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Black-hole superradiance has been used to place very strong bounds on a variety of models of ultralight
bosons such as axions, new light scalars, and dark photons. It is common lore to believe that superradiance
bounds are broadly model independent and therefore pretty robust. In this work we show however that
superradiance bounds on dark photons can be challenged by simple, compelling extensions of the minimal
model. In particular, if the dark photon populates a larger dark sector and couples to dark fermions playing
the role of dark matter, then superradiance bounds can easily be circumvented, depending on the mass and
(dark) charge of the dark matter.
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I. INTRODUCTION

It is well known that bosonic waves scattering off
spinning black holes (BHs) can extract rotational energy
via a phenomenon called superradiance [1] (see [2] for an
overview). This process takes place as long as ω < mΩH,
where ω is the frequency of the wave, m is its azimuthal
number, and ΩH is the angular velocity of the BH horizon.
If superradiant scattering is supported by a confinement
mechanism of the modes, the extraction of energy happens
at a continuous level, leading to the so-called superradiant
instability [2]. Remarkably, the bare mass of the bosonic
field can serve for such purpose, as it can naturally confine
low-frequency modes in the vicinity of the BH [3–5].
For the process to be efficient, the Compton wavelength

of the modes must be roughly comparable with the size of
the BH. For astrophysical BHs this corresponds to bosonic
masses in the range mb ∼ ð10−21–10−10Þ eV. In this case, a
macroscopic bosonic condensate can form around a spin-
ning BH, leading to striking observable signatures such as
gaps in the BH spin-mass (“Regge”) plane and nearly
monochromatic gravitational-wave emissions from the
condensate [6,7], leading to a rich phenomenology in
isolated and binary systems [2]. Hence, BH superradiance
represents a powerful tool to probe exotic ultralight

particles beyond the Standard Model, such as axions or
dark photons (DPs).
Until recently, studies of the superradiant instability

assumed that the superradiant field was free from inter-
actions, as expected for a field only minimally coupled to
gravity. However, as number densities can reach extreme
values in the process, the effect of interactions can be
crucial, even for very weakly interacting fields. Recent
studies have considered the effect of self-interactions, both
for scalar and vector fields [8,9], axion-photon couplings
[10,11], interactions with astrophysical plasmas [12–18],
and models of DPs kinetically mixed with Standard Model
photons [19].
In this work, we consider the interaction of a (vector)

superradiant field with other (fermionic) fields in the dark
sector, which constitute the entirety or just a fraction of the
dark matter (DM). In other words, we consider an extended
dark sector, populated not only by a massive DP, but also by
dark fermions.
The new dark fermions constitute a dark plasma, which

can alter the dispersion relation of the DP and possibly affect
its superradiant instability. Intuitively, the presence of a dark
fermion should generate a gap in thedispersion relationof the
DPs, effectively endowing it with a plasma mass

ωχ
pl ¼

�
4παχρχ
m2

χ

�
1=2

; ð1Þ

where ρχ is the energy density of the dark fermions, mχ its
mass, and αχ ¼ q2χ=ð4πÞ the fine structure constant within
the dark sector.
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We assess the effect of an extended dark sector on the
superradiant instability by studying quasibound states
around nonspinning BHs. We solve numerically for the
(linear) quasibound states of a DP in the presence of a dark
plasma and we find—as expected—that the interaction with
a (sufficiently dense) dark plasma can significantly alter the
lifetime of quasibound states. Extrapolated to spinning
BHs, our results indicate that superradiant bounds on DPs
can be completely invalidated in motivated models granting
a DM candidate. In particular, we will show that simple
models of ∼TeV self-interacting DM (SIDM) [20], can
generate ωχ

pl ≃ 10−13–10−14 eV around the BH and make
the superradiance timescale much longer than other astro-
physical timescales, such as the accretion one, thus invali-
dating some of the current DP bounds. Because the
superradiance instability is quenched by the presence of
the dark plasma, backreaction due to the cloud can be safely
neglected, justifying our linear analysis.
This work is organized as follows: in Sec. II we

introduce the generic formalism to study linear perturba-
tions of a massive spin-1 field in a plasma, recasting the set
of differential equations into one master equation for the
DP field. Next, in Sec. III we specialize to Schwarzschild
spacetime and write the corresponding set of differential
equations. In Sec. IV we solve the field equations numeri-
cally and show how the quasibound spectrum of the DP
field is altered by the presence of dark fermions. Then, in
Sec. V we introduce an example of DMmodel and deduce a
realistic estimate of dark plasma frequency sufficient to
alter the spectrum. In Sec. VI we discuss the impact of our
findings on the current DP bounds from BH superradiance.
Finally, we conclude in Sec. VII.
Henceforth we use natural units and also impose G ¼ 1.

This is the reason why both a product like Mμ, where M is
the BH mass and μ the DP mass, and a ratio like ωχ

pl=μ will
be dimensionless.1

II. SETUP

In the following, we will consider a massive spin-1 field
coupled to a dark fermion current. The dark sector is then
described by the Lagrangian

L ¼ −
1

4
FμνFμν −

1

2
μ2VμVμ − JμVμ; ð2Þ

where Vν is the DP field, Fμν ¼ ∇μVν −∇νVμ is the field
strength, μ is the DP mass and Jμ is the dark sector current.
In this work, we assume that the dark sector is secluded

from the Standard Model. For instance, we assume that the
kinetic mixing between dark and ordinary photons is
sufficiently small that we can neglect it.
Varying the action leads to a Proca equation sourced by

the dark current:

∇μFνμ þ μ2Vν ¼ qχnuν þ Jν2; ð3Þ

where n is the density of the fermions, qχ is their dark
charge, uμ is their four-velocity, and Jν2 is the current of a
second species which we assume to be present to neutralize
the plasma. Note that deriving Eq. (3) and using the
conservation of the currents leads to the Lorenz condition
∇μVμ ¼ 0. The Proca equation must be solved jointly with
the momentum equation describing the motion of the dark
fermions

uμ∇μuν ¼
qχ
mχ

Fνμuμ; ð4Þ

where mχ is the fermion mass. The conservation of the
current also implies the continuity equation

∇μðnuμÞ ¼ 0: ð5Þ

We will solve the system perturbatively by considering
small perturbations for the DP field, the density and four
velocity of the dark plasma (i.e. Fμν ¼ Fbackground

μν þ F̃μν

and the same for n and uμ). In order to simplify the
problem, we neglect the perturbations in the second,
oppositely charged species, J̃2μ ¼ 0, in analogy to the
standard case of an electron-ion plasma. The presence of a
second fermion would only shift the (dark) plasma fre-
quency, with the exact amount depending on its mass and
background density. Given the uncertainties in other
parameters, we can re-absorb this shift in the following
definition of the plasma frequency for one species.2 We will
also neglect higher order perturbations and the backreaction
of the field on the metric, as they are negligible, at least
during the first stages of the superradiant instability. The
perturbed equations of motion are

∇μF̃νμ þ μ2Ṽν ¼ qχ ñuν þ qχnũν; ð6Þ

ũμ∇μuν þ uμ∇μũν ¼
qχ
mχ

F̃νμuμ þ
qχ
mχ

Fνμũμ; ð7Þ

ũμuμ ¼ 0; ð8Þ

1The reader more familiar with geometrized units, G ¼ c ¼ 1,
might find it useful to notice that ℏ only appears in terms like
ℏωχ

pl and ℏμ, which have the dimensions of a mass. On the other
hand, the reader more familiar with natural units might find it
useful to notice that G appears only in the Schwarzschild radius
rH ¼ 2GM and in the dimensionless coupling GMμ.

2For the vanilla DM model we will discuss in Sec. V, the
situation is actually very similar to that of an electron-positron
plasma, with the two species of opposite charges having the same
mass [20]. In this case the change in the dark plasma frequency
should roughly be a factor ∼

ffiffiffi
2

p
[21].
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∇μṼμ ¼ 0: ð9Þ

Following the procedure outlined in Refs. [16,22], this
set of equations can be reassembled into a third-order,
differential master equation. We report the details of this
procedure applied to our system in Appendix A. The master
equation for the linear perturbations of the DP field in the
presence of a moving, magnetized (or not) plasma reads

hξαuμ∇μð∇σF̃ασ þ μ2ṼαÞ
þ ðθξα þ ωξ

α þ θhξα þ ωξ
LαÞð∇σF̃ασ þ μ2ṼαÞ

þ qχ
mχ

Eξuαð∇σF̃ασ þ μ2ṼαÞ ¼ ωχ2
pl F̃

ξμuμ; ð10Þ

where ωχ
pl is the dark plasma frequency defined in Eq. (1),

while Eα;ωαβ
L ;ωαβ and θαβ are the background electric

field, Larmor tensor, vorticity and deformation defined in
Appendix A. As anticipated, both the bare DP mass and the
“effective” plasma mass (1) appear in this equation. It is
straightforward but important to verify that

(i) in the ωχ
pl → 0 limit, Eq. (10) reduces to the vacuum

Proca equation,

∇σF̃σα ¼ μ2Ṽα; ð11Þ

(ii) in the μ → 0 limit, Eq. (10) matches the one for the
Standard Model photon in a cold plasmic medium
on an arbitrary spacetime background [22], once we
identify the field and the plasma with the Standard
Model ones.

Also, it is important to notice that Eq. (10) is a third-order
differential equation, at variance with the vacuum Proca
case, and that it depends on the background plasma
configuration.

III. PERTURBATIONS ON A SCHWARZSCHILD
SPACETIME

We now specialize to the Schwarzschild background. We
work in the standard coordinates ðt; r; θ;ϕÞ, in which the
line element reads

ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩ2
2; ð12Þ

with fðrÞ ¼ 1–2M=r, where M is the BH mass.
Assuming that the background plasma is also spherically

symmetric, it is convenient perform a multipolar expansion
of the dark electromagnetic (EM) field as [23]

Ṽμðr; t; θ;ϕÞ ¼
1

r

X4
i¼1

X
l;m

ciulmðiÞðt; rÞZðiÞlm
μ ðθ;ϕÞ; ð13Þ

where ZðiÞlm
μ are the vector spherical harmonics (which

satisfy as usual orthogonality conditions) and c1 ¼ c2 ¼ 1,

c3 ¼ c4 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

. This allows separating the angular
dependence of the field from the radial dependence.
The behavior of the DP perturbations depends on the

plasma profile through the dark plasma frequency ωχ
pl. In

the following, we consider two different configurations: a
static plasma, and a plasma in free fall. A static plasma is
not a realistic configuration, especially in the vicinity of the
BH horizon, but its perturbation equations take a simple
form, allowing us to understand the interplay between bare
and effective masses analytically. Studying two plasma
configurations will also allow us to explore the dependence
of the quasibound states on the background plasma four-
velocity.

A. Static plasma

Using the decomposition (13) and working in the
frequency domain, ulmðiÞðt; rÞ ¼ ulmðiÞðrÞe−iωt, we obtain a

set of three equations from the radial and angular
components of Eq. (10). Using the Lorenz condition, it
is possible to close the system and rewrite the field
equations in a more straightforward way. We give here
the final form of the perturbation equations, and a detailed
derivation in Appendix B 1. Introducing the differential

operator D2 ≡ d2

dr2�
þ ω2 − f

�
lðlþ1Þ
r2 þ μ2

�
, the equations

read

D2uð2Þ ¼
1

r3ðω2 − fωχ2
pl Þ

fðð2ð−3M þ rÞω2

þ fð6M þ rð−2þ lðlþ 1Þ þ r2μ2ÞÞωχ2
pl Þuð2Þ

þ 2ð3M − rÞðω2 − fωχ2
pl Þuð3Þ − f2r2ωχ2

pl u
0
ð3Þ;

ð14Þ

D2uð3Þ ¼
f

r2ω2
ð−lðlþ 1Þð2ω2 − fωχ2

pl Þuð2Þ
þ ωχ2

pl ððr2ω2 − flðlþ 1ÞÞuð3Þ þ flðlþ 1Þru0ð2ÞÞ;
ð15Þ

D2uð4Þ ¼ fωχ2
pl uð4Þ: ð16Þ

Owing to the spherical symmetry of the background, the
axial sector (uð4Þ) is decoupled from the polar sector (uð2Þ,
uð3Þ), the equations do not depend on the azimuthal number
m, and there is no mixing between modes with different
quantum number l. In the limit ωχ

pl → 0, Eqs. (14)–(16)
reduce to the standard equations for a noninteracting Proca
field in a Schwarzschild spacetime [24].
From Eqs. (14)–(16), it is immediate to see that the

interplay between the bare mass and the plasma frequency
is nontrivial. Naively, one might expect the perturbations to
depend on a total mass (squared) given by the squared sum
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of the bare and effective masses, at least for transverse
modes. However, this is true only for the axial sector, see
Eq. (16). For the polar sector, the interplay is less
straightforward.
In the limit of flat spacetime, Eqs. (15)–(16) read

�
d2

dr2�
þ ω2 − μ2

�
uð3;4Þ ¼ ωχ2

pl uð3;4Þ; ð17Þ

leading, in momentum space, to the dispersion relation

ω2 ¼ k2 þ ðμ2 þ ωχ2
pl Þ ð18Þ

of transverse massive modes in a plasma, where the bare
and effective masses are squared summed. For the radial
component of the field we instead obtain

ϵpl

�
d2

dr2�
þ ω2 − μ2

�
uð2Þ ¼

ωχ2
pl

ω2
μ2uð2Þ; ð19Þ

where we introduced the plasma dielectric tensor
ϵpl ¼ 1 − ωχ2

pl =ω
2. From this equation we can verify that

our formalism recovers the expected phenomenology in
two important limits:

(i) if μ → 0, the right-hand side vanishes and the only
solution is ϵpl ¼ 0, i.e. ω2 ¼ ωχ2

pl . In the absence of a
mass, this degree of freedom does therefore become
electrostatic. In fact, a massless spin-1 particle in a
cold plasmic medium only propagates two degrees
of freedom, while the third one is electrostatic [25].

(ii) if ωχ
pl → 0, ϵpl → 1 we recover the dispersion

relation of a propagating Proca degree of freedom
in vacuum ω2 ¼ k2 þ μ2. For realistic plasma den-
sity profiles that vanish at spatial infinity—as the
one we will consider in this work (see Sec. III C)—
this degree of freedom behaves as a propagating
Proca degree of freedom at large r.

B. Free-fall plasma

Up to now we have modeled the plasma surrounding the
BH as static [16,17]. We now want to relax this approxi-
mation, by considering a more realistic free-falling plasma.
A freely falling massive particle follows the geodesics of
the Schwarzschild spacetime, and its four velocity reads

uμ ¼ ðð1 − 2M=rÞ−1; −
ffiffiffiffiffiffiffiffiffiffiffiffi
2M=r

p
; 0; 0Þ: ð20Þ

As its motion is purely radial, this plasma configuration
does not break the spherical symmetry and therefore, when
the field is decomposed in spherical harmonics, it does not
generate couplings between different l, m modes and the
axial and polar sectors decouple as in the static-plasma
case. Moreover, as the plasma four-velocity does not
depend on time, the system is still stationary (at least at

the linearized level when backreaction is neglected).
Therefore, even in the case of a free-falling plasma, we
can work in the frequency domain and perform the same
multipolar expansion as in Eq. (13) with the assumption of
a harmonic time dependence ∼e−iωt. The corresponding
field equations are much more involved than in the static
plasma case, and are reported in Appendix B 2.
In the case of a static plasma, the field equations reduced

to second order differential equations. In the case of free-
fall, the perturbation equations remain of third order, and
thus require three boundary conditions, as we will see. In
the following, owing to the complexity of the equations, we
will focus on the axial sector to explore the impact of the
background plasma velocity field.
Schematically, the third-order equation governing the

axial sector in the case of free-fall plasma reads

A1uð4ÞðrÞ þ A2u0ð4ÞðrÞ þ A3u00ð4ÞðrÞ þ A4u000ð4ÞðrÞ ¼ 0; ð21Þ

where the coefficients Ai are given in Appendix B 2. It is
interesting to study the above equation in the limit of
vanishing plasma frequency,

4MD2uð4Þ þ ð2MD2uð4Þ − rðD2uð4ÞÞ0u0ð4ÞÞ ¼ 0; ð22Þ

where the D2 operator was introduced in the previous
section. From Eq. (10), we know that in this limit we must
recover the vacuum Proca equation, D2uð4ÞðrÞ ¼ 0 [24],
which is indeed a solution to Eq. (22). As we shall discuss
in the next section, this is also the only solution compatible
with the boundary conditions of the problem.
Finally, as the free-fall velocity vanishes at large dis-

tances, the field equations have the same asymptotic
behavior at spatial infinity as in the case of an everywhere
static plasma.

C. Plasma density profile and plasma frequency

The density of a plasma in free-fall can be obtained by
solving the continuity equation (5) with four-velocity (20).
This leads to a density profile of the form [26]

ρðrÞ ¼
_M

4π
ffiffiffiffiffiffiffi
2M

p 1

r3=2
; ð23Þ

where _M is a constant mass flux. This profile features an
increasing density at the horizon, and vanishes at spatial
infinity. We can then express the plasma frequency as

ωχ2
pl ¼ ω2

H

�
2M
r

�
3=2

; ð24Þ

where ωH is the plasma frequency at the horizon, which in
the following we will treat as a free parameter.
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To better compare perturbations in static and free-falling
plasmas, we shall assume that the plasma frequency takes
the form (24) also in the static case (where the continuity
equation is satisfied for any time-independent ρ).
Note that the radial infall of the dark particles is not

affected by dark interactions. This is because the plasma is
neutral [20], so the net force acting on the particles is zero.

IV. QUASIBOUND SPECTRUM OF A PROCA
FIELD IN A PLASMA

A. Numerical method and boundary conditions

In the following, we will solve the perturbation equations
numerically using a direct integration shooting method
[24,27–29], wherein the system of radial equations is
integrated from the horizon to infinity imposing suitable
asymptotic conditions. This allows solving the eigenvalue
problem and computing the complex eigenfrequencies of
the modes ω ¼ ωR þ iωI . Given our convention for the
time dependence of the eigenstates, ∼e−iωt, stable modes
correspond to ωI < 0. As already discussed, in the static
case the system is composed of second-order differential
equations, while in the free-fall case the field equations are
of third differential order. Hence, for each equation, we will
need two boundary conditions in the static case, and an
extra one in the free-fall case.
Let us start by analyzing the standard static case. Close to

the horizon, we impose purely ingoing wave solutions, as
the horizon behaves as a one-way membrane,

uðiÞ ∼ e−iωr�
X
n

bðiÞnðr − 2MÞn; ð25Þ

where the coefficients bðiÞn can be computed in terms of the
arbitrary coefficient bðiÞ0 by expanding the relevant equa-
tions near the horizon and solving them recursively. With
the chosen density profile the plasma frequency vanishes at
spatial infinity, see Eq. (24), and therefore the leading-order
solution can be generically written as a superposition

uðiÞ ∼ BðiÞe−k∞r� þ CðiÞeþk∞r� ; ð26Þ

where k∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
. We are interested in finding

solutions localized in the vicinity of the BH for ω < μ,
i.e. solutions decaying at spatial infinity. Hence, we
require CðiÞ ¼ 0.
In the free-fall case, we can impose the same asymptotic

conditions at infinity as in the static case. This is because
the two configurations coincide in this limit, where the free-
fall radial velocity vanishes. On the other hand, by
expanding the axial field equation at leading order at the
horizon, we obtain

d2

dr2�
uð4Þ þ b

d
dr�

�
ω2uð4Þ þ

d2

dr2�
uð4Þ

�
þ ω2uð4Þ ¼ 0; ð27Þ

where b is a constant. We can still impose that, at the
leading order, the near-horizon solution is an ingoing wave,
uð4ÞðrÞ ∼ bð4Þ0e−iωr� , where again bð4Þ0 is an arbitrary
coefficient. However, in this case it is not possible to
compute all the next-to-leading-order coefficients bðiÞn
solely in terms of bðiÞ0 by solving the field equations
recursively as in the static-plasma case, since one coef-
ficient is left unconstrained. To obtain the full solution near
the horizon, we need a third, physically motivated, boun-
dary condition. In particular, we must impose that the
velocity perturbation of the fermions vanishes asymptoti-
cally at the horizon,

ũϕ ¼ Oðr − 2MÞ: ð28Þ

Indeed, in a free-fall plasma massive particles reach a
background radial velocity equal to the speed of light at the
horizon [as can be seen from Eq. (20)], so any nonvanishing
perturbation at the horizon would violate causality. This
condition is automatically satisfied in the static case, where
even in the vicinity of the BH horizon the plasma is static.
As can be seen from Eq. (A5) in Appendix A, the extra
boundary condition (28) translates into a requirement on
the component of the field orthogonal to the background
four-velocity at the horizon. This third boundary condition
provides the missing relation to obtain the asymptotic
solution (25) in terms of a single arbitrary coefficient bðiÞ0.

B. Spectrum of quasibound modes

Figure 1 shows the dependence of the axial (upper
panels) and polar (lower panels) spectrum on the ratio
ωH=μ between the dark plasma frequency at the horizon
and the bare DP mass for different values of μ in a static
plasma.3 The two sectors show the same behavior: as
ωH → 0, the plasma density goes to zero and we recover
the results of Ref. [24] describing the quasibound states of a
noninteracting Proca field in a Schwarzschild spacetime.
As ωH becomes larger, the real part of the mode frequency
increases rapidly toward the value of the bare mass, and
therefore the binding energy of the modes, ωR=μ − 1,
vanishes. Meanwhile, the imaginary part decreases dra-
matically, leading to much larger timescales. Hence, the
modes become more and more unbound. This behavior is
due to the fact that as the effective mass increases at the
horizon, the minimum in the effective potential flattens and
therefore the formation of quasibound states is strongly
hampered. The same phenomenology was recovered in a
similar system in [15].
When the effective mass is sufficiently large (which

roughly occurs when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
H þ μ2

p
M ≫ 0.1), we find an

3For the axial sector, we are able to solve for the dominant
mode for larger values of ωH=μ and with higher precision, owing
to the simplicity of the axial equation.
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exponential decay of the imaginary part, as in the case of
large bare mass [30]. In this case the modes become
extremely long lived and of less astrophysical interest.
Importantly, this would also affect the superradiant time-
scale over which the BH spin is dissipated, which is
typically comparable to that of the quasibound states in
the (stable) nonspinning limit [2].
In the upper left panel of Fig. 1 we show the values

(dashed horizontal lines) of the (inverse) timescale
τBH ≡ 0.1τSalpeter, where τSalpeter ≃ 4.5 × 107 years is the
Salpeter timescale. This is the characteristic timescale of
accretion of an astrophysical BH, and is the relevant one to
compare with the superradiant timescale when deriving
bounds from the superradiant instability [2,28,31–34] (see
Sec. VI for more details on experimental limits). In
particular, if the superradiant timescale 1=jωIj is much
longer than τBH the superradiant instability is ineffective.
As a rule of thumb, when 1=jωIj ≫ τBH, plasma effects

are likely to completely invalidate superradiant bounds,

since they destroy the quasibound states in the first place. In
Fig. 1 we show two examples, forM ¼ 106 M⊙ ≡M6 and
M ¼ 10 M⊙ ≡M1; in both cases if ωH ≳ 2 − 4μ the mode
lifetimes are longer than the BH accretion timescale. The
same happens for the polar mode (lower panels of Fig. 1),
although in this case it is numerically more challenging to
push the modes towards large values of ωH=μ, and there-
fore we do not show τBH in that plot. Nevertheless, it is
clear that also in the polar case the imaginary part of the
modes becomes extremely small when ωH ≳ 2 − 4μ, as in
the axial case.
We conclude that the presence of a dark plasma, if

sufficiently dense, can completely quench the quasibound
spectrum of a DP and cause a dramatic increase of the mode
lifetime. This would correspond to a severe weakening of
the superradiant instability around a spinning BH.
Figure 2 shows a comparison between the dominant

axial mode in the static and free-fall configurations for
Mμ ¼ 0.2. For ωH=μ ¼ 0, i.e. in the absence of plasma, the

FIG. 1. (Upper panels) Imaginary (left) and real (right) part of the axial l ¼ 1, S ¼ 0mode as a function of ωH=μ for different values of
μ and for a static plasma. As the dark plasma frequency at the horizon increases, it effectively unbounds the modes: the binding energy
ωR=μ − 1 and the imaginary part ωI both go to zero, leading to larger timescales. (Lower panels) Same as in the upper panels but for the
l ¼ 1; S ¼ −1 dominant polar mode. Here and in the following S ¼ ð−1; 0; 1Þ denotes the spin projection of the mode [24], with S ¼ 0
for axial modes and S ¼ �1 for the two polarizations of polar modes.
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two modes coincide with the vacuum Proca axial mode.
This is because, in the absence of plasma (when the dark
plasma frequency goes to zero) the solution is trivially
given by a vacuum Proca equation, see Eq. (10).
Interestingly, as ωH=μ increases, the real part of the mode
is essentially unaffected by the plasma motion, while the
imaginary part decreases faster in the free-fall configura-
tion. Overall, the free-fall configuration has the same
phenomenology as the static one: as the dark plasma
frequency increases, the binding energy goes to zero and
the timescales are severely stretched. In the free-fall case,
the drop in the imaginary part is slightly more severe. One
can thus expect the superradiant instability to be even more
severely weakened in this case.
In principle, one might wonder about backreaction

effects of the dark electromagnetic field onto the plasma.
These might include breaking of the spherical symmetry of
the plasma, effects on the motion of the plasma particles, or

relativistic transparency effects [35]. However, these effects
can only become relevant for sufficiently large DP field
amplitudes. Aswe have argued, the presence of a sufficiently
dense dark plasma prevents the superradiant instability from
growing the DP field efficiently. As the quenching mecha-
nism arises already at the linear level, the field remains at all
times as small as the initial perturbation, and its backreaction
effects are thus negligible.

V. DM MODELS

In the previous sections we have shown that a dark
plasma frequency comparable to, or larger than, the bare
DP mass can greatly alter the quasibound states, possibly
suppressing the DP superradiant growth. Here we sketch a
simple DM model that can generate a sizable plasma
frequency around a BH. The numerical conclusions of
the previous sections are of course independent of the
mechanism generating the fermionic relic abundance, and
we could simply assume the existence of a UV model
generating the correct density at low redshift. Nevertheless,
we find it useful to write down an illustrative model, which
is not intended to be exhaustive of all possibilities. We hope
our work motivates research into other alternatives in this
direction.
Let us consider a fermion χ with mass mχ coupled to our

DPs with fine structure constant αχ . We consider χ to be a
DM candidate and set its abundance via freeze-out. For
simplicity, we study a “secluded” scenario, so that cou-
plings to the StandardModel thermal bath are not important
for thermal freeze-out [20,36] and the relic abundance is set
by the process χ̄χ ↔ VV (where V schematically denotes
the DP), which in the limit μ ≪ mχ has a cross section

hσviχ̄χ↔VV ≃
πα2χ
m2

χ
: ð29Þ

The DM relic abundance is obtained when the annihilation
cross section is of the order

hσviχ̄χ↔VV ≃
1

109 GeV2
; ð30Þ

where we took Tfo ≃mχ=10 for the freeze-out temperature
and assumed typical values for the relativistic degrees of
freedom in the early universe [37].
The dark fermions in this model will exhibit self-

interactions due to the exchange of a DP. Self-interactions
are especially enhanced in the limit of small DP mass, as
the cross section presents a forward scattering enhance-
ment. In fact, in the Born limit the transfer cross section for
a DM particle of velocity vχ reads

σself ≃
8πα2χ
m2

χv4χ
ln

�
m2

χv2χ
μ2

�
: ð31Þ

FIG. 2. Imaginary and real part of the axial l ¼ 1, S ¼ 0 mode
as functions of the ratio ωH=μ with mass Mμ ¼ 0.2 for the static
(dotted blue) and free-fall (red) case. For MωH ¼ 0, i.e. in the
absence of plasma, the two configurations coincide to the vacuum
Proca axial mode. As ωH=μ increases, the real part of the mode is
very similar for the two configurations, while the imaginary part
of the mode decreases faster in the free-fall case. Overall, the two
configurations exhibit a similar behavior.
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Limits on DM self-interactions (SIDM) from observations
of galaxy clusters, galaxies, and dwarf-galaxy halos
[20,38,39] restrict this cross section to be roughly
σself=mχ ⪅ 0.1 − 100 cm2=g.
Comparing the couplings needed to set the relic abun-

dance, one can see easily that the SIDM constraint excludes
thermal freeze-out for DM masses smaller than mχ ∼ TeV.
This is shown in Fig. 3. The blue shaded area indicates the
region excluded by measurements of dwarf galaxies [38],
which limit the cross section to be σself=mχ ≲ 10−
100 cm2=g for DM velocities vχ ∼ 10−4 (here we also fixed
μ ¼ 10−14 eV, but the dependence on the DP mass is very
weak). The solid black line indicates the parameters forwhich
the correct relic abundance is obtained via freeze-out. The
horizontal dotted lines indicates thevalueofαχ corresponding
to two different plasma frequencies, defined as usual as

ωχ
pl ¼

�
4πρχαχ
m2

χ

�
1=2

≃ 1.8× 10−13 eV

�
ρχ

105 GeV=cm3

�
1=2

�
0.1
αχ

�
1=2

; ð32Þ

where in the last step we used Eqs. (29) and (30) to relatemχ

to αχ .
4 The normalization of ρχ is estimated by assuming

Bondi-Hoyle accretion, which gives the following density
close to the BH horizon:

ρχðrHÞ ≃ 2.4 × 105ρ∞χ

�
0.01
vrel

�
3

; ð33Þ

where vrel is the relative BH-DM velocity far from the BH
and ρ∞χ ≈ 0.4 GeV=cm3 is the DM ambient density far away
from the horizon.
From Fig. 3 we see that, within this minimal model, dark

fermions can naturally dress the DP with a plasma mass,
but the available parameter space is small and confined to
generate a plasma frequency of roughly ∼10−13 eV, if we
require the dark fermion to be in the perturbative regime
(αχ ≲ 1), have the correct relic abundance, and avoid SIDM
bounds. However, as already mentioned, this simple,
minimal model is easily extendable to widen the allowed
parameter space. This can be achieve by (i) relaxing self-
interaction bounds, or/and (ii) producing the DM relic
abundance through a different interaction. One possibility
to relax SIDM bounds is to have a large splitting for the
Dirac fermion, which kinematically suppresses self-
interactions [40,41]. A simple extension to evade the relic
abundance requirement is described in Ref. [20], where the
DM fermion is also charged under SUð2ÞL. In this case, the
relic abundance can be set at early times by freeze-out via
the weak interaction. At late times, the weak cross section
remains small, while the long-range cross section mediated
by the DP comes to dominate as the DM cools and slows,
reducing to the vanilla model described here. In this way, it
can be possible to extend to lower DM masses, increasing
the allowed plasma frequency.
Another possibility occurs if the DP is produced gravi-

tationally during inflation and DM thermalizes through
interactions in the dark sector and not with standard-model
particles [42]. In this respect it would be interesting to
extend the analysis of [42] to smaller DP masses which are
relevant for plasma-triggered BH superradiant instabilities.
Finally, the DM density around the BH may be much

larger than the value set by Bondi-Hoyle accretion, possibly
leading to even larger plasma frequencies. This would be
the case, for example, if DM spikes are present around the
BH [43,44].

VI. IMPACT OF DP-DM COUPLING ON CURRENT
DP BOUNDS FROM BH SUPERRADIANCE

Probing ultralight DPs is an extremely challenging task,
as lab-based experiments become impractical for very long
wavelengths [45]. Most of the constraints on DP masses
smaller than μ ∼ 10−10 eV then come from astrophysics
and cosmology, typically assuming a kinetic mixing
between the DP and the ordinary photon [46–48]. In this
regard, superradiance represents a unique possibility to
probe very light DPs even without assuming a kinetic
mixing to the SM photon.

FIG. 3. Parameter space of interest for a simple secluded DM
model. The blue shaded region is excluded because of the self-
interactions bound from dwarf galaxies [38], while the solid black
line indicates the parameters for which the correct relic abun-
dance is obtained via freeze-out. The horizontal dotted lines
indicates the value of αχ corresponding to two different plasma
frequencies, assuming Bondi-Hoyle accretion around the BH
horizon and the full DM density at “infinite” distance from it.

4Notice that the second line of Eq. (32) is valid only if the
freeze-out happens via Eq. (29). If other interactions, independent
of αχ , set the relic abundance, then the full expression of the
plasma frequency (with no a priori relation between αχ and mχ)
should be used.
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In the past years, many authors have put tight constraints
on DPs using the BH mass-spin distribution (see, e.g.
Refs. [7,28,31–34,49–52] and [2] for a recent summary of
the constraints). The basic physics in all these cases is the
same: if a DP with the correct mass is present in the
spectrum of the theory, a superradiant growth can be
triggered on short-enough timescales and extract angular
momentum and energy from astrophysical BHs, making
the measured spins inconsistent with the DP itself, and also
leading to peculiar gravitational-wave signatures [2]. In
particular, current stellar-origin BH mass-spin measure-
ments in x-ray binaries5 exclude DP masses between
μ ∼ 5 × 10−14 − 2 × 10−11 eV, while supermassive BH
spin measurements exclude lighter masses, μ ∼ 6 ×
10−20 − 2 × 10−17 eV [28,31–34] and μ ∼ 8.5 × 10−22 −
4.6 × 10−21 eV [54]. These bounds are reported in Fig. 4,
where the red bands refer to highly spinning supermassive
BHs, while the blue ones to stellar-mass BHs (see Ref. [32]
for a similar plot).
In order for these bounds to apply, the superradiant rate

should be fast enough to grow a maximally filled cloud
within the relevant BH timescale, τBH. Our present analysis
shows that, in motivated DMmodels, it may be very easy to
make the superradiant timescale larger than τBH. In par-
ticular, within the simple class of DM models described in
the previous section, we have shown that it is possible to

obtain plasma frequencies of the order ωχ
pl ∼ 10−13 eV, or

greater. Our numerical results from Sec. IV indicate that the
dark plasma can quench the superradiance instability any
time ωχ

pl ≳ μ (see, e.g. the upper left panel of Fig. 1). This
means that DPs a factor of few lighter than μ ¼ 10−13 eV
are easily rescued thanks to plasma effects, in a minimal
SIDMmodel. This corresponds to the gray region in Fig. 4,
where the vertical line is drawn using the reference value in
Eq. (32), divided by a factor of 2 to account for the onset of
the effect observed in Fig. 1.
As outlined in Sec. V, it seems also likely that simple

extensions of this model could rescue even larger DP
masses, corresponding to the green region in Fig. 4.
Finally, we stress that our argument can invalidate

superradiance bounds while leaving unchanged cosmologi-
cal ones in the same mass range. The latter typically rely on
resonant effects on large scales [46], where the dark plasma
density is several orders of magnitude smaller than around
a BH.

VII. CONCLUSION AND EXTENSIONS

In this work, we have studied for the first time the
quasibound states of a DP field in the presence of a (dark)
plasma. The latter dresses the DP with an additional
density-dependent mass, which can significantly alter the
quasibound spectrum. In particular, we showed that if the
generated plasma frequency is ≳2 − 4 times the DP bare
mass, then the state lifetime increases dramatically and
(extrapolating to spinning BHs) the superradiant instability
is effectively quenched, similarly to the case of bosons with
a large bare mass (Mμ ≫ 1 [30]) which is of limited
astrophysical interest. This has important implications for
observational bounds on DPs. We outlined a simple,
motivated particle physics model that naturally provides
a sizable plasma frequency, possibly bearing a way out
from current superradiance bounds from BH mass-spin
measurements.
Interestingly, our analysis also shows that if current or

future detectors will discover gravitational-wave signatures
of a new light vector particle through BH superradiance
[28,31–33,55,56], this could be used to set relevant con-
straints on the DP scenario in various motivated DM
models.
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APPENDIX A: THE MASTER DIFFERENTIAL
EQUATION

In these Appendices we provide the technical details of
our analysis. In particular, we write down all the field
equations for both the static and the free-fall plasma.
In the following, we will rearrange the system of

Eqs. (6)–(8) into a single master equation for the DP field.
To do so, let us define the following projection operator

hαβ ¼ gαβ þ uαuβ; ðA1Þ

which projects vectors onto hypersurfaces whose normal
vector is the fermionic four velocity. Then, we can
decompose the derivative of the four velocity as [57]

∇μuν ¼ θνμ þ ων
μ − uμuρ∇ρuν; ðA2Þ

where the tensors θαβ and ωαβ are the deformation and
vorticity tensors, defined as the symmetric and antisym-
metric part of the tensor vμν ¼ hμαhνβuα;β:

θμν ¼
1

2
ðvμν þ vνμÞ; ðA3Þ

ωμν ¼
1

2
ðvμν − vνμÞ: ðA4Þ

Finally, we can decompose the background field strength
into an electric component Eν ≡ Fνμuμ and a magnetic one
Bμν ≡ hμαhνβFαβ, which leads to a definition of the Larmor
tensor for the DP: ωL

μν ¼ − qχ
mχ
Bμν.

To reassemble the system of equations into a single one,
we can express the perturbed four-velocity in terms of the
DP field by projecting Eq. (6),

ũρ ¼ hρν
qχn

ð∇μF̃νμ þ μ2ṼνÞ; ðA5Þ

and insert it into Eq. (7) to obtain

hμαð∇σF̃ασ þ μ2ṼαÞ∇μuν þ uμ∇μhναð∇σF̃ασ þ μ2ṼαÞ − 1

n
uμ∂μnhναð∇σF̃ασ þ μ2ṼαÞ ¼ ωχ2

pl F̃
νμuμ

þ qχ
mχ

Fνμhμαð∇σF̃ασ þ μ2ṼαÞ; ðA6Þ

where we defined a plasma frequency for the oscillations induced by the DP propagation in the plasma, ωχ2
pl ¼ q2χn=mχ .

We still want to rearrange this equation into a more convenient form, to obtain Eq. (10). In the following, we provide a
step-by-step calculation, focusing individually on each term of Eq. (A6). Let us start by handling the first term: we
decompose the first derivative of the four velocity in the standard way, via Eq. (A2),

ð∇σF̃ασ þ μ2ṼαÞðgμα þ uμuαÞ∇μuν ¼ ð∇σF̃ασ þ μ2ṼαÞðgμα þ uμuαÞðθνμ þ ων
μ − uμuρ∇ρuνÞ: ðA7Þ

Next, we use the following identities: uμθμν ¼ uμωμ
ν ¼ 0 and ðgμα þ uμuαÞð−uμuρ∇ρuνÞ ¼ 0 (where the latter follows

from uμuμ ¼ −1) so that the first term simply becomes

ðθνα þ ων
αÞð∇σF̃ασ þ μ2ṼαÞ: ðA8Þ

Now let us manipulate the second term of (A6). We have

uμ∇μhναð∇σF̃ασ þ μ2ṼαÞ ¼ uμhνα∇μð∇σF̃ασ þ μ2ṼαÞ þ ð∇σF̃ασ þ μ2ṼαÞuμðuα∇μuν þ uν∇μuαÞ: ðA9Þ

As for the third term, we shall use the continuity Eq. (5) to get

−
1

n
uμ∂μnhναð∇σF̃ασ þ μ2ṼαÞ ¼ 1

n
n∇μuμhναð∇σF̃ασ þ μ2ṼαÞ ¼ θhναð∇σF̃ασ þ μ2ṼαÞ; ðA10Þ

where θ ¼ θμμ is the trace of the deformation tensor. As for the fourth and fifth terms on the right side of Eq. (A6), we just
leave them in their original form.
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Let us now apply the operator hξν on every term. From (A8) it is easy to see that the first term becomes simply
ðθξα þ ωξ

αÞð∇σF̃ασ þ μ2ÃαÞ, as the deformation and vorticity are orthogonal to the four-velocity. As for the second term,
we can use hξνuν ¼ 0 and hξνhνα ¼ hξα. We thus have

uμhξα∇μð∇σF̃ασ þ μ2ṼαÞ þ ð∇σF̃ασ þ μ2ṼαÞuμuαhξν∇μuν ¼ uμhξα∇μð∇σF̃ασ þ μ2ṼαÞ þ ð∇σF̃ασ þ μ2ṼαÞuαuμ∇μuξ;

ðA11Þ

where we used uν∇μuν ¼ 0. By using the momentum
equation on the second term uμ∇μuξ we obtain

hξαuμ∇μð∇σF̃ασ þ μ2ṼαÞ þ qχ
mχ

uαFξβuβð∇σF̃ασ þ μ2ṼαÞ:

ðA12Þ

As for the third term, from (A10) it is simply

θhξαð∇σF̃ασ þ μ2ṼαÞ; ðA13Þ

where we used hξνhνα ¼ hξα. The fourth term simply
becomes

hξνω
χ2
pl F̃

νμuμ ¼ ωχ2
pl F̃

ξμuμ þ ωχ2
pl u

ξuνF̃νμuμ ¼ ωχ2
pl F̃

ξμuμ;

ðA14Þ

where we used the antisymmetric nature of the field
strength. As for the fifth and last term of Eq. (A6), upon
projection it gives

qχ
mχ

hξνFνμhμαð∇σF̃ασ þ μ2ṼαÞ: ðA15Þ

Since by the definition Bab ¼ hachbdFcd and ωL ab ¼
− e

mBab, we can rewrite this term as

−ωξ
L αð∇σF̃ασ þ μ2ṼαÞ: ðA16Þ

Assembling all terms together leads to the final Eq. (10),
describing the propagation of a massive spin-1 particle in a
cold, collisionless plasmic medium in curved spacetime.

APPENDIX B: FIELD EQUATIONS IN THE
MULTIPOLOR EXPANSION

1. Static case

We assume an unmagnetized background plasma,
ωL

μν ¼ 0. The four velocity of a static plasma is uα ¼
ðf−1=2; 0⃗Þ, satisfying the normalization condition uμuμ ¼
−1. From Eq. (4), the electric field has then only one
nonvanishing radial component Eα ¼ ð0; mχ=qχΓr

00ðu0Þ2;
0; 0Þ, where Γμ

αβ are the Christoffel’s symbols. In this case
it can be seen that the vorticity and deformation tensors are
both zero, ωαβ ¼ θαβ ¼ 0. By performing the multipolar
expansion and working in the frequency domain we obtain
the following set of equations:

− ωðfðlðlþ 1Þ þ r2μ2Þ − r2ω2 þ fr2ωχ2
pl Þuð2Þ þ ifrðω2 − fωχ2

pl Þuð1Þ
þ frð−irðω2 − fωχ2

pl Þu0ð1Þ þ fωu0ð3ÞÞ ¼ 0; ðB1Þ

− lðlþ 1Þrðω2 − fωχ2
pl Þuð1Þ − iflðlþ 1Þωuð2Þ þ ir2ωðfμ2 − ω2 þ fωχ2

pl Þuð3Þ þ ifωðlðlþ 1Þru0ð2Þ
− 2Mu0ð3Þ − fr2u00ð3ÞÞÞ ¼ 0; ðB2Þ

ðfðlþ l2 þ r2μ2Þ − r2ω2 þ fr2ωχ2
pl Þuð4Þ − fð2Mu0ð4Þ þ fr2u00ð4ÞÞ ¼ 0; ðB3Þ

where u0ðiÞ ¼ ∂ruðiÞ, we have suppressed the l superscript, and the radial dependence of ωχ
pl ¼ ωχ

plðrÞ. Now we have three

equations for the four wave functions uð1Þ; uð2Þ; uð3Þ; uð4Þ. We can close the system with the Lorenz condition

−ir2ωuð1Þ − rfðuð2Þ − uð3Þ þ ru0ð2ÞÞ ¼ 0: ðB4Þ

By solving the Lorenz equation for u1 and plugging it in to the polar field equations we obtain Eqs. (14), (15).
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2. Free-fall case

In the free-fall configuration, plasma particles follow geodesics, i.e. the background DP field is set to
Fμν ¼ 0, Eα ¼ ωαβ

L ¼ 0.
A free-fall plasma does not have vorticity, ωαβ ¼ 0, but has a nonvanishing deformation. The nonzero components are

θ00 ¼
ffiffiffi
2

p ðM=rÞ3=2
2M − r

; θrr ¼
ffiffiffiffiffiffiffiffiffi
M=r

p
ffiffiffi
2

p ðr − 2MÞ ; θθθ ¼ −
ffiffiffiffiffiffiffi
2M

p

r3=2
;

θϕϕ ¼ −
ffiffiffiffiffiffiffi
2M

p

r3=2
; θr0 ¼

M
r2

; θ0r ¼ −
M

ðr − 2MÞ2 : ðB5Þ

The trace of this tensor is also different from zero and therefore there are extra terms in Eq. (10) with respect to the static
case. Working again in the frequency domain, we obtain the following set of equations:

A1uð4Þ þ A2u0ð4Þ þ A3u00ð4Þ þ A4u000ð4Þ ¼ 0; ðB6Þ

B1uð2Þ þ B2u0ð2Þ þ B3u00ð2Þ þ B4uð1Þ þ B5u0ð1Þ þ B6u00ð1Þ þ B7u000ð1Þ þ B8uð3Þ þ B9u0ð3Þ þ B10u00ð3Þ ¼ 0; ðB7Þ

C1uð2Þ þ C2u0ð2Þ þ C3u00ð2Þ þ C4uð1Þ þ C5u0ð1Þ þ C6uð3Þ þ C7u0ð3Þ þ C8u00ð3Þ ¼ 0: ðB8Þ

These consist of a single, third-order axial equation for the wave function uð4ÞðrÞ, and two equations for the polar wave
functions uð1ÞðrÞ, uð2ÞðrÞ and uð3ÞðrÞ. The system can then be closed using the Lorenz condition given by Eq. (B4). The
coefficient of the above equations are listed in the following:

A1 ¼ −4Mr5=2ðλþ r2μ2Þωþ 2r7=2ωðλþ r2ðμ2 − ω2Þ þ 2i
ffiffiffi
2

p
M3=2rð−2λþ r2ð6μ2 − 5ω2ÞÞ

þ 4i
ffiffiffi
2

p
M5=2ðλ − 3r2μ2Þ þ i

ffiffiffiffiffiffiffi
2M

p
r2ðλþ 3r2ð−μ2 þ ω2ÞÞ þ 2r11=2ωfωχ2

pl Þ; ðB9Þ

A2 ¼ −2f
ffiffiffiffiffi
M

p
rð−2

ffiffiffi
2

p
iM2 þ 2

ffiffiffiffiffi
M

p
r5=2ωþ

ffiffiffi
2

p
r2iðλþ r2ðμ2 − ω2Þ þ r2ωD2

pl Þ
−

ffiffiffi
2

p
iMrð−1þ 2λþ 2r2μ2 þ 2r2ωχ2

pl ÞÞ; ðB10Þ

A3 ¼ f2r3ð2
ffiffiffi
2

p
iM3=2 þ 3i

ffiffiffiffiffiffiffi
2M

p
r − 2r5=2ωÞ; ðB11Þ

A4 ¼ 2
ffiffiffi
2

p
if3

ffiffiffiffiffi
M

p
r5; ðB12Þ

B1 ¼ 6
ffiffiffi
2

p
ðMrÞ3=2λ − 4

ffiffiffi
2

p
M5=2

ffiffiffi
r

p
λþ 4

ffiffiffi
2

p
ðMrÞ5=2μ2 − 8iM3rωþ 18iM2r2ω − iMr3ð3þ 2λþ 2r2μ2Þω

− 2
ffiffiffi
2

p
M3=2r7=2ðμ2 − 4ω2Þ −

ffiffiffiffiffiffiffi
2M

p
r5=2ð2λþ r2ω2Þ þ ir4ωðλþ r2ðμ2 − ω2ÞÞ þ if2r6ωωχ2

pl ; ðB13Þ

B2 ¼ −f
ffiffiffiffiffi
M

p
r5=2ð2

ffiffiffi
2

p
Mðλþ r2μ2Þ þ 10iM3=2

ffiffiffi
r

p
ω − i

ffiffiffiffiffi
M

p
r3=2ω −

ffiffiffi
2

p
rðλþ r2ðμ2 − 2ω2ÞÞÞ; ðB14Þ

B3 ¼ 2if2Mr5ω; ðB15Þ

B4 ¼ −16M2rλþ 4M3ð3λ − r2μ2Þ − i
ffiffiffiffiffiffiffi
2M

p
r7=2ð−1þ λþ r2μ2Þωþ 2

ffiffiffi
2

p
iM3=2r5=2ðλþ r2μ2Þωþ r5ω2

þMr2ð5λ − 2
ffiffiffiffiffiffiffiffiffi
2Mr

p
iωþ r2ðμ2 − 2ω2ÞÞ − f3r5ωχ2

pl ; ðB16Þ

B5 ¼ fr2ð4M2ðλþ r2μ2Þ − 2Mrðλþ 2r2μ2Þ −
ffiffiffiffiffiffiffi
2M

p
ir5=2ω − r4ω2 þ f2r4ωχ2

pl Þ; ðB17Þ

B6 ¼ f2
ffiffiffiffiffi
M

p
r3ð2M3=2 −

ffiffiffiffiffi
M

p
rþ 2

ffiffiffi
2

p
ir5=2ωÞ; ðB18Þ

B7 ¼ 2f3Mr5; ðB19Þ
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B8 ¼ −if
ffiffiffiffiffi
M

p
r2ωð2M3=2 − 3

ffiffiffiffiffi
M

p
rþ i

ffiffiffi
2

p
r5=2ωÞ; ðB20Þ

B9 ¼ f2r5=2ð−2
ffiffiffi
2

p
M3=2 þ

ffiffiffiffiffiffiffi
2M

p
r − 2iMr3=2ω − iωr5=2Þ; ðB21Þ

B10 ¼
ffiffiffiffiffiffiffi
2M

p
r3=2ð8M3 þ 6Mr2 − r3 − 12M3=2

ffiffiffiffiffiffiffi
rM

p
rÞ; ðB22Þ

C1 ¼ frλð2
ffiffiffi
2

p
M3=2 þ 2iωr5=2 þ

ffiffiffiffiffiffiffi
2M

p
rð−1þ 2r2ωχ2

pl ÞÞ; ðB23Þ

C2 ¼ rð−4
ffiffiffi
2

p
λM3=2rþ

ffiffiffiffiffiffiffi
2M

p
λr2 þ 4

ffiffiffi
2

p
M5=2λþ 4iMr5=2λω − 2ir7=2λωÞ; ðB24Þ

C3 ¼ −2
ffiffiffiffiffiffiffi
2M

p
r2ðλrð−4M þ rÞ þ 4M2λÞ; ðB25Þ

C4 ¼ r2λðωði
ffiffiffiffiffiffiffi
2M

p
ð6M − rÞ þ 2r5=2ωÞ − 2fr5=2ωχ2

pl Þ; ðB26Þ

C5 ¼ −2
ffiffiffiffiffiffiffi
2M

p
ifr4λω; ðB27Þ

C6 ¼ r2ð−12
ffiffiffi
2

p
M5=2μ2 þ 2

ffiffiffi
2

p
M3=2rð6μ2 − 5ω2Þ þ 3

ffiffiffiffiffiffiffi
2M

p
r2ð−μ2 þ ω2Þ þ 4iMr5=2ωðμ2 þ ωχ2

pl Þ
− 2ir7=2ωðμ2 þ ωχ2

pl − ω2ÞÞ; ðB28Þ

C7 ¼ 2f
ffiffiffiffiffi
M

p
rð2

ffiffiffi
2

p
M2 þ 2i

ffiffiffiffiffi
M

p
r5=2ω −

ffiffiffi
2

p
r4ðμ2 þ ωχ2

pl − ω2Þ þ
ffiffiffi
2

p
Mrð−1þ 2r2ðμ2 þ ωχ2

pl ÞÞ; ðB29Þ

C8 ¼ f2r3ð2
ffiffiffi
2

p
M3=2 þ 3

ffiffiffiffiffiffiffi
2M

p
rþ 2ir5=2ωÞ; ðB30Þ

where for simplicity we defined λ ¼ lðlþ 1Þ.
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