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Neutron stars are regarded as natural laboratories for the study of dense strong interaction matter.
The equation of state (EoS) of dense matter computed in flat spacetime is used to predict the structure of
neutron stars by solving the Tolman-Oppenheimer-Volkoff (TOV) equation. Recently, it has been reported
that the curved spacetime effect or specifically gravitational time dilation effect on the EoS of dense matter
leads to a significant increase of the maximum mass limit of neutron stars [Phys. Rev. D 104, 123005
(2021) and J. Cosmol. Astropart. Phys. 02 (2021) 026]. However, in this work, we show that to study the
hydrostatic equilibrium of dense matter within the framework of general relativity and relativistic fluid
dynamics, the EoS of dense matter, pðT; μÞ, should be the same as that computed in flat spacetime,
otherwise it is not consistent with local thermodynamic relations and energy-momentum conservation of
the fluid. The gravitation influences the pressure p only through enhancing the temperature T and the
chemical potential μ, known as Tolman’s law and Klein’s law. We rewrite the TOV equation as an
alternative version so that the EoS computed by using field theoretical methods can be used as a direct
input. This may provide a tool to study the EoS of dense matter via deep learning.
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I. INTRODUCTION

Neutron stars could be one kind of the densest objects in
our universe. Their masses are estimated to be between the
Chandrasekhar limit 1.4 M⊙ and 2.16 M⊙ [1–3], with M⊙
the solar mass. The most massive neutron star that has ever
been observed so far is the one in the binary system PSR
J0740þ 6620, consisting of a neutron star and a white
dwarf [4]. The mass of the neutron star in this binary system
is reported to be 2.08� 0.07 M⊙, close to the upper mass
limit [5]. Neutron stars have been regarded as natural
laboratories for the study of the many-body physics of
dense strong interaction matter. Neutron stars are usually
thought to be composed of neutron matter at a few times of
the nuclear saturation density, with a small amount of
protons and leptons to ensure charge neutrality and beta
equilibrium. It is also conjectured that with increasing
matter density, deconfined quark matter may emerge in the
core of neutron stars [6]. The strangeness component may
also appear, such as hyperons and even strange quark
matter [7–9].
While numerous observations for neutron stars have

been accumulated, plenty of unclear issues still remain. For
example, the emergence of hyperons seems inevitable if the
matter becomes sufficiently dense. However, this will
soften the equation of state (EoS) and make the largest
mass predicted by theory smaller than the Chandrasekhar
limit. This is the so-called hyperon puzzle [10], which
may originate from the obscurity of the interactions in the

many-hyperon system [11,12]. It is also debated whether
there exists quark matter in neutron stars [2,13]. This is
related to the theoretical issue of the transition from
hadronic matter to quark matter. To solve these issues,
one of the top priorities is to compute the accurate EoS of
dense strong interaction matter.
On the theoretical side, plenty of phenomenological

models for the nuclear force [14–17] have been used to
predict the EoS of dense nuclear matter. Quantum field
theory is also a powerful tool to calculate the EoS of
relativistic dense matter [18]. On the other hand, to predict
the structure of (static) neutron stars, we solve the Tolman-
Oppenheimer-Volkoff (TOV) equation [19,20], with the
dense matter EoS as an input. However, the EoS of dense
matter are usually computed by using quantum many-body
theory in flat spacetime, and the possible curved spacetime
effect induced by strong gravitation in neutron stars is not
taken into account at all. Therefore, it seems discordant
to put the dense matter EoS computed in flat spacetime
into the TOV equation. A question naturally comes into
being: Can we use the dense matter EoS computed in flat
spacetime to study neutron stars? If curved spacetime effect
really influences the dense matter EoS, it would increase
the complexity of the study of dense matter from neutron
stars.
Recently, some works have reported that the dense

matter EoS computed by using quantum field theory in
curved spacetime would make a big difference [21,22].

PHYSICAL REVIEW D 106, 083021 (2022)

2470-0010=2022=106(8)=083021(9) 083021-1 © 2022 American Physical Society

https://orcid.org/0000-0001-7193-7237
https://orcid.org/0000-0002-1823-8039
https://orcid.org/0000-0003-4548-2026
https://orcid.org/0000-0002-9965-0446
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.083021&domain=pdf&date_stamp=2022-10-26
https://doi.org/10.1103/PhysRevD.104.123005
https://doi.org/10.1103/PhysRevD.104.123005
https://doi.org/10.1088/1475-7516/2021/02/026
https://doi.org/10.1103/PhysRevD.106.083021
https://doi.org/10.1103/PhysRevD.106.083021
https://doi.org/10.1103/PhysRevD.106.083021
https://doi.org/10.1103/PhysRevD.106.083021


They found that the gravitational time dilation effect leads
to a significant increase of the maximum mass of neutron
stars. In this work, however, we clarify that to study the
hydrostatic equilibrium of dense matter within the frame-
work of general relativity and relativistic fluid dynamics,
the EoS of dense matter, i.e., the pressure p as a function of
the temperature T and the chemical potential μ, pðT; μÞ,
should be the same as that computed in flat spacetime.
We show that this is a requirement from the local
thermodynamic relations and the conservation of the
energy and momentum of the relativistic fluid. The gravi-
tation influences the pressure p only through enhancing the
temperature T and the chemical potential μ, known as
Tolman’s law [23,24] and Klein’s law [25]. Hence the
theoretical framework of TOV equation and relativistic
fluid dynamics with an EoS determined from flat spacetime
is self-consistent.
The paper is organized as follows. In Sec. II we prove

that the dense matter EoS used to study the hydrostatic
equilibrium in a static and spherical star should be the same
as that in the flat spacetime. We generalize the proof to
general static spacetime in Sec. III. In Sec. IV, we convert
the TOVequation into a grand canonical version so that the
EoS can be used as a direct input. We demonstrate the
solution and visualize the gravitational effect on the baryon
chemical potential by using the Walecka model. We
summarize in Sec. V. The nature units c ¼ ℏ ¼ kB ¼ 1
are used throughout.

II. THE EOS IN LOCAL THERMAL EQUILIBRIUM

Consider isolated dense matter in hydrostatic equilib-
rium. A curved spacetime is created according to general
relativity and we assume that it is spherically symmetric.
The line element ds2 ¼ gμνdxμdxν can be written as

ds2 ¼ −e2ΦðrÞdt2 þ e2ΨðrÞdr2 þ r2dθ2 þ r2 sin2 θdϕ2: ð1Þ

The spacetime metric reads explicitly

gtt ¼ −e2ΦðrÞ; grr ¼ e2ΨðrÞ;

gθθ ¼ r2; gϕϕ ¼ r2 sin2 θ;

gμν ¼ 0 for μ ≠ ν: ð2Þ

The dense matter can be described by relativistic fluid
dynamics. For a relativistic fluid, the energy-momentum
tensor can be written as

Tμν ¼ pgμν þ ðpþ εÞUμUν þ πμν; ð3Þ

with p the isotropic pressure and ε the proper energy
density. For hydrostatic equilibrium, the transport
terms in πμν do not contribute and can be neglected from
now on. The velocity four-vector Uμ is defined so that
gμνUμUν ¼ −1. Since the fluid is at rest, we take

Ut ¼
ffiffiffiffiffiffiffiffi
−gtt

p ¼ eΦ; Ur ¼ Uθ ¼ Uϕ ¼ 0: ð4Þ

The matter profile and the spacetime metric can be deter-
mined by solving Einstein’s field equation Gμν ¼ 8πGTμν,
with G the gravitational constant. Computing the Einstein
tensor Gμν we obtain a number of equations [26,27]. The
tt-component gives

e2ΨðrÞ ¼
�
1 −

2Gm
r

�
−1
; ð5Þ

where

mðrÞ≡
Z

r

0

4πr2εdr ð6Þ

can be interpreted as the total mass contained inside radius
r. The rr-component gives

dΦðrÞ
dr

¼ e2ΨðrÞ

r2
Gðmþ 4πr3pÞ: ð7Þ

The third equation can be derived from the θθ-component
orϕϕ-component. However, it is convenient to use continuity
equation of the energy-momentum tensor,∇μTμν ¼ 0, which
is guaranteed by Einstein’s field equation. The only nontrivial
equation is given by the ν ¼ 1 (or ν ¼ r) component. A direct
calculation gives

∇μTμ1 ¼ e−2ΨðrÞ
�
dp
dr

þ ðpþ εÞ dΦðrÞ
dr

�
: ð8Þ

Summarizing the above results, we finally arrive at the
famous Tolman-Oppenheimer-Volkoff equation

dp
dr

¼ −
Gðpþ εÞðmþ 4πr3pÞ

r2ð1 − 2Gm
r Þ : ð9Þ

This equation is normally solved by using the dense matter
EoS of the form p ¼ pðεÞ as an input. However, in this
form, it is not quite clear whether and how the gravitational
effect on the EoS should be taken into account. Actually,
we normally use the dense matter EoS determined in flat
spacetime or on Earth.
On the other hand, theorists are good at computing the

EoS p ¼ pðT; μÞ by using finite temperature field theory in
flat spacetime [18]. Some recent works have tried to
compute the EoS based on the statistic mechanics of
quantum fields in curved spacetime [21,22]. Within their
approach, the gravitational time dilation effect explicitly
influences the EoS, i.e., pðT; μÞ is different at different
position in the gravitational field. This leads to a significant
increase of the maximum mass limit of neutron stars, in
contrast to the previous predictions based on the dense
matter EoS determined in flat spacetime. In the following,
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we will discuss how the local thermodynamic relations and
the energy-momentum conservation in fluid dynamics (as
guaranteed by Einstein’s field equation) constrain the EoS
pðT; μÞ, or, what kind of EoS pðT; μÞ is compatible with
the TOV equation and local thermal equilibrium.
The dense matter described by relativistic fluid dynamics

is composed of many fluid elements sufficiently small.
On the other hand, each small fluid element should con-
tain sufficiently large degrees of freedom so that the
thermodynamic limit and local thermal equilibrium can
be reached. In curved spacetime, each fluid element is
described by local thermodynamic variables in the local
rest frame of the fluid element. According to the equiv-
alence principle, these local thermodynamic variables
should obey the fundamental laws of thermodynamics
[23–25,28–30].
Assuming that the relativistic fluid may carry several

conserved charges, we introduce the corresponding chemi-
cal potentials μ1; μ2;…, denoted by fμig for convenience.
The EoS of a fluid element at the position ðr; θ;ϕÞ can be
formally expressed as

p ¼ pðT; fμig; rÞ: ð10Þ

Here we first assume that the EoS may be different at
different positions in curved spacetime, i.e., the gravitation
caused a direct influence on the EoS. Because of the
isotropy, the explicit position dependence can be realized
only through the radius r. Note that T and μi are the local
temperature and chemical potentials of the fluid element
located at the position ðr; θ;ϕÞ, i.e.,

T ¼ TðrÞ; μi ¼ μiðrÞ: ð11Þ

If local thermal equilibrium is reached, the local thermo-
dynamic quantities should satisfy the fundamental thermo-
dynamic relation

ε ¼ Tsþ
X
i

μini − p; ð12Þ

where the entropy density s and the number density ni can
be evaluated from the EoS,

s ¼ ∂pðT; fμig; rÞ
∂T

; ni ¼
∂pðT; fμig; rÞ

∂μi
: ð13Þ

For a relativistic fluid in hydrostatic equilibrium, the
conservation of the energy and momentum, ∇μTμν ¼ 0,
gives

dp
dr

¼ −ðpþ εÞ dΦ
dr

: ð14Þ

Using the fundamental thermodynamic relation (12), we
arrive at

dp
dr

¼ −
�
Tsþ

X
i

μini

�
dΦ
dr

: ð15Þ

Further using the thermodynamic relation (13), we obtain a
functional equation

dp
dr

¼ ∂pðT; fμig; rÞ
∂T

�
−T

dΦ
dr

�
þ
X
i

∂pðT; fμig; rÞ
∂μi

�
−μi

dΦ
dr

�
; ð16Þ

which is valid at arbitrary radius r. On the other hand, the standard chain rule gives

dp
dr

¼ ∂pðT; fμig; rÞ
∂r

þ ∂pðT; fμig; rÞ
∂T

dT
dr

þ
X
i

∂pðT; fμig; rÞ
∂μi

dμi
dr

: ð17Þ

Comparing the above two equations for arbitrary radius r,
we find

∂pðT; fμig; rÞ
∂r

¼ 0: ð18Þ

Thus we conclude that the EoS does not depend explicitly
on the position. Meanwhile, we obtain other two relations

dT
dr

¼ −T
dΦ
dr

;

dμi
dr

¼ −μi
dΦ
dr

: ð19Þ

The solution of these two equations can be expressed as

TðrÞ ¼ T∞e−ΦðrÞ;

μiðrÞ ¼ μ∞i e
−ΦðrÞ: ð20Þ

They are nothing but the Tolman’s law for the temperature
[23,24] and the Klein’s law for the chemical potentials [25]
in a static gravitational field. Here the constants T∞ and μ∞i
are interpreted as the temperature and chemical potentials
measured by an observer at infinity (r → ∞). The above
laws also guarantee that the fugacities zi ¼ expðμi=TÞ are
position independent, as required by vanishing heat flow
and diffusion for a system in local thermal equilibrium [31].
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Summarizing the above results, we conclude that the
EoS should be uniform in a curved spacetime created by
dense matter in hydrostatic equilibrium, i.e.,

p ¼ pðT; fμigÞ: ð21Þ

The gravitation influences the pressure only through the
redshift of the temperature and chemical potentials, i.e., the
Tolman’s law and the Klein’s law. Since the spacetime is
asymptotically flat, we can determine the EoS pðT; fμigÞ at
r → ∞, that is, the EoS can be essentially determined in flat
spacetime.
In previous works [21,22], the gravitational effect is

attributed to the gravitational potential ΦðrÞ, i.e., the
gravitational time dilation. Since ΦðrÞ is a single-valued
function of r, it is equivalent to assume that the EoS may
depend explicitly on Φ, i.e.,

p ¼ pðT; fμig;ΦÞ: ð22Þ

The conservation of energy and momentum, Eq. (14), can
be rewritten as

dp
dΦ

¼ −p − ε: ð23Þ

Using the thermodynamic relations, we obtain

dp
dΦ

¼ −T
∂pðT; fμig;ΦÞ

∂T
−
X
i

μi
∂pðT; fμig;ΦÞ

∂μi
: ð24Þ

On the other hand, the standard chain rule gives

dp
dΦ

¼ ∂pðT; fμig;ΦÞ
∂T

dT
dΦ

þ
X
i

∂pðT; fμig;ΦÞ
∂μi

dμi
dΦ

þ ∂pðT; fμig;ΦÞ
∂Φ

: ð25Þ

Therefore, we have the following identities

∂pðT; fμig;ΦÞ
∂Φ

¼ 0;

dT
dΦ

¼ −T;
dμi
dΦ

¼ −μi: ð26Þ

The first identity indicates that the EoS does not depend
explicitly onΦ. The second and the third equations give the
same results as in Eq. (20). We note that the EoS computed
in previous works [21,22], which shows an explicit
dependence on the gravitational potential Φ, is not com-
patible with the TOV equation and local thermodynamic
relations.

III. GENERALIZATION TO ARBITRARY
STATIC SPACETIME

Even though the configuration of dense matter in hydro-
static equilibrium is normally spherically symmetric, the
results in Sec. II can be generalized to arbitrary static
spacetime. Consider a general static curved spacetime. The
line element ds2 ¼ gμνdxμdxν can be expressed as (x0 ≡ t)

ds2 ¼ g00dt2 þ gijdxidxj: ð27Þ

The metric functions g00 and gij are independent of time but
depend in an arbitrary way of the spatial coordinates xk

(k ¼ 1, 2, 3). For hydrostatic equilibrium, we take

U0 ¼
ffiffiffiffiffiffiffiffiffiffi
−g00

p
; U1 ¼ U2 ¼ U3 ¼ 0: ð28Þ

We also consider the conservation of the energy and
momentum, ∇μTμν ¼ 0. The ν ¼ k (k ¼ 1, 2, 3) compo-
nent gives

dp
dxk

¼ −ðpþ εÞ d ln
ffiffiffiffiffiffiffiffiffiffi−g00

p
dxk

: ð29Þ

Here we use d=dxk to denote the derivative with respect to
the spatial coordinates, so that it can be distinguished from
that with respect to the temperature and chemical poten-
tials. The EoS of a fluid element at the position ðx1; x2; x3Þ
can be formally expressed as

p ¼ pðT; fμig; fxkgÞ: ð30Þ

Using the local thermodynamic relations, we obtain

dp
dxk

¼ ∂pðT; fμig; fxkgÞ
∂T

�
−T

d ln
ffiffiffiffiffiffiffiffiffiffi−g00

p
dxk

�
þ
X
i

∂pðT; fμig; fxkgÞ
∂μi

�
−μi

d ln
ffiffiffiffiffiffiffiffiffiffi−g00

p
dxk

�
: ð31Þ

On the other hand, the standard chain rule gives

dp
dxk

¼ ∂pðT; fμig; fxkgÞ
∂xk

þ ∂pðT; fμig; fxkgÞ
∂T

dT
dxk

þ
X
i

∂pðT; fμig; fxkgÞ
∂μi

dμi
dxk

: ð32Þ
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Again, comparison of the two results gives the following
identities

∂pðT; fμig; fxkgÞ
∂xk

¼ 0;

dT
dxk

¼ −T
d ln

ffiffiffiffiffiffiffiffiffiffi−g00
p
dxk

;

dμi
dxk

¼ −μi
d ln

ffiffiffiffiffiffiffiffiffiffi−g00
p
dxk

: ð33Þ

The first identity indicates that the EoS should not depend on
the spatial position explicitly in a general static spacetime.
The second and the third identities give the Tolman’s law and
the Klein’s law in a general static spacetime,

TðfxkgÞ ¼ T∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00ðfxkgÞ

p ;

μiðfxkgÞ ¼
μ∞iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−g00ðfxkgÞ
p : ð34Þ

If the spacetime is asymptotically flat as normally satisfied,
this means that the EoS pðT; fμigÞ is the same as that
determined in flat spacetime. Otherwise it is not consistent
with local thermodynamic relations.
In fact, applyingEoS in flat spacetime as an input is correct

in the view of general relativity. As the process shown in
Sec. II, the TOV equation is a tensor equation derived from
the conservation law of energy-momentum tensor. The
pressure in the TOV equation is the one appearing in the
energy-momentum tensor. The equivalence principle states
that any physical laws expressed in the form of tensor
equations in special relativity holds in the same form in
general relativity [26,27]. Therefore, the EoS imported to the
TOVequation does not need any general-relativistic correc-
tion. Such correction is ought to be inherited by the covariant
derivative terms instead. Although this validity can be
deduced based on general relativity, Eq. (33) can only
derived from equilibrium thermodynamic.

IV. NEUTRON STARS FROM pðμÞ EOS

The TOVequation (9) is convenient to solve if the EoS of
the form p ¼ pðεÞ is known. However, as field theoretical
methods normally determine the EoS p ¼ pðT; fμigÞ
directly, it is more convenient to use Eq. (19) and arrive
at an alternative version of the TOV equation. For a cold
star, we can set T ¼ 0 and obtain

8>><
>>:

dμi
dr

¼ −μi
dΦ
dr

;

dΦ
dr

¼ Gðmþ 4πr3pÞ
r2ð1 − 2Gm

r Þ :
ð35Þ

If we are not interested in the gravitational potential Φ, we
can write

dμi
dr

¼ −
Gμiðmþ 4πr3pÞ

r2ð1 − 2Gm
r Þ : ð36Þ

This version can be conveniently solved if the EoS p ¼
pðfμigÞ at zero temperature is known. The energy density
in the mass function mðrÞ can be expressed as

εðfμigÞ ¼
X
i

μi
∂pðfμigÞ

∂μi
− pðfμigÞ: ð37Þ

For neutron stars, there is only one chemical potential, the
baryon chemical potential μB, serves as the thermodynamic
variable in the EoS.
In the following, we adopt the Walecka model [32] to

describe the dense matter in neutron stars and demonstrate
the solution of the TOV equation (35) with the EoS. As
clarified in Sec. II, we only need to calculate the EoS from
the model in flat spacetime. The Lagrangian density of the
Walecka model is given by

LW ¼
X
N¼n;p

ψ̄Nðiγμ∂μ −mN þ gσσ − gωγμωμÞψN

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ −UðσÞ

−
1

4
FμνFμν þ

1

2
m2

ωω
μωμ; ð38Þ

where Fμν ¼ ∂μων − ∂νωμ and ψN (N ¼ n; p) denote the
nucleon fields with mass mN. In the present model, isospin
symmetry is assumed for the sake of simplicity. The scalar
σ meson with mass mσ and the vector ω meson with mass
mω are introduced to describe the long-range attraction and
the short-range repulsion of the nuclear force. This is
realized by the two meson-nucleon coupling terms with
coupling constants gσ and gω. We add a phenomenological
potential UðσÞ ¼ 1

3
bmNðgσσÞ3 þ 1

4
cðgσσÞ4 to fit the empir-

ically known properties of nuclear matter [18].
To describe the neutron star matter, electrons and even

muons should be introduced to guarantee β-equilibrium
and charge neutrality. We thus add a term for leptons,

Llep ¼
X
l¼e;μ

ψ̄ lðiγμ∂μ −mlÞψ l: ð39Þ

The partition function of the model can be expressed in the
imaginary-time path integral formalism,

Z ¼
Z Y

α

½dψα�½dψ̄α�½dσ�½dωμ�

× exp

�Z
β

0

dτ
Z

d3x½LW þ Llep þ
X
α

μαψ
†
αψα�

�
;

ð40Þ
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where α denotes the fermion species, i.e., α ¼ n; p; e; μ, and
β ¼ 1=T. The four chemical potentials μα are not indepen-
dent. They are constrained by β-equilibrium. It is equivalent
to introduce only the baryon numberB ¼ P

N¼n;p ψ
†
NψN and

electric charge Q ¼ P
a¼p;e;μ ψ

†
aψ a, which are conserved in

the presence of weak interaction. Thus we can express the
four chemical potentials μα in terms of the baryon chemical
potential μB and the electric chemical potential μQ as

μn ¼ μB; μp ¼ μB þ μQ; μe ¼ μμ ¼ μQ: ð41Þ

For neutron stars mainly composed of neutrons, the electric
chemical potential μQ is negative.
The partition function and the thermodynamic quan-

tities can be conveniently computed within the mean
field approximation [18]. At finite density, the nucleons
act as sources in the equations of motion for the meson
fields, which indicates that finite density generates
nonzero expectation values for the scalar and vector
meson fields. In the mean field approximation, the
effective potential for the static and uniform meson
fields σ and ω0 is given by

Veffðσ;ω0;T; μB; μQÞ

¼ 1

2
m2

σσ
2 þ UðσÞ − 1

2
m2

ωω
2
0

−
T
V

X
n;k

X
α

ln det ½S−1
0α ðikn;kÞ þ Σαðσ;ω0Þ�; ð42Þ

where S−1
0α ¼ðiknþμαÞγ0−γ ·k−mα is the inverse of the

thermal Green’s function of free nucleons and leptons,
with kn ¼ ð2nþ 1ÞπT (n ∈ Z). The quantities Σα are
defined as Σn ¼ Σp ¼ gσσ − gωγ0ω0 and Σe ¼ Σμ ¼ 0.
The physical values of the classical meson fields σ̄
and ω̄0 are determined by minimizing of the effective
potential,

∂Veffðσ;ω0Þ
∂σ

¼ 0;
∂Veffðσ;ω0Þ

∂ω0

¼ 0: ð43Þ

These extreme equations determine σ̄ and ω̄0 as func-
tions of the temperature and chemical potentials. As this
is done, the thermodynamic quantities can be obtained.
The pressure is given by

pðT; μB; μQÞ ¼ −Veffðσ̄; ω̄0;T; μB; μQÞ: ð44Þ

For neutron star matter, electric charge neutrality
requires that the net electric charge density should vanish,
that is

∂pðT; μB; μQÞ
∂μQ

¼ 0: ð45Þ

Hence the electric chemical potential μQ is not an inde-
pendent thermodynamic variable. We should solve the
above equation to obtain μQ ¼ μQðT; μBÞ. Therefore, only
T and μB are independent thermodynamic variables and the
EoS takes the form p ¼ pðT; μBÞ. In static neutron stars,
they should satisfy the Tolman’ law T ¼ T∞e−Φ and the
Klein’s law μB ¼ μ∞B e

−Φ.
The temperature of a stable neutron star is typically

low and we can set T ¼ 0. The zero temperature EoS
pðμBÞ is evaluated in the Appendix. We use this EoS to
solve the TOV equation (35) and visualize the gravita-
tional effect on the baryon chemical potential μB.
Briefly speaking, starting with a given local baryon
chemical potential μcB at the core (r ¼ 0), we obtain the
profiles of the pressure and the baryon chemical
potential from the TOV equation (36). The pressure
decreases to zero at the surface, which determines the
mass M and radius R of the neutron star and hence the
mass-radius relation as displayed in Fig. 1. The gravi-
tational potential at the surface is then known as
Φs ¼ ΦðRÞ ¼ 1

2
lnð1 − 2GM=RÞ. The baryon chemical

potential satisfies the Klein’s law μBðrÞ ¼ μ∞B e
−ΦðrÞ.

The constant μ∞B can be determined as μ∞B ¼ μsBe
Φs ,

where μsB is the baryon chemical potential at the surface.
Note that μsB is purely determined by the EoS,
pðμsBÞ ¼ 0, i.e., the critical chemical potential that
separates the vacuum and the matter phase.
With the known profile of the baryon chemical

potential μBðrÞ computed from the TOV equation (36),
the profile of the gravitational potential ΦðrÞ in the
interior of neutron stars can be determined. The result is
shown in Fig. 2. To visualize how the gravitation
enhances the baryon chemical potential in the interior
of neutron stars, we display the baryon chemical potential

(b)(a)

FIG. 1. The mass-radius relation of neutron stars (a) and the
relation between the neutron star mass and the central baryon
density (b) calculated from the Walecka model.
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μcB at the core, the baryon chemical potential μsB at the
surface, and the redshifted one μ∞B in Fig. 3. It is
interesting to see that while a large central baryon density
ncB dramatically enhances the gravitational effect at the
core, the gravitational potential at the surface, Φs, is
almost a constant for sufficiently large central density
(Φs ≃ −0.5 for ncB > 1 fm−3 in this model). As a result,
the redshifted chemical potential μ∞B also reaches a
platform at large central density, regardless of the large
baryon chemical potential μcB at the core. The difference
between μ∞B and μcB (or between μsB and μcB) can be
understood as an enhancement purely induced by the
gravitational effect.

V. SUMMARY

In summary, we have shown that to study the hydrostatic
equilibrium of dense matter within the framework of
general relativity and relativistic fluid dynamics, the EoS
of dense matter should be that determined by many-body
theories or experiments in flat spacetime so that it is
compatible with local thermodynamic relations and con-
servation of energy and momentum. This is also protected
by the equivalence principle as well. We demonstrate this
explicitly for the EoS, which can be computed directly from
field theoretical methods. As a by product, we demonstrate
an alternative way to solve the TOVequation with the EoS.
In this approach, the enhancement of the baryon chemical
potential inside the neutron star can be self-consistently

(a)

(b)

FIG. 3. The baryon chemical potentials μcB at the core, μsB at the
surface, and μ∞B at infinity. (a) The three chemical potentials
corresponding to the neutron stars on the mass-radius curve.
(b) The three chemical potentials as functions of the central
baryon density.

(a)

(b)

FIG. 2. The gravitational potential Φ in the interior of neutron
stars computed from the Walecka model. (a) Φ at the surface and
at the core as functions of the central baryon density ncB. The
colored dashed lines with arrows denote the corresponding
baryon chemical potentials μcB at the core. (b) The profile
ΦðrÞ (thin dashed lines) in the interior of neutron stars with
different central densities. The thick black line denotes the
potential at the surface.
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regarded as a gravitational effect. This generalization may
provide a way to extract the EoS of dense matter via deep
learning [33,34].
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APPENDIX: EOS IN THE WALECKA MODEL

At zero temperature, the EoS of dense matter in the
Walecka model (without charge neutrality) can be
evaluated as

pðμB; μQÞ ¼
X
N¼n;p

p0ðμ�N; m�
NÞ þ

X
l¼e;μ

p0ðμl; mlÞ

−
1

2
m2

σσ̄
2 −Uðσ̄Þ þ 1

2
m2

ωω̄
2
0; ðA1Þ

where the function p0ðμ; mÞ is defined as

p0ðμ; mÞ ¼ 1

24π2

�
jμjð2μ2 − 5m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q

þ 3m4arccosh

�jμj
m

��
Θðjμj −mÞ: ðA2Þ

The effective masses m�
N and chemical potentials μ�N are

defined as

m�
N ¼ mN − gσσ̄; μ�N ¼ μN − gωω̄0: ðA3Þ

Note that the radiative correction from the vacuum con-
tribution has been neglected. The meson condensates σ̄ and
ω̄0 are determined by the following gap equations,

m2
ωω̄0 −

X
N¼n;p

gωn0ðμ�N; m�
NÞ ¼ 0;

m2
σσ̄ þ U0ðσ̄Þ −

X
N¼n;p

gσnsðμ�N; m�
NÞ ¼ 0; ðA4Þ

which minimize the effective potential Veffðσ;ω0Þ. Here the
functions n0ðμ; mÞ and nsðμ; mÞ are defined as

n0ðμ; mÞ ¼ ðμ2 −m2Þ3=2
3π2

Θðjμj −mÞsgnðμÞ;

nsðμ; mÞ ¼ m
2π2

�
jμj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q
−m2arccosh

�jμj
m

��
: ðA5Þ

The energy density ε can be evaluated as

εðμB; μQÞ ¼
X
N¼n;p

ε0ðμ�N; m�
NÞ þ

X
l¼e;μ

ε0ðμl; mlÞ

þ 1

2
m2

σσ̄
2 þ Uðσ̄Þ þ 1

2
m2

ωω̄
2
0; ðA6Þ

where the function ε0ðμ; mÞ reads

ε0ðμ; mÞ ¼ 1

8π2

�
jμjð2μ2 −m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q

−m4arccosh

�jμj
m

��
Θðjμj −mÞ: ðA7Þ

The baryon density nB and the electric charge density nQ
are given by

nBðμB; μQÞ ¼
X
N¼n;p

n0ðμ�N; m�
NÞ;

nQðμB; μQÞ ¼ n0ðμ�p; m�
pÞ þ

X
l¼e;μ

n0ðμQ; mlÞ: ðA8Þ

For neutron star matter, we should impose electric charge
neutrality,

nQðμB; μQÞ ¼ 0: ðA9Þ

Thus the electric chemical potential is not an indepen-
dent thermodynamic variable and should be solved as
μQ ¼ μQðμBÞ. The EoS of neutron star matter is the relation

FIG. 4. The EoS pðμBÞ and the corresponding baryon den-
sity nBðμBÞ of cold neutron star matter computed from the
Walecka model.
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between the pressure and the baryon chemical potential,
p ¼ pðμBÞ. The pressure pðμBÞ and the baryon density
nBðμBÞ can be numerically evaluated for given model
parameters, as shown in Fig. 4. In the calculation, the
model parameters are set as follows. The particle masses

are taken asmn ¼ mp ¼ mN ¼ 939 MeV,mσ ¼ 550 MeV,
mω ¼ 783 MeV,me¼0.511MeV, and mμ ¼ 105.66MeV.
The coupling constants are chosen as gσ ¼ 8.685,
gω ¼ 8.646, b ¼ 7.950 × 10−3, and c ¼ 6.952 × 10−4 to
fit the empirically known properties of nuclear matter [18].
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