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Cold dark matter subhalos are expected to populate galaxies in numbers. If dark matter self-annihilates,
these objects turn into prime targets for indirect searches, in particular with gamma-ray telescopes.
Incidentally, the Fermi-LAT catalog already contains many unidentified sources that might be associated
with subhalos. In this paper, we determine the probability for subhalos to be identified as gamma-ray pointlike
sources from their predicted distribution properties. We use a semi-analytical model for the Galactic subhalo
population, which, in contrast to cosmological simulations, can be made fully consistent with current
kinematic constraints in the Milky Way and has no resolution limit. The model incorporates tidal stripping
effects from a realistic distribution of baryons in the Milky Way. The same baryonic distribution contributes a
diffuse gamma-ray foreground which adds up to that, often neglected in subhalo searches, generated by the
smooth dark matter and the unresolved subhalos. This configuration implies a correlation between pointlike
subhalo signals and diffuse background. Based on this semi-analytical modeling, we generate mock gamma-
ray data assuming an idealized telescope resembling Fermi-LATand perform a likelihood analysis to estimate
the current and future sensitivity to subhalos in the relevant parameter space. We find a number of detectable
subhalos of order Oð<1Þ for optimistic model parameters and a WIMP mass of 100 GeV, maximized for a
cored host halo. This barely provides support to the current interpretation of several Fermi unidentified
sources as subhalos. We also find it more likely to detect the smooth Galactic halo itself before subhalos,
should dark matter in the GeV-TeV mass range self-annihilate through s-wave processes.
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I. INTRODUCTION

While under experimental or observational pressure, the
thermal dark matter (DM) scenario is still considered as
appealing owing to its simple production mechanism and to
the fact that it is within reach of current experiments. A
typical realization amounts to assuming that DM is made
of exotic particles with masses and couplings to standard
model particles such that they can be produced from the
hot plasma in the early universe, and to selecting model
parameters for which DM is cold [1–3] and with a predicted
cosmological abundance that matches with the one mea-
sured by cosmological probes [4–7]. If there is no matter-
antimatter asymmetry in the dark sector, and if DM is
driven to chemical equilibrium before freezing out, then
weakly interacting massive particles (WIMPs) arise as
prototypical self-annihilating DM candidates, leading to

a diversity of potentially observable signatures1 [11–16]. In
this article, we focus on indirect DM searches [16–18] with
gamma rays, and therefore assume that DM self-annihilates
in DM halos nearly at rest and into standard model
particles, producing gamma rays through direct emission,
hadronization of the final states, or bremsstrahlung [19].
This implicitly restricts the available WIMP parameter
space to s-wave annihilation processes (typically mediated
by pseudo-scalar interactions if DM is made of fermions),
for which the annihilation rate does not depend on DM
particle velocities. Other parts of the WIMP parameter
space (e.g., scalar interactions) can still be probed by
indirect detection techniques [20,21], but are more effi-
ciently so with direct detection [15,22,23] and at colliders
[9,24,25]. We also restrict the target space by focusing on
searches in the Milky Way (MW) only [26].
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1One of the main theoretical supports for WIMPs was that it
was independently motivated by solutions to the so-called
electroweak hierarchy problem in particle physics. The fact that
no new particles have been discovered at the LHC has strongly
affected approaches to that issue, see, e.g., [8], and motivations
for WIMPs are now mostly phenomenological [9,10].
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The generically rather small scattering rate between
WIMPs and the hot plasma in the early universe leads to
a very small cutoff scale in the matter power spectrum,
implying a typical mass ranging from 10−3–10−12 M⊙ for
the first DM structures to collapse in the matter cosmo-
logical era [27–34]. In the standard hierarchical picture
of structure formation [35–37], these first minihalos, or
subhalos, merge into larger DM halos, but a significant
fraction of them survives tidal disruption and populates
galactic halos in numbers today [38–42]. These DM
inhomogeneities have long be invoked as potential boosters
of the DM annihilation rate in galaxies, enhancing the
production of gamma rays and antimatter cosmic rays
[43–47]. They could also enhance the gamma-ray power
spectrum on specific angular scales [48,49]. They actually
also represent interesting point-source targets for gamma-
ray telescopes [47,50–56], with essentially no x-ray nor
radio counterparts (but see [57]). This possibility has
generated a particular attention in the recent years as the
Fermi-LAT satellite has enriched its catalog with many
unidentified and unassociated sources [58,59], some being
interpreted as potential DM subhalos [60–69].
In this study, we take advantage of the recent analytical

Galactic subhalo population model developed in Ref. [41]
(SL17 henceforth)—see complementary analytical
approaches in, e.g., Refs. [42,70–74]. This model was
built to be consistent with both structure formation theory
[40,75] and kinematic constraints on the MW similar to
those discussed in Ref. [76]. Some gamma-ray properties of
this model were already derived in Ref. [77] using the
Clumpy code [78,79], which aimed at comparing them with
predictions from cosmological simulations [80] (so-called
MW-like simulations, but obviously with DM and baryonic
distributions that may significantly depart from the real
MW), but without fully addressing the detectability of
individual objects in a realistic diffuse foreground. This
issue was partly covered in [66]. Here, we want to inspect
the potential of Fermi-like gamma-ray telescopes to detect
subhalos in such a model, but going farther than previous
studies in the attention given to the contribution of DM
annihilation itself to the diffuse background. The model
includes a subhalo population, a smooth dark matter halo,
and a baryonic distribution, all made consistent with
kinematic constraints, and the gravitational tides that prune
or disrupt subhalos are calculated from the very same
components (see SL17 for details). This internal self-
consistency leads to a spatial correlation between the
subhalos, the smooth DM, and the baryonic content, which
affects the observational properties of the former through
the contribution to the diffuse emission of the latter.
Baryons induce gravitational tides that deplete the subhalo
population and select the most concentrated objects.
Besides, they set the intensity of the Galactic gamma-ray
foreground (mostly the pionic component), which also
plays a role in the balance between diffuse emission and

potential point-like emissions from subhalos. Finally,
assessing the detectability of subhalos should also account
for the fact that the diffuse DM emission is also bounded by
current constraints to be less than the level of Galactic
foreground statistical fluctuations [19,81–88]. This means
that part of the naively available parameter space is actually
already excluded, and this can be fully characterized in a
complete model. We will show that self-consistently
combining all these ingredients leads to interesting, though
not necessarily optimistic, consequences in terms of sub-
halo detectability.
The paper develops according to a very pedestrian

approach and is organized as follows. We begin by quickly
reviewing our global Galactic model in Sec. II. In Sec. III,
we describe the parameter space of subhalos and the related
statistical ensemble, from which derive the statistical
properties of their gamma-ray emissivity presented in
Sec. IV.We further discuss the detectability of DM subhalos
in Sec. V, which is the main part of the paper, and where we
pay a particular attention to the possible background
configurations. In particular, we exploit a simplified stat-
istical method and derive useful analytical results showing,
e.g., the consequence of imposing to detect subhalos before
the smooth halo on the sensitivity, which we further confirm
with a more sophisticated analysis based on a full likelihood
method applied to mock data. In that way, we can place
ourselves in the context of an idealized experiment resem-
bling Fermi-LAT, and derive predictions for both current
and future observations.We summarize our results and draw
our conclusions in Sec. VI, to which we invite the expert
reader to go directly, and provide additional technical details
in the Appendices.

II. REVIEW OF THE SUBHALO
POPULATION MODEL

In this section, we motivate the need for a dynamically
consistent model for the DM distribution in the MW which
globally include both the subhalo population and the
smooth Galactic halo—see a more detailed discussion
in SL17.
It is well known that in the cold DM scenario, structure

formation leads to a high level of self-similarity that
translates into an almost universal shape for the dark halos
over a large range of scales, close to a parametric Navarro-
Frenk-White (NFW henceforth) profile, as found in cos-
mological simulations [89,90]. Such a (spherical) halo
shape should characterize systems like the MW down to
all pre-existing layers of inhomogeneities like subhalos, the
latter also globally contributing to shaping the former.
Increasing the spatial/mass resolution of cosmological
simulations does not modify this picture, it only uncovers
a larger population of smaller subhalos in their host halos,
sharing similar morphologies [91–93]—the overall profiles
of the host halos remaining unaffected. Consistency there-
fore demands that the sum of the smooth DM component
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and its substructure be globally following an NFW profile
(or any variant motivated by improved fitting formulae
[94–96], with possible alterations in the central regions due
to baryonic feedback [97–99]).
This actually implies a spatial correlation between the

smooth halo and its substructure, the details of which are
related to the accretion history and more importantly to the
tidal stripping experienced by subhalos and induced both
by the total gravitational potential of the host halo and by
baryons (disk shocking, stellar encounters, etc.). This
spatial correlation is expected to have some impact on
the gamma-ray observability properties of subhalos as
pointlike sources, because it translates into a correlation
between the hunted sources and the background in which
they lurk. Such a correlation was partly accounted for in,
e.g., Refs. [47,78], but without realistic treatment of
gravitational tides. At this stage, it is worth recalling that
the global DM content of the MW is better and better
constrained as the quality of stellar kinematic data
improves. This implicitly translates into limits on the
distribution of dark subhalos—except for those “visible”
subhalos hosting stars and already identified as MW
satellites.
Here, we take advantage of the SL17 analytical subhalo

population model for the MW. This model is consistent
with recent kinematic constraints on the MW, as it is
constructed to recover the best-fit Galactic mass model
found in [76] (McM17). Note that the McM17 best-fit
model (which includes both DM and baryons) is itself
consistent with more recent results (e.g., Refs. [100,101])
based on analyses of big samples of RR Lyrae or red-giant
stars with accurate proper motions inferred from the Gaia
survey [102–104]. In the SL17 subhalo population model,
subhalo tidal stripping is determined from the detailed
distributions of both DM and baryons derived in McM17.
The total DM density profile ρtot is assumed to be spherical
and a mixture of two components:

ρtotðRÞ ¼ ρsmðRÞ þ ρsubðRÞ; ð1Þ

where R is here the distance to the Galactic center (GC),
ρsm describes the smooth DM component, and ρsub
describes the average mass density in the form of subhalos.
More precisely, the latter can formally be expressed as

ρsubðRÞ ¼
Z

dmtmt
dnðRÞ
dmt

; ð2Þ

where nðRÞ is the number density of subhalos and the
integral runs over the tidal mass mt—all this will be
properly defined later. Kinematic data set constraints on
ρtot, and therefore, though more indirectly, on n. The SL17
model assumes that if subhalos were hard spheres, they
would simply track the smooth component, and then ρsub

would be proportional to ρsm. Further calculating the effect
of tidal stripping allows us to determine how DM initially
in ρsub migrates to ρsm, a leakage that increases in strength
toward the inner parts of the MW where the gravitational
potential gets deeper and where the baryonic disk is
located. The SL17 model also predicts the spatial depend-
ence of the subhalo concentration distribution function and
of the mass function as a consequence of gravitational tides.
All this is in perfect qualitative agreement with what is
found in cosmological simulations with [105,106] and
without baryons [92,93,107].
The main modeling aspects to bear in mind before

discussing the gamma-ray properties of subhalos are the
following:

(i) The total DM halo of Eq. (2) is described either as a
spherical NFW halo or as a cored halo, whose
parameters are given in Appendix A, and which
are both consistent with current kinematic con-
straints.

(ii) We assume inner NFW profiles for subhalos, and
consider initial mass and concentration functions
inferred from standard cosmology (before tidal
stripping).

(iii) The final spatial distribution of subhalos follows the
overall DM profile in the outskirts of the MW, but
gets suppressed in the central regions of the MW as
an effect of gravitational stripping—there is no
simple parametric form to describe the smooth
and subhalo components together, since the latter
depend on the details of tidal stripping: they are
predicted from the model.

(iv) Tidal effects make the final mass and concentration
functions fully intricate and spatially dependent;
they cannot be factorized out and the SL17 model
accounts for this physical intrication.

(v) Gravitational tides prune more efficiently the less
concentrated subhalos, hence the more massive
objects.

(vi) The tidal subhalo mass mt (tidal radius rt) is
generically much smaller than the mass m200 (the
virial radius r200) it would have in a flat cosmo-
logical background—the actual minimal mass can
therefore be much smaller than the minimal mass
considered for subhalos in terms of m200 [this will
depend on the tidal disruption criterion discussed
around (7)].

(vii) the baryonic content of the model comprises a
multicomponent axisymmetric disk (thick and thin
disks of stars and gas) and a spherical bulge; all these
components are taken into account for the gravita-
tional tides, but only the gaseous component is
considered to model the regular Galactic diffuse
gamma-ray emission.

In the next section, we discuss the statistical properties of
subhalos, which are inherited from their cosmological
origin.
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III. THE SUBHALO POPULATION
STATISTICAL ENSEMBLE

In this section, we review the internal properties of
subhalos and fully characterize their statistical ensemble.
This will later translate into observable gamma-ray
properties.

A. Structural properties of subhalos
and distribution functions

Here, we introduce the basic definitions inherent to
subhalos, which are rather standard [46,78]. We assume a
spherical NFW inner profile for subhalos, defined as

ρðxÞ ¼ ρs × fgðxÞ≡ x−1ð1þ xÞ−2g; ð3Þ

where ρs is the scale density, and the scale variable x≡ r=rs
expresses the distance r to the subhalo center in units of the
scale radius rs, and where the dimensionless parametric
function g is explicitly defined as an NFW profile, though it
needs not be the case. Note that g encodes all the details of
the profile, such that switching to another profile simply
amounts to changing g. In the following, we use ρðxÞ and
ρðrÞ interchangeably, letting the reader adapt the definition
accordingly. The integrated mass reads

mðxÞ ¼ 4πrs3ρs

�
μðxÞ≡

Z
x

0

dx0x02gðx0Þ
�
; ð4Þ

where we define the dimensionless mass μðxÞ that encodes
the morphological details of the inner profile. Again, we
use mðxÞ and mðrÞ interchangeably in the following.
A subhalo is conventionally defined from its mass on top

of a flat background density and its concentration. It is
common practice to adopt m200 ≡mðr200Þ for the initial
subhalo mass definition. This corresponds to the mass
contained inside a radius r200, often called virial radius,
over which the subhalo has an average density of 200 times
the critical density ρc ≡ 3H2

0M
2
P=8π, where H0 is the

Hubble parameter value today, andMP is the Planck mass.2

In the following, we use H0 ¼ 68 km=s=Mpc. The scale
parameters of subhalos are then entirely defined once the
concentration parameter c200 ≡ r200=rs is fixed. The latter
is not really a physical parameter since it formally depends
on the cosmological background density, but tells us how
dense the subhalo is inside rs. Since smaller subhalos have

formed first in a denser universe, the concentration is a
decreasing function of the mass. In this paper, we use the
SL17 model as derived from the concentration-mass
relation given in Ref. [108], to which we associate a
log-normal distribution function [pcðc200Þ, used below
in, e.g., Eq. (9)], with a variance set (in dex) to
σdexc ¼ 0.14. To simplify the notations, we further use m
for m200 and c for c200, unless specified otherwise.
Although the mass m and the concentration c fix the

internal properties of a subhalo, the only relevant physical
parameters are actually ρs and rs, and more importantly the
tidal radius rt. We also introduce

xt ≡ rt=rs; ð5Þ

its dimensionless version. Subhalos are indeed not moving
in a flat background. Tidal radii are actually difficult to
determine since they depend on the details of all gravita-
tional effects felt by subhalos along their orbits in the host
halo. The SL17 model precisely provides us with a
prediction of subhalos’ tidal radii which depend on their
structural properties, their position in the halo, and on the
details of the DM and baryonic components featuring the
MW. Therefore, the real mass and extension of a subhalo
are not m200 nor r200, but instead

the tidal radius rtðm; c; RÞ ≤ r200; ð6aÞ

and the tidal mass mt ¼ mðrtÞ ≤ m; ð6bÞ

where the dependence of the tidal radius on the subhalo
structural properties and on its average position R in the
MW has been made explicit. It is important to keep in mind
that the tidal extension of a subhalo is usually much smaller
than r200, which may strongly decrease the subhalo
gamma-ray luminosity with respect to a naive estimate
using r200. The SL17 model further proposes a criterion for
tidal disruption, which is expressed as a lower limit in xt.
This can be understood as the fact that tidal stripping can be
so efficient that the remaining subhalo core has not enough
binding energy left to survive, and gets disrupted. In the
following, we will mainly use two different disruption
thresholds according to the following rule:

tidal disruption ∀xt<ϵt¼
�
1 ðfragile subhalosÞ
0.01 ðresilient subhalosÞ : ð7Þ

The fragile case refers to a criterion found in early
simulation studies of tidal stripping [109], while the latter
case accounts for the fact that the disruption efficiency
found in simulations is very likely overestimated due to the
lack of resolution and to spurious numerical effects [110]. It
can actually be reasonably conceived that the very inner
parts of subhalos, which are also very dense, could actually
survive tidal stripping for a very long time, simply as a

2The use of “virial” quantities m200 and r200 can be misleading
in the context of subhalo phenomenology. Indeed, the actual mass
and radius of a subhalo embedded in the gravitational potential of
the MW (assuming spherical symmetry still holds) are the tidal
ones, which depend on the tidal stripping it has experienced along
its orbit—roughly speaking, the local gravitational potential and
the number of disk crossings and stellar encounters along the
orbit. Therefore, these virial quantities are only useful to
determine the subhalo inner properties, once the mass-concen-
tration relation is fixed.

FACCHINETTI, LAVALLE, and STREF PHYS. REV. D 106, 083023 (2022)

083023-4



consequence of adiabatic invariance [111,112]. One of the
advantages of the SL17 model is that we can really check
the impact of the disruption efficiency on gamma-ray
predictions by tuning the disruption parameter ϵt.
Including further evolution of the structural properties
themselves is possible in principle [113,114], but it is
actually not straightforward to scale that up to a population
study. We will therefore just assume a hard cut of the
subhalo density profile at the tidal radius, which can be
considered as an optimistic assumption in terms of gamma-
ray emissivity. Self-consistently accounting for tidal strip-
ping is anyway already a significant improvement with
respect to many past studies.
Beside the individual properties of subhalos, the SL17

model also provides the population’s global properties,
which amounts to define a probability distribution function
(pdf) for subhalos. Assuming subhalos are independent
from each other, the subhalo number density per unit of
(virial) mass can be expressed as

dnðR;mÞ
dm

¼ Ntot

Z
∞

1

dc p̂tðR;m; cÞ; ð8Þ

where the integral runs over concentration, Ntot is the total
number of subhalos in the MW, which will be discussed
later below Eq. (14), and the global pdf p̂t is given by

p̂tðR;m; cÞ ¼ θðxtðR;m; cÞ − ϵtÞ
Kt

× pVðRÞ × pmðmÞ × pcðcÞ: ð9Þ

In these equations, m ¼ m200 stands for the virial (ficti-
tious) mass in a flat background, c ¼ c200 is the concen-
tration parameter, and Kt allows for the normalization to
unity over the whole parameter space defined by the
product of the volume element 4πR2dR with the concen-
tration element dc, the reference mass element dm, and the
associated pdfs. All pdfs p’s above are normalized to unity
over their own individual range. Tidal disruption, despite its
quite simple implementation in the form of a step function
θðÞ, induces an intrication of the individual pdfs. Moreover,
since the dimensionless tidal radius xt depends on all
parameters, the same holds true for the tidal mass: a
subhalo with a given m can obviously have a different
mt depending on its concentration and position in the MW.
For the “fictitious-mass” function pmðmÞ, we adopt a

power law for simplicity,

pmðmÞ ¼ Kmðm=m0Þ−α; ð10Þ

where Km and m0 are dimensionful constants that allow us
to normalize the mass function to unity over the full subhalo
mass range. More involved functions can actually be used,
but it turns out that the extended Press-Schechter formal-
ism, reflecting the state-of-the-art analytical formalism in

this framework [35–37,115,116], gives a mass function
close to a power law of index α ∼ 1.95—see Fig. 1 for
illustration. We will therefore use values of 1.9 and 2 as
reference cases. The real(tidal)-mass function, in contrast,
also depends on position, and can be written

p̂mt
ðmt; RÞ ¼

Z
dmpmðmÞ

Z
dc pcðcÞ

× θðxtðR;m; cÞ − ϵtÞ
× δðm −mtðR;m; cÞÞ: ð11Þ

This expression makes it clear that the tidal mass function is
spatially dependent not only because of tidal disruption (in
the step function), but also because of tidal stripping (in the
delta function). In the SL17 model, surviving subhalos are
more stripped and more concentrated as they are found
closer to the central regions of the MW. More precisely,
tidal stripping acts as a high-pass filter by moving upward a
threshold in the concentration distribution function (for a
given mass), leading to a strong depletion of the subhalo
population as one approaches the central Galactic regions.
This effect is genuinely observed in cosmological simu-
lations, and usually parametrically modeled as an addi-
tional radial dependence in the median mass-concentration
relation (see, e.g., Refs. [47,107]). In the SL17 model it is
not parametrized but predicted from the constrained dis-
tributions of the Galactic components.
The SL17 subhalo spatial distribution is built upon

assuming that if subhalos were hard spheres, they would
simply follow the global DM profile, as is the case for

FIG. 1. “Fictitious” virial mass function rescaled by m2
200 as a

function of m200 at redshift z ¼ 0, assuming a cutoff mass
mmin ¼ 10−12 M⊙. The Press-Schechter and Sheth-Tormen mass
functions are calculated using Planck best-fit cosmological
parameters [117] for different window filters and fall in all cases
between the power-law functions of indices α ¼ 1.9 and α ¼ 2.0.
The gray band corresponds to halos too massive to be accounted
for MW subhalos.
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“particles” in cosmological simulations. Therefore, the
hard-sphere spatial distribution of the total population of
subhalos (including the disrupted ones) is simply

pVðRÞ ¼
ρtotðRÞ
Mhalo

; ð12Þ

where Mhalo is the total DM mass in the assumed extent of
the MW halo. However, tidal stripping and disruption
strongly distorts that hard-sphere distribution, and the
actual one only describing surviving subhalos has to
integrate the disrupted ones out. It can be written as

p̂VðRÞ ¼
Z

dm
Z

dc p̂tðR;m; cÞ

≠ pVðRÞ; ð13Þ

where p̂t is the global pdf that includes tidal stripping,
given in Eq. (9). The whole population of subhalos is then
described from its number density per unit (tidal) mass as
follows,

dnðR;mtÞ
dmt

¼ Ntot

Z
dm

Z
dc p̂tðR;m; cÞ

× δðm −mtðR;m; cÞÞ: ð14Þ

Note that Ntot, the total number of subhalos, can be
normalized according to different choices. A possibility
is to normalize it from the number of dwarf galaxy
satellites in the relevant mass range [46] (correcting for
sky and efficiency completion), from merger-tree argu-
ments [37,118], or similarly from a global subhalo mass
fraction also in a given mass range Δm [47]. We adopt the
normalization of SL17 that matches the Via Lactea II DM-
only simulation results [92], and conventionally sets the
fictitious mass fraction3 to f̃sub ∼ 10% (for Δm taken in the
heavy tail of the subhalo mass range, which is very well
resolved in simulations). Then

Ntot ¼
Kt

K̃t

f̃subMhaloghmiΔm

; ð15Þ

where Kt is the global pdf normalization introduced in
Eq. (9), and the tilde indicates quantities for which baryonic
tides are unplugged—see Ref. [41] for details.
It is instructive to calculate the expected number of

subhalos that might fall in the mass range of satellite dwarf
galaxies in this model, which we give in Table I for
different assumptions in the mass function index and

in the tidal disruption efficiency. We see that the num-
ber of objects more massive than a typical threshold of
108M⊙ [113] is of order ∼100, consistent with current
observations.
Finally, we show the radial distribution of the number

density of subhalos for a mass function index α ¼ 1.9 in the
left panel of Fig. 2, where we have considered both the
fragile and resilient subhalos, several values of minimal
cutoff mass, and started from two different assumptions for
the global Galactic halo—an NFW or a cored halo, both
consistent with kinematic constraints [76].

IV. GAMMA RAYS FROM SUBHALOS:
A STATISTICAL DESCRIPTION

In this section, we relate the gamma-ray properties of
subhalos to their internal properties. This will fully char-
acterize the statistical properties of their gamma-ray emis-
sion, an important step before rigorously determining their
detectability properties.

A. Subhalo luminosity

Since we consider DM annihilation in subhalos, it is
convenient to define an intrinsic luminosity or emissivity
function (in units of squared mass per volume),

ξðr;m; cÞ ¼ 3

�
ξ∞ ≡ 4π

3
rs3ρ2s

�
×
Z

x

0

dx0x02g2ðx0Þ; ð16Þ

where x0 ¼ r0=rs, and where we have introduced a refer-
ence luminosity ξ∞ which is such that for an NFW profile
ξ∞ ¼ limr→∞ ξðrÞ and

ξð2rsÞ ¼
26

27
ξ∞ ¼ 0.963ξ∞ ≈ ξ∞: ð17Þ

The tidal luminosity of a given object depends only on its
position, viral mass, and concentration, which we can
express as

ξtðR;m; cÞ ¼ ξðrtðR;m; cÞ; m; cÞ: ð18Þ

TABLE I. Number of subhalos with a virial mass m, or with
physical mass mt greater than 108 M⊙ inside a Galactic radius
Rmax ¼ 250 kpc, for fragile (ϵt ¼ 1) and resilient (ϵt ¼ 10−2)
subhalos.

Nsubðm200 > 108 M⊙ÞjNsubðmt > 108 M⊙Þ
Initial mass index ϵt ¼ 10−2 ϵt ¼ 1

α ¼ 1.9 322j133 268j130
α ¼ 2.0 278j108 232j106

3It is called fictitious mass fraction because it was calibrated in
such a way that each surviving subhalo should carry its full
fictitious mass m in the mass integral, even though its real mass
mt is generically smaller.
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For simplicity, we fix the “luminosity” size of a subhalo to�
rt if rt < 2rs
2rs if rt ≥ 2rs:

ð19Þ

This defines the spatial/angular extension of a subhalo in
the gamma-ray sky. It will be used when discussing
pointlike subhalos in Sec. IV D.

B. Gamma-ray fluxes and J factors

Here we introduce our conventions to deal with gamma-
ray fluxes. For a target seen by an observer on Earth, we use
the common distance-longitude-latitude triplet (Galactic
coordinates), s⃗ ¼ ðs; l; bÞ, such that in the direct Cartesian
frame attached to the observer and defined by the unit
vectors ðe⃗x; e⃗y; e⃗zÞ, where e⃗y points to the GC and e⃗x is also
attached to the Galactic plane,

s⃗ ¼ sðcos b sin le⃗x þ cos b cos le⃗y þ sin be⃗zÞ: ð20Þ

The GC is therefore located at R⃗⊙ ¼ ð0; R⊙; 0Þ, where R⊙
is the distance of the Sun to the GC, such that the target
distance R to the GC is simply

R2ðs;l;bÞ¼ ðs⃗− R⃗⊙Þ2
¼ s2þR2

⊙−2sR⊙fcos ψ≡cos b cos lg; ð21Þ

where we have introduced the angle ψ ¼ ðs⃗; R⃗⊙Þ between
the line of sight sustaining the target and the observer-GC
axis. Since the SL17 model is spherically symmetric, the
averaged amplitude of the gamma-ray flux induced by DM
annihilation is fully specified by ψ.

Gamma rays accumulate inside a cone characterized by
the angular resolution of the telescope, so the spherical MW
volume element associated with the spatial distribution of
subhalos 4πR2dR (see Sec. III A) has to be replaced by the
conical volume element about the line of sight

s2dΩds ¼ s2 sin θdθdϕds; ð22Þ
where θ is the polar angle defining the aperture about the
line of sight, and ϕ the azimuthal angle. The distance R of
the target to the GC then acquires an extra dependence in θ
and ϕ which amounts to replace

cosψ → ðcos ψ cos θ − sin ψ cos θ sin ϕÞ ð23Þ
in Eq. (21). In practice, conical volume integrals are
performed over the resolution angle under consideration.
We can now write the gamma-ray flux induced by DM

annihilation along the line of sight of angle ψ [equivalently,
all corresponding pairs ðl; bÞ in Galactic coordinates]:

dϕγ;χðE;ψÞ
dEdΩ

¼ Sχðmχ ; EÞ
4π

Z
smaxðψÞ

0

dsρ2χðs;ψÞ; ð24Þ

where ρχ denotes any DM mass density profile under
consideration, and smaxðψÞ ≈ R200 þ R⊙ cosψ is the dis-
tance to the virial border of the halo in the ψ direction. We
have introduced a spectral function,

Sχðmχ ; EÞ≡ δχhσvi
2m2

χ

dNγðEÞ
dE

; ð25Þ

that carries all the WIMP-model-dependent information,
namely, the particle mass mχ , its total s-wave annihilation
cross section into photons hσvi, and the differential photon

FIG. 2. Left panel: Radial distribution of the number density of subhalos assuming a function mass slope of α ¼ 1.9, different lower
cutoff masses, for subhalos either resilient (ϵt ¼ 0.01) or fragile (ϵt ¼ 1) against tidal disruption. Right panel: Total fraction of extended
subhalos per solid angle as a function of the line-of-sight angle ψ , for different mass functions and cutoff masses. As expected, the
fraction of pointlike subhalos fptψ ≃ 1, such that the fraction of extended objects ð1 − fptψ Þ ≪ 1.
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spectrum dNγ=dE, which sums up the contributions of all
relevant annihilation channels to the photon budget.
Parameter δχ ¼ 1 (1=2) for scalar DM or Majorana
(Dirac) fermionic DM.
Integrating this flux over a solid angle δΩr ¼ δΩðθrÞ,

where θr is a fixed resolution angle, we can define a first
version of the usual J factor [119] as follows:

dϕγ;χðE;ψ ; θrÞ
dE

¼ Sχðmχ ; EÞJψðθrÞ; ð26Þ

that is

JψðθrÞ≡ 1

4π

Z
δΩr

dΩjψ ðψ ; θ;ϕÞ

with jψðψ ; θ;ϕÞ≡
Z

smax

0

dsρ2χðs;ψ ; θ;ϕÞ: ð27Þ

This J factor carries the dimensions of a squared mass per
ðlengthÞ5 and may slightly differ from other conventions
found in the literature. Note that in the general case, an
experimental resolution angle θr depends on energy, hence
the J factor as defined above. We will account for this
energy dependence whenever relevant.
Following up with practical declensions, the flux aver-

aged over the resolution angle θr in the ψ direction is
simply �

dϕγ;χðE;ψÞ
dEdΩ

�
δΩr

¼ Sχðmχ ; EÞJ ψ ðθrÞ ð28Þ

with J ψðθrÞ≡ JψðθrÞ
δΩr

; ð29Þ

where we implicitly assume a flat and maximal collection
efficiency over θr. This angular average of the J factor, J ψ ,
is directly related to the gamma-ray flux per solid angle
provided by experimental collaborations in diffuse gamma-
ray studies.
Finally, we introduce a last variant of the J factor, more

directly related to the real measurements performed by
experiments:

Jψ ðΔEÞ≡
R
ΔE dEAðEÞSχðEÞJψðθrðEÞÞ

ΔEASχ
; ð30aÞ

J ψ ðΔEÞ≡
R
ΔE dEAðEÞSχðEÞJ ψðθrðEÞÞ

ΔEASχ
; ð30bÞ

ASχðΔEÞ≡ 1

ΔE

Z
dEAðEÞSχðEÞ

¼ hσvi
2m2

χ

hN γAiΔE
ΔE

; ð30cÞ

where ΔE is an energy range to be specified and A is an
effective experimental collection area. The latter should
depend both on the energy and the angle with respect to the
pointing direction, but for simplicity we assume a flat and
maximal angular acceptance within the resolution angle θr,
which can itself depend on energy. We have also introduced
the number of photons per annihilation N γ in the energy
range ΔE. These experiment-averaged definitions will
allow us to formulate the observational sensitivity more
accurately. Note that when the resolution angle does not
depend much on energy within ΔE, then J̄ ≃ J and J̄ ≃ J .
Independently, if the line-of-sight integral does not vary
much within the resolution angle, whatever large may the
latter be, then J̄ ≃ J—this is typically the case at
reasonable angular distance from the Galactic center.
Finally, one can easily convince oneself that for a pointlike
object, J pt ¼ J pt (see Sec. IV D 3).

C. Diffuse emission from the smooth and subhalo
components

The total averaged DM contribution to the gamma-ray
flux is the sum of the smooth contribution, the global
subhalo contribution, and the cross-product (e.g., [41,78]).
It can be expressed as

dϕγ;χðE;ψ ;θrÞ
dE

¼SχðEÞfJdiffψ ≡Jsmψ þJsubψ þJcrossψ g; ð31Þ

where we have introduced the total diffuse contribution
Jdiffψ , which is the sum of

Jsmψ ¼ 1

4π

Z
δΩr

dΩ
Z

smaxðψÞ

0

ds ρ2ðs;ψÞ; ð32aÞ

Jsubψ ¼ 1

4π

Z
δΩr

dΩ
Z

smaxðψÞ

0

ds
Z

dm
dnðs;ψÞ

dm

×
Z

dc ξtθðxt − ϵtÞ; ð32bÞ

Jcrossψ ¼ 1

2π

Z
δΩr

dΩ
Z

smaxðψÞ

0

ds
Z

dm
dnðs;ψÞ

dm

×
Z

dcmtρsmðs;ψÞθðxt − ϵtÞ: ð32cÞ

All these terms characterize the DM contribution to diffuse
gamma rays. Note that in the averaged subhalo contribution
Jsubψ , featuring the differential subhalo number density dn
given in Eq. (8), we have actually integrated the contribu-
tion of all subhalos assuming that they are pointlike (i.e.,
their tidal radii are contained in the solid angle charac-
terized by the resolution θr)—hence the presence of the full
ξt luminosity function. This is formally an approximation,
but a very accurate one in fact because the number of
pointlike objects is much larger than the extended ones in
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the resolution angles we will consider (see Sec. IV D 2).
The Heaviside function allows us to integrate only over
those subhalos which have not been destroyed by gravi-
tational tides in our model.

D. Pointlike subhalos

Here we give a practical definition to the concept of
pointlike subhalo. To avoid any confusion, we emphasize
here that this notion applies to both resolved and unre-
solved sources, in the observational sense (i.e., above and
below background).

1. Definition

We start with a geometric definition (see, e.g.,
Refs. [78,120]). A subhalo located at a distance s from
the observer is considered as pointlike if most of its
luminosity is contained in the resolution angle θr assumed
for the telescope, i.e.,

minðrt; 2rsÞ
s

≤ sinðθrÞ; ð33Þ

where we have used the luminosity radius introduced in
Eq. (19), and based on that 96% of the luminosity is
contained within 2rs for NFW (sub)halos [see Eq. (17)].
Trading the scale radius for a combination of the virtual
(virial) mass m and the concentration c, this inequality
relation for the tidal radius becomes an inequality relation
for the (virial, not tidal) mass, reading

m ≤ mmax
pt ðs; c; xtÞ≡ 4π

3
ð200ρcÞ

�
c s sinðθrÞ
minðxt; 2Þ

�
3

: ð34Þ

This relation only tells us that the probability for a subhalo
to be pointlike increases with its concentration, its distance
to the observer, or a combination of both. It allows us to
define a maximal mass mmax

pt that depends on that distance
and on the subhalo properties. Remember that the dimen-
sionless tidal radius xt is a function of position and
concentration in our model, xtðRðs;ψÞ; cÞ. That can further
be rephrased in terms of virial (virtual) radius as

r200ðmÞ ≤ cs sinðθrÞ
minðxt; 2Þ

≈
c s θr
2

⇔ rsðm; cÞ ≲ sθr
2

; ð35Þ

Since we only consider resolution angles such that
sinðθrÞ ∼ θr ≪ 1, we can see that the size of a pointlike
subhalo is always much smaller than its distance to the
observer.

2. Number of pointlike subhalos

It is instructive to compute the fraction fptψ of pointlike
subhalos lying in the solid resolution angle δΩr in any
direction ψ in the sky. Given the subhalo parameter space
introduced in Sec. III A and the definition introduced in the
previous paragraph, then

fptψ ¼
R
fm≤mmax

pt ðs;cÞg dσ̂p̂tðRðs;ψÞ; m; cÞR
fm≤mmaxg dσ̂p̂tðRðs;ψÞ; m; cÞ ð36Þ

with dσ̂ ≡ s2ds sin θdθ dϕ dm dc: ð37Þ

We have used Eq. (22) to define the full phase-space
volume element dσ̂ about the line of sight. It is easy to
understand that fptψ ≃ 1 for all angles ψ and for the
resolution angles we consider, just because the volume
where most subhalos would appear as extended is strongly
confined around the observer. This is shown in the right
panel of Fig. 2, where we have evaluated this fraction (more
precisely 1 − fptψ ) numerically as a function of the line-of-
sight angle ψ for different assumptions on the minimal
subhalo mass, the initial mass index α, and the tidal
disruption efficiency ϵt.

3. J factor for a single object

If a subhalo of massmt;i is pointlike, located at a distance
si ≫ rt, its J factor Jptψ ;i should actually account for the fact
that its occupancy volume δVi, assumed centered about the
line of sight and characterized by an angular radius equal to
or smaller than the considered experimental resolution
angle, contains both the subhalo density and the smooth
halo density. This should lead to

Jpt=δVi
ψ ;i ¼ Jptψ ;i þ Jsmψ ;i þ Jcrossψ ;i ; ð38Þ

where

Jptψ ;i ≡ Jptψ ;iðm; c; siÞ ¼
ξt

4πs2i
; ð39aÞ

Jsmψ ;i ≡ 1

4π

Z
dΩ

Z
s⃗∈δVi

ds ρ2smðRðs;ψÞÞ

≃
ρ2smðRðsi;ψÞÞδVi

4πs2i
; ð39bÞ

Jcrossψ ;i ≡ Jcrossψ ;i ðm; c; siÞ

¼ 1

2π

Z
dΩ

Z
s⃗∈δVi

dsρsmðRðs;ψÞÞρðsÞ

≃
ρsmðRðsi;ψÞÞmt;i

2πs2i
: ð39cÞ

The smooth contribution Jsmψ ;i is actually already included in
the foreground contribution of the smooth halo, so we can
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formally remove it. Besides, since the DM mass density at
the border of the subhalo is always such that ρðrt;iÞ >
ρsmðRðsi;ψÞÞ as a consequence of tidal stripping [41], we
always have Jptψ ;i ≫ Jcrossψ ;i ≫ Jsmψ ;i. Therefore, in the follow-
ing, we only consider

Jpt=δVi ¼ Jptψ ;i ¼ Jpti ð40Þ

for the J factor associated with a pointlike subhalo, which is
precise at the subpercent level. Note that for a point source,
we also have Jpti ¼ Jpti , where J, defined in Eq. (30),
involves an average over the experimental acceptance. The
associated gamma-ray flux is simply given by

dϕγ;iðEÞ
dE

¼ Sχðmχ ; EÞJpti ; ð41Þ

consistently with Eq. (26).

4. Statistical properties of pointlike subhalo J factors

In order to assess the possibility of detecting subhalos as
pointlike sources, we have to derive the full statistical
properties of Jptψ . They are obviously related to the proper-
ties of subhalos themselves, which are encoded in the
global pdf p̂t introduced in Eq. (11). However, now, the
parameter space becomes limited by the maximal mass
mmax

pt attainable by a pointlike object, and defined in
Eq. (34). Actually, given a resolution angle θr and a
line-of-sight angle ψ , the differential probability dPpt

J for
a subhalo to have a J factor equal to J0 can be formally
expressed as

dPpt
J

dJψ
ðJ0ψ Þ ¼

Z
fm≤mmax

pt ðs;cÞg
dσ̂p̂tðRðs;ψÞ; m; cÞ

× δðJψðsðR;ψÞ; m; cÞ − J0ψ Þ: ð42Þ

The volume element dσ̂ about the line of sight was
introduced in Eq. (37). One can then define the integrated
probability to have a J factor larger than some value as

Ppt
J ðJptψ ≥ J0ψ Þ ¼

Z
fm≤mmax

pt ðs;cÞg
dσ̂p̂tðRðs;ψÞ; m; cÞ

× θðJptψ ðsðR;ψÞ; m; cÞ − J0ψ Þ

¼
Z

∞

J0ψ

dJ0
dPpt

J

dJψ
ðJ0Þ: ð43Þ

Note that Ppt
J ðJptψ ≥ 0Þ< 1 because it defines the proba-

bility in the ψ direction only. It normalizes to unity only
after integration over the full sky. In the left panel of Fig. 3,
we show the shapes of these pdfs assuming line-of-sight
angles of ψ ¼ 20° and 90°, the former being optimal for
subhalo searches and the later possibly minimizing the
foreground. We also considering two minimal virial sub-
halo masses, mmin ¼ 10−10 M⊙ and 10−4 M⊙, for a
conservative initial mass function index α ¼ 1.9. Here,
the subhalo population is embedded in a global NFW halo.
We also anticipate as a green vertical band a range of
threshold J factors that expresses the sensitivity of a Fermi-
like experiment for 100 GeV DM particles annihilating in
τþτ− in an observation time of 10 yr. This will be discussed
extensively in Sec. V, notably in Sec. V C.

FIG. 3. Left panel: Probability distribution functions dPpt
J ðJÞ=dJψ (differential) and Ppt

J ðJptψ ≥ JÞ (integrated), for a resolution angle
θr ¼ 0.1°, line-of-sight angles ψ ¼ 20° (intermediate latitude) and ψ ¼ 90° (Galactic pole), and a subhalo population configuration of
resilient subhalos with ðα; mmin; ϵtÞ ¼ ð1.9; 10−10–10−4; 0.01Þ embedded in an NFW Galactic halo. The green vertical thick line gives
the typical sensitivity for a Fermi-LAT-like experiment calculated for an observation time of 10 yr. Right panel: Corresponding
distribution of the number of subhalos with J factors larger than J0 as a function of J0, for different line-of-sight angles. The bottom part
of the plot shows the relative difference when using a subhalo population model embedded in a cored Galactic halo.
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This plot illustrates the nontrivial dependence of the Ppt
J

on the pointing angle, characterized by a sharp decrease
beyond a given J at small angles, which can be associated
with the ring structure arising within ∼50° from the GC
(we shall discuss this in more details later when reaching
Fig. 5). This transition just reflects the position of the peak
in the number density arising the inner regions of the MW,
close to the solar circle, as shown in Fig. 2. This peak
corresponds to the region where tidal effects start depleting
the subhalo population beyond the peak of the concen-
tration pdf associated with the smallest objects, hence the
dramatic decline of subhalos inward. On the other hand,
around this peak is where subhalos are still both numerous
enough and highly concentrated. One can integrate sub-
halos over this peak within ∼50° from the GC (correspond-
ing to a height of ∼10 kpc from the GC), which explains
this particular feature in Ppt

J . Much less important than it
seems is the difference of probability amplitude between
mmin ¼ 10−10 M⊙ and 10−4 M⊙, which only comes from
the fact that the total number of subhalos scales like
∝ 1=mmin (hence the 6 orders of magnitude between the
amplitudes); once rescaled by the total number of subhalos,
the pdfs actually match with one another very well (except,
obviously, for the very low J0ψ tail, not appearing in
the plot).
The right panel of Fig. 3 shows the same results in terms

of the number of pointlike subhalos with J factors larger
than a threshold J0 as a function of J0, still for a subhalo
population embedded in a global NFW halo. We report the
number distributions obtained with different line-of-sight
angles ψ , and in the bottom frame, we also indicate the
relative difference when assuming subhalos embedded
either in an NFW or in a cored global DM halo. We see
that the global cored DM halo configuration generically
leads to more visible subhalos, Except in the range of
J ∈ ∼½1018; 1019� GeV2=cm5, which just reflects the fact
that the sharp decrease in Ppt

J for a cored host halo occurs at
lower values of J.
From these pdfs, one can also calculate the nth moments

of the J factors (including the mean value with n ¼ 1) using

hðJptψ Þni ¼
Z

∞

0

dJðJÞn dP
pt
J

dJψ
ðJÞ: ð44Þ

V. DETECTABILITY OF SUBHALOS
AS POINTLIKE SOURCES

This section enters the prevailing discussion of the paper:
assessing the detectability of pointlike subhalos. To pro-
ceed, we need to carefully define what are the main
foregrounds or backgrounds (generically background
henceforth) to any potential detection. In most past studies,
the main background considered was the “baryonic”
contribution to the γ-ray flux. This comprises the diffuse
Galactic emission (DGE) induced by interactions of cosmic

rays with the interstellar gas or radiation (pion production,
bremsstrahlung, and inverse Compton processes) and by
unresolved conventional Galactic sources, and the isotropic
diffuse extragalactic background. A lot of effort has been
invested in describing the sensitivity of current gamma-ray
experiments to exotic pointlike sources based on as
accurate as possible models of such Galactic and extra-
galactic backgrounds, inferred from both phenomenologi-
cal cosmic-ray modeling, or from more agnostic template
fitting methods [58,59,62,65,66]. Here, by contrast, we
consider a very simplified model of baryonic background,
and instead focus our attention onto another background
component often neglected, i.e., the one induced by DM
annihilation itself, which is made up of contributions from
the smooth halo and from unresolved subhalos. That DM
background has already been defined in Sec. IV C.
We further want to place ourselves within the framework

of an idealized Fermi-LAT-like experiment, in which we
assume that a diffuse emission has been measured in
predefined regions of interest (ROIs), which is consistent,
while not perfectly, with the baryonic foreground (hence
limiting the diffuse DM contribution to statistical or
systematic fluctuations at maximum). This will allow us
to set idealized limits on the contribution of DM annihi-
lation to the diffuse emission, hence on the annihilation
cross section, which also impacts on the detectability of
DM subhalos.
In Sec. VA, we provide the details of our background

model. In Sec. V B, we describe the statistics of the number
of pointlike subhalos contributing a flux above a given
threshold. In Sec. V C, we review the full statistical analysis
we perform to infer the sensitivity to pointlike subhalos in
our idealized framework. We start with a simplified stat-
istical reasoning (see Sec. V C 2), which allows us to derive
useful analytical results for the threshold flux of subhalo
detection as a function of time and annihilation cross
section. Most notably, we derive useful time-independent
asymptotic limits arising in the case of infinite observational
time, which correspond to the most optimistic case for the
detection of DM subhalos. Finally, we generate mock data
and apply a complete likelihood analysis (i) to mimic the
current Fermi data analysis, (ii) to qualitatively validate the
aforementioned simplified statistical reasoning, and (iii) to
get more definite results for the detectability of subhalos.
We discuss these results in Sec. V C 4.

A. Baryonic background model

We consider two types of contributions to the diffuse
background that may shield DM subhalos as individual
sources: one coming from DM annihilation itself, already
discussed in Sec. IV C, and another one coming from
conventional astrophysical processes, dubbed baryonic
background (including both the DGE and the isotropic
background). To maximize the self-consistency of our
study, we base our DGE baryonic background model on

STATISTICS FOR DARK MATTER SUBHALO SEARCHES IN … PHYS. REV. D 106, 083023 (2022)

083023-11



the same ingredients used to determine the tidal stripping
induced by the baryonic disk, i.e., those included in the
Galactic mass model derived from kinematic data in
Ref. [76]. They consist of the spatial distributions for
the atomic and molecular interstellar gas. We remind the
reader that our goal is to have a realistic modeling of the
background, though not necessarily a precise one. Indeed,
we shall not discuss the Fermi data themselves, but instead
provide a realistic insight as to what to expect to find in
them in terms of any putative subhalo contribution.
For space-borne observatories like Fermi-LAT [121], the

genuine background includes many different astrophysical
contributions, as shortly stated above. However, for sim-
plicity, we restrict ourselves to the pion decay contribution
induced by the interactions of cosmic rays with the
interstellar gas, which is the dominant DGE one in the
1–100 GeVenergy range that we consider [122]. There are
of course other contributions (e.g., leptonic), but the spatial
distribution of their amplitudes should not change much
with respect to the pion decay one—we will play with the
overall normalization of the “pionic” background for a
better match, but this will anyway not be critical in our
analysis. We add by hand the isotropic diffuse emission
assumed to be of extragalactic origin, for which we simply
consider the spectrum derived in Ref. [122]. In the
following, we only consider gamma-ray energies above
1 GeV, to avoid modeling issues with the pion bump
at ∼100 MeV.
Consistently with our Galactic mass model, we can

predict the relative intensity of the pionic emission by
convoluting of a cosmic-ray flux, assumed homogeneous in
the MW for simplicity, and the spatial-dependent hydrogen
number density, nism. The latter can be expressed as

nismðx⃗Þ ¼ nHðx⃗Þ þ 2nH2
ðx⃗Þ ¼ ρHðx⃗Þ

mH
þ 2

ρH2
ðx⃗Þ

mH2

; ð45Þ

where indices H and H2 refer to atomic and molecular
hydrogen, respectively, mH=H2

being their masses, and
where, consistently with the SL17 subhalo model, we take
the associated gas mass densities ρ’s from McM17. Further
integrating this density along the line of sight, within a
resolution solid angle δΩr, we get

�
dϕπðE; l; bÞ

dEdΩ

�
δΩr ¼

fπðEÞ
4πδΩr

Z
δΩr

dΩ
Z

dsnismðs; l; bÞ

≃
fπðEÞ
4π

Z
ds nismðs; l; bÞ; ð46Þ

where l and b are the longitude and latitude, respectively.
The spectral function fπðEÞ is taken as a power law over
three energy ranges,

fπðEÞ ¼
X3
i¼1

θðE − Eði−1Þ
max ÞθðEðiÞ

max − EÞ

× fðiÞ0

�
E

1 GeV

�
−γðiÞb

; ð47Þ

where the normalization coefficients f0;i and spectral
indices γb;i are tuned to give a decent fit to the pionic
contribution estimated in Ref. [122]. Starting from a
threshold energy Emin ¼ Emax;0 ¼ 1 GeV, these parameters
read

266664
EðiÞ
max

GeV

γðiÞb
fðiÞ
0

10−27 GeV−1 s−1

377775 ¼

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ði ¼ 1Þ →

264 1.4

2.27

6.69

375

ði ¼ 2Þ →

264 2.3

2.59

7.45

375

ði ¼ 3Þ →

264 100

2.72

8.31

375

: ð48Þ

The latitudinal profiles of this pionic gamma-ray flux
background model integrated over two energy ranges,
[1.6–13] GeV and [13–100] GeV are shown in Fig. 4 as
solid red curves (top and bottom panels, respectively),
for both the central and anticentral Galactic regions (left
and right panels, respectively), and are compared with the
ones inferred from the Fermi-LAT data and taken from
Ref. [122] (dashed red curves for the pionic contribution,
and dashed blue for the total DGE). We also show our
pionic background model rescaled by a constant factor in
the range 1.5–2.5 (redish shaded bands), and the corre-
sponding residuals with respect to the total DGE inferred
from the Fermi-LAT data. We see that our DGE model of
both the Fermi-LAT reconstructed pionic emission and of
the total DGE are reasonably recovered both in the central
regions and in the outskirts of the MW, with errors in
amplitude fluctuating by a factor of ∼2. This angular
gradient is realistic enough for our study. Since we want
to remain on the optimistic side regarding the detection of
subhalos, we adopt a rescaling factor απ→DGE such that our
background DGE model does not exceed current data, and
therefore fix it to 1.5 from now on. We have checked that
our results are qualitatively not sensitive to slight changes
around this value.
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Our full baryonic background flux is then given by�
dϕbðE; l; bÞ

dEdΩ

�
δΩr

¼ απ→DGE

�
dϕπðE; l; bÞ

dEdΩ

�
δΩr

þ
�
dϕisoðE; l; bÞ

dEdΩ

�
δΩr

; ð49Þ

where ϕiso is the isotropic component that we directly
extract from Ref. [122]. We have explicitly introduced the
tuning parameter απ→DGE, which will be further altered later
to mimic additional systematic uncertainties or missing
sources of background.
To conservatively match with the constrained DGE, we

assume απ→DGE ¼ 1.5 unless specified otherwise. This
allows our DGE background model never to exceed the

genuine one, especially at large latitudes where mismodel-
ing errors in the real data analysis are expected to be less
important. This is at the cost of underestimating the DGE
background by up to a factor of ∼2 in some regions of
the sky, which we will comment on in the final discussion
but which anyway positions our forthcoming mock data
analysis in the rather optimistic configuration as far as
subhalo detection is concerned.

B. Number of subhalos above threshold
and associated probability

Before entering the details of the determination of the
sensitivity to pointlike subhalos in our idealized model,
hence of the detection threshold in terms of gamma-ray
flux, it is useful to describe how we can translate a

FIG. 4. Left panels: Latitudinal profiles calculated from the flux given Eq. (46) and integrated over two energy ranges, [1.6–13] GeV
(top left panel) and [13–100] GeV (bottom left panel), and averaged in the inner galactic longitudinal range −30° ≤ l ≤ 30°. The model
(solid curves) is compared with the Fermi data (dashed red curves for the pionic emission, dashed blue curves for the total DGE). At the
bottom of each plot, we the residuals of our rescaled pionic model (redish shaded bands) with respect to the total DGE inferred from the
data. We also report the isotropic gamma-ray flux (brown dashed curves), for which our model is tuned to the one inferred from the data.
Right panels: Same as in the left panel, but averaged in the outer longitudinal range 90° ≤ l ≤ 270°.
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sensitivity estimate into a number of observable subhalos
and associated probability. For given DM particle mass,
annihilation cross section and channel, the gamma-ray flux
is fully determined by the J-factor (see Eq. (41). Therefore
the sensitivity to pointlike subhalos can be expressed in
terms of a minimal J-factor that we call Jmin. Since the
background is not isotropic, Jmin ¼ Jminðl; bÞ ¼ Jðl;bÞmin .
The integrated probability for a pointlike subhalo to have

a J-factor larger than Jðl;bÞmin in the direction characterized by
the angle ψðl; bÞ such that cosψ ¼ cos b cos l is given in
Eq. (43), for a resolution solid angle δΩr—see also Fig. 3.
We can further integrate this probability over the full sky,
accounting for the fact that Jmin depends on the pointing
angle. We get

Ppt
vis ¼

Z
db cos b

Z
dl Ppt

J ðJptψ ≥ Jðl;bÞmin Þ: ð50Þ

Here, Ppt
vis is normalized by construction in such a way that

it is 1 for Jðl;bÞmin ¼ 0. From now on, we denote this
probability p.
Given a total number of pointlike subhalos Npt ≃ Ntot,

the probability to detect k subhalos is given by the binomial
probability

PðkjNptÞ ¼
�
Npt

k

	
pkð1 − pÞNpt−k: ð51Þ

Since in realistic situations we expect k ≪ Npt and
Npt ≫ 1, we can use the Poissonian limit of the previous
equation,

PðkjNptÞ ≃
νk

k!
e−ν with ν≡ Nptp: ð52Þ

Therefore the probability to observe at least n objects is
given by

Pð≥ njNptÞ ≃ 1 −
Xn−1
i¼0

PðijNptÞ: ð53Þ

We can further consider the cumulative of the probability
given in Eq. (52) by promoting k to a real number x, such
that

PxðxjNptÞ ¼ e−ν
X⌈x⌉−1
k¼0

νk

k!
¼ Γð⌈x⌉; νÞ

Γð⌈x⌉Þ ; ð54Þ

where the Γ functions in the denominator and in the
numerator are the standard and incomplete gamma func-
tions, respectively. We can then define a confidence interval
at 100ð1 − cÞ% that x be measured in the range ½N−

c ; Nþ
c �

by solving

c
2
¼ ΓðN−

c þ 1; νÞ
ΓðN−

c þ 1Þ ¼ 1 −
ΓðNþ

c ; νÞ
ΓðNþ

c Þ
: ð55Þ

In the following, we use this formalism to determine the
number of subhalos that could be observed with a Fermi-
LAT-like observatory. The fundamental quantity that
should now be characterized is the minimal J factor,
Jðl;bÞmin , that we address below.

C. Sensitivity to pointlike subhalos

1. Specifications of our virtual Fermi-LAT-like
instrument and of our DM benchmarks

Since we wish to address the potential of Fermi-LAT or
any other similar experiment to detect subhalos, we first
have to fix the main specifications that will be used to make
predictions. These specifications need not match exactly
those of Fermi-LAT, but need to be close enough to be
quantitatively realistic.4 We do not seek for percent
precision, but rather order 1 precision in terms of subhalo
searches. We can therefore simplify the experimental
characteristics such that they can be manipulated with ease
at the level of calculations. Consequently, in the following,
unless specified otherwise, we assume

(i) a search energy window5 of [1–100] GeV with a flat
effective areaA of 0.9 m2, and a field of view of 1=5
of the sky (consistent with the acceptance of
∼2.3 m2 sr quoted in [124,125], and with the
exposure of 2.7 − 4.5 × 1011 cm2 s ¼ 0.86–1.43
m2 yr quoted in the fourth Fermi catalog and
corresponding to 8 yr of data taking [59]);

(ii) two benchmark resolution angles of θr ¼ 0.1° and
1°, with the latter to very roughly address the search
for extended subhalos;

(iii) a uniform coverage of the sky.
For WIMP DM, we assume a default canonical s-wave

thermal annihilation cross section fixed to hσvi ¼
3 × 10−26 cm3=s (neglecting changes with the WIMP
mass, see, e.g., [126,127]), and consider the bb̄ or τþτ−
annihilation channels using the spectral tables provided in
Ref. [123].

2. A simplified but helpful warm-up statistical analysis

We start with a very simple statistical method based on
On-Off event number counting [128]. Given the gamma-
ray fluxes for a pointlike source and associated back-
ground, we can very roughly define the sensitivity in terms
of rudimentary Poisson statistics [128–131]. For a subhalo
of index i located at position s⃗i in the observer’s frame, and

4Details can be found on the dedicated Fermi-LAT webpage.
5We restrict ourselves to a limited energy range where the

effective area is constant. A maximum of 100 GeVallows a reach
in WIMmass of ∼300 GeV (∼2 TeV) for an annihilation in τþτ−
(bb̄) [65,119,123].
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characterized by an angle ψ i and Galactic coordinates
ðsi; li; biÞ, with cosψ i ¼ cos bi cos li, we can estimate the
number of gamma-ray events Ni

γ collected in an arbitrary
energy range ΔE by a telescope of time-area efficiency set
by the effective collection area A and observation time
T obs. Neglecting for simplicity dependencies other than on
energy for the effective collection area, this number of
events reads

Ni
γðli; bi;ΔEÞ ¼ ΔE

�
dRi

dE

�
T i

obs; ð56Þ

with �
dRi

dE

�
≡ASχðmχ ; hσvi;ΔEÞJi

¼ hσvi
2m2

χ

hN γAiΔE
ΔE

Ji: ð57Þ

We have introduced the differential event rate dR=dE. The
flux factor Ji is given by Eq. (40), and the spectral function
Sχ by Eq. (25), with the effective collection area A. Since
this expression is for a point source, Ji needs not be
modified by the average over the experimental acceptance
[see discussion below Eq. (39)].
Similarly, the number of background events is given by

Nbg
γ ðli; bi;ΔEÞ ¼ ΔE

�
dRbg

dE

�
T bg

obs; ð58Þ

with the background rate averaged over ΔE�
dRbg

dE

�
≡ 1

ΔE

Z
ΔE

dE
Z
δΩrðEÞ

dΩ
dϕbg

γ ðE; li; biÞ
dEdΩ

AðEÞ

≃
πθ2r
ΔE

Z
ΔE

dE
dϕbg

γ ðE; li; biÞ
dEdΩ

AðEÞ: ð59Þ

Again, we have assumed that the angular efficiency is flat
and maximal within the energy-dependent angular reso-
lution θrðEÞ of the instrument, such that ΘðθrðEÞ − θÞ can
be traded for the solid angle domain δΩrðEÞ. The latest
approximated equation assumes a vanishingly small
energy-independent resolution angle and that the back-
ground flux varies by less than a statistical fluctuation
within this angle. In that case the angular integral factorizes
out, giving 2πð1 − cos θrÞ ≃ πθ2r . In the following, we
actually neglect the energy dependence of θr for the sake
of simplicity, and because it has negligible impact on our
results (it would have impact in studies of the Galactic
center emission).
Without loss of generality, a pointlike source can be

detected (or resolved, equivalently) when the number of
signal events becomes larger than some threshold number
nσ times the Poissonian fluctuation of background events,

assuming the same exposure for both the signal and
background. This can be expressed as

Ni
γðli; bi;ΔEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nbg

γ ðli; bi;ΔEÞ
q > nσ: ð60Þ

We can actually artificially absorb any exposure difference
between the target and reference background in the number
of fluctuations nσ , which should then be thought of as an
effective threshold number of order ∼1–10 [128]. In the
classical case of exact Poisson statistics with equal on- and
off-source exposure, a detection threshold corresponds to
nσ ≥ 5. From the above equation, we can define a minimal
J factor for a pointlike subhalo to be detected as follows:

Jðl;bÞmin ðΔE;mχ ; hσviÞ ¼
nσ
T obs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nbg

γ ðl; b;ΔEÞ
q

ASχðmχ ; hσvi;ΔEÞ

¼ nσffiffiffiffiffiffiffiffiffi
T obs

p 2m2
χ

hσvi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔEhdRbg

dE i
q
hN γAiΔE

: ð61Þ

This equation explicitly shows that the pointing-direction
dependence of Jðl;bÞmin is only set by that of the background.
Even though obvious, this is an important point because
in essence, this means that the most visible point-source
subhalos (relative to background) may have different
internal properties depending on the pointing direction,
and are not necessarily the most intrinsically luminous in
a background-free setting (detection probability does not
necessarily correspond to luminosity probability). The
dependence in hσvi is rather trivial at first sight since
Jðl;bÞmin simply linearly increases as the annihilation cross
section decreases. A quick inspection of the right panel of
Fig. 3, which shows the exponentially decreasing number
of subhalos as a function of some threhold in J, already tells
us that increasing a bit Jðl;bÞmin can actually have a dramatic
impact on the number of visible subhalos: if constraints on
hσvi get stronger and stronger, the probability to detect
subhalos is going to shrink accordingly, but exponentially.
However, we will see below that this is less trivial if the
constraint is set from the analysis of the diffuse Galactic
emission, and if one insists on detecting subhalos before the
smooth halo.
Eventually, one can translate Jðl;bÞmin in terms of a threshold

flux

ϕðl;bÞ
min ðΔEÞ ¼

Z
ΔE

dESχðmχ ; EÞJðl;bÞmin

∝ hσviJðl;bÞmin ; ð62Þ

where the integral is performed over an arbitrary energy
range ΔE.
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3. Impact of different background configurations

The composite nature of the background affects the
behavior of the sensitivity to pointlike subhalos. Here we
inspect several background configurations still in the
framework of the simplified statistical method introduced
above. We first consider subhalo searches neglecting the
baryonic foreground and accounting only for the smooth
DM and unresolved subhalos background emission. Then
we do the contrary, i.e., neglecting the diffuse DM con-
tribution and considering only baryons. Finally, we study a
more realistic background case including both the baryonic
and diffuse DM contributions, and further derive the
conditions for a subhalo to be detected before the diffuse
DM component. As we will see, the latter configuration
gives rise to asymptotic conditions that do depend neither
on the annihilation cross section nor on the observation
time. That result will actually be recovered by means of a
more sophisticated statistical analysis resembling that used
by the Fermi Collaboration.

DM-only background model.—Neglecting the baryonic
background is obviously not realistic, but this allows us
to figure out quickly where the most visible subhalos
should concentrate in the sky, notably if the smooth halo
were to be discovered first. These are not necessarily the
most intrinsically luminous, since they still have to contrast
with the background. However, in this case, the background
is the lowest possible, i.e., induced by DM itself (both the
smooth halo and unresolved subhalos). That background
configuration also leads to a dependence of the sensitivity
to pointlike subhalos on the annihilation cross section
different from the baryonic background case, which would
rather characterize subhalo searches after the detection of
the smooth halo. In the DM-only case, the number of
background events is given by

Nbg
γ ðl; b;ΔEÞ ¼ Nbg=dm

γ ðl; b;ΔEÞ ¼ Ndiff
γ ðl; b;ΔEÞ

¼ hσvi
2m2

χ
hN γAiJdiffψ T diff

obs ; ð63Þ

which implies

Jðl;bÞmin ¼ Jψmin ∝
θrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσviTobs

p ⇔ ϕψ
min ∝ θr

ffiffiffiffiffiffiffiffiffi
hσvi
Tobs

s
: ð64Þ

The number of background events is therefore similar to
that of signal events defined in Eq. (56), except for the
J-factor of the diffuse DM component Jdiffψ , defined in
Eqs. (31) and (30). Note that for an energy-independent
resolution angle and a flat angular acceptance J̄diffψ ¼ Jdiffψ .
Since the diffuse DM background is itself proportional to
hσvi, the threshold J-factor Jmin given in Eq. (61) scales
like 1=

ffiffiffiffiffiffiffiffiffiffiffiffihσviTp
, and no longer like 1=ðhσvi ffiffiffiffi

T
p Þ, which

only holds when the background is independent of the DM

annihilation rate. Consequently, paradoxically enough,
even though the sensitivity to pointlike subhalos increases
as hσvi increases (Jmin decreases—see the right panel of
Fig. 3), the pointlike flux sensitivity ϕmin actually degrades
because of the brighter background. The additional factor
of θr arises from the assumption that the diffuse back-
ground varies by less than a statistical fluctuation within
the resolution angle of the instrument, see Eq. (59). That
assumption essentially holds while not pointing toward
the Galactic center, and implies that both the subhalo and
flux sensitivities degrade (Jmin and ϕmin increases) when
the resolution angle increases simply as a consequence of
collecting more background photons.
In the left panels of Fig. 5, we show skymaps of the

effective number of visible subhalos per solid angle unit.
They are computed using the nominal subhalo population
model self-consistently embedded either within an NFW
Galactic halo (top panels) or in a cored one (middle panels),
and pointlike subhalos were defined by taking a resolution
angle of θr ¼ 0.1°. Although we consider the DM-only
induced diffuse gamma-ray background for the moment,
the subhalo population model still includes baryonic tidal
stripping. The model parameters are set to ðα; mmin=
M⊙; ϵtÞ ¼ ð1.9; 10−10; 0.01Þ. We further assume WIMPs
of 100 GeV annihilating into τþτ− with the canonical
annihilation cross section, and restrict the spectral gamma-
ray window to the [1–100] GeV energy range—we define
“visible” by demanding nσ ≥ 3 in Eq. (61), taking an
observation time of 10 yr. With this setup, we get <1
photon in the virtual detector, so the discussion here is
only qualitative, and numbers should only be compared
relatively between one another. We see that visible subhalos
concentrate in a ring around the Galactic center, whose
width and peak actually depend on the subhalo sensitiv-
ity Jψmin.
The right panels of Fig. 5 show the corresponding

angular distributions as functions of the line-of-sight angle
ψ . They also show the results obtained with a broader
resolution angle of θr ¼ 1°, as well as the impact of
changing the mass slope α (1.9 or 2) and the minimal
virial mass (10−10 or 10−4 M⊙)—the shaded areas corre-
spond to the 68% and 95% statistical uncertainties, and are
derived according to Eq. (55). It appears from these angular
projections that in both NFW and cored Galactic halos,
potentially visible subhalos for θr ¼ 0.1° are concentrated
in a ring about the GC extending up to ψ ∼ 50° with a peak
around ψ ∼ 30° (reddish curves). It also appears that a
larger resolution angle of θr ¼ 1° drastically changes this
angular distribution (blueish curves) due to two different
effects: (i) as seen from Eq. (64), the sensitivity degrades
simply as the detector integrates more background photons;
(ii) changing the resolution angle allows bigger (hence
intrinsically more luminous) subhalos to become point
sources, and bigger subhalos are more efficiently destroyed
by gravitational tides in the central Galactic regions. As an
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FIG. 5. Top left panel: Skymap of the effective number of subhalos per solid angle unit in a DM-only background—assuming a WIMP
mass of 100 GeVannihilating to τþτ− with hσvi ¼ 3 × 10−26 cm3=s, a gamma-ray energy range 1–100 GeV, and a subhalo population
configuration ðα; mmin=M⊙; ϵtÞ ¼ ð1.9; 10−10; 0.01Þ embedded in anNFWGalactic halo. Top right panel: Associated angular distribution
(with 95% confidence band), with two angular resolutions θr ¼ 0.1° and 1°, and several configurations for the subhalo population ranging
in ðα; mmin=M⊙Þ ∈ ð1.9 − 2; 10−10–10−4Þ. Middle left and right panels: Same as above for subhalos embedded in a cored Galactic halo.
Bottompanel: Same as upper right panels, summarizing the angular distribution behavior for both theNFW(upper half) and coredGalactic
halo (lower half), and for several annihilation cross sections around the canonical baseline hσvith ¼ 3 × 10−26 cm3=s.
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outcome, increasing the angular window for individual
subhalo searches has the effect of shifting the angular
distribution to much larger values of ψ (larger latitude,
longitude, or both)—with a very flattened peak now around
ψ ∼ 70°. The precise angular distribution of visible sub-
halos strongly depends on that of the diffuse background.
The latter is affected by unresolved subhalos at large
angles, which makes it important to include them as an
additional background contribution.
In contrast, changing the global DM halo from an NFW

(top panels) to a cored profile (middle panels) does not
significantly affect these features, except for enlarging the
peaks toward lower angles and slightly flattening them as
well (there is less diffuse background in the central regions,
but also slightly less subhalos within the halo scale radius).
Notice that in the DM-only background configuration,
there are more visible subhalos in an NFW Galactic halo
than in a cored one. This will actually be reversed when the
baryonic foreground is added, which will degrade the
sensitivity toward the central Galactic regions. A summary
plot of the DM-only background case is presented in the
bottom panel of Fig. 5, where the level of background and
subhalo sensitivity are varied by tuning hσvi instead—
see Eq. (64).
Such trends are consistent with the Monte Carlo results

obtained in [77], which instead describe the distribution of
the brightest point-source subhalos as a function of distance
to the observer. We stress that these are not necessarily the
most visible when contrasted with the diffuse background.
Our analytical calculations have the advantage of very
easily covering the full dynamical range and as many
model configurations as necessary, in a very short
CPU time.
In the right panels of Fig. 5, we also explore the impact of

changing the main subhalo population model parameters by
taking different combinations within ðα; mmin=M⊙; ϵtÞ ¼
ð1.9 − 2; 10−10–10−4; 0.01Þ. It is well known that varying
the minimal virial subhalo mass mmin has only significant
(nonlogarithmic) impact for α > 1.9 (see, e.g., [46,47,78]).
Therefore, we vary mmin only for α ¼ 2. This self-
consistently keeps the global Galactic halo profile (sum of
all components) unchanged once it has been fixed (NFW
or cored halo) in the SL17 model, and therefore remains
consistent with kinematic constraints by construction. We
see thatα ¼ 1.9 results in significantlymorevisible pointlike
subhalos than α ¼ 2. This might look surprising because the
number of subhalos is much larger in the latter case, for a
given mmin. However, there are two compensating effects:
(i) there are relatively bigger subhalos (hence more lumi-
nous) in the α ¼ 1.9 case because the mass function is less
steep, and (ii) the diffuse background induced by unresolved
subhalos (equivalently the boost factor) is larger in theα ¼ 2
case. The impact of the unresolved subhalo contribution
to the diffuse background can actually be evaluated by
changing mmin from 10−10 to 10−4 M⊙, in the α ¼ 2 case.

This shrinks the total number of subhalos (hence that of
unresolved) by orders of magnitude (Ntot ∝ m1−α

min ), but
that depletion concerns only subhalos in the range
10−10–10−4 M⊙, which are not massive enough to detach
fromthebackground.Therefore, increasingmmin in thismass
range only reduces the DM-induced diffuse background
emission, leading to more visible subhalos. One should still
bear in mind that on general grounds, increasing mmin

corresponds to decreasing mχ [32,34].
Finally, it would be tempting to discuss the absolute

numbers of detectable subhalos read off from the angular
distribution plots. Caution is of order though, since these
numbers are for the moment based on the very rudimentary
statistical analysis defined in Eq. (60), and the observation
configuration used is such that there is <1 photon detected.
A more refined statistical method will be presented later,
but will actually not qualitatively change these results.
Anyway, we already see from the right panels of Fig. 5 that
even when turning the baryonic background off, the
expected number of visible subhalos is or order Oð1Þ,
which only slowly varies with hσvi and observation time,
as shown in Eq. (64).

Baryon-only background model.—Considering only the
baryonic foreground is a common practice to estimate
the sensitivity to pointlike subhalos (e.g., [64,66]), and
amounts here to plug the foreground fluxes defined in
Sec. VA into Eq. (58), such that

Nbg
γ ðl; b;ΔEÞ ¼ Nbg=cr

γ ðl; b;ΔEÞ; ð65Þ

where the subscript cr stands for “cosmic rays” (we neglect
unresolved conventional astrophysical sources here).
In the absence of DM-induced background, the sensi-

tivity to pointlike subhalos simply scales like

Jðl;bÞmin ∝
θr

hσvi ffiffiffiffiffiffiffiffi
Tobs

p ⇔ ϕðl;bÞ
min ∝

θrffiffiffiffiffiffiffiffi
Tobs

p ; ð66Þ

where we see that the flux sensitivity (ϕðl;bÞ
min ) has the

standard scaling in time, and does not depend on hσvi
anymore as expected (it is fixed by the baryonic back-
ground within ΔE); as for the sensitivity to subhalos
(Jðl;bÞmin ), it does obviously depend on hσvi. Therefore, the
reach in terms of Jðl;bÞmin improves faster with hσvi than in the
DM-only background case—see Eq. (64). This has con-
sequences in the determination of the number of visible
subhalos, since the pdf of the J-factor is a sharp function of
J—see Fig. 3. However, one should bear in mind the
previous approximate result that if detected after the diffuse
DM component, in which case the latter adds up to the
background, then the dependency in hσvi becomes much
shallower.
The corresponding sensitivity map of visible subhalos is

shown in Fig. 6 (top left panel). To increase the contrast, we
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have masked a region defined by ψ < 20° in the middle top
panel. In the right top panel, we show the skymap obtained
for Jðl;bÞmin , which defines the sensitivity map to pointlike
subhalos, after masking the region jbj< 5° where most of
the conventional DGE and of the Galactic sources con-
centrate, and which is less suited for subhalo searches.
These maps have been derived from a full likelihood
analysis performed on mock data, which will be extensively
discussed later, but would be qualitatively the same if
derived from the simplified statistical analysis introduced
above. Further comparing them with the maps of Fig. 5 still
on the qualitative level (they have been inferred from a
different map of Jðl;bÞmin set by the DM-only background), we
see a similar concentration of visible subhalos in the central
regions of the MW, except for the degraded sensitivity in
the disk. The sensitivity to subhalos is less attenuated
toward the very center because the increasing smooth halo
contribution to the background has been unplugged here.
The angular distribution of visible subhalos is not shown,
but has similar trends as in Fig. 5, except for the different
angular dependence of the background, and the fact that it
is independent from hσvi (the angular peak would be at
lower angle).

Complete DMþ baryon background model.—Finally, we
consider a more realistic background model in which both

the diffuse DM contribution and the baryonic foreground
are included. The number of background events is now
given by

Nbg
γ ðl;b;ΔEÞ¼Nbg=cr

γ ðl;b;ΔEÞþNbg=dm
γ ðl;b;ΔEÞ; ð67Þ

where the number of DM-induced background events has
been defined in Eq. (63), and that of standard astrophysical
processes in Eq. (65).
To make this configuration even more realistic, we need

to account for the fact that in the absence of departure from
the background hypothesis, which is the current situation
[84,87,88], there are actually independent constraints on
hσvi. Therefore, especially in the context of a consistent
subhalo model in which all components of the MW are
dynamically linked together, the sensitivity to subhalos
inherently correlates with the sensitivity to the diffuse DM
contribution. This needs to be properly considered.
The constraint on the diffuse DM contribution can be

expressed as a limit on the annihilation cross section that
derives, in this preliminary simplified statistical analysis,
from the condition

Ndiff
γ ðl; b;ΔEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nbg

γ ðl; b;ΔEÞ
q < ñσ; ð68Þ

FIG. 6. Sky maps of the visible subhalos assuming a WIMP mass of 100 GeV annihilating into τþτ−, and a subhalo population
embedded in an NFW halo with parameters ðα; mmin=M⊙; ϵtÞ ¼ ð1.9; 10−10; 0.01Þ. The annihilation cross section is fixed to the 3σ limit
associated with the diffuse DM contribution. The detector configuration assumes a resolution angle of 0.1°, an observation time of 10 yr.
The point-source sensitivity derives from a full likelihood analysis performed on mock data with parameters ðαb; σbÞ ¼ ð1.3; 0.1Þ in
ROIs of 0.2° × 0.2°, covering a region of 2.2° × 2.2°, and run over 5 logarithmic bins in the [1–100] GeV energy range. Lines on maps
indicate latitudes of jbj ¼ 30°; 60°. Top panels: Baryonic background only. Bottom panels: Both baryonic and DM (smooth haloþ
unresolved subhalos) backgrounds. Left panels: Full sky. Middle panels: Same skymap with central region ψ < 20° masked to increase
contrast. Right panels: sky map of Jðl;bÞmin —sensitivity to pointlike subhalos—with jbj < 5° masked.
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where ñσ ¼ Oð1Þ can be considered as an effective number
of background fluctuations below which the number of
diffuse signal events must be confined to remain consistent
with the background-only hypothesis. In the classical case
of Poisson statistics, a ∼95% (∼99%) confidence-level
(CL) limit is usually set with ñσ ¼ 2 (3). Since current
statistical tools in gamma-ray data analyses are well more
advanced, as we shall see later, this number is only to be
taken as indicative here. Assuming that Nbg=cr

γ ≫ ñ2σ > 1,
and that the diffuse DM signal remains unseen after an
observational time T̃ , the above inequality becomes

ASχ Jdiffψ T̃ <ñσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T̃ ΔE

�
dRbg=cr

dE

�s
; ð69Þ

where we have used Eqs. [(30),(31), and (59)]. This
translates into an upper bound on the cross section:

hσvimax ¼
2m2

χ ñσffiffiffiffi
T̃

p
hN γAi

min
ðlc;bcÞ

8<:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔEhdRbg=cr

dE i
q

Jdiffψ

9=;: ð70Þ

We emphasize that the minimum appearing above within
braces is uniquely determined for a given configuration of
DM and baryonic foreground. It is found at Galactic
coordinates ðlc; bcÞ (and may have replicates by sym-
metry). The scaling with mχ is not fully explicit here,
since the number of photons N γ also depends on mχ ,
almost ∝ ffiffiffiffiffiffimχ

p for a large variety of annihilation final states

[119]; hence hσvimax ∼
∝ m3=2

χ .
In Fig. 7, we show the results obtained using Eq. (70) for

the determination of hσvimax as a function of theWIMPmass
mχ , after integration of the gamma-ray fluxes in the
1–100 GeV energy range and using typical efficiency
parameters for Fermi, recalled at the beginning of Sec. V
C 3. We report the limits derived from the very simplified
statistical analysis presented just above as dashed (for
θr ¼ 0.1°) and dotted curves (θr ¼ 1°, respectively), which
have been obtained in a pointing direction ðlc; bcÞ ¼
ð0°; 10°Þ—dubbed “approx.” in the legends. We assume
DM annihilation into bb̄ (left panels) and τþτ− pairs (right
panels), use ñσ ¼ 3, and take two values for the observation
time T̃ : 2 (blue), and 10 yr (red curves, respectively). We
have considered both anNFWGalactic halo (top panels) and
a cored halo (bottom panels). We compare our results with
the limits obtained by the Fermi Collaboration from the
analysis of the diffuse Galactic emission [84] (dark gray
area), using two years of data, and, for the sake of
completeness, from satellite dwarf galaxies [132,133] (light
gray area). We also report results from a more complete
likelihood analysis that will be discussed later (solid and
dotted-dashed curves). We see that the simplified approach
underestimates the real experimental sensitivity by almost
an order of magnitude. Notwithstanding, it has a rather

similar dependence in WIMP mass. The difference in
sensitivity mostly comes from the fact that we use a single
angular and energy bin, and therefore neglect a significant
amount of available information. However, it is interesting
to note that oncewe correctly rescale our effective sensitivity
number ñσ, we can grosslymatch with the correct limit. This
means that this simplified formalism may help capture the
main dependencies and asymptotic behavior of a more
realistic sensitivity to DM subhalos.
Assuming that the limit on hσvi reaches the upper bound

hσvimax, i.e., the diffuse DM component is at the verge of
being detected but is still not so, we can replace hσvi by
hσvimax in Eq. (61). This provides us with a critical value
for the pointlike subhalo detection threshold:

Jcritminðl; b;ΔEÞ ¼ ηeffσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE

�
dRbg=cr

dE

�s

× max
ðlc;bcÞ

�
Jdiffψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔEhdRbg=cr=dEi
p �

; ð71Þ

where

ηeffσ ≡ nσ
ñσ

ffiffiffiffi
T̃
T

s
≈
nσ
ñσ

: ð72Þ

Interestingly, this critical J factor does not depend on the
annihilation cross section anymore. Note that the back-
ground event rate hdRbg=cr=dEi is calculated at Galactic
coordinates ðlc; bcÞ in the max term, while it is calculated at
the target coordinates ðl; bÞ outside from the max term—all
this is therefore fixed for a given Galactic emission model.
It turns convenient to combine the dependencies in the
different observation times T̃ (used to set the limit on hσvi)
and T (on-subhalo-target time) and in the fluctuation
thresholds ñσ and nσ into a single effective sensitivity
parameter ηeffσ . In pure Poisson statistics associated with an
on-off method, and with T ∼ T̃ , we should have ηeffσ ∼
nσ=ñσ ≈ 5=2 or 5=3. However, connecting with more
advanced statistical analysis methods and different obser-
vational strategies allows for considering a much wider
range of values, say Oð1 − 10Þ per energy bin.
For nonpointing experiments, like Fermi-LAT, T̃ ≈ T ,

and Jcritmin further becomes a priori time-independent (this
holds in the large-event-number limit). The fact that Jcritmin is
independent from both the annihilation cross section and
the observation time (in the infinite-time limit) is, though
derived from strongly simplifying assumptions here, a very
important result. It is actually recovered when using a more
sophisticated statistical analysis as we will see later. It
means that we can rigorously answer the question of
whether or not subhalos can be detected before the diffuse
DM component, should DM self-annihilate and produce
gamma-ray photons. Indeed, the derivation of Jcritmin is based
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upon requiring the diffuse DM contribution to remain
below the baryonic background. Therefore, irrespective
of the annihilation cross section, one can simply infer the
number of observable subhalos by integrating the proba-
bility distribution function of the J factor shown in Fig. 3
above Jcritmin. If one finds the minimal J factor needs to be
lower than this critical value to get a sizable number of
observable subhalos, then that means that subhalos could
hardly be detected as individual sources before the smooth
Galactic DM halo itself.
That Jcritmin does not explicitly depend on time needs

further explanation. As said above, it is defined from the

sensitivity Jmin ∝ ð ffiffiffiffi
T

p hσviÞ−1 [see Eq. (61)], but evaluated
at the maximal cross section hσvimax ∝ 1=

ffiffiffiffi
T

p
[see

Eq. (70)]. This explains why the time dependence dis-
appears in our simplified analysis. However, even though
Jcritmin is roughly expected to be time independent, it must
still be associated with the time-dependent maximal anni-
hilation cross section hσvimax.
In Fig. 8, we trace Jcritmin as a function of observation time

from the simplified definition of Eq. (71) on the one hand
(with a conveniently rescaled ηeffσ —blue dashed curve), and
from a more sophisticated likelihood analysis of mock data
that will be discussed below (blue solid curve). When

FIG. 7. Limits on hσvi, i.e., hσvimax, as a function of the WIMP mass mχ for a Fermi-LAT-like telescope and for different observation
times. Limits are set from: (i) the simplified statistical method presented in Sec. V C 3 c, with ñσ ¼ 3, an angular resolution θr ¼ 0.1°
(dashed lines) or θr ¼ 1° (dotted lines), pointing to Galactic coordinates ðlc; bcÞ ¼ ð0°; 10°Þ; (ii) a full likelihood analysis performed on
mock data, discussed in Sec. V C 4, and using background parameters ðᾱb; σbÞ ¼ ð1.3; 0.1Þ. The likelihood limits correspond to 3σ
exclusion curves (solid curves). Top panels: Limits for both our reference NFW halo and the halo shape used in the Fermi-LAT analysis
(dubbed “diffuseþ 12”—the dotted-dashed curve), together with the Fermi-LAT limits obtained from the diffuse Galactic emission [84]
(dark gray area), and from dwarf galaxies [132,133] (light gray area). Bottom panels: Same for our reference cored halo profile. Left/
right panels: Full annihilation to bb̄=τþτ− is assumed.
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inferred from the simplified analysis, Jcritmin is independent of
time, as explained above. In slight contrast, it becomes flat
only after a time of several years when inferred from a full
likelihood analysis, because the latter correctly deals with
the statistics of small numbers of events, but still asymp-
totically confirms the prediction obtained from the sim-
plified method. The left and right panels differ only by the
resolution angle (see caption). We also report the time-
dependent sensitivity to pointlike subhalos Jmin (in the
direction where Jmin is minimized) as a function of time,
assuming an annihilation cross section set by a 3σ limit on
the diffuse DM flux after 10 yr [hσvi ¼ hσvimaxð10 yrÞ, red
curves] or 20 yr [hσvi ¼ hσvimaxð20 yrÞ, green curves]—
the latter being ∼

ffiffiffi
2

p
smaller. The Jmin curves cross the

critical Jcritmin ones at the corresponding times, as they
should. Beyond these special crossing times, the decrease
of Jmin ∝ 1=

ffiffiffiffi
T

p
holds true assuming the diffuse DM-

induced emission has truly been detected at these times.
If not, then one should keep on following the critical blue
lines until the detection of the diffuse emission (time from
which Jmin scales like ∝ 1=

ffiffiffiffi
T

p
again). Therefore, if the

values of Jmin needed to detect a sizable number of
subhalos lie below Jcritmin, that means that one should detect
the diffuse DM-induced emission first.

4. A full likelihood analysis of mock data

In order to validate the previous results, we upgrade our
statistical analysis method to get closer to the standards

employed in the Fermi Collaboration for both the smooth
Galactic DM searches [84,87,88] and the subhalo or
pointlike source searches [58–69]. We therefore set up a
full likelihood analysis.

Mock data generation.—We first generate mock data based
on the signal and background configurations discussed
above. However, here, we need to add a layer of subtlety.
Indeed, to be as realistic as possible, we want to artificially
reproduce the fact that like in the Fermi data analysis,
our background model be not perfect, and that positive
fluctuations arising from uncontrolled systematic effects
degrade the sensitivity to DM searches. We also want to
implement the fact that so far the smooth DM has not been
convincingly detected. Therefore, our mock data will be
based on a biased version of our baryonic diffuse emission
model introduced in Sec. VA, which will leave room for
positive fluctuations possibly interpreted as DM annihila-
tion in the absence of systematic uncertainties. To make it
simple, the bias will simply amount to a systematic shift by
30% of the Galactic baryonic foreground, inspired by the
value of residuals found in the Fermi-LAT analysis [84].
We divide the sky into Nθ angular bins labeled i

(also called pixels in the following) each divided into
NE energy bins labeled j. We denote bij the averaged
number of photons expected from our background emission
model and instrumental specifications [see Sec. VA,
Sec. V C 1, Eqs. (58) and (59)] in a given two-dimensional
(2D) bin. We then generate our mock data by drawing a

FIG. 8. Minimal J factor (sensitivity to pointlike subhalos) as a function of time, assuming a subhalo population embedded in an NFW
Galactic halo, and a WIMP of 100 GeVannihilating into τþτ−. Solid curves are obtained from the full likelihood analysis of mock data,
and dashed curves from the simplified statistical analysis, with a rescaled effective sensitivity parameter ηeffσ . Blue curves indicate the
critical J factor Jcritmin at which the smooth DM contribution remains at its 3σ limit. Red curves show JminðTÞ assuming an annihilation
cross section set from the likelihood 3σ limit (nondetection of the smooth DM contribution) for 10 yr of observation, while green curves
show JminðTÞ assuming a lower annihilation cross section set from the likelihood limit for 20 yr (see Fig. 7). As expected, the red and
green curves cross the critical blue ones at 10 and 20 yr, respectively. Left panel: θr ¼ 0.1°. Right panel: θr ¼ 1° (mimicking the
sensitivity to extended sources).
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corresponding number of gamma-ray photons nij in that
bin according to a Poisson distribution

pðnijjbijÞ ¼
b
nij
ij

nij!
e−bij : ð73Þ

Note that since our goal is to set limits, we do not generate
any signal event in our mock data.
In Fig. 9, we show an example of such mock data for a

collection time of 2 yr in pixels of size 1° × 1°. We get
∼360 000 photon events in the 1–100 GeV energy range
and in the selected ROI (5°< jbj< 15° and jlj< 80°),
which is very close to the number count found in Ref. [84]
(≲5% larger). To further account for the point-source
subtraction performed in the Fermi data analysis we
remove ∼25% of the bins randomly over the sky, which
defines our initial sample of ∼270 000 collected photons,
still very close to the statistics used in Ref. [84]. These
mock data are further processed through a likelihood
analysis discussed just below, which consists of two
different steps: (i) setting the limit on hσvi from the diffuse
emission; (ii) defining the sensitivity to pointlike subhalos.

Likelihood analysis of the diffuse emission: Limits on
hσvi.—In order to analyze our mock data, we set up a
likelihood analysis similar to the one performed by the
Fermi-LAT Collaboration to get limits on the diffuse
Galactic DM-induced emission. We also want to account
for the fact that significant fluctuations arise between the
background model and the data due to an unperfect
background modeling, which makes the likelihood pos-
sibly underestimate the background by ∼30% [84]. To this
aim, we introduce a bias parameter αb that will be applied to
the DGE background only. It is centered around a
reconstruction efficiency εrec ¼ 0.7, and with a Gaussian
probability distribution such that an unbiased distribution
would cost a ∼3 − σ penalty, which is obtained from a
Gaussian width σb ¼ 0.1. This biasing procedure will
mechanically degrade the limit derived on the DM

annihilation signal, in the same vein as in the conservative
analysis performed in Ref. [84]. These values for the bias
parameters are inspired from the numbers quoted in
Ref. [84], and allow us to derive a limit on the annihilation
cross section from our mock data analysis in reasonible
agreement with the corresponding results. Changing the
values of εrec and σb would not change our results
qualitatively, keeping the final orders of magnitude
unchanged.
We can now construct a simple likelihood function to fit

our signal and background models with a limited number of
parameters (for a given WIMP mass mχ): the annihilation
cross section hσvi and the background bias parameter αb.
The chance of getting a number nij of photons in bin ði; jÞ
can be estimated from the likelihood function

Lijðnijjhσvi; αbÞ ¼
ðaijhσvi þ αbbDGEij þ bisoij Þnij

nij!

× e−ðaijhσviþαbbDGEij þbisoij Þ

×

8><>:LsysðαbÞ≡ e
−ðαb−εrecÞ2

2σ2
bffiffiffiffiffiffiffiffiffiffi

2πσ2b
p

9>=>;; ð74Þ

where aij is defined such that the averaged number of
photons expected from DM annihilation in bin ði; jÞ be
sij ¼ hσviaij, and bDGEij and bisoij stand, respectively, for the
DGE and isotropic backgrounds given in Eq. (49). Lsys is
our nuisance function that adds up a Gaussian penalty of
σb if the bias parameter αb departs from the unperfect
reconstruction efficiency εrec < 1. This helps the model get
closer to the mock data from below, while not too close to
leave room for a possible DM contribution. This trick
mimics a mismodeled background, which typically leads to
30% fluctuations around the background-only hypothesis
in the real Fermi data analysis [84,87,88]. This para-
metrizes our uncertainty in the background model, and
allows us to calibrate our likelihood analysis to get results

FIG. 9. Mock photon count map of biased background photons received in bins of size 1° × 1° in the range 1–100 GeV. The contour
areas correspond to the ROI used to set constraints on hσvi.
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close enough to past or current data analyses, and then to
more confidently extrapolate it to future times. Such a
likelihood function is often called a profiled likelihood,
because it is not normalized to unity with respect to the
data. The total profiled likelihood associated with all bins is
given by

Lðhσvi; αÞ ¼
Y
ij

Lijðnijjhσvi;αbÞ: ð75Þ

Equipped with this improved statistical setup, the first
step is to find the best-fitting parameters of the model
(including both the signal and the background), which we

denote ðdhσvi; α̂bÞ for a given WIMP mass and given
annihilation channels. Whenever the isotropic background
can be neglected (e.g., in the central Galactic regions at low
energy), we could proceed semi-analytically, as explained
in Appendix (B1). However, in the general case, we have to
resort to the numerical method presented in Appendix (B3).
Eventually, to set a conservative upper bound on hσvi

without directly comparing the background-only and the
signal-and-background hypotheses, we standardly define
our null hypothesis as our signal-and-background best-

fitting model characterized by ðdhσvi; α̂bÞ, and compute the
likelihood ratio to that null hypothesis,

RðhσviÞ≡ Lðhσvi; α̃bðhσviÞÞ
Lðdhσvi; α̂bÞ : ð76Þ

Here, α̃bðhσviÞ characterizes the best-fitting model for
which hσvi is now a fixed parameter.
Let us now present as clearly as possible the way we

set a limit, and its precise statistical meaning. Wilks’
theorem [134,135] tells us that when the number of data
points goes to infinity, under the condition that the null
hypothesis holds true, the log-likelihood ratio defined as
−2 lnRðhσviÞ satisfies a χ2ð1Þ distribution [136], where
the probability density of χ2ðkÞ is given by

fχ2ðkÞðxÞ≡ 1

2k=2Γðk=2Þ x
k=2−1e−x=2: ð77Þ

If we denote p0 the probability to have −2 lnRðhσviÞ > t
under the null hypothesis, then t is implicitly defined by

p0 ¼
Z

∞

t
dy fχ2ð1ÞðyÞ

¼
Z

∞

t
dy

1ffiffiffiffiffiffiffiffi
2πy

p e−y=2

¼
ffiffiffi
2

π

r Z
∞ffiffi
t

p dx e−x
2=2: ð78Þ

Therefore, if we demand a constraint at ñσσ, then this
translates into

p0 ¼ 1 −
1ffiffiffiffiffiffi
2π

p
Z þñσ

−ñσ
dx e−x

2=2

¼
ffiffiffi
2

π

r Z
∞

ñσ

dx e−x
2=2; ð79Þ

which implies from the previous equation that t ¼ ñ2σ .
To summarize, a limit at ñσσ can be set by looking for the

value of hσvi such that −2 lnRðhσviÞ ¼ t ¼ ñ2σ. If instead
we want to define the limit from the probability itself, for
example, p0 ¼ 0.05 (equivalently, a limit at 95% confi-
dence level), then we just have to solve

erfc

� ffiffiffi
t
2

r �
¼ 0.05; ð80Þ

which has solution t ≃ 3.85. Actually, parameter t repre-
sents here what is generically called the test statistics [130]
in Fermi-LAT data analyses.
We use this likelihood approach to derive limits on hσvi

from the analysis of our mock data. This limit is important
to assess whether pointlike subhalos can be detected before
or after the DM-induced diffuse emission itself. It is the
likelihood equivalent to hσvimax defined in Eq. (70) and
derived from our simplified statistical analysis. It fully
determines Jcritmin (see Eq. (71), the critical threshold J factor
for subhalos, below which subhalos cannot be detected
before the DM-induced diffuse emission itself.
We first check whether the limit we get is consistent

with the one derived by the Fermi-LAT collaboration in
Ref. [84], calculated with two years of data. In fact, this
comparison can help us check whether the unperfect
reconstruction efficiency εrec, which characterizes the bias
between the background model and the mock data, and the
Gaussian penalty σb paid by the reconstruction likelihood
to catch up with the mock data, provide a realistic analysis
framework. Indeed, these parameters are meant to inject a
tunable systematic error that degrades the limit on hσvi, in
order to more correctly fake the results obtained from the
real data analysis performed in Ref. [84].
We analyze the mock data introduced before by selecting

the same ROI as in Ref. [84], i.e., 5°< jbj< 15° and
jlj < 80°, which we divide into 160 angular bins of size
1° × 1°. We collect photons in an energy range of
1–100 GeV further split into 5 logarithmic bins, using
the experimental specifications listed in Sec. V C 1 with a
flat angular resolution of θr ¼ 0.1°. After removal of virtual
point sources randomly distributed in 25% of the available
pixels, we reach a total of ∼270 000 collected photons in
the ROI after two years, similar to the statistics found in
Ref. [84]. Setting our systematic bias parameters to εrec ¼
0.7 and σb ¼ 0.1 in the likelihood function, we derive the
limits shown as solid curves in Fig. 7 (using our Galactic
halo model). We also report the likelihood limit inferred
from the very same NFW halo parameters as in Ref. [84] as
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the dotted-dashed curve (top right panel, τþτ− channel),
which can be more directly compared with the limit derived
in Ref. [84] (dark gray shaded area). We see that in spite a
slight and systematic underestimate of the genuine limit,
the “spectral” agreement is quite reasonable up to WIMP
masses of ≲1 TeV for the τþτ− channel. This is a positive
cross-check of our chain of mock data analysis (we cut the
analysis above 100 GeV). The agreement is also reasonable
for the bb̄ channel (top left panel).
These good qualitative matching and reasonably good

quantitative agreement with a real data analysis validate the
method, and make us confident to extrapolate our results
to longer observation times. This is what we show also in
Fig. 7, by extracting our limits for 10 and 20 years of
observation (red and green curves, respectively). Since our
mock data are generated without DM signal, we see that the
limits improve as ∼

ffiffiffiffi
T

p
, as expected. The next step is to

study the sensitivity to individual subhalo detection.

Likelihood analysis to set the sensitivity to pointlike
subhalos.—To determine the sensitivity to pointlike sub-
halos, we again implement a statistical method similar to
the standards used in the Fermi Collaboration [58,59],
which are also based on a likelihood approach. In the
following, the search for pointlike subhalos is performed
over the full sky, except for the disk region jbj< 5° which is
masked.
In the case of pointlike subhalo searches, the likelihood

function should have the same form as the one used to set
constraints on the diffuse emission model, but that the
diffuse-only model itself needs to be upgraded to allow for
the insertion of a pointlike subhalo in a pixel of angular
resolution size.
Focusing on a specific direction in the sky and slightly

around, and labeling our angular bins by i (with a nominal
resolution angle θr ¼ 0.1°) and the energy bins by j,
we define the point-source search window as a region of
2.2° × 2.2° about the pointing direction, divided in angular
bins of 0.2° × 0.2°. When extending the nominal case to
an increased resolution of θr ¼ 1°, we shall increase the
region to 6° × 6° divided in bins of 2° × 2°. We still use 5
logarithmic energy bins covering the 1–100 GeV energy
range.
The null hypothesis amounts to having no point source at

all. We want to quantify the likelihood ratio change if we
introduce a source in pixel i0. To do so, we generate new
mock data in the same way as for the diffuse emission for
i ≠ i0, with the probability

pðnijjbijÞ ¼
ðbij þ aijhσviÞnij

nij!
e−ðbijþaijhσviÞ; ð81Þ

where bij stands for both the DGE and the isotropic
baryonic backgrounds, and where we impose hσvi ≤
hσvimaxðT ¼ 2 yrÞ since we consider cases for which we

have not detected DM through the diffuse component at the
time of observation (we could use ∼8 yr [88] instead, but
this would not qualitatively change our results). In the
central pixel i0 we simply set

nij ¼ bij þ aijhσvi þ J̄hσvicij; ð82Þ

where the product J̄hσvicij represents the number of
photons received from a pointlike subhalo in pixel i ¼ i0
with a J-factor J̄ and an annihilation cross section hσvi.
The factor cij satisfies cij ¼ c0ijδi;i0 . We stress that here
hσvi has to be considered as a fixed parameter of the model.
Remind also that J̄ is the true J factor injected in the
mock data.
The reconstruction likelihood function to consider

should then be characterized by two free parameters
(hσvi being fixed): J, i.e., the J factor of the pointlike
subhalo to estimate, and αb, which represents the departure
from the central value of the background model. That
likelihood function reads

LijðnijjJ; α; hσviÞ

¼ ðc0ijhσviJδi;i0 þ aijhσvi þ αbbDGEij þ bisoij Þnij
nij!

× e−ðc
0
ijhσviJδi;i0þaijhσviþαbbDGEij þbisoij Þ

×
1ffiffiffiffiffiffiffiffiffiffi
2πσ2b

p e
−ðαb−εrecÞ2

2σ2
b : ð83Þ

As before, departing from αb ¼ εrec to better match with the
mock data costs a Gaussian penalty of σb, which again
allows us to artificially account for background mismodel-
ing, as in the diffuse emission analysis.
The total likelihood function is then simply given by

LðJ; α; hσviÞ ¼
Y
ij

LijðnijjJ; α; hσviÞ: ð84Þ

We first want to determine the bias parameter α̃b that
maximizes the likelihood function in the null hypothesis
(no point source). This could be done semi-analytically
if we neglected the isotropic background, as shown in
Appendix (B2). However, contrary to the previous case, the
signal hypothesis is now characterized by two maximizing
parameters ðα̂b; ĴÞ, which are solutions to a system of
equations hardly solvable by semi-analytical methods.
Therefore, in the signal hypothesis, even in a simplified
background modeling, we have to resort to the Newton-
Ralphson algorithm, as explained in Appendix (B3).
We can eventually write down the likelihood ratio of the

signal-to-null hypotheses

R≡ LðĴ; α̂b; hσviÞ
Lð0; α̃b; hσviÞ

; ð85Þ
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and unambiguously define a 5σ detection threshold by
demanding 2 lnR > 25. It is clear that the higher J̄ in the
generated mock data, the higher R in the analysis, as it
drives the likelihood ratio further and further away from the
null hypothesis. We denote Jmin the value of J̄ such that in
average 2 lnR ¼ 25, similarly to Eq. (61) in the simplified
statistical analysis. More formally,

Jðl;bÞmin ¼ J̄j lnRðl; bÞ ¼ 25

2
: ð86Þ

This time, the sensitivity to pointlike subhalos Jmin, still a
function of Galactic coordinates ðl; bÞ, is determined from a
much more rigorous statistical likelihood analysis of mock
data, such as the ones currently used on real data.
Sky maps of Jmin are shown in the right panels of

Fig. 6 (baryonic background only in the top panel, and
both baryonic and diffuse DM backgrounds in the bottom
panel, setting hσvi to its 3σ limit in the latter case,
∼5 × 10−26 cm3=s−1, which can be read off Fig. 7). We
see that the angular distribution strongly depends on the
background, with a stronger contrast toward the central
regions of the MW when the diffuse DM contribution is
included. This obviously affects the angular distribution of
detectable objects, as we will discuss later. We note that
we get values of Jmin ≈ 1018 GeV2=cm5, which provide a
rather generic order of magnitude for the subhalo detection
threshold, which can be compared with the probability
density function of subhalo J factors in Fig. 3.
The time dependence of Jmin is further shown in Fig. 8 as

the red and green solid curves (the corresponding dashed
curves illustrate the simplified analysis). The former is
obtained by setting the annihilation cross section to its limit
after 10 yr of (virtual) observation without detection of the
smooth halo, while the latter is based on the 20-yr limit
(hence a value of hσvi smaller by a factor of ∼

ffiffiffi
2

p
). The left

(right) panel assumes an experimental angular resolution of
θr ¼ 0.1° (1°, respectively). We see that the prediction from
the simplified analysis Jmin ∝ 1=

ffiffiffiffi
T

p
is only recovered in

the large θr case, while for nominal angular resolution Jmin
decreases slightly faster with time. This is a purely
statistical effect which derives from the fact that some
energy bins are empty or almost so in the latter case. This
cannot be captured with our simplified analysis, while it is
properly treated with the likelihood method. In particular,
we see that the values obtained for Jmin in that case are
much more conservative at small observation time with the
likelihood determination. However, the simplified analysis
gets the qualitative trend of results correct, which shows its
relevance to help understand the driving physical effects
from analytical calculations.
By combining the sensitivity Jmin with the 3σ limit on

hσvi obtained from the absence of DM signal in the diffuse
emission in the mock data, we can determine the critical
sensitivity Jcritmin, i.e., the threshold above which pointlike
subhalos cannot be detected before the diffuse DM signal.

As explained around Eq. (71), Jcritmin is simply the time-
dependent value of Jmin obtained by setting hσvi ¼
hσvimaxðTÞ in the likelihood function of Eq. (83) applied
to the mock data generated for pointlike source searches.
This can be formulated as

JcritminðTÞ ¼ JminðT; hσvimaxðTÞÞ: ð87Þ

Being the critical J-factor sensitivity below which the
DM-induced diffuse emission should have already been
detected, integrating the pdf of pointlike subhalo J factors
above Jcritmin (see Fig. 3) allows us to determine the number
of subhalos that can be detected as pointlike objects before
the smooth DM itself. With the rather involved statistical
method described above, we can already check one of the
main predictions of the earlier simplified statistical treat-
ment: the fact that Jcritmin should become asymptotically
constant with time, and independent of annihilation cross
section (as long as it is defined from the 3σ limit on hσvi
derived from the diffuse signal analysis, which does depend
on observation time).
Values of Jcritmin as functions of time and computed from

the likelihood analysis are reported in Fig. 8 as the solid
blue curves (the dashed blue curves show the results
obtained with the simplified analysis). The left (right)
panel assumes an angular resolution of θr ¼ 0.1° (1°,
respectively). Are also shown the evolutions of the subhalo
detection threshold (or sensitivity) Jmin derived assuming
two different annihilation cross sections: one correspond-
ing to the 10-yr limit in the diffuse signal (red curves), and
the other one corresponding to the 20-yr limit (green
curves). The Jcritmin curves cross the Jmin red (green) ones
at 10 yr (20 yr, respectively), as expected, since they have
been derived assuming hσvimaxð10=20 yrÞ.
These complete likelihood results for Jcritmin do confirm the

prediction obtained from the simplified analysis: Jcritmin
flattens and tends to a constant value at large observation
time, which can be accurately determined from a likelihood
analysis. It might look surprising that Jcritmin is independent of
time, but recall that it is calculated from hσvimaxðTÞ which
does depend on time. The deep meaning of this time
independence is that not detecting the diffuse component
intrinsically limits the luminosity of subhalos, which is
proportional to hσvi. Hence, this critical parameter self-
consistently includes all the physical degeneracies of the
problem.

VI. SUMMARY RESULTS AND CONCLUSION

After this pedestrian exploration of the issue of subhalo
searches with Fermi-LAT-like gamma-ray experiments, it is
worth summarizing our main results and drawing more
quantitative conclusions.
First of all, the path we have followed in this study is

complementary to many other similar works in that (i) it
does not rely on a real data analysis, only on educated
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modeling; (ii) it is based on subhalo population models
self-consistently embedded in full kinematically con-
strained Galactic mass models; (iii) it relies on semi-
analytical calculations that allow us to integrate over the
full available phase space that describes subhalos. Our
subhalo population model accounts for tidal stripping
induced by both the DM component and the baryonic
disk, which are properly evaluated from the currently
constrained distributions of DM and baryons. It is therefore
not based on ad hoc rescaled formulations from cosmo-
logical simulations. This induces a tight dynamical corre-
lation between the subhalo properties and the other Galactic
components, which has to be treated self-consistently for a
proper estimate of the detectability of subhalos. Indeed, this
correlation strongly affects the angular distribution of the
signal-to-noise ratio.
We have tried to address two different questions: (i) can

have subhalos been plausibly detected and are they already
present in the Fermi catalog as unidentified sources?
(ii) how probable is it to detect subhalos without having
detected the smooth halo first? We have not fully answered
these questions yet but shall do so just below. However, we
have introduced or defined physical and statistical quan-
tities appropriate to help us answer. As well known in the
field, the physical quantity that best defines the gamma-ray
flux of a dark matter object for an observer on Earth is the J
factor, first introduced in [119].
The probability density function of subhalo J factors,

which is fully determined from the main subhalo character-
istics (effective6 mass and concentration functions, and
spatial distribution after tidal stripping), provides the most
important piece of statistical information [see Eq. (42)
and Fig. 3]. This was already noticed in, e.g., [56], but
our probability function differs significantly from theirs
because we account for tidal stripping, which modifies
more naive scaling relations. This probability distribution
of J factors actually combines a complex mixture of
different elements, each weighted by a specific though
intricate probability: apparent size of a subhalo (fixed
by angular resolution, position, mass and concentration),
its intrinsic luminosity (mass and concentration), and its
distance to the observer—all these are affected by tidal
effects.
This is of course not enough, since one also needs to

figure out what the gamma-ray background is as precisely
as possible, in particular its angular distribution. A rather
sound model for the background allows us to define the
sensitivity to pointlike subhalos, which can be expressed as
a threshold J factor. It is denoted Jðl;bÞmin in this paper [see a
simplified definition Eq. (61), and a more statistically
rigorous one in Eq. (86)], and depends on Galactic
coordinates ðl; bÞ via the background. It defines the J

factor necessary for a pointlike subhalo to fluctuate above
the background emission significantly enough to be
detected. That sensitivity to pointlike subhalos is closely
related to the point-source flux sensitivity, more familiar to
gamma-ray astronomers and defined in Eq. (62). The
accurate calculation of Jðl;bÞmin is the key element to answer
to question (i) above. Once it is calculated over the full sky
(see the right panels of Fig. 6), one can easily derive the
expected number of visible subhalos by integrating the
probability density of subhalo J factors above Jðl;bÞmin over
the full sky (see Fig. 3, where the green vertical thick line
piles up the values of Jmin in all directions).
We have explored the dependence of Jmin on the main

physical parameters with a simplified statistical method in
Sec. V C 2, and confirmed our results from a full likelihood
analysis performed on mock data in Sec. V C 4. We can
summarize the main dependencies as follows:

(i) hσvi: The sensitivity to subhalos increases linearly
with hσvi (i.e., Jmin∼

∝
1=hσvi) in a baryonic back-

ground domination, but only ∼∝
ffiffiffiffiffiffiffiffiffihσvip

when the
DM-induced diffuse background becomes important
as well. In contrast, the point-source flux sensitivity
ϕmin is independent of hσvi in a baryonic back-
ground domination, and degrades like ∼∝

ffiffiffiffiffiffiffiffiffihσvip
when the DM-induced diffuse background takes
over. These scaling relations assume that the Pois-
sonian regime is reached.

(ii) α: Interestingly enough, the sensitivity to subhalos
slightly degrades if the initial mass function slope
α > 1.9, because this increases the relative fraction
of light (hence faint) subhalos with respect to
heavier (hence brighter) ones, and thereby increases
the contribution of unresolved subhalos to the
diffuse emission (said differently, this increases
the annihilation boost factor which contributes as
an additional diffuse background). See an illustra-
tion in Fig. 5.

(iii) mmin: The impact of the cutoff virial mass mmin
is only important for α > 1.9. Then, decreasing
mmin degrades the sensitivity to pointlike subhalos
because this increases the background diffuse emis-
sion induced by unresolved subhalos, as explained
just above.

Some other characteristics (most probable distances,
masses, concentrations) are further illustrated in the
Appendix, see Appendix C. They significantly depend
on the angular resolution considered to define the pointlike
character. By the way, extending the angular resolution
beyond its nominal value of θr ¼ 0.1° in our calculations
might be a way to address the sensitivity to extended
objects.
We provide final summary results in Fig. 10, in which the

left (right) panels deal with a subhalo population model
embedded within a global NFW (cored, respectively)

Galactic halo. Top panels show sensitivity curves Jðl;bÞmin

6Effective because they depend both on cosmological input
functions (initial conditions) and on tidal stripping.
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FIG. 10. Angular profile of visible pointlike subhalos (J > Jðl;bÞmin ) assuming θr ¼ 0.1° for a global NFW (left panels) or cored halo
(right panels). Subhalo parameters are set to ðα; mmin=M⊙; ϵtÞ ¼ ð1.9; 10−10; 0.01Þ. The Jmin curves assume hσvi fixed to its 3σ limit for
10 yr or to an already excluded value of 1024 cm3=s for a 100 GeVWIMP annihilating into τþτ−. Observation times of 10 and 20 yr are
considered. Top panels: Angular distribution of subhalo J factors (colored), Jðl;b¼ψÞ

min curves (l ¼ 0°; 180°), and iso-log10 Nvis. Middle
panels: enlargement of the ψ ∈ ½0° − 40°� range. Bottom panels: Two-dimensional projection.
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[with ðl; bÞ ¼ ð0°;ψÞjjð180°;ψ − 180°Þ] as functions of the
line-of-sight angle to the Galactic center ψ, in addition to
the angular distribution of subhalos above a given threshold
Jmin (colored vertical scale and associated isolines). The

Jðl;bÞmin curves are calculated from different assumptions
for the annihilation cross section and for the observation
time—hσvimaxð10 yrÞ (dark blue and brownish curves),
which corresponds to the 3σ limit on hσvi derived from
Eq. (79) (≈6 × 10−26 cm3=s, see Fig. 7), and an unrealis-
tically large hσvi ¼ 10−24 cm3=s (cyan curves); for T ¼ 10
(dark blue and cyan curves) or 20 yr (brownish curves).
Two background configurations are assumed: baryonic
background only (the DM contribution to the diffuse
emission is unplugged–dot-dashed curves), and the com-
plete background comprising both the baryonic and the
DM-induced diffuse emissions (solid curves). All results
assume WIMPs of 100 GeV annihilating into τþτ−. These
curves are inferred from the likelihood method introduced
in Sec. V C 4, with the biased background parameters fixed
to a degraded efficiency of εrec ¼ 0.7 and a Gaussian
penalty of σb ¼ 0.1. These parameters artificially introduce
a systematic mismodeling of the baryonic background and
are tuned to match the limits obtained by the Fermi
Collaboration on real data reasonably well, consistently
with the analysis performed in Ref. [84]. The experimental
angular resolution is fixed to θr ¼ 0.1°—see the corre-
sponding plots for θr ¼ 1° in Fig. 11. Middle panels are just
zoomed versions of the top panels in the range
ψ ∈ ½0°; 40°�. Bottom panels show the corresponding aver-
aged angular distributions of pointlike subhalos above

Jðl;bÞmin , i.e., the visible subhalos (provided the integrated
number exceeds 1). These angular distributions can be read
off from the upper panels by looking at the background

color gradient along the Jðl;bÞmin curves.
Varying the background has almost no effect because the

DM parameters are such that the baryonic background
always dominate (sizable differences can only be seen in
the case on the unrealistically large hσvi). For reasonable
values of hσvi, we see that the global halo shape has no
strong impact on the angular profile of detectable subhalos,
with a peak found around ∼20° falling sharply at larger
angles, which strongly limits the angular search window.
Still, the global halo shape has slightly more impact on
the global distribution amplitude, making it slightly more
probable to detect subhalos if they are embedded in cored
Galactic halo. As seen in Fig. 11 though, increasing the
angular resolution to 1° has a more spectacular impact, since
this strongly extends the angular distribution of visible
pointlike subhalos, and also increases the associated ampli-
tude in both theNFWand the coredGalactic halo cases. This
might tend to indicate that searches for extended objects are
a better strategy than searches for pointlike ones.
We further quantify our results in Table II, where we

fully integrate over the statistical ensemble. We provide our
predictions for the total number of visible subhalos and its

95% CL range assuming several configurations for DM, the
background, and the observation time. DM is taken in the
form of WIMPs of 100 GeVor 1 TeV, distributed according
to an NFW or a cored halo, annihilating into bb̄ or τþτ−,
and with a cross section set to the 3σ limit on the diffuse
DM signal corresponding to 10 or 20 yr of unsuccessful
observation (see Fig. 7). To derive the number of detectable
subhalos, we have assumed an observation time of 10 or
20 yr. In the former case, we have fixed the annihilation
cross section to the 10-yr limit for the diffuse signal, and in
the later case, to either the 10- or 20-yr limit. A cross
section set to the 10-yr limit together with a 20-yr
observation time suppose that the diffuse DM signal has
been detected for long a the time of subhalo searches. We
adopt nominal parameters for the resilient subhalo pop-
ulation model, and use not only the nominal angular
resolution of θr ¼ 0.1° for pointlike subhalo searches,
but also a more extended one of θr ¼ 1° to try to capture
the potential reach of extended subhalo searches. Our main
results, which are illustrated in Fig. 12 in terms of angular
distributions of visible subhalos for different model con-
figurations, can be summarized as follows:

(i) In most cases, the number of visible subhalos is
presently Nvis < 1 at 95% CL.

(ii) The most optimistic case for a 10-yr search of
pointlike subhalos (nominal resolution angle) is
found for mχ ¼ 100 GeV annihilating into bb̄, for
which Nvis < 5 (3) at 95% CL for a cored (NFW)
Galactic halo. In that case Nvis ¼ 0 is still part of the
95% CL range.

(iii) Extending the analysis to 20 yr (same annihilation
cross section), we find a minor improvement with
Nvis < 6 (cored halo), though still consistent with 0
at 95% CL.

(iv) Increasing the angular resolution to θr ¼ 1° slightly
increases the statitistics by adding bigger objects,
which tends to show that there is a little bonus to be
gained from extended source searches.

(v) If to be hunted somewhere, subhalos should better
be looked for in a latitude band extending from
∼�10° to ∼�40°, and in a longitude band centered
about 0°. With an angular resolution of 0.1° (1°),
visible subhalos should have tidal masses of
∼104−105 M⊙ (∼106 − 107 M⊙) and be located
at a distance of ∼10 kpc (∼10–20 kpc) from
Earth—see Appendix C.

Based on these results, we conclude that it is unlikely that
some of the unidentified sources of the Fermi catalog
actually be Galactic subhalos; this might also hold for
extended subhalo searches, if our large angular resolution
example is confirmed to be a reasonable proxy for this
complementary search window. The only configuration
which may allow for subhalo detection is the cored halo
case, owing to a reduced diffuse signal [detecting ≥ 1

subhalo has a p value of ∼0.7 from Eq. (53)]. Note that
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these statements are based upon a likelihood analysis of
idealized mock data generated from a background model
that underestimates the genuine DGE (see Fig. 4), espe-
cially within the inner 10°–40° from the GC, and that also
leads to a slight underestimate of the current limits on hσvi

(see Fig. 7). Therefore, despite the rather pessimistic
prospects for subhalo detection, these can be still consid-
ered as lying on the optimistic side of possible predictions.
Another consequence of these limited detection perspec-

tives is that further including subhalos to derive limits on

FIG. 11. Same as Fig. 10 for an angular resolution of θr ¼ 1°.
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the annihilation cross section, though necessary for self-
consistency reasons, is not expected to significantly tighten
those derived from the analysis of the diffuse Galactic
emission only; neither from the absence of any individual
detection, nor from their diffuse contribution which is
lower than that of the smooth halo component at latitudes
∼10°–15° (which can otherwise be expressed as having a
negligible subhalo boost factor in the central Galactic
regions). This answers to the question (i) raised above.
Finally, we have also defined a quantity, Jcritmin [see

Eq. (71) for the definition in the simplified statistical
analysis, and Eq. (87) for the more rigorous one], which

corresponds to the detection threshold Jðl;bÞmin evaluated at the
3σ limit cross section of the current (or future) observa-
tional time. That quantity formally allows us to answer to
the question (ii) because it characterizes the critical J-factor
threshold below which the diffuse signal should be detected
before any pointlike subhalo. By comparing the flattish
curves obtained for Jcritmin in Fig. 8 with the probability
density function of subhalo J factors in Fig. 3, we can
readily claim that it is much more likely to detect the
smooth halo before subhalos in the different configurations
we have explored so far. Indeed, if the threshold Jðl;bÞmin
curves in Fig. 8 cross the Jcritmin ones, that means that the

FIG. 12. Predicted number of visible subhalos based on likelihood analyses on mock data generated for an observation time of 10 yr.
Top (bottom) parts of the plots show the integrated (differential) number as a function of the line-of-sight angle ψ , for different WIMP
benchmark models. The annihilation cross section is fixed to its 3σ limit assuming the nondetection of the smooth halo (see Fig. 7). Left
panel: τþτ− annihilation channel. Right panel: bb̄ channel.

TABLE II. Number of visible subhalos and 95% confidence interval assuming angular resolutions of θr ¼ 0.1° and 1°, and different
WIMP models. Mock data are generated with the background model given in Eq. (49), and the subhalo sensitivity is evaluated using the
likelihood bias parameters εrec ¼ 0.7 and σb ¼ 0.1 in the 1–100 GeV energy range (5 logarithmic bins). The subhalo configuration is
ðα; mmin=M⊙; ϵtÞ ¼ ð1.9; 10−10; 0.01Þ, i.e., it describes a population of subhalos rather resilient to tidal stripping.

θr ¼ 0.1° θr ¼ 1°

NFW Core NFW Core
mχ

ðGeVÞ Channel Background
T
ðyrÞ N−

95% Nvis Nþ
95% N−

95% Nvis Nþ
95% N−

95% Nvis Nþ
95% N−

95% Nvis Nþ
95%

100 τþτ− DMþ b 10a 0 1.8×10−3 0.60 0 8.96×10−3 0.80 0 4.97×10−2 1.19 0 0.16 1.71
100 τþτ− b only 10a 0 2.4×10−3 0.63 0 1.25×10−2 0.85 0 5.44×10−2 1.22 0 0.19 1.81
100 bb̄ DMþ b 10a 0 0.26 2.04 0 1.18 4.2 0 1.26 4.33 0 3.69 8.35
1000 bb̄ DMþ b 10a 0 1.73×10−2 0.92 0 7.80×10−2 1.35 0 0.20 1.84 0 0.57 2.88
1000 τþτ− DMþ b 10a 0 1.3×10−5 0.34 0 9.8×10−5 0.41 0 4.2×10−3 0.69 0 1.85×10−2 0.93

100 bb̄ DMþ b 20b � � � � � � � � � 0 1.80 5.31 � � � � � � � � � 0.14 3.98 8.80
100 bb̄ DMþ b 20a � � � � � � � � � 0 3.32 7.80 � � � � � � � � � 1.22 5.95 11.60

aUsing hσvimaxð10 yrÞ for the corresponding channel.
bUsing hσvimaxð20 yrÞ for the corresponding channel.
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smooth halo should have already been detected. We see
from our results that Jðl;bÞmin should definitely decrease below
Jcritmin in order to get a guaranteed sizable number of
detectable subhalos.
What kind of physical effects could we think of to more

optimistically change these conclusions? First of all, let us
recall that our subhalo population model is on the opti-
mistic side, since it is based on assuming a significant
resilience to tidal effects (subhalo masses are still depleted
by tides, but inner subhalo cusps survive). A systematic
increase of the subhalo concentration could make them
brighter without changing the more constrained smooth
halo contribution. However, increasing the luminosity by
a factor of ∼2 would imply an aggressive change at the
level of the width of the concentration distribution function
(fully accounted for in our analysis), about 0.15 dex (log-
normal distribution), which is not theoretically favored
(e.g., [137–140]). Moreover, this change would have to
mostly affect the mass range of visible subhalos, otherwise
it would increase the relative contribution of unresolved
subhalos to the diffuse emission, and thereby temper the
decrease of Jðl;bÞmin . Finally, one could also think about a
distorted primordial spectrum that would inject additional
power on the relevant subhalo mass scale, as is the case in
the formation of primordial black holes or ultracompact
mini-halos (e.g., [141,142]). However, even if possible, that
would drive us in the study of a more fine-tuned model,
which goes beyond the scope of this paper.
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APPENDIX A: SUBHALO MODEL DESCRIPTION

Here we provide the details of the global galactic halos
derived from fits on stellar kinematic data in Ref. [76].
They are based on the following spherical profile:

ρtotðRÞ ¼ ρtot⊙

�
R
R⊙

�
−γ
�

1þ X
1þ X⊙

�
γ−3

; ðA1Þ

with X ¼ R=Rtot
s , Rtot

s the scale radius, ρtot⊙ the total average
DM density in the solar system (including subhalos), and
R⊙ ¼ 8.2 kpc the Sun’s distance to the GC. We give
additional details on the subhalo population models in
Table III.

APPENDIX B: BEST-FITTING SOLUTIONS
TO THE LIKELIHOOD FUNCTION

1. Semi-analytical solution (limit on hσvi
with negligible isotropic background)

This method is suitable for quick analyses of diffuse
photons and can formally be used when the rescaling or
bias factor αb applies to the full background, which, for
consistency, corresponds in our case to negligible isotropic
background cases. The best-fit couple of parameters
ðghσvi; α̃bÞ that maximizes the likelihood Lðhσvi; αbÞ [see
Eq. (75)] is given as a solution to the following system of
equations:

8>>><>>>:
∂Lðhσvi;αbÞ

∂hσvi

����
ðchσvi;α̂bÞ ¼ 0

∂Lðhσvi;αbÞ
∂αb

����
ðchσvi;α̂bÞ ¼ 0

: ðB1Þ

Since Lðhσvi; αbÞ > 0, these equations are equivalent to
much simpler ones involving the log-likelihood:

8><>:
∂ lnLðhσvi;αbÞ

∂hσvi j
ðchσvi;α̂bÞ ¼ 0

∂ lnLðhσvi;αbÞ
∂αb

j
ðchσvi;α̂bÞ ¼ 0

: ðB2Þ

Inserting the expression of L given in Eqs. (75) and (74),
we get

TABLE III. Main characteristics of the subhalo population models used in this paper. Numbers are calculated
using a minimal cutoff mass of mmin ¼ 10−10 M⊙, and for tidally resilient subhalos with ϵt ¼ 0.01. Are provided
Ntot the total number of surviving subhalos, and ftot, the total DM mass fraction they contain within the virial radius
of the host halo.

ρtot⊙ Rtot
s

Ntot ftot

Galactic model ðM⊙=pc3Þ (kpc) α ¼ 1.9 α ¼ 2 α ¼ 1.9 α ¼ 2

NFW (γ ¼ 1) 0.0101 18.6 4.58 × 1018 2.45 × 1020 0.16 0.52
Cored (γ ¼ 0) 0.0103 7.7 4.27 × 1018 2.25 × 1020 0.15 0.49
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8>>>>>>><>>>>>>>:

P
i;j

aij

�
nijchσviaijþα̂bbij

− 1

	
¼ 0

P
i;j

bij

�
nijchσviaijþα̂bbij

− 1

	
−NSNE

α̂b−εrec
σ2b

¼ 0

: ðB3Þ

By a linear combination of these equations, we arrive toX
i;j

nij −
X
i;j

ðdhσviaij þ α̂bbijÞ

− NSNE
α̂bðα̂b − εrecÞ

σ2b
¼ 0; ðB4Þ

which allows us to compute the value of dhσvi in terms of
α̂b analytically from the following expression:

dhσvi ¼ 1P
i;jaij

×
�X

i;j

ðnij − α̂bbijÞ − NSNE
α̂bðα̂b − εrecÞ

σ2b

�
: ðB5Þ

The best fit is then evaluated numerically by combining
Eq. (B5) with one of the two expressions in Eq. (B3). This
method is useful for quick analyses in the negligible
isotropic background limit, or to test the correct imple-
mentation of the numerical algorithm presented in Sec. B 3
in the same configuration.

2. Solution to define the sensitivity
to pointlike subhalos

Here, we derive the set of equations relevant to the
case of pointlike subhalo searches, still when the iso-
tropic background can be neglected (when the bias factor
can be applied to the full background). The best-fit value
of the null hypothesis (no point source) is obtained by
solving

∂ lnLð0; αb; hσviÞ
∂αb

����
α̃b

¼ 0; ðB6Þ

which, in this case, corresponds to the solution to the
equation

X
ij

bij

�
nij

hσviaij þ α̃bbij
− 1

	
− NSNE

α̃b − εrec
σ2b

¼ 0: ðB7Þ

Then we need to find the global best-fit model denoted
ðĴ; α̂bÞ that is given as a solution of the two combined
equations on the derivative of the log-likelihood,

8>>><>>>:
∂ lnLðJ;αb;hσviÞ

∂J

����
ðĴ;α̂bÞ

¼ 0

∂ lnLðJ;αb;hσviÞ
∂αb

����
ðĴ;α̂bÞ

¼ 0

: ðB8Þ

Inserting the expression of L, we get8>>>>>>>><>>>>>>>>:

P
ij

bij

�
nij

hσviaijþα̂bbijþc0ijhσviĴδi0 ;i
− 1

	
−NSNE

α̂b−εrec
σ2b

¼ 0P
ij

c0ijhσvi
�

nij
hσviaijþα̂bbijþc0ijhσviĴδi0 ;i

− 1

	
¼ 0

: ðB9Þ

This system of coupled equations is actually very hard
to solve. A way out is to use the Newton-Ralphson
algorithm (see below), which is well suited for this kind
of problems.

3. The Newton-Ralphson algorithm

Here, we summarize our implementation of the Newton-
Ralphson algorithm, which is a standard likelihood maxi-
mization procedure in gamma-ray astronomy [130]. Let us
assume a likelihood function given by LðΘ;ΞÞ, where Θ is
a set of parameters, from which we are seeking the one, Θ̂,
that maximizesL—Ξ is another set of fixed parameters. Let
λðΘ;ΞÞ ¼ lnLðΘ;ΞÞ be the corresponding log-likelihood
function, and let us seek for the maximum of λ. To proceed,
we introduce the gradient vector of λ defined as DðΘ;ΞÞ ¼
∇ΘλðΘ;ΞÞ such that, by definition, DðΘ̂;ΞÞ ¼ 0. We can
now Taylor expand D around the best-fit point of coor-
dinates Θ̂ as follows:

DðΘ;ΞÞ¼DðΘ̂;ΞÞþ½ðΘ−Θ̂Þ:∇Θ�ðΘ;ΞÞþ…

¼½ðΘ−Θ̂Þ:∇Θ�DðΘ;ΞÞþ…: ðB10Þ
By massaging this expression—and making explicit in the
notation the dependence in ðΘ;ΞÞ—we find that

D ¼ HTðΘ − Θ̂Þ þ…;

with Hkl ≡ ∂
2λðΘ;ΞÞ
∂θk∂θl

ðB11Þ

the Hessian matrix defined using the elements
Θ ¼ ðθ0; θ1;…Þ. Since the Hessian matrix is real sym-
metric by definition, by inverting the previous expression
we get at first order

Θ̂ ≃ Θ −H−1D: ðB12Þ
Like in the one-dimensional Newton algorithm, it is
possible (provided D is well behaved) to find Θ̂ simply
by starting from an initial valueΘ0 and defining an iterating
procedure as follows:
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Θ̂nþ1 ≃ Θn −H−1ðΘn;ΞÞDðΘn;ΞÞ
such that Θ̂ ¼ lim

n→∞
Θn: ðB13Þ

In practice, this converges very fast.

APPENDIX C: INTERNAL PROPERTIES
OF VISIBLE SUBHALOS

The most probable tidal masses, concentrations, and
distances of visible subhalos are shown in Figs. 13, 14,
and 15.

FIG. 13. Left panels: Concentrations and physical masses of the most visible subhalos in the direction of Galactic coordinates
ðl; bÞ ¼ ð0°; 20°Þ. The solid (dashed, dotted-dashed) white curve indicates the median concentration of a subhalo of virial massm200 that
would be pruned off down to the tidal mass mt in abscissa at a galactocentric distance of 1 kpc (10 and 100 kpc, respectively) if tidal
disruption were unplugged (though not tidal stripping). This shows that subhalos with a given mt originate from heavier and heavier
objects as they are found closer and closer to the GC (i.e., tidal stripping is more and more efficient), should tidal stripping not be
destructive—see in comparison the minimal concentration needed to survive tidal effects in the associated right panels. Right panels:
Exclusion areas for the computation of the probability and for different distances to the observer: subhalos that are not seen as points
(red), subhalos that are below the critical/minimal allowed concentration and then tidally disrupted (turquoise—ϵt ¼ 0.01), subhalos that
are too faint (dark gray on the left), subhalos that are either too faint or not point sources (light gray). Visible: those lying in the white
area. Top panels: NFW Galactic halo. Bottom panels: Cored Galactic halo.
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FIG. 14. Same as Fig. 13 but with θr ¼ 1°.

FIG. 15. Distance distribution of the visible subhalos (from the observer), for different pointing directions. This corresponds to the

case in which Jðl;bÞmin is computed assuming hσvimaxð10 yrÞ, χχ̄ → bb̄, θr ¼ 0.1, and an observation time of 20 yr (the smooth halo should
have already been detected).
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