [29], and EuclidEmulator
[30]. The horizontal dashed and solid lines denote�1% and�2%
fractional accuracy, respectively.

FIG. 8. Performance of our method [Eq. (17)] for predicting the
nonlinear matter power spectrum for nonflat ΛCDM model with
ΩK ¼ �0.1, at zf ¼ 1.476 (top) and zf ¼ 0 (bottom). Here we
use EuclidEmulator [30] predictions for Pfðk; zfÞ and
Thðk; zfÞ in Eq. (18). The horizontal dashed and solid lines
denote �1% and �2% fractional accuracy, respectively.
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a “nonflat” ΛCDM model, from quantities computed for
the counterpart flat ΛCDM model, based on the separate
universe (SU) method. To do this, we need to employ a
specific mapping of the cosmological parameters and
redshifts between the nonflat and flat models, with keeping
the initial power spectrum fixed. In addition we utilized the
fact that the normalized response of PðkÞ to the long-
wavelength fluctuation mode δb in the flat model is well
approximated by the normalized response to h for the flat
model, which was validated by using the N-body simu-
lations. We showed that our method [Eq. (18)] enables to
compute PðkÞ for nonflat models with jΩKj ≤ 0.1, to the
fractional accuracy of ∼1% compared to the N-body
simulation results, over the range of scales up k≲
6 hMpc−1 and in the range 0 ≤ z≲ 1.5, if the accurate
response function is available. Encouragingly, even if we
use the publicly available emulator of PðkÞ, which is
calibrated for flat cosmologies (e.g., EuclidEmulator
[30]), our method allows one to compute PðkÞ for nonflat
model, to within the accuracy of ∼2%.
A key ingredient in our approach is that how the

derivative operation with respect to ΩK should be per-
formed exactly in a multidimensional input parameter
space under a constraint, ΩK ¼ 1 − ðΩm þ ΩΛÞ. In our
case, the SU approach guides us to use δb to fully specify
the direction along which the derivative is taken. Then, we
numerically find that this derivative coincides well with the
derivative with respect to h within flat cosmologies. This
turns out to be practically useful to model nonflat cosmol-
ogies using only the knowledge within flat cosmologies.
We can consider different ways to match flat-ΛCDM and
ΩK-ΛCDM models, or more general models such as
wCDM models with the equation-of-state parameter w
for dark energy. It might be of interest to study more about
the similarities and differences of the responses with
respect to different combinations of parameters, as well
as the time variable, at the nonlinear level beyond the
applicable range of the one-to-one correspondence between
PðkÞ and PLðkÞ, which is valid within the EdS approxi-
mation and is explicitly used in methods such as
RESPRESSO. We will postpone to address a more com-
prehensive study in this direction as a future work.
An obvious application is to apply the method to actual

data for constraining the curvature parameter ΩK. We will
explore this direction in our future work. It is really
interesting to explore a constraint of ΩK from galaxy
surveys, independently from the CMB constraint. As
discussed in Ref. [9], if we have precise BAO measure-
ments at multiple redshifts (more than 3 redshifts), we can
constrain ΩK without employing any prior on the sound
horizon (BAO scale) from CMB, because such multi-
redshift BAO measurements can give sufficient informa-
tion on the sound horizon scale and the cosmological
distances that depend on Ωm and ΩK (ΩΛ is set by the
identity ΩK ¼ 1 − ½Ωm þ ΩΛ�) for nonflat ΛCDM models.

However, note that the galaxy BAO geometrical constraints
need to assume the existence of the standard ruler (i.e.,
BAO scale) over the multiple redshifts, as supported by the
adiabatic initial condition, and the constraints would be
degraded if employing further extended models such as
time-varying dark energy models. In addition, we should
try to explore the curvature information from the growth
history of cosmic structures, in addition to the geometrical
constraints. Once such high-precision constraint on ΩK is
obtained from galaxy surveys, we can address whether the
Planck constraint and galaxy surveys, or more generally
the late-time universe, are consistent with each other within
the adiabatic ΛCDM framework. Any deviation or incon-
sistency in these tests would be a smoking gun evidence of
new physics beyond the standard ΛCDM model, and this
will be definitely an interesting and important direction to
explore with actual datasets.
The response Tδb is also a key quantity for calibrating the

super sample covariance (SSC), which is a dominant source
of the non-Gaussian errors in the correlation functions of
cosmic shear [41,73–75]. For future weak lensing surveys,
it is important to obtain an accurate calibration of the non-
Gaussian covariance, e.g., to have a proper assessment of
the best-fit model compared with the statistical errors and
not to have any significant bias in estimated parameters in
the parameter inference [76]. Estimating the SSC term for
an arbitrary cosmological model is computationally expen-
sive, because it requires to run a sufficient number of SU
simulations (including the simulations in nonflat cosmol-
ogies) to have an accurate estimation of the SSC terms. For
this, the approximation of Tδb ≈ Th is also useful because
we can use the public code of PðkÞ to compute the SSC for
a given cosmological model. However, note that, to model
the total power of the SSC term, we further need to take into
account the dilation effect [42], which is straightforward to
compute from the numerical derivative of the nonlinear
power spectra with respect to k.
The SSC term is also significant or not negligible for

galaxy-galaxy weak lensing or galaxy clustering, respec-
tively [77]. The SSC terms for these correlation functions
arise from the responses of the matter-galaxy or galaxy-
galaxy power spectra, Pgm or Pgg, to the super survey mode,
δb. Since the galaxy-halo connection is modeled by the halo
occupation distribution (HOD) model, it is interesting to
study whether the normalized growth response of thematter-
galaxy (matter-halo) or galaxy-galaxy (halo-halo) power
spectra to δb is approximated by the normalized response
to h similarly to the case for the matter power spectrum. This
is our future work and will be presented elsewhere.
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APPENDIX: VALIDATION OF THE POWER
SPECTRUM RESPONSES WITH HALO MODEL

In this section we study whether the approximate identity
of TδbðkÞ ≈ ThðkÞ is reproduced by the halo model [78].

1. Halo model approach

The halo model gives a useful (semi-)analytical descrip-
tion of the nonlinear clustering statistics, and allows us to
study the power spectrum responses [see [41,42,79], for the
similar study]. In the halo model, the power spectrum is
given by sum of the 1- and 2-halo terms as

PðkÞ ¼ P1hðkÞ þ P2hðkÞ; ðA1Þ

where

P1hðkÞ≡
Z

dMnðMÞ
�
M
ρ̄m

�
2

ũMðkÞ2 ðA2Þ

and

P2hðkÞ≡ ½I11ðkÞ�2PLðkÞ: ðA3Þ

with the function defined as

Iβμðk1;…; kμÞ≡
Z

dMnðMÞ
�
M
ρ̄m

�
μ

bβðMÞ
Yμ
{¼1

ũMðkiÞ;

ðA4Þ

where nðMÞdM is the number density of halos in the mass
range ½M;M þ dM� (i.e., the halo mass function), bβðMÞ is
the bias parameter for halos with mass M, defined in that
b0 ¼ 1 and b1ðMÞ is the linear bias parameter, and ũMðkÞ is
the Fourier transform of the mass density profile of halos
with massM. Note that the halo profile is normalized so as
to satisfy ũMðkÞ → 1 at k → 0. With this normalization,
I11ðkÞ should be normalized at very small k so as to satisfy

the linear limit I11ðkÞ → 1 at k → 0 in that the 2-halo term
reproduces the linear matter power spectrum, P2hðkÞ≃
PLðkÞ. For the halo mass density profile, we assume the
Navarro-Frenk-White (NFW) halo profile [80] in the
following, where we estimate the halo concentration for
halos in each mass bin from simulations.
We can formally express the power spectrum response

with respect to a parameter p (p ¼ δb or h) as

∂PðkÞ
∂p

¼ ∂P1hðkÞ
∂p

þ ∂P2hðkÞ
∂p

ðA5Þ

where the 1-halo term response is given as

∂P1hðkÞ
∂p

¼
Z

dMnðMÞ
�
M
ρ̄m

�
2

ũMðkÞ2

×

�
∂ ln nðMÞ

∂p
þ 2

∂ ln ũMðkÞ
∂p

�
: ðA6Þ

The 2-halo term response is given as

∂P2hðkÞ
∂p

¼ 2I11ðkÞ
∂I11ðkÞ
∂p

PLðkÞ þ ½I11ðkÞ�2
∂PLðkÞ
∂p

: ðA7Þ

Here the 2nd term, i.e., the linear power spectrum response
∂PL=∂p, is equivalent to the response of the linear growth
factor as discussed in Sec. II C. Hence it is straightforward
to compute the 2nd term using the linear growth factor.
Since the 2-halo term gives a dominant contribution to the
total power in the linear regime, where I11 ≃ 1 as discussed
above, we ignore the 1st term for the following results, for
simplicity.

2. Evaluation with N-body simulation

In this section we use the N-body simulations in Table I
to calibrate each term of the 1-halo term response
[Eq. (A6)]; more exactly, the responses of the halo mass
function and the halo mass density profile.
First we need to define halos from each output of

N-body simulations. We follow the method in Nishimichi
et al. [26], so please see the paper for further details. As
we emphasize around Table I, all the N-body simulations
employ the same box size (L ≃ 1.49 Gpc), the same
N-body particle number (20483) and the same N-body
mass scale (mp ¼ 1.52 × 1010 M⊙). In this setting, the
mean comoving mass density ρ̄m0 is the same for all the
simulations. To identify halos in each simulation output,
we use the public software Rockstar [81] that identifies
halos and subhalos based on the clustering of N-body
particles in phase space. For each halo/subhalo, we
compute the spherical overdensity, Δ ¼ 200, to define
mass of each halo/subhalo in the comoving coordinates,
M ¼ ð4π=3ÞðR200mÞ3ρ̄m0Δ. Note that the halo mass def-
inition is different from that used in the study of halo bias
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calibration using the SU simulations [e.g., [46]], where
the spherical overdensity is set to be Δ ¼ 200=ð1þ δbÞ in
the SU simulation so that halos are identified using the
same physical overdensity as the corresponding global
universe. By using this halo definition, we can estimate
only the “growth” response for the 1-halo term, in the
decomposition of “growth” and “dilation” responses [42].
Hence this response calibration is different from the
method in [46].
After we identified halo candidates, we determine

whether they are central or satellite halos. When the
separation of two different halos (between their centers)
is closer than R200m of the more massive one, we mark the
less massive one as a satellite halo. In the following we use
only central halos with mass containing more than 100
particles. With these definitions, each halo in all the
simulations contains exactly the same number of member
particles, which allows a cleaner calibration of the power
spectrum responses in the halo model approach.
We first estimate the halo mass function from the halo

catalog in each simulation realization. We use the following
fitting function, which is a modified version of the earlier
work in Press and Schechter [also see [82,83]], to fit the
mass function estimated from the simulation:

nðMÞ≡ dn
dM

¼ fðσMÞ
ρ̄m0

M
d ln σ−1M
dM

; ðA8Þ

with

fðσMÞ ¼ A

��
σM
b

�
a
þ 1

�
exp

�
−

c
σ2M

�
; ðA9Þ

where A, a, b, and c are fitting parameters. The mass
variance σ2M is defined as

σMðzÞ2 ≡
Z

k2dk
2π2

PLðk; zÞjW̃RðkÞj2; ðA10Þ

where W̃RðkÞ is the Fourier transform of a top-hat filter
of radius R that is specified by an input halo mass via
R ¼ ð3M=4πρ̄m0Þ1=3.
For each of the simulations for ΩK-ΛCDM1 and

h-ΛCDM models in Table I, we estimate the best-fit values
of A and a by fitting the above formula to the mass function
measured from each simulation, assuming the Poisson
noise in each halo mass bin. For the parameters b and c,
we fixed their values to those in Tinker et al. [84]. We use
10 realizations for each of the models with δb ¼ �0.01 at
zf ¼ 0 (ΩK-ΛCDM1) and the positive or negative varia-
tions of h from its fiducial value (h-ΛCDM). We then
estimate the responses of the halo mass function with
respect to δb or h from the averaged mass function, using
the two-side numerical derivatives: ∂ ln nðMÞ=∂δb or
∂ ln nðMÞ=∂h, which is the first term of the 1-halo term

response [Eq. (A6)]. Note that this corresponds to the
growth response of halo mass function due to the reason we
described above. Figure 9 shows the results for the mass
function responses at zf ¼ 0. Here we normalized the
responses in the same way as those in Tδb and Th using
the responses of the linear growth factor [see around
Eq. (13)]. The figure shows that the responses are in
remarkably nice agreement with each other. This agreement
supports that the halo mass function is approximately given
by a “universal” form, i.e., fðνÞ, where ν≡ δc=σMðzÞ (δc is
a critical collapse threshold) or ν ∝ 1=σMðzÞ, for different
cosmological models. In this case, the halo mass function
response is given by ∂ ln nðMÞ=∂p ∝ ∂ ln f=∂ν × ∂ν=∂p ¼
−∂ ln f=∂ ln ν × ∂ lnD=∂p, since σMðzÞ ∝ DðzÞ. Note that
we estimated the parameters A and a independently for
different cosmological models, so the universality breaks
down if the parameters A and a differ in the different
models.
Next we employ the following method to estimate the

responses of the halo mass density profile, which is the 2nd
term of Eq. (A6), in each simulation. We divide halos into
each of 20 logarithmically-spaced mass bins in the range of
M ¼ ½1012.45; 1015.45� h−1f M⊙, and measure the “averaged”
halo mass profile of halos in each bin. We fit each of the
estimated mass profiles by an NFW profile to estimate the
best-fit concentration parameter, assuming the Poisson
errors according to the number of N-body particles con-
tained in each of the radial bins. We then compare the best-
fit NFW profiles to estimate the responses of the halo mass
concentration with respect to the variations of δb ¼ �0.01
at zf ¼ 0 and δh ¼ �0.02, from the simulations for
ΩK-ΛCDM1 and h-ΛCDM models. Figure 10 shows the

FIG. 9. Normalized response of the halo mass function, nðMÞ,
to δb or h at zf ¼ 0, where the normalization was done in the
same was as in Fig. 2. These are computed from the halo catalogs
in the N-body simulations forΩK-ΛCDM1 and h-ΛCDMmodels
in Table I (see test for details). The two responses are in good
agreement with each other.
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responses of ũMðkÞ with respect to δb and h for halos with
1015h−1f M⊙ at zf ¼ 0, where we employ the same normali-
zation as in Fig. 9. To estimate these responses, we plug in
the variations of the halo concentration parameters into the
Fourier transform of NFW profile. Note that the responses
are by definition vanishing in small k bins, where the
normalized profile uMðkÞ ¼ 1. The figure shows that the
halo profile responses show a sizable difference at scales,
where uMðkÞ < 1. The difference implies that the two
responses do not exactly agree with each other at large k
in the nonlinear regime. This difference would be the origin
of the slight discrepancy in Tδb and Th at k≳ 1 hfMpc−1.
Figure 11 shows the normalized growth responses of

matter power spectrum with respect to δb and h, TδbðkÞ and

ThðkÞ, which are computed using the halo model: the sum
of the 1-halo and 2-halo terms [Eqs. (A6) and (A7)]. To
compute these results, we used the results of Figs. 9 and 10.
First, the figure clearly shows that the halo model pre-
dictions for Tδb and Th agree well with each other. As
expected, the scale-dependent responses arise from the
1-halo term, and the responses at k≳ 1 hfMpc−1 arises
from the responses of the halo mass density profile. Thus
these results give another confirmation of the approximate
consistency of Tδb and Th for ΛCDM model. However, the
halo model cannot well reproduce the simulation results for
the power spectrum response, especially at transition scales
between the 1- and 2-halo terms, reflecting the limitation of
the halo model.
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