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The polarized Sunyaev-Zel’dovich (pSZ) effect is sourced by the Thomson scattering of cosmic
microwave background (CMB) photons from distant free electrons and yields a novel view of the CMB
quadrupole throughout the observable Universe. Galaxy shear measures the shape distortions of galaxies,
probing both their local environment and the intervening matter distribution. Both observables have been
shown to give interesting constraints on the cosmological model; in this work we ask: what can be learnt
from their combination? The pSZ-shear cross-spectrum measures the shear-galaxy-polarization bispectrum
[i.e., hγδgðQ� iUÞi] and contains contributions from three main phenomena: (1) the Sachs-Wolfe (SW)
effect, (2) the integrated Sachs-Wolfe (ISW) effect, and (3) inflationary gravitational waves. Since the
modes contributing to the pSZ signal are not restricted to the Earth’s past light cone, the low-redshift cross-
spectra could provide a novel constraint on dark energy properties via the ISWeffect, whilst the SW signal
is sourced by a coupling of scalar modes at very different times (recombination and the lensing redshift),
but at similar positions; this provides a unique probe of the Universe’s homogeneous time evolution. We
give expressions for all major contributions to the galaxy shear, galaxy density, and pSZ auto- and cross-
spectra, and evaluate their detectability via Fisher forecasts. Despite significant theoretical utility, the shear
cross-spectra will be challenging to detect: combining CMB-S4 with the Rubin observatory yields a 1.6σ
detection of the ISW contribution, though this increases to 5.2σ for a futuristic experiment involving
CMB-HD and a higher galaxy sample density. For parity-even (parity-odd) tensors, we predict a 1σ limit of
σðrÞ ¼ 0.9 (0.2) for CMB-S4 and Rubin, or 0.3 (0.06) for the more futuristic setup. Whilst this is
significantly better than the constraints from galaxy shear alone (and contains fewer systematics than most
auto-spectra), it is unlikely to be competitive, but may serve as a useful cross-check.
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I. INTRODUCTION AND MOTIVATION

Cosmology exists on the light cone. Almost all cosmo-
logical observables follow the paths of photon geodesics
from their source to us, whether they be from distant
galaxies or the cosmic microwave background; as such, our
knowledge of the Universe is restricted to sections of the
light cone. With conventional measurements, our knowl-
edge is limited to the surface of the light cone, rather than
its interior. One consequence of this is that standard
cosmological observables cannot directly test cosmological
homogeneity; rather, they can probe only anisotropies and
time evolution, e.g., [1].

The kinetic and polarized Sunyaev-Zel’dovich (SZ)
effects are different in this respect. Both are caused by
the scattering of cosmic microwave background (CMB)
photons from a galaxy at some radial comoving distance χe
from the observer. Importantly, this CMB is not the same as
the one observed by us today. Instead, the galaxy scatters
the locally observed CMB, which is sourced by the interior
of our past light cone as depicted in Fig. 1. If the local CMB
is anisotropic, we will observe a signature from the
direction of the galaxy. For the kinetic SZ (kSZ) effect,
e.g., [2–8], this is caused by the CMB dipole observed by
the galaxy, whose dominant component of the dipole is the
galaxy’s peculiar velocity. For the polarized SZ (pSZ)
effect, e.g., [4,9–26], this is instead a consequence of
Thomson scattering caused by the local CMB quadrupole.
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Such effects propagate to a distortion in the CMB temper-
ature and polarization anisotropies measured on Earth that
correlate with the galaxy density at the scattering location;
by utilizing this correlation, one can extract the dipole and
quadrupole fields as a function of position and distance,
e.g., [7,8,10,12,16,19]. Crucially, this is a measurement of
two things: (a) the CMB primaries and secondaries
observed at the source at χe (orange arrow in Fig. 1)
and (b) the distribution of matter between χe to the observer
at χ ¼ 0 (blue arrow in Fig. 1). Only the latter quantity is
constrained to lie on the Earth’s light cone; the former lies
instead within it, as a result of photons taking a nondirect
route to the Earth, and is the subject of interest in this work.
Cosmic shear is a key observable in 21st century

cosmology. This measures the shape distortions of galaxies
as a function of position and distance, which carries
information both about the galaxies’ local environments
(via the “intrinsic alignment” mechanism, e.g., [27]), and
the intervening spacetime (via gravitational lensing, e.g.,
[28]). In contrast to kSZ and pSZ these quantities lie on the
light cone (or at least on its first-order perturbations);
however, they are sensitive to a number of interesting
features. Conventionally, cosmic shear is used to probe the

integrated matter density from a source at some distance
χlens from the observer (located at χ ¼ 0), and has been
shown to give tight constraints on the matter density and
clustering amplitude, e.g., [29]. Noting that the matter
density is nothing but a gauge transform of the scalar metric
potential, one may ask whether galaxy shapes are sensitive
to other metric perturbations, such as gravitational waves.
As shown in a number of works e.g., [30–33], such an
effect does exist, and contributes both to lensing and
intrinsic alignment. This occurs since the galaxy shape is
a tensorial (spin-two) observable, and thus can couple to
tensor metric perturbations. Unfortunately, the size of such
an effect is generally small, since gravitational waves
significantly decay after inflation, and, moreover, the
principal observable, the shear Bmode, is usually discarded
on the grounds of systematics or just used for null tests,
e.g., [29]. As such, most efforts to measure gravitational
waves have been directed towards the primary CMB.
The next decade will yield unprecedented volumes of

cosmological data, both from the CMB, due to experiments
such as the Simons Observatory [34] and CMB-S4 [35],
and large-scale structure (LSS), with photometric surveys
such as Rubin (hereafter VRO) [36] and Euclid, as well as

FIG. 1. (a) Tensors and the Integrated Sachs-Wolfe effect and (b) Unequal Time Sachs-Wolfe effect. Cartoon of the pSZ-shear cross-
correlations considered in this work. The pSZ effect is sourced by the CMB observed at some distant galaxy (brown arrows), whose
quadrupole moment, Θ2, is anisotropically scattered (blue arrow) and reaches the Earth. This is sensitive to physics on the light cone of
the distant galaxy, and that between the distant galaxy and the Earth. In contrast, shear is sourced by the perturbations to a photon
geodesic imprinted by scalars, Ψ, and tensors, hij, as it traverses its worldline on the Earth’s light cone (shown in black dotted lines). If
the lens (green region) lies close to the scattering galaxy, a correlation will be induced due to both sets of photons (scattered CMB and
weak lensing) experiencing the same scalar (through the integrated Sachs-Wolfe effect) and tensor modes. If the lens lies further than the
pSZ source, other correlations can arise, such as one between the scalar potential at last scattering, ΨðχdecÞ and that sourcing
gravitational lensing. Unlike most physics observables, this correlates two effects at very different times but at the same physical
location.
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spectroscopic instruments including DESI [37] and
MegaMapper [38]. The incoming avalanche motivates us
to consider new ways of probing the Universe, in particular
those constraining hitherto poorly understood degrees of
freedom. In this work, we will add to such an effort by
considering the detectability and utility of cross-correla-
tions between the pSZ contribution to the CMB polariza-
tion anisotropies and cosmic shear [i.e., a hγgðQ� iUÞi
three-point function]. The physical consequences of each
observable have been considered in the past, e.g.,
[11,18,24,25,28,29,32,39], however the correlations
described in Fig. 1 have yet to be assessed. Performing
analyses using cross-spectra can be particularly enlighten-
ing since (a) they are often less sensitive to systematic
effects than auto-spectra, and (b) incomplete correlations
can allow specific, and interesting, pieces of the signal to be
extracted. That said, a strong correlation is needed for an
observable to be useful, and it is unclear, a priori, whether
pSZ and shear (or indeed, pSZ and galaxy positions)
satisfy this.
There are two sources of scalar pSZ-shear correlations.

The first occurs when the observables probe matter in the
same region of space at similar times, as in Fig. 1(a). An
important contributor to the pSZ signal is the integrated
Sachs-Wolfe (ISW) effect, e.g., [23,24], which probes the
Universe in the vicinity of the scattering galaxy at χe; for
shear, photons emanating from the galaxy at χlens ≳ χe are
lensed by the same matter distribution.1 In this way, the
pSZ-shear correlation probes the local potential (or rather
its time derivative), via the ISW effect, and, unlike
detections obtained from the primary CMB is not limited
to the Earth’s light cone.
The second possibility is to have correlations between

spatially close regions of the Universe at vastly different
times. This principally occurs for χlens > χe, whence the
gravitational potential sourcing lensing (at a time χ < χe) is
also the source of Sachs-Wolfe (SW) effects at the local
last-scattering surface seen (after rescattering) in the pSZ
effect. Since pSZ is not restricted to the light cone, this
scenario is fully permissible [cf. Fig. 1(b)] and arises since
the scattering photon does not take a direct path from the
redshift of decoupling until today. Mathematically, the
phenomena is caused by a correlation of the SW potential
Ψðx; χdecÞ and the lensing potentialΨðx0; χÞ at large relative
time (χ ≪ χdec) but small relative position (jx − x0j ≪ χ).
The ability to correlate potentials at such different times is
particularly unusual in cosmology (and made possible only
via the off-light-cone effects), and its detection would
certainly be of great interest. If measured, this would allow
one to probe the local growth function Dðχ; xÞ at two
redshifts simultaneously, and, in principle, allow for a

spatially resolved map of Dðχ; xÞ=Dðχdec; xÞ, given addi-
tional geometric information (cf. Sec. VI).
Gravitational waves can also be probed using the cross-

correlation of pSZ and shear. The intuition for this is
straightforward: both pSZ and shear measure tensorial
quantities, the CMB quadrupole and the galaxy shape
tensor γij. For pSZ, tensor signatures (of both odd and even
parity) arise in the same manner as the primary CMB:
predominantly from the gravitational effects imparted on
radiation in the time after recombination, whilst for shear,
this is sourced by lensing and intrinsic effects. While
gravitational wave signatures in shear are very weak
[30–33], they have been shown to be observable in the
pSZ signal accessible to future experiments [10,11,15],
thus it is interesting to consider whether their cross-
correlation can be of use, and whether the pSZ can be
used to boost the small tensorial signal present within LSS
probes. Unlike for scalars, the measurement of tensors in
the primary CMB is not cosmic-variance limited (since the
B-mode signal is, under null linear assumptions, zero),
though pSZ can still add information by increasing the
number of fundamental modes available. As described
above, cross-correlations could be of use in making such
a detection, since they do not suffer from many of the
traditional systematic effects such as atmospheric dust
absorption (since they contain only one power of the
CMB), thus it is important to explore whether such
statistics can be practically useful.
In the remainder of this work, we consider whether

future surveys are capable of measuring the pSZ-shear
cross-correlation. Such a detection could place further
constraints on novel observables, be it stronger bounds
on the ISW effect, the strongly unequal-time SW effect, or
tensor modes. After laying out our conventions in Sec. II,
we will present the contributions to galaxy shear, galaxy
density, and the pSZ effect from scalars and tensors in
Sec. III and from noise in Sec. IV. Our main results are
forecasts on the detectability of the cross-spectra them-
selves and various physical components, which we present
in Sec. V. In Sec. VI we describe the novel properties
illustrated in Fig. 1 in the context of a toy model before
concluding in Sec. VII. Appendix A lists the transfer
functions used in this work, whilst Appendix B presents
a brief forecast of the kSZ autocorrelation and cross-
correlation. All calculations are made publicly available.2

II. CONVENTIONS

We briefly present the various conventions for scalar and
tensor perturbations used in this work, as well as for cosmic
shear. Note that conventions differ between works, e.g., our
results appear to differ from those of [12,32] until nota-
tional variations are taken into account.1Strictly, such a correlation can be sourced also by the lensing

of pSZ photons after their scattering; this phenomena is second
order however, and likely to be small. 2https://GitHub.com/OliverPhilcox/pSZ-cross-Shear.
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A. Scalar modes

We primarily work with the Newtonian potential, Ψ,
which enters the Friedman-Robertson-Lemaitre-Walker
metric in the standard fashion (in the conformal
Newtonian gauge, with c ¼ 1):

ds2 ¼ a2ðηÞ½−ð1þ 2ΨÞdη2 þ ð1 − 2ΨÞdxidxi�; ð1Þ

assuming the stress-free condition. The statistics of Ψ are
described by its power spectrum:

hΨðk; χÞΨ�ðk0; χ0Þi ¼ ð2πÞ3δDðk − k0ÞPΨðk; χ; χ0Þ; ð2Þ

where PΨ can be written in terms of the dimensionless
spectrum PΨ via PΨðk; χ; χ0Þ ¼ DΨðη0 − χÞDΨðη0 − χ0Þ
ð2π2=k3ÞPΨðkÞ, whereDΨ is the potential growth function,
η0 is the conformal time today, and we absorb the necessary
transfer functions into PΨðkÞ. Explicit forms for the
potential growth function (on super- and subhorizon scales)
can be found in [2,40], and we note that DΨðaÞ →
ð9=10ÞDþðaÞ=a in the subhorizon limit, for the usual
growth function DþðaÞ. Practically, PΨ can be obtained
from the matter power spectrum computed by CLASS,
rescaling by the ratio of potential and density growth
factors.
We will also require the velocity power spectra. On

sufficiently large scales, this is given by [40]

vðr; χÞ ¼ −DvðχÞ=DΨðχÞ∇Ψðk; χÞ ð3Þ

utilizing the velocity growth factor

DvðχÞ ¼
2a2HðaÞ
H2

0Ωm

yðχÞ
4þ 3yðχÞ

�
DΨðχÞ þ

dDΨðχÞ
d log a

�
; ð4Þ

where yðχÞ ¼ aðχÞ=aeq.

B. Tensor modes

We define the transverse-traceless tensor metric pertur-
bation, hij, via

ds2 ¼ a2ðηÞ½−dη2 þ ðδKij þ hijÞdxidxj�: ð5Þ

This is often written in terms of þ;× states via

hijðr; ηÞ ¼ h̃þðr; ηÞeþijðr̂Þ þ h̃×ðr; ηÞe×ijðr̂Þ: ð6Þ

In this work, we primarily expand in helicity states:

hijðr; χÞ ¼
Z
k
eik·r

X
λ∈�

hλðk; χÞeðλÞij ðk̂Þ; ð7Þ

where eðλÞij e
ij
ð−λÞ ¼ 1, hλ ¼ eijð−λÞhij, and we notate

R
k≡R

dk=ð2πÞ3. Here, eðλÞij ¼eðλÞi eðλÞj with eðλÞ ¼ ðe1∓ iλe2Þ=
ffiffiffi
2

p

where fk̂; e1; e2g form an orthonormal set. These are
related to the h̃þ;× basis by h� ¼ ðh̃þ ∓ ih̃×Þ=2.
The statistics of h are specified by

hhλðk; χÞh�λðk0; χ0Þi ¼ ð2πÞ3δDðk − k0ÞPhλðk; χ; χ0Þ; ð8Þ
with the total power spectrum Ph ¼ ½Phþ þ Ph− �, and chiral
spectrum ΔhPh ¼ ½Phþ − Ph− �.3 This is related to the
primordial spectrum PhðkÞ via

Phðk; χ; χ0Þ ¼
2π2

k3
DTðk; η0 − χÞDTðk; η0 − χ0ÞPhðkÞ; ð9Þ

where DTðk; ηÞ ≈ 3j1ðkηÞ=ðkηÞ is the tensor transfer func-
tion, assuming matter domination. The tensor spectrum is
usually parametrized as

PhðkÞ ¼ Δ2
T

�
k
k�

�
nT
; ð10Þ

where nT ≈ −r=8 is the spectral index and Δ2
T ¼ rΔ2

ζ is the
amplitude, for curvature perturbation ζ, and characteristic
scale k0.

C. Shear

We define the components of the full-sky shear as

�2γðn̂Þ ¼ mi∓mj∓γijðn̂Þ, where the basis vectors are

m� ¼ 1ffiffiffi
2

p

0
B@

cos θ cosφ� i sinφ

cos θ sinφ ∓ i cosφ

− sin θ

1
CA: ð11Þ

The spherical harmonic coefficients are defined via

þ2γlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
dn̂Y�

lmðn̂Þð̄2þ2γðn̂Þ;

−2γlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s Z
dn̂Y�

lmðn̂Þð2−2γðn̂Þ; ð12Þ

where ð and ð̄ are the usual spin-raising and spin-lowering
operators, e.g., [41]. These are related to the E and Bmodes
via �2γlm ¼ γElm � iγBlm. The corresponding power spectra
are

CγXγY

l ¼ 1

2lþ 1

Xl
m¼−l

hγXlmγY�lmi; ð13Þ

for X ∈ fE; Bg, which is parity even (odd) if X ¼
Y (X ≠ Y).

3In the notation of [11], Phþ ¼ PL=2, Ph− ¼ PR=2, Δc ¼ −Δh
and Pthis work

h ¼ Pformer
h =2.
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III. SIGNAL MODELING

In this section, we describe how to compute the signal
auto- and cross-spectra for galaxy density, galaxy shear,
and the remote quadrupole field, considering both scalar
and tensor sources.

A. Galaxy density

The basic observable in a galaxy redshift survey is the
galaxy overdensity. The overdensity in a shell at fixed
comoving radial distance is δgðχn̂Þ ¼ ½nðχn̂Þ − nðχÞ�=nðχÞ,
for observed field nðχn̂Þ, and depends principally on the
scalar potential Ψ. At linear order, we have the usual
relation,

δgðχn̂Þ ¼ bgðχÞ
Z
k
eik·χn̂δmðk; χÞ

¼ −
2aðχÞ
3H2

0Ωm
bgðχÞ

Z
k
eik·χn̂k2Ψðk; χÞ; ð14Þ

where δmðk; χÞ is the Fourier-space matter density, related
to Ψ via the Poisson equation, and we neglect relativistic
effects. In this paper, we will consider photometric galaxy
surveys where the galaxy density is measured in redshift
bins labeled a ¼ 1; 2;…Nbin and given by

δg;aðn̂Þ ¼
Z

∞

0

dχ naðχÞδgðχn̂Þ; ð15Þ

where naðχÞ ∝ nðχÞWaðχÞ is the normalized source density
in bin a, as before.4 This uses the true source density nðχÞ
and a user-definedweighting functionWaðχÞ. Note that here
and everywhere belowwe neglect redshift space distortions,
magnification, and relativistic projection effects. There are
only scalar contributions to this observable.

B. Galaxy shear

The shape distortions of galaxies are usually expressed
using the shear tensor γij (neglecting higher-order moments
such as flexion, e.g., [42]). Roughly speaking, this is a
measurement of a galaxy’s ellipticity, and is usually
projected onto the two-sphere by binning in redshift, i.e.,

γij;aðn̂Þ ¼
Z

∞

0

dχ naðχÞγijðχn̂Þ; ð16Þ

where χn̂ is the three-dimensional galaxy position at
comoving distance χ, and naðχÞ ∝ nðχÞWaðχÞ is the
normalized source density in bin a, for source density
nðχÞ, as before. Following projection, the shear tensor is a
spin-two field and can be expressed in �2γ components or E
and B modes (cf. Sec. II C).
The Newtonian potential Ψ sources two contributions to

galaxy shear: intrinsic alignments and weak lensing. For a
source galaxy at redshift χ, the spin-�2 shear components
are given by, e.g., [27,28,41,43]:

�2γS;aðn̂Þ ¼
Z

∞

0

dχ naðχÞ
�
−bSðχÞmi∓mj∓Ψ;ijðχn̂; χÞ

þ 2

Z
χ

0

dχ0

χ0
χ − χ0

χ
mi∓mj∓Ψ;ijðχ0n̂; χ0Þ

�
; ð17Þ

where m� are the basis components given in Sec. II C.
The first term is the intrinsic alignment contribution
(arising from galaxies preferentially aligning with a local
tidal field), and involves the intrinsic alignment bias
bSðχÞ≡ ð2=3ÞCS

1ρcr0H
−2
0 (in the notation of [32,44]), with

ρcr0 ¼ 3H2
0=ð8πGÞ, and CS

1ρcr0 ∼ 0.1. The second term is
from weak lensing, and involves the integrated scalar
perturbation along the photon’s worldline from the source
galaxy to the observer.
Following [32], tensor modes source the following

contributions to galaxy shear:

�2γT;aðn̂Þ ¼
Z

∞

0

dχ naðχÞ
�
−
1

2
h�ð0; 0Þ −

1

2
½1 − bTðχÞa−2ðχÞð∂2η þ aH∂ηÞ�h�ðχn̂; χÞ

−
Z

χ

0

dχ0
�
χ − χ0

2

χ0

2χ
mi∓mj∓hkl;ijn̂kn̂l þ

�
1 −

2χ0

χ

�
n̂lmk∓mi∓hkl;i −

1

χ
h�ðχ0n̂; χ0Þ

��
ð18Þ

for h� ≡mi∓mj∓hij, where our tensor conventions are
specified in Sec. II B. The first and second terms on the
first line correspond to observer and source distortions
(frame of reference effects), the third term is from intrinsic
alignments, and the second line gives contributions

integrated along the line of sight from the source to the
observer, i.e., weak lensing effects. The coefficient bTðχÞ≡
ð2=3ÞCT

1ρcr0H
−2
0 specifies the strength of the alignment

effect with CS
1 ∼ CT

1 expected in practice (though see
[31,33] for further discussion of this).

C. Remote quadrupole

The polarized Sunyaev Zel’dovich (pSZ) effect sources
polarization anisotropies through the Thomson scattering

4In the limit of Nbin → ∞ this is analogous to a three-
dimensional spectroscopic sample, except without redshift
effects.
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of CMB photons from the locally observed CMB quadru-
pole seen by free electrons in the post-reionization Universe
(the remote quadrupole field). Given a tracer of the optical
depth, such as a galaxy redshift survey, and high-resolution
measurements of the CMB polarization, it is possible to
reconstruct the remote quadrupole field using a quadratic
estimator as described in [10,11,15]. In essence, this
estimator probes the combination δg;aðQ� iUÞ, thus its
auto-spectra is really a four-point function of the form
hδ2g;aðQ� iUÞ2i. The remote quadrupole field at some
position χn̂ is defined by

Θ2mðχn̂Þ ¼
Z

dn̂Θðχn̂; n̂0ÞY�
2mðn̂0Þ; ð19Þ

where n̂0 is the emission angle and Θ is the temperature
perturbation. There are contributions to Θ2m from both
scalar and tensor modes via the usual Sachs-Wolfe,
integrated Sachs-Wolfe, and Doppler components. The
quantity reconstructed in pSZ tomography is a projection
of the remote quadrupole field onto our line of sight, and
integrated over radial bins with the same weighting as the
galaxy density:

q�a ðn̂Þ ¼
Z

∞

0

dχ naðχÞ
X2
m¼−2

Θ2mðχn̂Þ∓2Y2mðn̂Þ; ð20Þ

where ∓2Y2mðn̂Þ are spin-weighted spherical harmonic. As
for shear, we can form E and Bmodes in harmonic space as
q�lm;a ¼ qElm;a � iqBlm;a. Scalar perturbations source only an
E mode, while tensors source both E and B modes.

D. Spectra

Having defined each of the observables above, can write
a general element of the signal covariance in terms of an
integral of transfer functions convolved with primordial
spectra. For scalars, we have

CXY
l;abjS¼4π

Z
∞

0

d logkΔX;S
l;a ðk;χÞΔY;S�

l;b ðk;χ0ÞPΨðkÞ; ð21Þ

where X; Y ∈ fδg; γE; qEg. The explicit form of the transfer
functions ΔX;S

l;a ðk; χÞ is presented in Appendix A. For
tensors, we find a similar form:

CXY
l;abjT ¼ 4π

Z
∞

0

d log kΔX;T
l;a ðk; χÞΔY;T�

l;b ðk; χ0ÞPhðkÞ

× ½δXYK þ ð1 − δXYK ÞΔh�; ð22Þ

where δXYK is the Kronecker delta, the last term encodes
chirality, X; Y ∈ fγE; qE; γB; qBg, and we assume l ≥ 2.
The explicit form of the tensor transfer functionsΔX;T

l;a ðk; χÞ
is again given in Appendix A.

IV. NOISE MODELING

For the forecasts presented below, we must make some
assumptions about the hypothetical galaxy survey and
CMB experiment used to measure the galaxy density,
shear, and remote quadrupole field. The galaxy density
and shear are limited by the mean number density of
objects in the survey, n̄; for the galaxy density, this sources
noise spectra of the form

C
δgδg
l;abjnoise ¼

1

n̄a
δKab; ð23Þ

where n̄−1a ¼ R
∞
0 dχ nðχÞW2

aðχÞ=½
R
∞
0 dχ nðχÞWaðχÞ�2. For

shear, the noise spectra are given by

CγXγY

l;ab jnoise ¼
σ2γ
n̄a

δKabδ
XY
K ; ð24Þ

with X; Y ∈ fE;Bg.
The noise on the reconstructed remote quadrupole field

is somewhat more complex, as it is dependent on the
estimator, galaxy survey, CMB experiment, and signal
spectra. The quadratic estimator for the remote dipole is
of the form

q̂Xlm;a ¼
X

l1m1l2m2

ðWX;E
lml1m1l2m2

aEl1m1

þWX;B
lml1m1l2m2

aBl1m1
ÞΔτl2m2;a; ð25Þ

for X ∈ fE;Bg (using the decomposition of Sec. II C),
where aE;Blm are the CMB E and B modes, Δτa is the optical
depth in bin a, and W are some weight matrices whose
form can be found in [10]. From [12], the estimator noise is
given by

1

CqEqE

l;ab jnoise
¼ δabK
2lþ1

X
l1l2

ΓpSZ
ll1l2;a

ΓpSZ
ll1l2;b

ðjαll1l2 j2CEE
l1

þjγll1l2 j2CBB
l1
ÞCδgδg

l2;ab

1

CqBqB

l;ab jnoise
¼ δabK
2lþ1

X
l1l2

ΓpSZ
ll1l2;a

ΓpSZ
ll1l2;b

ðjγll1l2 j2CEE
l1

þjαll1l2 j2CBB
l1
ÞCδgδg

l2;ab

;

ð26Þ

with vanishing CqEqB

l;ab jnoise due to parity conservation. In the
above, jαj2 (jγj2) is one if lþ l1 þ l2 is even (odd) and
zero elsewhere, and the CMB spectra CEE;BB

l include
lensing and noise. Here, the weighting function is given by

ΓpSZ
ll1l2;a

¼ −
ffiffiffi
6

p

10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l1 þ 1Þð2l2 þ 1Þ

4π

r

×

�
l l1 l2

2 −2 0

�
C
Δτδg
l2;ab

; ð27Þ

where the quantity in parentheses is a Wigner 3j symbol.
The galaxy-galaxy and galaxy-optical depth spectra used in
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the noise computation, assuming that ionized gas traces dark matter on all scales,5 are given by

C
δgδg
l;ab ¼ 4π

Z
∞

0

d log k

�Z
∞

0

dχ naðχÞbgðχÞDþðη0 − χÞjlðkχÞ
��Z

∞

0

dχ0nbðχ0Þbgðχ0ÞDþðη0 − χ0Þjlðkχ0Þ
�
PδðkÞ þ

1

n̄a
δKab

C
Δτδg
l;ab ¼ 4π

Z
d log k

�Z
∞

0

dχ σTaðχÞWaðχÞneðχÞDþðη0 − χÞjlðkχÞ
��Z

∞

0

dχ0 nbðχ0Þbgðχ0ÞDþðη0 − χ0Þjlðkχ0Þ
�
PδðkÞ;

ð28Þ

where we introduce the matter power spectrum PδðkÞ≡
ðk3=2π2ÞPδðk; z ¼ 0Þ with growth factor Dþ, electron
density neðχÞ, and the Thomson cross section σT . Since
we require these spectra at large l, they are computed with
the Limber approximation (including nonlinear effects only
through Pδ).

V. DETECTABILITY FORECASTS

We now turn to the question of whether the above effects
are measurable in practice. To ascertain this, we will
consider a simple forecast appropriate for next-generation
observatories, aiming to measure both the signal to noise of
the various signals and the detectability of cosmological
parameters such as the tensor-mode amplitude.
For these forecasts, we assume the following:
(i) Galaxy sample: VRO-like (LSST gold sample), with

nðzÞ ∝ z2 expð−z=z0Þ for z0 ¼ 0.3 with a source
density of 40 arcmin−2, ignoring photometric red-
shift errors [36]. We assume linear bias bðzÞ ¼
0.95=DþðzÞ for growth factor DþðzÞ and a sky
fraction of fsky ¼ 0.36.6

(ii) Binning: Six bins with z ∈ ½0.1; 6�, each a top hat in
comoving distancewithΔχ ≈ 1600 Mpc. The inverse
galaxy density varies from 6 to 0.0002 arcmin−2

from low to high redshift. We include all necessary
cross covariances in our forecasting, and will discuss
the dependence on zmax and the number of bins below.

(iii) CMB: Gaussian instrumental noise and beam, taking
the standard form NE;B

l ¼ Δ2
P exp ½lðlþ 1Þ

θFWHM=8 log 2�, for noise ΔP ¼ 1 μK-arcmin and
beam width θFWHM ¼ 1 arcmin, as appropriate for

CMB-S4 [35]. We will also consider a higher
resolution sample with ΔP ¼ 0.5 μK-arcmin noise,
a 0.25 arcmin beam and a source density of
100 arcmin−2 over fsky ¼ 0.5, similar to CMB-
HD [46].7

(iv) Cosmological parameters: For ΛCDM: fh¼ 0.7;
As¼ 1.95×10−9; ns ¼ 0.96;Ωb ¼ 0.049;Ωm ¼ 0.3g.
For tensors, we set rfid ¼ 1 for illustration, with
k0 ¼ 0.05 Mpc and nt ¼ −r=8. Where relevant, we
assume maximal chirality, i.e., Δh ¼ 1.

All power spectra are computed in PYTHON via explicit
integration of the kernels given above against scalar and
tensor power spectra, given by CLASS, using all l in the
range [2, 100] (noting that the signal to noise falls quickly
with l). For the pSZ noise spectra, we compute the lensed
CMB spectra up to l ¼ 104 using CLASS, with the optical
depth spectra computed assuming that neðχÞ ¼ ð7=8ÞnbðχÞ
(appropriate for a hydrogen fraction of 3=4), and assume
full ionization with the electron inhomogeneities tracing
those of matter, ignoring optical depth degeneracies. To
evaluate (26) we perform a direct sum over l1, l2 for
li ∈ ½1; 10000�, with the relevant Wigner 3j symbols
precomputed using recurrence relations,8 and the high-l
galaxy and optical depth spectra computed using the
Limber approximation, e.g., [43]. JUPYTER notebooks
containing all the analysis code (and a number of associated
plots) can be found (see footnote 2).
In the Gaussian limit, the various signals (including noise

contributions) have covariance:

CovðCXY
l;ab;C

ZW
l0;cdÞ¼

2δKll0

ð2lþ1Þfsky
½CXZ

l;acC
YW
l;bdþCXW

l;adC
YZ
l;bc�;

ð29Þ

which is diagonal in l. When considering the detectability
of pSZ signals, only noise and scalar shear spectra appear
on the rhs of (29), but when considering tensors, we include
also scalar pSZ contributions as an effective noise term.

5This is related to the so-called optical depth bias. Because the
pSZ signal is dependent on the optical depth, and we reconstruct
it with an imperfect tracer (galaxies in this case), there is
modeling uncertainty implicit in the estimator that can bias the
reconstructed remote quadrupole field. We do not incorporate an
analysis of the optical depth degeneracy in this work.

6As noted in [45], a deeper sample of galaxies can be obtained
from VRO by including drop-outs with a higher magnitude limit.
Whilst this would aid the detectabilities considered herein, we do
not include it, since the additional high-redshift galaxies will not
be measured at sufficiently high resolution to enable shear
measurement. Furthermore, we note that the forms of nðzÞ and
bðzÞ are uncertain at high redshift. Since the high-z data add little
constraining power (cf. Sec. V B), this is unlikely to significantly
affect our forecast.

7Note that we neglect any leakage between temperature and
polarization in the CMB experiments; this could potentially lead
to a percent-level bias in the high-l polarization spectra, which
would have severe implications for pSZ detectability.

8We use the implementation of https://github.com/xzackli/
WignerFamilies.jl.
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The Fisher matrix takes the standard form, e.g., [47],

Fαβ ¼
X
l

dDl

dpα
C−1

l
dDl

dpβ
; ð30Þ

for some set of parameters fpαg, where the data vector,Dl,
and covariance Cl, contain all nontrivial auto- and cross-
spectra. Using six tomographic bins, we find a total of 42
(156) parity-even and 36 (144) parity-odd spectra for pSZ
or shear (pSZ and shear). Under null assumptions, parity-
odd and parity-even spectra are uncorrelated, thus we may
compute their contributions to Fisher forecasts separately.
Via the Cramer-Rao bound, the 1σ bound on pα satis-
fies σ2pα

≥ ðF−1Þαα.

A. Numerical results

Figure 2 displays the auto- and cross-spectra of pSZ and
galaxy shear for a single redshift bin, separating out scalar,

tensor, and noise components. As expected, the shear-shear
spectra contain strong scalar contributions (which form the
workhorse of many previous S8 − Ωm analyses), but, as in
[32], only very weak contributions from tensors. Even in the
B mode (which is not cosmic-variance limited), the sig-
nature of r ¼ 1 gravitational waves can be orders of
magnitude below the noise floor of CMB-S4/VRO, and
accessible only at the smallest l, where foreground
and systematic effects are most important. At higher red-
shift, shear is of greater use, though upcoming photometric
surveys are optimized only for the relatively local Universe.
For pSZ auto-spectra, the noise threshold remains a

significant limitation, but, as seen in the middle panel of
Fig. 2, both scalars and tensors can be potentially detected
on very large scales, matching the results of previous work,
e.g., [10,12]. In contrast to the shear autocorrelation, the
tensor spectra is relatively evenly split between E and B
modes; this occurs since the scalar E-mode contribution is
weak, thus the pSZ noise limits both samples.

FIG. 2. Contributions of scalar and tensor modes to the shear and pSZ angular power spectrum. We show a single redshift bin centered
at z ¼ 1, and plot scalar (tensor) contributions to the spectra in blue (red, assuming r ¼ 1). The first, second, and third plots show the
shear-auto, pSZ-auto and shear-pSZ spectra for E modes (left) and B modes (right), with all spectra multiplied by lðlþ 1Þ=ð2πÞ. We
additionally convert the CMB based measurements into micro-Kelvin units by multiplying by TCMB. The black curves show noise
contributions, and the gray regions give 1σ errors around the total tensor-free signal, relevant for both CMB-S4/VRO and CMB-HD/
VRO experiments. Clearly, the pSZ-shear cross-spectra has much reduced signal to noise compared to the pSZ-pSZ spectra, though
some detection of gravitational waves may be possible in the B mode, particularly at larger z.
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The cross-spectra paint a somewhat different picture. In
this case, there is no experimental noise curve (since hEi ¼
hBi ¼ 0 in the CMB), but significant variance, even for
futuristic experimental setups based on CMB-HD. That
said, both scalar and tensor contributions are clearly non-
zero, with the latter peeking above the cosmic variance in
the large-scale B mode. As discussed below, the various
contributions are a strong function of redshift, but the trend
of Fig. 2 is relatively general: both scalar and tensor cross-
spectra exist but will be difficult to detect. This is quantified
in the following sections.
In Fig. 3 we consider the cross-spectra in more detail,

displaying results at both low and high redshift, and
splitting the sample into the various contributions. At
low redshifts, we see that the scalar contribution is
dominated by the ISW effect, and contains power across
a range of multipoles. This differs significantly from the
pSZ auto-spectra, which is dominated by the SWeffect and
has power only at very low l. In principle, this suggests that
the low-redshift shear-pSZ (or galaxy-pSZ) correlation
could be a useful probe of the ISW effect. At higher
redshifts, this is no longer the case; we find that the SW
effect dominates over ISW, with the Doppler contribution
being significantly suppressed regardless of redshift. This is
as expected: the ISWeffect occurs due to the time variation
of gravitational potentials induced by dark energy, whose
action is strongly suppressed for z≳ 2. The signature of
tensors appears similar to scalars: the most prominent
signatures are observed at low l, and, partly due to the
greater impact of tensors on high-z lensing, is most
prominent at the largest redshifts. Finally, we consider
the contribution of different lensing contributions: as
shown in the figure, the scalar high-z sample is dominated
by the lensing correlations, cf. [32], whilst for scalars at
low-z and for tensors at all redshifts, intrinsic alignments

are an important contributor to the signal, although we
caution that they are accompanied by a poorly understood
bias parameter bTðχÞ.

B. Detectability of scalar pSZ

To forecast the detection strength of pSZ we perform a
Fisher forecast utilizing both the pSZ auto- and cross-
spectra. For this purpose, we rescale the pSZ signal as
qE → ðα= ffiffiffi

2
p ÞqE, such that a Fisher forecast for α about

α ¼ 1 gives the desired signal-to-noise ratio (setting α ¼ 0
in the covariance, i.e., working under null assumptions).
The following spectra contain scalar pSZ signatures:

ðα2=2ÞCqEqE

l ; ðα=
ffiffiffi
2

p
ÞCqEγE

l ; ðα=
ffiffiffi
2

p
ÞCqEg

l ; ð31Þ

these form the derivative vector in (30) (summing over bins
and multipoles). By considering only subcomponents of the
pSZ spectra (cf. Sec. III), we can additionally quantify the
detection significance of physical signals such as the ISW
effect.
Our main results are given in Table I and Fig. 4, both for

the fiducial CMB-S4/VRO survey considered above, and a
more futuristic survey based on CMB-HD/VRO. In each
case, the total pSZ auto-spectrum can be robustly extracted
(at 8.3σ and 37σ respectively), and is dominated by the SW
effect; the other contributions are unmeasurable except for
the ISW effect with futuristic noise levels. The signal-to-
noise curves are a strong function of l: only the l≲ 5
modes are recoverable by these techniques.
The situation is more bleak for the cross-spectra.

Combining pSZ and photometric galaxy density does
not yield an observable signal for either choice of noise
curves, and, further, the pSZ-shear correlation is small
(≈1.6σ) for CMB-S4/VRO noise levels. Further in the

FIG. 3. Contributions to the E-mode pSZ-shear cross-spectrum in two redshift bins, with centers indicated by the titles. We show
scalar contributions from the Sachs-Wolfe (green, SW), integrated Sachs-Wolfe (red, ISW) and Doppler (blue) effect and r ¼ 1 tensors
(black, as in Fig. 2). The dotted lines show the same contributions but only including the effects of gravitational lensing (omitting
intrinsic alignments). The shaded region shows the 1σ error for VRO/CMB-S4 as in Fig. 2. We note that the ISW effect dominated the
scalar signal at low-z, but there is significant contribution from the SWeffect at high z. Furthermore, intrinsic alignments are seen to be a
key contribution to the tensor signal in both bins, though the high-z scalar signals are sourced almost entirely by lensing shear modes.
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future however, we forecast a detection significance of 5.2σ
for this cross-correlation using CMB-HD/VRO, which is
dominated by the ISW effect. Noticeably, the decay of the
signal to noise in cross-spectra is weaker than for auto-
spectra; this indicates how more modes could be measured
if the noise was particularly suppressed. Although the
overall signal to noise is weak, it indicates how one, at least
in principle, can extract the ISW effect from the usually
SW-dominated pSZ signal by utilizing cross-correlations.
It is important to ask whether these results depend

on the redshift binning strategy adopted. To this end, we
have performed an analogous Fisher forecast using 30
tomographic bins rather than six, each with a width of

≈ 300 h−1Mpc. Though such narrow bins are unlikely to
be used in future optical surveys (due to photometric
redshift uncertainties), they show how our results depend
on the pSZ binning, and, for the galaxy cross-correlations,
give an indication of how a spectroscopic survey would
perform. In this case, we find very similar detection
significances for all quantities, with an enhancement only
at the ≲20% level when using fine bins. In particular, the
total pSZ-shear correlation can be detected at 1.8σ (4.5σ),
whilst the pSZ-galaxy correlation becomes 0.8σ (1.8σ) for
CMB-S4/VRO (CMB-HD/VRO). We may similarly assess
the dependence on the maximum survey redshift: we find
only a small (≲10%) loss of signal to noise from reducing
the redshift range to [0.1, 2] instead of [0.1, 6]. This is due
to the paucity of high-redshift objects in the fiducial
sample. Altogether, the two tests indicate that six redshift
bins are likely sufficient in practice, and that bins contain-
ing very few galaxies do not contribute significantly.
Furthermore, we find that galaxy density is unlikely to
be of practical use for measuring cross-correlations with
pSZ, even if one uses a spectroscopic sample. Though the
galaxy density field has lower noise than the shear
observable (for photometric samples; far fewer sources
are typically observed in spectrosopic analyses), the signal
to noise of the cross-spectrum is dominated by modes in the
linear regime (Fig. 4), which are instead cosmic-variance
dominated. The difference in signal-to-noise indicates that
the redshift kernel intrinsic to the remote quadrupole has
better overlap with that from cosmic shear than galaxy
density, and the limited impact of binning indicates that the
signal is smooth in redshift and dominated by modes
perpendicular to the line of sight.

TABLE I. Signal-to-noise ratio of the scalar pSZ effect from
auto- and cross-spectra with shear and galaxies. We split the
signal into various components, and compute the signal to noise
using the Fisher formalism of (30), assuming zero fiducial pSZ
signal. Results are shown for two choices of CMB noise (ΔP, in
μK-arcmin) and source density (n̄, in arcmin−2). We find that
future surveys will be able to detect the pSZ auto-spectrum at
high significance (sourced by the SW effect), but cross-spectra
with galaxies are practically unobservable, and those with shear
are weak, though dominated by the ISW effect.

ΔP n̄ SW ISW Doppler Total

pSZ × pSZ 1 40 12.59 0.58 0.05 8.40
pSZ × shear 1 40 0.91 1.61 0.06 1.58
pSZ × galaxies 1 40 0.42 0.61 0.07 0.65

pSZ × pSZ 0.5 100 56.42 2.49 0.24 37.74
pSZ × shear 0.5 100 3.32 5.18 0.21 5.16
pSZ × galaxies 0.5 100 1.07 1.33 0.18 1.44

FIG. 4. Signal-to-noise (S=N) ratio for the pSZ auto- and cross-spectra. We give the significance of a detection in each l bin
[equivalent to the S=N per fl; mg mode multiplied by ð2lþ 1Þ)] the total S=N is the sum over all bins and given in Table I. We show
detection significances for the total pSZ effect (black) and split into the SW, ISW and Doppler subcomponents (green, red, and blue),
always assuming the CMB-S4/VRO noise parameters. The overall signal is strongest in the auto-spectrum; however, this is more
susceptible to systematic effects than cross-spectra. The auto-spectra are dominated by the SW signal, whilst cross-spectra are a probe
instead of the ISW. Whilst all curves are a strong function of l, the falloff is slower for the cross-spectra, indicating the utility of
measuring smaller scales.
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C. Detectability of parity-even tensors

We now turn to gravitational waves, considering
the possible bounds upcoming and futuristic surveys can
place on the tensor-to-scalar ratio r. Whilst one could also
probe the tensor tilt,nT, this requires firstmeasuring nonzero
r, thus wewill neglect it here (though see [11] for discussion
of constraints from the pSZ auto-spectra). Assuming tensors
are parity conserving, gravitational wave signatures appear
in the following spectra, all proportional to r:

CqEqE

l ; CqBqB

l ; CγEγE

l ; CqEγE

l ; CqBγB

l : ð32Þ

Importantly, this involves B modes which, via parity
conservation, do not contain contributions from scalars at
leading order, and thus provide a cleaner dataset within
which to search for tensors.Additionally, there is no signal in
the galaxy-pSZ cross-spectra (in linear theory), since the
galaxy distribution is a scalar quantity.
The forecasted constraints on r are shown in Table II and

Fig. 5. As found previously, e.g., [32], shear auto-spectra
are not able to place tight constraints on tensors: even with
the more optimistic noise profile, we find σðrÞ ¼ 20,
several orders of magnitude weaker than the current
constraints from BICEP [48]. This is partly caused by
the VRO galaxy sample, whose source density peaks at
z ∼ 0.3 (albeit with a broad tail); a sample extending to
higher z would allow for considerably more stringent
limits.

For the pSZ-auto spectra, we findmuch tighter constraints,
exceeding the current BICEP limits.Whilst these are unlikely
to be competitive in the near future, given the rapid advance in
CMB detector technology, e.g., [11], they are nevertheless
interesting, since the signal arises from a small scale (doubly
squeezed) hδ2gðQ� iUÞ2i trispectrum rather than the usual
hBBi signal, and is less subject to lensing and atmospheric
effects. For the cross-spectra,we findweaker constraints,with
a similar l dependence to the auto-spectra. For CMB-S4/
VRO, we forecast a 1σ constraint of σðrÞ ¼ 0.9 (in accor-
dance with [11]), which increases only to 0.2 with the more
optimistic noise profiles of CMB-HD/VRO. This is unlikely
to be of use in the near future. Furthermore, the constraint
scaleswith one power of theCMBnoise amplitude,ΔP (since
the cross-spectrum involves only one polarization field), and
thus improves slower than the auto-spectra when the noise is
reduced (noting that the galaxy noise primarily arises from
cosmicvariance at low redshift, though, as before the situation
is better at high redshift). Finally, we note that, unlike for
shear, the pSZ-shear correlation arises primarily due to
lensing effects, rather than intrinsic alignments, and is
insensitive to the redshift binning, with ≲10% change to
σðrÞ if the number of bins is increased to 30.

D. Detectability of parity-odd tensors

Finally, we consider how one may measure the odd part
of the tensor spectrum using the pSZ and shear. In this case,
we require the following spectra:

TABLE II. 1σ error bar on the amplitude of parity-even (left) and parity-odd (right) tensors, r and rΔh, from the
pSZ and shear datasets, computed via the Fisher matrix formalism of (30). Results are shown for two noise
parameters, as in Table I. We consider constraints from both lensing and intrinsic alignment (IA) contributions to the
shear signal, which we note give significant cancellation. Odd-parity constraints involving shear are significantly
tighter than those for even-parity spectra since the EB spectra are not cosmic-variance limited in linear theory. As in
previous work, the constraining power of shear auto-spectra is very weak, but the cross-spectra offer a potential
avenue for detecting tensors, albeit in the distant future.

σðrÞ ΔP n̄ Lensing IA Total

(a) Even parity

Shear × Shear 1 40 190 114 51
pSZ × pSZ 1 40 � � � � � � 0.023
pSZ × Shear 1 40 1.5 2.0 0.94

Shear × Shear 0.5 100 66 39 17
pSZ × pSZ 0.5 100 � � � � � � 0.0050
pSZ × Shear 0.5 100 0.42 0.54 0.26

σðrΔhÞ ΔP n̄ Lensing IA Total

(b) Odd parity

Shear × Shear 1 40 60 21 13
pSZ × pSZ 1 40 � � � � � � 0.046
pSZ × Shear 1 40 0.18 0.46 0.22

Shear × Shear 0.5 100 22 7.5 4.7
pSZ × pSZ 0.5 100 � � � � � � 0.012
pSZ × Shear 0.5 100 0.050 0.15 0.055
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CqEqB

l ; CγEγB

l ; CqEγB

l ; CqBγE

l ; ð33Þ

each of which is proportional to the parity-odd amplitude
rΔh. Interestingly, none of the spectra involving γB suffer
from cosmic variance limitations at leading order, since
hγBγBi contains only noise. As such, we may expect the
constraints on parity-odd components to be tighter than
those on their even brethren.
Fisher forecasts for rΔh are given in the right panel of

Table II and Fig. 5. As foretold, the shear-shear and pSZ-
shear constraints on odd-parity tensors are significantly
(around an order of magnitude) tighter than for even-parity
tensors, but similar for the pSZ auto-spectra, since the
relevant estimator involves both CMB E and Bmodes. That
said, our conclusions are similar to before: the shear-auto
spectra gives weak constraints, with σðrΔhÞ ¼ 13 for
CMB-S4/VRO, whilst the pSZ auto-spectra are somewhat
tighter (0.05 for CMB-S4/VRO noise), though unlikely to
be competitive in the near future. For the cross-spectra, we
forecast σðrΔhÞ ¼ 0.2 for CMB-S4/VRO, or 0.06 for
CMB-HD/VRO. Whilst this is still weak, it may be
interesting from the point of view of systematics, since
the associated CMB primary measurements can often be
marred by foregrounds.

VI. NOVEL COSMOLOGICAL TESTS

In the above, we have highlighted the unique properties
of the pSZ-shear cross-correlation. In particular, at low
redshifts the cross-spectrum isolates the ISW component of
pSZ, whilst at high redshifts the SW component is picked

out (as in Fig. 1). Here, we explore the implications of these
properties in the context of a toy model in order to develop
some intuition for their utility.
Consider a primordial potential perturbation consisting

of a single mode k ¼ k0ẑwith amplitude A. Ignoring radial
binning, the multipole moments of an observable X ∈
fδg; γE; qEg at fixed comoving distance χ are given by

aXlmðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
AΔX

l ðk0; χÞδKm0; ð34Þ

where ΔX
l ðk0; χÞ are the transfer functions defined in

Appendix A. In the limit of noiseless measurements of
each spectra, the ratio of multipole moments becomes a
ratio of transfer functions:

aXl0ðχÞ
aYl0ðχÞ

¼ ΔX
l ðk0; χÞ

ΔY
lðk0; χÞ

: ð35Þ

A. SW contributions

At high redshift, where ISW can be neglected, the ratio
of the galaxy density to the remote quadrupole signal is

a
δg
l0ðχÞ

aqEl0 ðχÞ
∝

ðk0χÞ2
j2ðk0½χdec − χ�Þ ×

DΨðη0 − χÞ�
2DΨðηdecÞ − 3

2

� : ð36Þ

This is the product of a geometrical factor [which in the
limit k0 ≪ 1 reduces to χ2=ðχdec − χÞ2] and a ratio of the
potential growth functions at very different times, as

FIG. 5. Contributions to the tensor Fisher matrix from shear and pSZ auto- and cross-spectra, assuming CMB-S4/VRO noise
parameters. We show results for the parity-even and parity-odd components (constraining r and rΔh respectively) in red and blue,
plotting the contribution to

ffiffiffiffi
F

p ¼ σ−1 from each set of l modes. The dashed curves give the results with only lensing shear modes; we
find that lensing dominates the shear constraints, but intrinsic alignments are also important for the cross-spectra with pSZ. 1σ detection
limits are given in Table II; briefly, we find that the cross-spectrum has some (albeit weak) sensitivity to tensors, particularly parity-odd
tensors, and, suffers less from from systematic effects than auto-spectra.
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previously noted. The ratio of the E-mode shear to the
remote quadrupole takes a similar form:

aγ
E;IA
l0 ðχÞ
aqEl0 ðχÞ

∝
ðk0H−1

0 Þ2
j2ðk0½χdec − χ�Þ ×

DΨðη0 − χÞ�
2DΨðηdecÞ − 3

2

� ð37Þ

for intrinsic alignment, and

aγ
E;lens
l0 ðχÞ
aqEl0 ðχÞ

∝
Z

∞

0

dχ0

χ0
qaðχ0Þ

jlðkχ0Þ
jlðkχÞ

ðkχÞ2
j2ðk½χdec − χ�Þ

×
DΨðη0 − χ0Þ�
2DΨðηdecÞ − 3

2

� ð38Þ

for the lensing contribution. Both of these contributions are
also a geometrical factor (which is different from that
appearing in the galaxy density expression) times a ratio of
potential growth functions, with the lensing contributions
weighted by comoving distance. Within this toy model, one
could in principle measure the ratios above without cosmic
variance, mapping out the geometry of the light cone and
the potential growth function with arbitrary precision.

B. ISW contributions

At low redshifts the SW and Doppler terms can be
neglected, and the ratio of galaxy density and the remote
quadrupole multipoles becomes

a
δg
l0ðχÞ

aqEl0 ðχÞ
∝

ðk0χÞ2DΨðη0 − χÞR
χdec
χ dχ̄j2ðk0½χ̄ − χ�Þ∂ηDΨðη0 − χ̄Þ

∼
ðk0χÞ2

j2ðk0½χdec − χ�Þ ×
DΨðη0 − χÞ

DΨðη0 − χÞ −DΨðχdecÞ
ð39Þ

which is a geometrical factor multiplying the fractional
change in the potential growth function. The analogous
ratio for shear and the remote quadrupole is

aγ
E;IA
l0 ðχÞ
aqEl0 ðχÞ

∝
ðk0H−1

0 Þ2DΨðη0−χÞR
χdec
χ dχ̄j2ðk0½χ̄−χ�Þ∂ηDΨðη0− χ̄Þ

∼
ðk0H−1

0 Þ2
j2ðk0½χdec−χ�Þ×

DΨðη0−χÞ
DΨðη0−χÞ−DΨðχdecÞ

ð40Þ

for intrinsic alignment and

aγ
E;lens
l0 ðχÞ
aqEl0 ðχÞ

∝
Z

∞

0

dχ0

χ0
qaðχ0Þ

jlðkχ0Þ
jlðkχÞ

×
ðk0χ0Þ2DΨðη0 − χ0ÞR

χdec
χ dχ̄j2ðk0½χ̄ − χ�Þ∂ηDΨðη0 − χ̄Þ ð41Þ

for lensing. Each of these ratios is dependent on the change
in the potential growth function, which is sensitive to the
properties of dark energy. Within the context of this toy
model, it is therefore possible to put strong constraints on
the properties of dark energy, which, due to the off-light-
cone properties, are free from cosmic variance.
Extending beyond the toy model described above,

information about the geometry of the light cone and the
potential growth functions has a more complex encoding in
the observables. Nevertheless, the above model illustrates
the types of novel cosmological tests that may eventually
be possible by combining pSZ and shear or density
measurements.

VII. DISCUSSION

This work has considered a novel probe of cosmic
history: the correlation of the polarized SZ effect with
galaxy shear. Unlike most observables, this is not restricted
to the light cone, and can capture interesting physics in both
the scalar and tensor sectors, particularly with regards to the
ISW effect and parity-odd gravitational waves. Despite
significant theoretical and phenomenological appeal, this
cross-correlation appears highly challenging to detect. With
the forthcoming generation of surveys, a tenuous detection
of the scalar signal may just be within reach, but it is
unlikely that the signal can be fully exploited in either this
decade or the next. That said, the effect’s detectability is
limited predominantly by CMB detector noise and the
availability of high-redshift galaxies, both of which are
likely to improve in the future (for example with
MegaMapper [38], though the high-redshift tail is limited
by reionization). We note an important caveat: this work
has only considered linear contributions to the pSZ and
shear statistics. In the nonlinear Universe, higher-order
scalar corrections can lead to non-negligible contributions
to both E- and B-mode observables, which may give a
fundamental limitation to how well the various signals can
be detected. Furthermore, we have ignored the notorious
“optical depth degeneracy,” relating to the poorly under-
stood connection between the electron and matter distri-
butions, e.g., [8]. Whilst this is an important multiplicative
uncertainty, the detections considered herein are suffi-
ciently futuristic that one may cautiously hope such
problems to be solved by the relevant time, for example
using kSZ measurements or cross-correlations with fast
radio bursts [49].
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Putting the above issues aside, we close by considering
the implications of a detection of the pSZ-shear cross-
correlation, assuming that one can be made. Perhaps the
most appealing feature of cross-correlations is that they
suffer from significantly fewer systematic effects than auto-
spectra. As mentioned above, the pSZ-shear spectra is a
hγδðQ� iUÞi bispectrum, and involves only one power of
the CMB: as such, a number of physical effects, including
detector noise and calibration errors, will be averaged out.
In particular, galactic foregrounds and weak lensing pro-
vide serious barriers to extracting tensor modes from the
primary CMB: the former contributes only if a residual
galaxy selection function couples to the galactic microwave
emission, whilst the latter generally cancels in the pSZ
signal, due to the structure of the relevant kernel [11].
Although the constraining power on tensor modes from
pSZ is weak, the availability of such a constraint may be an
important cross-check in the event of a future detection of
tensors from the primary CMB.
Second, we have shown that the pSZ-shear cross-

correlation is dominated by the ISW effect (unlike pSZ
auto-spectra), particularly at low redshifts. Although a
robust detection remains far off, its measurement would
provide direct evidence for dark energy, inducing the time
variation of the Bardeen potentials. Usual ISW constraints
arising from the CMB (mostly commonly via cross-
correlations, e.g., [50–52]) are fundamentally limited by
cosmic variance, thus, the pSZ-based measurements, which
can recover three-dimensional modes instead of the usual
two-dimensional ones, may provide a useful avenue for an
eventual high-significance measurement of the properties
of dark energy. Finally, the measurement of the SWeffect in
the pSZ-shear cross-spectra (which is most prominent at
high redshifts), would give a unique insight into the
Universe’s (in)homogeneous evolution. For a lens at χ,
the pSZ-shear cross-spectrum measures the following
combination of growth rates: Dðχ; xÞDðχdec; xÞ (ignoring
a geometric prefactor), which can be compared to that of
lensing alone: D2ðχ; xÞ, at some position x. As mentioned
above, a futuristic measurement could, in principle, be
used to map the local (off-light-cone) values of
Dðχ; xÞ=Dðχdec; xÞ without cosmic variance, allowing
novel tests of the Universe’s isotropy and homogeneity,
for example probing whether the Universe evolves differ-
ently in high- and low-density regions.
Although difficult in practice, a measurement of the

pSZ-shear cross-correlation could probe a range of new
physics, and shed light on new and unexplored features of
the cosmological model.
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APPENDIX A: TRANSFER FUNCTIONS

In this appendix, we collect the transfer functions
necessary to compute the signal spectra in Eqs. (21) and
(22). Starting with the galaxy density defined in Eq. (15),
which is sourced only by scalars at linear order, we have

i−lΔδg;S
l;a ðkÞ ¼ −

Z
∞

0

dχ naðχÞ
2aðχÞk2
3H2

0Ωm
bgðχÞ

×DΨðη0 − χÞjlðkχÞ: ðA1Þ

Since our primary goal is to compute the SZ-lensing cross-
correlations, we do not pursue a detailed accounting of
redshift space distortions, magnification, or relativistic
corrections to the observed number counts. A discussion
of these effects and their correlations with SZ effects can be
found in [53].
Moving to shear, the scalar contribution to the E mode

defined in Eq. (17) has the transfer function
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ΔγE;S
l;a ðkÞ ¼ il

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s �
−
Z

∞

0

dχ naðχÞ
bSðχÞ
2χ2

DΨðη0 − χÞjlðkχÞ þ
Z

∞

0

dχ0

χ0
qaðχ0ÞDΨðη0 − χ0Þjlðkχ0Þ

�
; ðA2Þ

where the lensing efficiency is qaðχ0Þ≡
R
∞
χ0 dχ naðχÞ. The tensor contributions to the E- and B-mode shear defined in

Eq. (18) have the transfer functions for X ∈ fE;Bg9:

−i−lΔγX;T
l;a ðkÞ ¼ −

1

8
OX½Q̂IA;TðxÞ�

jlðxÞ
x2

����
x¼0

DTðk; η0Þ

−
1

8

Z
∞

0

dχ naðχÞOX½Q̂IA;TðxÞ�
jlðxÞ
x2

ð1 − bTðχÞa−2ðχÞð∂2η þ aH∂ηÞÞDTðk; η0 − χÞ

þ 1

4

Z
∞

0

dχ0

χ0
ðmaðχ0ÞOX½Q̂lens;T;1ðx0Þ� þ m̄aðχ0ÞOX½Q̂lens;T;2ðx0Þ�Þ

jlðx0Þ
x02

DTðk; η0 − χ0Þ; ðA3Þ

where we define

maðχ0Þ ¼
Z

∞

χ0
dχ naðχÞ; m̄aðχ0Þ ¼

Z
∞

χ0
dχ

χ0

χ
naðχÞ; ðA4Þ

and we have OE ¼ Re, OB ¼ Im, x≡ kχ, x0 ≡ kχ0, and DT is the tensor growth factor, defined after (9). This uses the
operators

Q̂lens;T;1ðxÞ ¼ −
x
2
½xðx2 þ 14Þ þ 2ð7x2 þ 20Þ∂x þ 2xðx2 þ 25Þ∂2x þ 14x2∂3x þ x3∂4x − 2ið4þ x2 þ 6x∂x þ x2∂2xÞ�

Q̂lens;T;2ðxÞ ¼
1

2
½24ðx2 þ 1Þ þ x4 þ 16xðx2 þ 6Þ∂x þ 2x2ðx2 þ 36Þ∂2x þ 16x3∂3x þ x4∂4x�;

Q̂IA;TðxÞ ¼ ½12 − x2 þ 8x∂x þ x2∂2x� þ 2ix½4þ x∂x�; ðA5Þ

which act on the spherical Bessel functions.10

For the remote quadrupole field we follow [10,11]. The E-mode remote quadrupole sourced by scalars is given by11

ΔqE;S
l;a ðkÞ ¼ −

Z
∞

0

dχ naðχÞ5il
ffiffiffi
3

8

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
jlðkχÞ
ðkχÞ2 ½GSW þ GISW þ GDoppler�ðk; χÞ; ðA6Þ

where

GSWðk; χÞ ¼ −
�
2DΨðηdecÞ −

3

2

�
j2ðk½χdec − χ�Þ

GISWðk; χÞ ¼ −2
Z

χdec

χ
dχ̄∂ηDΨðη̄Þj2ðk½χ̄ − χ�Þ

GDopplerðk; χÞ ¼
1

5
kDvðηdecÞð3j3ðk½χdec − χ�Þ − 2j1ðk½χdec − χ�ÞÞ: ðA7Þ

The pSZ effect is also sourced by gravitational waves, with the same structure as (19) but encoding the tensorial
contributions to Θ, arising from post-recombination effects, as in the usual CMB. Following a lengthy calculation outlined
in [10,11], we find the following transfer functions:

9This matches [32,54], albeit with slightly modified conventions described in Sec. II B.
10These, respectively, correspond to 2Q̂�

2ðxÞ, 2Q̂�
3ðxÞ, and Q̂�

1ðxÞ in the notation of [32].
11In full, the pSZ signal contains two effects: (a) contributions arising from the remote quadrupole observed at the galaxy location,

and (b) contributions sourced by photon distortions between scattering and the observer. The second set are higher-order effects (since
they are unobservable unless the first is also present), and will be neglected herein.
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i−lΔqE;T
l;a ðkÞ ¼

Z
∞

0

dχ naðχÞ
5

ffiffiffi
6

p

4
Re½Q̂IA;TðxÞ�

jlðxÞ
x2

Z
χdec

χ
dχ̄ ∂ηDTðη̄Þ

j2ðk½η̄ − η�Þ
ðk½η̄ − η�Þ2

i−lΔqB;T
l;a ðkÞ ¼ −

Z
∞

0

dχ naðχÞ
5

ffiffiffi
6

p

4
Im½Q̂IA;TðxÞ�

jlðxÞ
x2

Z
χdec

χ
dχ̄ ∂ηDTðη̄Þ

j2ðk½η̄ − η�Þ
ðk½η̄ − η�Þ2 ; ðA8Þ

in terms of the Q̂IA;T operator of (A5).

APPENDIX B: CORRELATIONS WITH THE
KINETIC SUNYAEV-ZEL’DOVICH EFFECT

In the above, we have considered the correlations
between galaxy shear and the polarized SZ effect. It is
interesting to ask also if one expects correlations with the
kinetic SZ effect (kSZ), given that this is observed at
much higher signal to noise. Much as the pSZ probes a
remote quadrupole, the kSZ effect probes a remote
dipole, given by

veffðχn̂Þ ¼
3

4π

Z
dn̂Θðχn̂; n̂0Þðn̂0 · n̂Þ; ðB1Þ

where Θ is the CMB temperature fluctuation observed
at the location of a distant galaxy. The dipole can
be estimated by combining the observed CMB tem-
perature with a tracer of the electron density, with the
schematic form

v̂lm;a ¼
X

l1m1l2m2

WT
lml1m1l2m2

aTl1m1
Δτl2m2;a; ðB2Þ

where WT is some weight matrix, aTlm are the CMB
harmonics and Δτa is the Thomson cross section in bin
a. This probes the combination δgT, such that its auto
power spectrum is hδ2gT2i and its cross-spectrum with
shear is a hγδgTi bispectrum.

1. Formalism

Following Sec. III, the remote dipole power spectrum is
given by (from [10], adapting to our conventions)

Cvv
l ðχ; χ0ÞjS ¼ 4π

Z
∞

0

d log kΔv;S
l ðk; χÞΔv;S�

l ðk; χ0Þ

× PΨðkÞ ðl ≥ 1Þ: ðB3Þ
Unlike for the remote quadrupole, there are no tensor
contributions at leading order, since v is a spin-1 field. This
defines the kernels,

i−lΔv;S
l ðk; χÞ ¼ 1

2lþ 1
½KSW þKISW þKDoppler�

× ðk; χÞ½ljl−1ðkχÞ − ðlþ 1Þjlþ1ðkχÞ�;
ðB4Þ

with

KSWðk; χÞ ¼ 3

�
2DΨðηdecÞ −

3

2

�
j1ðk½χdec − χ�Þ

KISWðk; χÞ ¼ 6

Z
χdec

χ
dχ̄∂ηDΨðη̄Þj1ðk½χ̄ − χ�Þ

KDopplerðk; χÞ ¼ kDvðηdecÞðj0ðk½χdec − χ�Þ − 2j2ðk½χdec − χ�ÞÞ − kDvðηÞ: ðB5Þ

These can be integrated in redshift as before.
Finally, we require the noise profile of the remote dipole:

1

Cvv
l ðχ; χ0Þjnoise

¼ δDðχ − χ0Þ
2lþ 1

X
l1l2

ΓkSZ
ll1l2

ðχÞΓkSZ
ll1l2

ðχ0Þ
CTT
l1
C
δgδg
l2

ðχ; χ0Þ
ðB6Þ

or, after binning in redshift,

1

Cvv
l;abjnoise

¼ δabK
2lþ 1

X
l1l2

ΓkSZ
ll1l2;a

ΓkSZ
ll1l2;b

CTT
l1
C
δgδg
l2;ab

ðB7Þ

with the definition

ΓkSZ
ll1l1

ðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2lþ 1Þ

4π

r

×

�
l1 l2 l

0 0 0

�
C
Δτδg
l2

ðχÞ: ðB8Þ

2. Forecasts

To estimate the utility of the kSZ-shear cross-correlation
we utilize Fisher forecasts, as in Sec. V. Here, only shear
correlations are of relevance (from the SW, ISW and
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Doppler effects), and we show the corresponding detec-
tion significances in Table III. The kSZ auto-spectrum
can be detected at high signal to noise in future surveys
(which is of no surprise, given that it has been detected
in current surveys), with strong detections of both the
kSZ-shear and kSZ-galaxy cross-correlations also
expected. In contrast to the pSZ signal, the kSZ
correlators are dominated by the Doppler term (arising
primarily from the source’s peculiar velocity); this arises
from physics on the light cone, and thus does not add
new modes of interest. In the auto-spectra, there is a
significant contribution from the SW effect, however, this
is reduced from the cross-spectra, with a lower signal to
noise found even than for pSZ. We note that these results
are sensitive to the redshift binning: increasing to 30
tomographic bins (without photometric errors) roughly
doubles the signal to noise of the auto-spectra, and
amplifies the kSZ-galaxy cross-correlation to a value
more comparable with the auto-spectrum. All in all,
we conclude that the kSZ cross-spectra are not of
particular use if one is interested in off-light-cone

physics. However, the large Doppler term may be of
use in other contexts, for example in breaking the optical
depth degeneracy via a joint shear and kSZ 3 × 2-point
analysis.
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Loève eigenvalue problems in cosmology: How should we
tackle large datasets?, Astrophys. J. 480, 22 (1997).

[48] BICEP/Keck Collaboration, The latest constraints on infla-
tionary B-modes from the BICEP/Keck telescopes, in
Proceedings of the 56th Rencontres de Moriond on Cos-
mology (2022), arXiv:2203.16556.

[49] M. S. Madhavacheril, N. Battaglia, K. M. Smith, and J. L.
Sievers, Cosmology with the kinematic Sunyaev-Zel’dovich
effect: Breaking the optical depth degeneracy with fast radio
bursts, Phys. Rev. D 100, 103532 (2019).

[50] S. P. Boughn and R. G. Crittenden, A detection of the
integrated Sachs-Wolfe effect, New Astron. Rev. 49, 75
(2005).

[51] F. X. Dupe, A. Rassat, J. L. Starck, and M. J. Fadili,
Measuring the integrated Sachs-Wolfe effect, Astron. As-
trophys. 534, A51 (2011).

[52] Planck Collaboration, Planck 2013 results. XIX. The
integrated Sachs-Wolfe effect, Astron. Astrophys. 571,
A19 (2014).

[53] D. Contreras, M. C. Johnson, and J. B. Mertens, Towards
detection of relativistic effects in galaxy number counts
using kSZ tomography, J. Cosmol. Astropart. Phys. 10
(2019) 024.

[54] F. Schmidt and D. Jeong, Cosmic rulers, Phys. Rev. D 86,
083527 (2012).

OLIVER H. E. PHILCOX and MATTHEW C. JOHNSON PHYS. REV. D 106, 083501 (2022)

083501-18

https://doi.org/10.1103/PhysRevD.75.101302
https://doi.org/10.1103/PhysRevD.75.101302
https://doi.org/10.1103/PhysRevD.73.123517
https://doi.org/10.1093/mnrasl/slw085
https://doi.org/10.1103/PhysRevD.70.063504
https://doi.org/10.1103/PhysRevD.70.063504
https://doi.org/10.1016/j.newar.2003.07.013
https://doi.org/10.1103/PhysRevLett.95.101302
https://doi.org/10.1103/PhysRevD.100.083522
https://arXiv.org/abs/2204.12503
https://doi.org/10.1103/PhysRevD.70.063526
https://doi.org/10.1103/PhysRevD.70.063526
https://doi.org/10.1016/S0370-1573(00)00082-X
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.77.103515
https://doi.org/10.1088/1475-7516/2020/07/005
https://doi.org/10.1088/1475-7516/2020/07/005
https://doi.org/10.1103/PhysRevD.86.083513
https://doi.org/10.1103/PhysRevD.89.083507
https://doi.org/10.1103/PhysRevD.89.083507
https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.2172/1556957
https://arXiv.org/abs/0912.0201
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1907.11171
https://doi.org/10.1093/pasj/psz138
https://doi.org/10.1103/PhysRevD.78.083012
https://doi.org/10.1103/PhysRevD.72.023516
https://doi.org/10.1103/PhysRevD.72.023516
https://doi.org/10.1111/j.1365-2966.2005.09624.x
https://doi.org/10.1111/j.1365-2966.2005.09624.x
https://doi.org/10.1088/1475-7516/2017/05/014
https://doi.org/10.1088/1475-7516/2011/05/010
https://doi.org/10.1088/1475-7516/2011/05/010
https://arXiv.org/abs/2205.10332
https://doi.org/10.1086/303939
https://arXiv.org/abs/2203.16556
https://doi.org/10.1103/PhysRevD.100.103532
https://doi.org/10.1016/j.newar.2005.01.005
https://doi.org/10.1016/j.newar.2005.01.005
https://doi.org/10.1051/0004-6361/201015893
https://doi.org/10.1051/0004-6361/201015893
https://doi.org/10.1051/0004-6361/201321526
https://doi.org/10.1051/0004-6361/201321526
https://doi.org/10.1088/1475-7516/2019/10/024
https://doi.org/10.1088/1475-7516/2019/10/024
https://doi.org/10.1103/PhysRevD.86.083527
https://doi.org/10.1103/PhysRevD.86.083527

