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In a recent paper [Artymowski et al., Phys. Rev. D 103, L121303 (2021)] we suggested the possibility
that the present acceleration of the Universe is due to thermodynamical behavior of unparticles. The model
is free of scalar fields, modified gravity, a cosmological constant, the coincidence problem, initial
conditions problem and possesses interesting distinct predictions regarding the equation of state of dark
energy, the growth rate and the number of relativistic degrees of freedom at big bang nucleosynthesis and
cosmic microwave background decoupling. In this work we relate to a recent paper [Abchouyeh and van
Putten, Phys. Rev. D 104, 083511 (2021)], which discusses a similar setup of unparticles with and without a
cosmological constant as an external source of late-time acceleration. The authors have shown how such a
model is inconsistent with the data. We show that these claims are viable only in a particular part of the
parameter space and that the model of Artymowski, Ben-Dayan, and Kumar stands tall. We further suggest
a consistency condition in terms of observables. We then fit publicly available supernovae data to derive the
expected Hubble parameter and constrain the parameters of the model.
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I. INTRODUCTION

An extensive analysis studying the different phases of
unparticles [1–3] in cosmology has been carried out in [4].
The analysis discovered new cyclic and bouncing cosmo-
logical models, as well as standard hot big bang scenarios,
and a possible dark energy (DE) model. The dark energy
model was extensively studied in [5].1 The outcome of the
study was that unparticles act as radiation in the early
Universe while at late times act as effective DE and
asymptote to a cosmological constant (CC) for a certain
range of parameters. The model has distinct predictions of
enhanced number of relativistic degrees of freedom, Neff ,
special redshift dependence of the equation of state
parameter wuðzÞ, and some small deviations from the
growth history of the ΛCDM model. It was further
suggested that the unparticles emergent DE model could
reduce the Hubble tension. The main theoretical novelty is
that the DE behavior is due to an emergent collective
behavior that is temperature dependent and is not based on
scalar fields or modified gravity. In recent work, the
question of unparticles as a relevant fluid in the late-time
Universe and the stability of such a model was discussed
[10], claiming that unparticles cannot govern the late-time

Universe and therefore cannot act as a DE model or reduce
the Hubble tension.2 We demonstrate explicitly the stability
of the DE unparticle model. We derive a new consistency
condition of the model between Neff and wuðzÞ. Finally, we
perform a likelihood analysis to ΛCDM and to our
unparticles DE model using publicly available supernovae
data.

II. ALLOWED RANGE OF PARAMETERS

Consider the flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric in a universe filled with unparticles,
radiation and matter. The system is described by the
following line element and equations of motion (not all
of them independent):

ds2 ¼ −dt2 þ a2ðtÞdx⃗2 ð1Þ

1A different approach to DE models motivated by unparticles
were also studied in [6,7]. For more details on DE see [8,9].

2The so-called Hubble tension is the growing discrepancy
between various inferences or measurements of the Hubble
parameter. Most notably, there seems to be a discrepancy between
early Universe and late Universe probes. In this paper, we
quantitatively mean the discrepancy between Planck 2018 value
of H0 ¼ 67.4 km=Mpc= sec [20], and the cepheid-based SN
measurement of 74.3 km=Mpc= sec [31] and the quoted standard
deviations. This conclusion of [2] is valid only in a certain range
of parameters. In [5] and in this paper, we use a different range of
parameters.
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3H2 ¼ ρr þ ρm þ ρu; ð2Þ

_H ¼ −
1

2

�
4

3
ρr þ ρm þ ρu þ pu

�
; ð3Þ

_ρi þ 3Hðρi þ piÞ ¼ 0: ð4Þ

where “i” stands for radiation, matter and unparticles.
Our starting point is that for temperatures of unparticles

lower than some cutoff scale the energy density and
pressure of unparticles are described by the following
equations:

ρu ¼ σT4 þ A

�
1þ 3

δ

�
T4þδ ≡ σT4

cy4
�
1 −

4ðδþ 3Þyδ
3ðδþ 4Þ

�
;

pu ¼
1

3
σT4 þ A

δ
T4þδ ≡ σ

3
T4
cy4

�
1 −

4yδ

δþ 4

�
; ð5Þ

where δ ¼ aþ γ, a > 0 is a constant that determines the β
function around the IR fixed point, γ is an anomalous
dimension, A3 is defined as aub

2g� where u is an integration
constant, and g� the value of the coupling constant at the
fixed point of the Bank-Zaks theory. More details can be
found in [4] and references therein. σ > 0 is related to the
number of degrees of freedom, and that the temperature of
unparticles T can in principle take any positive semidefinite
value. We want to emphasize that T is the temperature of
unparticles, and not the temperature of radiation, which
satisfies a separate continuity equation. In addition, one
assumes that unparticles and SM particles are coupled only
in the high energy regime, while in the considered range of
temperatures they are fully decoupled (except for gravity of
course). Thus, unparticles may be considered as a dark
fluid. For convenience, in the second equality we have
switched to dimensionless temperature y≡ T=Tc, where

Tc ¼
�

4ðδþ3Þ
3ðδþ4Þ ð−σB Þ

�
1=δ

is a critical temperature where

ρu þ pu ¼ 0. One can use the dimensionless temperature
y only if Tc and ρuðTcÞ are real and positive, which restricts
the allowed parameter space to B < 0 and −3 < δ < 0,
which, using δ ¼ 2ðdU − 1Þ [10], corresponds to the
scaling dimension −1=2 < dU < 1. The equation of state
(EOS) parameter of unparticles is then defined as

wu ¼
1

3

σ þ 3
δþ3

BTδ

σ þ BTδ : ð6Þ

Hence, a simple estimate shows that wu interpolates
between wu ¼ 1=3 and wu ¼ ðδþ 3Þ−1 depending on the
temperature of unparticles. This estimate does not take into

account how the temperature of unparticles is evolving.
However, if it is correct then one may simply approximate
wu as one of these aforementioned values in the late
Universe and consider its implications. In such a case, it
is also clear that for a successful DE model one should
have δ ∼ −4.
Reference [10] discusses unparticle cosmology forB > 0,

concluding this parameter regime to offer no improvement
over ΛCDM in resolving the H0 tension, shown in their
Fig. 10.However, the authors of [10] have investigated only a
fraction of possible range of temperatures of unparticles. As
we have shown in [5] B < 0 results in a different behavior
and a valid DE model with implications for several observ-
ables in cosmology. Specifically, the approximation wu ≃
ðδþ 3Þ−1 is insufficient for understanding the dynamics of
the unparticles DE model.
For a valid model we require an expanding universe

H > 0, that the energy density of unparticles ρu ≥ 0 is
always positive semidefinite, the null energy condition
(NEC) ρu þ pu ≥ 0 and that the temperature is decreasing
with time dT=dt < 0 which from the continuity equation
and NEC is equivalent to dρu=dT ≥ 0 and is equivalent to
da=dT < 0, since _a ¼ da

dT
dT
dt > 0. Hence,

ρu ¼ σT4

�
1þ B

σ
Tδ

�
≥ 0; ð7Þ

ρu þ pu ¼ σT4

�
4

3
þ B

σ

δþ 4

δþ 3
Tδ

�
≥ 0; ð8Þ

dρu
dT

¼ σT3

�
4þ B

σ
ðδþ 4ÞTδ

�
≥ 0: ð9Þ

For B > 0; δ > −3 the above equations are fulfilled for all
T ≥ 0, i.e. they are describing a fluid in an expanding
universe with positive energy density, that does not violate
the NEC and that its temperature is positive and decreasing
with time and with the expansion of the Universe as one
would expect. Any other combination of B, δ would result
in a violation of one of the inequalities at some finite
temperature, which in principle does not need to be a
problem as long as the physical evolution of unparticles
never leads to values of T that would violate (7)–(9). Since
the authors of [10] are considering the T → 0 regime, one
must remember that the allowed parameter space for their
analysis shall also be restricted to B > 0 and δ > −3, since
for negative δ, B > 0 and sufficiently small temperatures
(8) requires δ < −4 or δ > −3 and (9) requires δ > −4.
Note that assuming B < 0 would automatically lead to
ρu < 0 for δ < 0 and T → 0. To conclude, the parameter
space considered by the authors of [10] [namely
δ ∈ ð−6; 1Þ] is too broad for a valid model of DE.4

3In [5], we used the parameter B≡ Að1þ 3=δÞ, to simplify the
analysis. We will use B and y from now on.

4The δ ¼ −4 case is not really a DE model, but simply the
trivial case of radiation and a CC at any T.
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Nevertheless, as we will show below, the shortcomings of
their analysis are not coming from a wrong set of δ.
One can take the limit where wu ∼ ðδþ 3Þ−1 and ask

how such an approximation gives a DE behavior. We do not
neglect the fact that for some part of the parameter space
one can reach T → 0 limit, which makes the analysis
presented in [10] valid. Nevertheless, there in an important
region of the parameter space B < 0, discussed in [4,5],
which does not allow T to reach arbitrarily low temper-
atures where wu ∼ ðδþ 3Þ−1 is erroneous. The important
point is that solving the system of equations one sometimes
cannot reach T ¼ 0 through the physical evolution of
the Universe. This conclusion comes from the fact that
for B < 0 and −3 < δ < 0 the continuity equation of
unparticles gives

aðyÞ ∝ y−1jyδ − 1j−1=3: ð10Þ

Note that T ¼ Tc is a pole of the scale factor and thus one
cannot cross it through standard physical evolution. This
conclusion does not depend on the possible existence of
additional fluids, like dust or radiation, since the continuity
equation for unparticles remains valid in the multi-
component Universe. Starting from a high enough temper-
ature there is always a finite temperature T ¼ Tc where
_H ⊃ ρu þ pu → 0, and the unparticles temperature asymp-
totes to Tc from above. Approaching Tc unparticles
effectively act as a CC with wu ≃ −1. An example of
the evolution of wu is presented in Fig. 1.
We wish to stress that this result is not due to some

additional limitation on dynamics. It is simply the solution
of the equations of motion. In T ≃ Tc regime one finds
ρDE;0 ≡ ρu ≃ ρuðTcÞ ¼ −δσ

3ðδþ4ÞT
4
c, which gives B in terms of

the present day DE density. Even though we consider
B < 0, one never violates (7)–(9), since T can never reach
the T < Tc regime. The whole evolution of the Universe
happens outside of T → 0 region, for whichwu ∼ ðδþ 3Þ−1
would be valid. We also want to emphasize that the low-
energy DE behavior of unparticles appears for all
δ ∈ ð−3; 0Þ. This stands in a stark contrast to the result

of [10], where the CC-like behavior of unparticles happens
only for δ ≃ −4. This CC-like behavior can be obtained by
using wu ∼ ðδþ 3Þ−1 valid to B > 0.
To understand whether unparticles temperature asymp-

tote to Tc or not, let us note that in the expanding Universe
one finds H > 0, so from H ¼ da

dt
1
a ∝

da
dt ¼ da

dT
dT
dt ¼ da

dy
dy
dt.

Thus, one finds dy
dt > 0 or dy

dt < 0 for da
dy > 0 or da

dy < 0

respectively. The dy
da > 0 condition corresponds to

da
dy

> 0 ⇔ T ∈
��

3

3þ δ

�
1=δ

Tc; Tc

�
: ð11Þ

Equation (11) is valid regardless of the possible presence of
dust or radiation. This means that T will asymptotically
approach Tc for T > ð 3

3þδÞ1=δTc no matter what currently
dominates the Universe. T < ð 3

3þδÞ1=δ Tc is the only range,
for which T < Tc and the temperature decreases with the
scale factor. Thus, it is the only range in which one can
reach T → 0 limit for B < 0 and −3 < δ < 0.
The case of T < Tc has been discussed in [4]. For the

discussed range of parameters, B < 0 and −3 < δ < 0, and
for the Universe filled with unparticles and some perfect
fluid, one finds two possible scenarios. The first option is
the de Sitter bounce, which means that the Universe
collapses exponentially, which is followed by a nonsingular
bounce and an exponential expansion of the scale factor.
An example is presented in the left panel of Fig. 2, where
Tb ¼ ð−σ=BÞ1=δ is the temperature at the bounce. The
range between Tb and Tc lies within (11), thus one finds
dT=da > 0. Hence, the unparticle temperature will
increase with the expansion of the Universe, again asymp-
toting to T ¼ Tc. T obtains its minimum at the bounce and
it can reach Tmin ≃ 0 for δ≳ −3. In such a case the wu ∼
ðδþ 3Þ−1 is valid only in the close vicinity of the bounce,
but not in the late-time evolution of the Universe. This
could have interesting implications for some previous
epochs of the Universe, but it cannot act as a DE model.
The other option for the evolution of the Universe with

T < Tc is the single bounce also discussed in [4]. An
example is presented in the right panel of Fig. 2. In such a

FIG. 1. The equation of state of unparticles wu as a function of
e-folds, N ¼ ln aðtÞ, for δ ¼ −1;−2;−3. The unparticles have
reached a CC behavior wu ≃ −1.

FIG. 2. Left and right panels represent two possible scenarios
for the evolution of the Universe in the T < Tc regime. We
assume the Universe filled with unparticles and dust and
α ¼ ρf0=ðσT4

bÞ. Reproduced from [4].
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case one starts with a contracting Universe, followed by
the bounce and decelerated expansion. The bounce appears
at T ¼ Tb ¼ ð−σ=BÞ1=δ, and since Eq. (11) is not satisfied,
Tb is the maximal temperature of the Universe. In this
scenario the allowed range of temperature is T ∈ ð0; TbÞ
and therefore one can reach wu ≃ ðδþ 3Þ−1. Nevertheless,
this range of temperatures is still unfit for any DE
model building, because ρu < 0 throughout the whole
evolution.
To conclude, the only possible option for the unparticle

DE is −3 < δ < 0, B < 0, and initial T > Tc. In such a
case one obtains late-time CC-like behavior of unparticles
for all δ ∈ ð−3; 0Þ. For the same range of parameters and
the initial temperature T < Tc one always obtains a
bouncing scenario, which may be a dS bounce with T
approaching Tc or a single bounce with ρu < 0. Only in the
latter case one can reach T → 0. The analysis done in [10]
is valid only for B > 0;−3 < δ < 0, which excludes the
existence of Tc and late-times behavior of unparticles.
The T → 0 limit the authors have chosen is designed to

fail in the context of DE model building, since for a valid
model one needs to reach an almost constant energy
density, which will never happen if T → 0.

III. STABILITY ANALYSIS OF UNPARTICLES
DARK ENERGY

After establishing the allowed parameter range and the
temporal behavior of unparticles, i.e. that starting from a
large enough temperature they asymptote to T ¼ Tc and act
as a DE, let us discuss the stability of the solution. We do
not claim that the stability analysis done in [10] had some
mathematical error, but that it considered a different range
of parameters and initial conditions. We therefore want to
show the stability of the Universe for the realistic unparticle
model of DE, where wu asymptotes to wu↓ − 1. Consider
the background evolution of a universe filled with multiple
fluids, such as radiation, dust, cosmological constant and
unparticles. Strictly speaking the analysis presented here is
valid for constant or slowly varying EOS, w. For a full
stability analysis, one must take into account the time
variation of w, spatial dependence of perturbations and
show that 0 < c2s < 1 to avoid superluminality. We have
taken this into account in [5], when calculating the effects
of the unparticle DE model on the growth index γ and fσ8.
We got a stable system with unparticles acting as DE.
Nevertheless, it is worthwhile to discuss the stability
analysis of the background only as well [13,14]. First,
let us consider a single fluid. It is instructive because it is
almost always a good approximation to cosmology since
generically one fluid dominates over all the others. Using
the two Friedmann equations we get

_H ¼ −
3

2
ð1þ wÞH2: ð12Þ

Obviously, any perturbation δHðtÞ will die out with time as
long as w > −1, be it unparticles, radiation, matter or any
other energy content. Let us now analyze the multi-
component case. In order to perform the stability analysis,
we choose to work with dimensionless variables defined as

Ωi ¼
ρi
3H2

; N ¼ ln aðtÞ:

Substituting Ωi and N in the continuity equations (4) and
after simplifying one arrives at the following system:

Ω0
i ¼ −3

�
1þ wi þ

2

3

H0

H

�
Ωi: ð13Þ

Here 0 ¼ d
dN, and

H0
H ¼ − 3

2
ð4
3
Ωr þΩm þ ð1þ wuÞΩuÞ for a

universe filled with unparticles, radiation and matter.
Substituting back H0

H into the continuity equations and
removing Ωr by using Ωr ¼ 1 −Ωm − Ωu results in two
equations i ¼ m, u:

Ω0
i ¼ ð1 − 3wi −Ωm − ð1 − 3wuÞΩuÞΩi: ð14Þ

Fixed points of the dynamical system are calculated by
demanding Ω0

i ¼ 0 yielding,

ðΩm;ΩuÞ → ð1; 0Þ → Matter Domination; ðMDÞ;
→ ð0; 1Þ → Unparticle Domination; ðUDÞ:

Ωr ¼ 1 corresponds to (0,0) and it is unstable, as shown in
the left panel of Fig. 3. Stability of each fixed point is
determined by calculating the eigenvalues of Jacobian
matrix Mij, given as

Mij ¼
" dΩ0

m
dΩm

dΩ0
m

dΩu

dΩ0
u

dΩm

dΩ0
u

dΩu

#
: ð15Þ

For the MD fixed point the eigenvalues are −1 and −3wu
while for the UD fixed point they are 3wu and 3wu − 1. If
wu ∼ ðδþ 3Þ−1 with −3 < δ < 0 then 1=3 > wu > 0 so
MD is the stable point and UD is unstable as derived in
[10]. But as stressed, this is not the case if B < 0. If B < 0
then starting at T > Tc, (wu) evolves from 1=3 to −1,
hence, once wu < 0 UD becomes the stable point and MD
the unstable. wu continues to evolve and asymptotes to
wu↓ − 1 yielding a stable UD dS era that continues forever.
Let us stress that this conclusion is based on using (5) at all
times. It may be changed if higher order corrections to the
beta function are calculated or if one means a different
microscopic model as in [6,7].
Let us also consider a true CC along with matter and

unparticles. In this case we are dropping the radiation part
as it is negligible during late times, though as we shall see
we can apply the analysis to any number of fluids.
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Following the procedure discussed above, fixed points are
given as

ðΩm;Ωu;ΩΛÞ → ð1; 0; 0Þ → MD;

→ ð0; 1; 0Þ → UD;

→ ð0; 0; 1Þ → CCD:

The eigenvalues for matter, cosmological constant and
unparticles fixed points are ð3;−3wu; 3Þ, ð0;−3ð1þ wuÞ;
−3Þ and ð3ð1þ wuÞ; 3wu; 3ð1þ wuÞÞ respectively. As
before the stability depends onwu. As unparticles asymptote
to wu↓ − 1, they will be equivalent to the CC in terms of
stability. Figure 3 shows the phase portrait of both cases
discussed.
The above analysis can be generalized to any number of

fluids with general, even time-dependent equation of states
in a straightforward manner. Starting from the continuity
equations, the second Friedmann equation and changing
the time variable to e-folds, one reaches the following
system for any number of fluids:

Ω0
i ¼−3

X
j≠i

ðwi−wjÞΩiΩj¼−3
X
j

ðwi−wjÞΩiΩj; ð16Þ

where wj is the EOS of the jth fluid and can have arbitrary
time dependence. We can then derive the Jacobian

∂Ω0
i

∂Ωk
¼ −3

�X
j

ðwi − wjÞΩjδik þ ðwi − wkÞΩi

�
; ð17Þ

where we kept the sum explicit as not to confuse the
summed and unsummed indices. We are interested in fixed
points where eventually one fluid dominates the energy
density of the Universe. Without loss of generality, let us
choose this fluid to be the first one, i.e. Ω1 ¼ 1;Ωi≠1 ¼ 0.
Substituting the fixed point into the Jacobian, the i ¼ k ¼ 1
entry will be zero, and except for the first line, the rest of the
Jacobian is diagonal with −3ðwi − w1Þ. Hence the eigen-
values of the Jacobian are −3ðwi − w1Þ for all i. The zero
eigenvalue is because we can remove one fluid completely
using 1 ¼ P

i Ωi. For stability, the other eigenvalues
require wi > w1 ∀ i, i.e. as long as w1 is the lowest
equation of state parameter it will govern the late-time
behavior of the Universe and will be a stable fixed point.
Finally, one would still like w1 ≥ −1. Otherwise, if this
fluid dominates, as it should at late times, it will be unstable
as can be understood from the single fluid case. These
results are also obvious from directly solving the equations
of motion for different fluids. Any other result would have
been disconcerting as it would mean that various fluids
with different equations of state could easily destabilize the
Universe and falsify the whole idea of FLRW cosmology.
Hence, if unparticles have the lowest EOS with wu ≥ −1
they will be a stable point, while if they are not, then they
may not. The analysis above is completely general, and the
conclusions about stability may only change if some large
spatial gradients, ghosts or superluminality appear.
In [10], since they limited themselves to B > 0, they

considered two scenarios with 3 fluids. First, matter,
unparticles and a CC with EOS 0; ðδþ 3Þ−1;−1 respec-
tively. Second, matter, unparticles and radiation, with EOS
0; ðδþ 3Þ−1; 1=3. In both scenarios with −3 < δ < 0 there
is a fluid or more with an equation of state lower than the
unparticles (matter and CC), which is why they got that
unparticle domination is an unstable fixed point. Here, as
demonstrated, since B < 0 it will be incorrect to simply
approximate wu ¼ ðδþ 3Þ−1. Rather, unparticles have a
time dependent equation of state that is affected by the
dynamics of the Universe. If we start from T > Tc then the
temperature of unparticles asymptote to Tc yielding
wu↓ − 1. Hence, for a universe filled with radiation, matter
and unparticles at some point in time unparticles will
become a stable fixed point and will dominate the energy
density of the Universe. If there is a bare CC, then the
unparticles will asymptote to a CC and become indistin-
guishable from it in the asymptotic infinite future, so this is
still a stable solution.
Finally, perturbations from emergent DE model of

unparticles are stable. The sound speed of unparticles,
c2u in both regimes is given as

c2u ¼
(

y3
0
ðyδ

0
−1Þ

δðzþ1Þ3 ; if Oð10Þ ≥ z ≥ −1

1=3 z ≫ 1;

–1.0
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m

FIG. 3. Left panel: Phase portrait for a universe filled with
radiation, matter and unparticles. Green, blue and purple points
represent the unparticles, matter and radiation fixed points
respectively. Unparticles with wu ¼ −1 is the stable fixed point.
Right panel: Phase portrait for a universe filled with matter,
cosmological constant and unparticles. Green, blue and purple
points represent the unparticles, cosmological constant and
matter fixed points respectively. We chose wu ¼ −0.5. The CC
with w ¼ −1 will ultimately dominate until unparticles strictly
become a CC in the infinite future, where the phase portrait will
have a degenerate straight stability line connecting the points of
unparticle domination and CC domination. This straight line will
correspond to ΩΛ þ Ωu ¼ 1.
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where y0 is the present-day value of y, which is very close
to unity. Note that 0 < c2u < 1 throughout the evolution.
Hence, for the discussed range of parameters, B < 0;−3 <
δ < 0 perturbations are free from ghosts, gradient insta-
bility and superluminal propagation. The full analysis and
predictions of perturbations can be found in [5].

IV. CONSISTENCY CONDITION

After establishing the stability of the unparticles DE
model, let us discuss its predictions. Since the equation of
state of unparticles wu naturally changes from that of
radiation to that of a CC, it has observable effects both at
early and late times. The equation of state of unparticles wu,
can be measured at late times z ∼OðfewÞ. The redshift
dependence is rather different than the standard CPL
parameterization [15,16], making the model an easy target
for detection. At early times, unparticles contribute to the
number of relativistic degrees of freedom at cosmic micro-
wave background (CMB) decoupling (and big bang
nucleosynthesis), ΔNeff ,

ρu
ρr

≃
Ωu0

Ωr0
3ðδþ 4Þð−δÞ1=3ðy0 − 1Þ4=3 ¼ 7

8

�
4

11

�
4=3

ΔNeff ;

ð18Þ

where Ωr0 and Ωu0 are the present day relative densities of
radiation and unparticles respectively, assuming ρu
accounts for all the DE. According to present data ΔNeff ≤
0.19 at 68% confidence level [17–19]. One can use Eq. (18)
to find an upper bound on y0, which gives y0 − 1≲ 10−4.5.
Similarly, at low redshift the equation of state of unparticles
can be approximated as

wu ≃ −1þ 4ðδþ 4Þðy0 − 1Þð1þ zÞ3; ð19Þ

Substituting (18) into (19) we can remove the dependence
on the temperature of unparticles and get a consistency
relation

wuðzÞ ≃ −1þ 0.58ð1þ zÞ3
�
−1 −

4

δ

�
1=4

�
Ωr0

Ωu0
ΔNeff

�
3=4

:

ð20Þ

Figure 4 shows the equation of state as a function of
redshift wuðzÞ up to redshift z ¼ 6 as expected from the
Megamapper proposal [20,21], after setting Ωu0 ¼
0.6911;Ωr0 ¼ 8.97 × 10−5 [11]. The different lines corre-
spond to ΔNeff ¼ 0.19 and ð−δ ¼ 0.001; 0.01; 0.1; 1Þ from
top to bottom, respectively. For a given δ the shaded region
below the graph represents the constraint of ΔNeff ≤ 0.19.
The dashed line corresponds to a CPL parametrization of
w ¼ −1þ 0.03z=ð1þ zÞ which is allowed by Planck
observations. Notice the enhanced redshift dependence
of the unparticle DE model.

V. UNPARTICLES DE MODEL
AND SUPERNOVAE DATA

To demonstrate the possibilities of our model, we
consider the publicly available Pantheon data [22] with
1048 supernovae. Very low-redshift supernovae have sig-
nificant peculiar velocities that may bias the inferred value
ofH0, [23] so we limit ourselves to supernovae at z ≥ 0.03,
leaving 953 supernovae in the analysis. We do not account
for other systematic errors [24–30], so our analysis is
mostly a proof of concept. While there are good reasons to
split the sample into low redshift and high redshift and fit
H0 and Ωm0 separately, we think a simultaneous fit is
desirable as well, as it is equivalent to the parameter
inference used in CMB analyses and better portrays the
tension between the different measurements.5 Considering
the apparent magnitude given by

μ ¼ 5Log10dLðH0;Ωm0
; δ;ΔNeffÞ þ 25þMB; ð21Þ

where dL is the luminosity distance, and MB the absolute
magnitude.
We perform likelihood analysis to constrain the model

parameters, using flat priors on the cosmological param-
eters and a Gaussian prior on MB ¼ −19.23� 0.04 [31].
To implement the analysis, we use the public package
MultiNest [32] through the python interface PyMultiNest
[33]. First we analyzed the ΛCDM model. The results are
presented in Fig. 5, and to a good accuracy reproduce the
recent results reported in the literature [22,33]. We then
performed a similar analysis for the unparticles DE model.
In Fig. 6 we show the results for Ωm0; H0; δ and

x0 ¼ log10ðy0 − 1Þ. As expected from the analytical for-
mulae, Cosmology is rather insensitive to the value of δ

0 1 2 3 4 5 6
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–0.90
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–0.75

–0.70
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w
u

FIG. 4. The EOS of the unparticles DE model wu as a function
of redshift. The lines correspond to ΔNeff ¼ 0.19 and ð−δ ¼
0.001; 0.01; 0.1; 1Þ from top to bottom, respectively. For a given δ
the shaded region below the graph represents the constraint of
ΔNeff ≤ 0.19. The dashed line corresponds to a CPL paramet-
rization of w ¼ −1þ 0.03z=ð1þ zÞ.

5We thank Tzvi Piran for raising this point.
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except the case of jδj ≪ 1. We do get some constraints on
the temperature of unparticles today. As explained this can
be traded off for constraining ΔNeff via the consistency
condition (20), which is demonstrated in Fig. 7.

Given the weak dependence on δ we fix it to some value
and repeat the analysis. Figure 8 shows the likelihood
contours for δ ¼ −0.001, and Fig. 9 corresponds to fixing
δ ¼ −1. Notice that the unparticles DE model prefers a
larger ΔNeff, and induces larger error bars in H0. If
ΔNeff ≃ 0.2, then CMB parameter estimation taken at face
value should yield H0 ≃ 70 km= sec =Mpc.

FIG. 6. Same as Fig. 5 with the parameters of unparticles DE
model Ωm0; H0; δ and x0.

FIG. 7. Same as Fig. 5 with the parameters of unparticles DE
model Ωm0; H0; δ and ΔNeff using the consistency equation.

FIG. 8. Same as Fig. 5 with the parameters of unparticles DE
model Ωm0; H0; δ ¼ −0.001 and ΔNeff using the consistency
equation.

FIG. 5. Likelihood contours and posterior distribution of
parameters of ΛCDM using the Pantheon dataset with a Gaussian
prior on MB. The colors correspond respectively to 1; 2 and 3
standard deviations from the inferred mean value.
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VI. CONCLUSIONS

In this work we compared our DE model presented in [5]
to the analysis of unparticle DE done in [10]. We showed
that the allowed parameter space discussed by the authors
should be further restricted to B > 0 and δ > −3 if one
wants to obtain unparticles with positive energy density,
lack of NEC violation, and da=dT < 0 in the T → 0
regime.
Furthermore, following the results of [5] we showed that

for B < 0 and δ ∈ ð−3; 0Þ the temperature of unparticles
has a lower/upper bound dubbed Tc, which sets the scale of

DE. In such a case, starting from T > Tc, one cannot reach
T → 0 region via physical evolution of the Universe. Thus,
for the significant part of the parameter space one obtains a
valid DE solution, which prevents unparticles from ever
reaching temperatures lower than Tc. This conclusion may
only be modified if some higher order corrections to the
beta function of unparticles modify Eq. (5).
In addition, we have proven that the realistic solutions

for DE remain stable, with an attractor solution Ωu → 1
regardless of initial conditions as long as the initial
temperature of unparticles is larger than Tc. We derived
a consistency relation between the maximal allowed con-
tribution of unparticle energy density to the total energy of
the Universe in the early Universe ΔNeff with the present-
day value of unparticle equation of state wu, that may be
detectable with near future observations. Finally, we fitted
the model to supernovae data. For the unparticles emergent
DE model we derived the first constraints using SN data
weakly favoring positive ΔNeff . The expected Hubble
parameter is similar to the ΛCDM value of our analysis
and other reported analyses in the literature. Hence, any
improvement on the Hubble tension should come from
reanalyzing the CMB data and validating the analytical
estimate.
In brief, the unparticles emergent DE model is promising

and we intend to perform a likelihood analysis taking into
account additional cosmological observations most notably
CMB to further assess the validity of the model.
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