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This work investigates the formation of primordial black holes within a radiation fluid with an
anisotropic pressure. We focus our attention on the initial conditions describing cosmological perturbations
in the super horizon regime, using a covariant form of the equation of state in terms of pressure and energy
density gradients. The effect of the anisotropy is to modify the initial shape of the cosmological
perturbations with respect to the isotropic case. Using the dependence of the threshold δc for primordial
black holes with respect to the shape of cosmological perturbations, we estimate here how the threshold is
varying with respect to the amplitude of the anisotropy. If this variation is large enough it could lead to a
significant variation of the abundance of Primordial Black Holes.
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I. INTRODUCTION

About 50 years ago it was already being argued that
Primordial Black Holes (PBHs) might form during the
radiation dominated era of the early Universe by gravita-
tional collapse of sufficiently large-amplitude cosmological
perturbations [1–3] (see Refs. [4,5] for recent reviews).
This idea has recently received a lot of attention when it has
been realized that PBHs could constitute a significant
fraction of the dark matter in the Universe, see Ref. [6]
for a review of the current constraints on the PBH
abundances. This scenario is compatible with the gravita-
tional waves detected during the O1/O2 and O3 observa-
tional runs [7–10] of the LIGO/Virgo Collaboration, and
has motivated several studies concerning the primordial
origin of these events [11–26]. In particular, the GWTC-2
catalog is found to be compatible with the primordial
scenario [27] and a possible detection of a stochastic
gravitational wave background by the NANOGrav col-
laboration [28] could be ascribed to PBHs [29–34].
Despite some pioneering numerical studies [35–37], it

has only recently become possible to fully understand the
mechanism of PBH formation with detailed spherically
symmetric numerical simulations [38–44], showing that
cosmological perturbations can collapse to PBHs if their
amplitude δ, measured at horizon crossing, is larger than a
certain threshold value δc. This quantity was initially
estimated with a simplified Jeans length argument in

Newtonian gravity [45], obtaining δc ∼ c2s , where c2s ¼
1=3 is the sound speed of the cosmological radiation fluid
measured in units of the speed of light.
This estimation was then refined generalizing the Jeans

length argument within the theory of General Relativity,
which gives δc ≃ 0.4 for a radiation dominated Universe
[45]. This analytical computation however does not take
into account the nonlinear effects of pressure gradients,
related to the particular shape of the collapsing cosmo-
logical perturbation, which require full numerical rela-
tivistic simulations. A recent detailed study has shown
a clear relation between the value of the threshold δc and
the initial curvature (or energy density) profile, with
0.4 ≤ δc ≤ 2=3, where the shape is identified by a single
parameter [46,47]. This range is reduced to 0.4 ≤ δc ≲ 0.6
when the initial perturbations are computed from the
primordial power spectrum of cosmological perturbations
[48], because of the smoothing associated with very
large peaks.
All of these spherically symmetric numerical simulations

have considered the radiation Universe as isotropic, an
approximation which is well justified in the context of peak
theory, where rare large peaks which collapse to form PBHs
are expected to be quasispherical [49]. However, it is very
interesting to go beyond such assumptions and have a more
realistic treatment of the gravitational collapse of cosmo-
logical perturbations.
Regarding the spherical symmetry hypothesis, there

were some early studies going beyond this and adopting
the “pancake” collapse [50–53] as well as some recent ones
focusing on a nonspherical collapse to form PBHs in a
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matter dominated Universe [54] and on the ellipsoidal
collapse to form PBHs [55].
To the best of our knowledge there has not yet been any

systematic treatment of gravitational collapse of cosmo-
logical perturbations for anisotropic fluids. In general,
one expects that anisotropies will arise in the presence of
scalar fields and multifluids having, in spherical sym-
metry, a radial pressure component which is different from
the tangential one [56]. Substantial progress have been
made in the analysis of anisotropic relativistic star
solutions, using both analytical [57–63] and numerical
techniques [64,65].
More recently a covariant formulation of the equation of

state has been proposed with the study of equilibrium
models of anisotropic stars as ultracompact objects behav-
ing as black holes [66]. Inspired by this recent work, we
study here the anisotropic formulation of the initial con-
ditions for the collapse of cosmological perturbations,
estimating the effect of the anisotropy on the threshold
δc for PBH formation.
Following this introduction, in Sec. II we recap the

system of Einstein plus hydrodynamic equations for an
anisotropic perfect fluid, introducing then in Sec. III the
covariant formulation of the equation of state in terms of
pressure and energy density gradients. In Sec. IV we
describe the gradient expansion approximation to set up
the mathematical description of the initial conditions for
this system of equations computed explicitly in Sec. V for
the different choice of the equation of state described in
Sec. III. With this, in Sec. VI we estimate the correspond-
ing threshold for PBH formation, assuming that it varies
with the shape of the initial energy density perturbation
profile in the same way as for the isotropic case. Finally, in
Sec. VII we summarize our results drawing some con-
clusions and discussing the future perspectives for this
work. Throughout we use c ¼ G ¼ 1.

II. MISNER-SHARP EQUATIONS FOR
ANISOTROPIC FLUIDS

In the following, we are going to revise, assuming
spherical symmetry, the Einstein and hydrodynamic equa-
tions for an anisotropic perfect fluid. Using the cosmic time
slicing the metric of space time can be written in a diagonal
form as

ds2 ¼ −A2ðt; rÞdt2 þ B2ðt; rÞdr2 þ R2ðt; rÞdΩ2; ð1Þ

where r is the radial comoving coordinate, t the cosmic time
coordinate and dΩ the solid line infinitesimal element of
a unit 2-sphere, i.e. dΩ2 ¼ dθ2 þ sin2 θdϕ2. In this slicing
there are three nonzero components of themetric, which are
functions of r and t: the lapse function Aðr; tÞ, the function
Bðr; tÞ related to the spatial curvature of space time and the
areal radius Rðr; tÞ. The metric (1) reduces to the FLRW
(Friedmann-Lemaître-Robertson-Walker) form when the

Universe is homogeneous and isotropic, with A ¼ 1 (nor-
malization choice), B ¼ aðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
, and R ¼ aðrÞr,

with aðtÞ being the scale factor, and K ¼ 0;�1 measuring
the spatial curvature of the homogeneous Universe.
In the Misner-Sharp formulation of the Einstein plus

hydro equations [67], it is useful to introduce the differ-
ential operators Dt and Dr defined as

Dt ≡ 1

A
∂

∂t

����
r

and Dr ≡ 1

B
∂

∂r

����
t
; ð2Þ

which allow one to define and compute the derivatives
of the areal radius R with respect to proper time and
proper distance respectively. This introduces two auxiliary
quantities,

U ≡DtR and Γ≡DrR; ð3Þ

whereU is the radial component of the four-velocity in the
“Eulerian” (noncomoving) frame and Γ is the so-called
generalized Lorentz factor introduced by Misner [67]. In
the homogeneous and isotropic FLRW Universe, accord-
ing to the Hubble law we have U ¼ HðtÞRðt; rÞ, and
Γ2 ¼ 1 − Kr2, where HðtÞ ¼ _aðtÞ=aðtÞ is the Hubble
parameter and _a≡ ∂a=∂t.
The quantities U and Γ are related through the Misner-

Sharp mass Mðr; tÞ, defined within spherical symmetry as
[67,68]

Mðt; rÞ≡ Rðt; rÞ
2

½1 −∇μRðt; rÞ∇μRðt; rÞ�; ð4Þ

and from the above definition one can get the constraint
equation

Γ2 ¼ 1þ U2 −
2M
R

ð5Þ

obtained by integrating the 00-component of the Einstein
equations.
The stress-energy tensor for an anisotropic perfect fluid

can be written in a covariant form [66] as

Tμν ¼ ρuμuν þ prkμkν þ ptΠμν; ð6Þ

where pr and pt are the radial and the tangential
pressure, respectively, uμ is the fluid four-velocity
and kμ is a unit spacelike vector orthogonal to uμ, i.e.
uμuμ ¼ −1, kμkμ ¼ 1, and uμkμ ¼ 0. Πμν ¼ gμν þ uμuν −
kμkν is a projection tensor onto a two surface orthogonal to
uμ and kμ. Working in the comoving frame of the fluid one
obtains uμ ¼ ð−A; 0; 0; 0Þ and kμ ¼ ð0; B; 0; 0Þ. In the limit
of pr ¼ pt the stress energy tensor reduces to the standard
isotropic form.
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Considering now the Einstein field equations and
the conservation of the stress energy tensor, respectively,
given by

Gμν ¼ 8πTμν ∇μTμν ¼ 0; ð7Þ

where Gμν is the Einstein tensor, the Misner-Sharp hydro-
dynamic equations [67,69] for an anisotropic spherically
symmetric fluid are given by:

DtU ¼ −
Γ

ρþ pr

�
Drpr þ

2Γ
R

ðpr − ptÞ
�
−
M
R2

− 4πRpr

Dtρ0
ρ0

¼ −
1

R2Γ
DrðR2UÞ

Dtρ

ρþ pr
¼ Dtρ0

ρ0
þ 2U

R
pr − pt

ρþ pr

DrA
A

¼ −
1

ρþ pr

�
Drpr þ

2Γ
R

ðpr − ptÞ
�

DrM ¼ 4πR2Γρ

DtM ¼ −4πR2Upr

DtΓ ¼ −
U

ρþ pr

�
Drpr þ

2Γ
R

ðpr − ptÞ
�
; ð8Þ

where one can appreciate the additional terms appearing in
the equations when pr ≠ pt.

III. EQUATION OF STATE FOR ANISOTROPIC
PRESSURE

We introduce here a covariant formulation of the
equation of state for an anisotropic perfect fluid, where
the difference between the radial and tangential pressures is
measured in terms of pressure or energy density gradients.
In particular, following [66,70] the difference pt − pr can
be expressed, up to a certain degree of arbitrariness, in a
covariant form as

pt ¼ pr þ λgðr; tÞkμ∇μpr ð9Þ

or

pt ¼ pr þ λgðr; tÞkμ∇μρ; ð10Þ

where gðr; tÞ is a generic function of r and t while λ is a
parameter tuning the level of the anisotropy.
Equations (9) and (10) are two possible ways to express

in covariant form the difference ðpr − ptÞ, without speci-
fying explicitly the underlying microphysics. The most
general way to do it can be found in Appendix A of [66]. In
general the parametrization of the equations of state (EoS)
depends on the microphysics of the fluid, in particular on
the interactions between the fluid particles [70,71].
Because we are considering a radiation dominated

medium, it looks reasonable to assume the conservation

of the trace of the stress-energy tensor, i.e. Tμ
μ ¼ 0, giving

an additional constraint relation1

ρ − pr − 2pt ¼ 0; ð11Þ

which, together with (9) or (10), gives closure to the system
of equations to be solved.
Looking at the form of the Misner-Sharp equations given

by (8) we need to make sure that the behavior at R ¼ 0 is
regular [70], implying

lim
R→0

pr − pt

R
¼ 0: ð12Þ

This can be obtained choosing gðr; tÞ ¼ Rðr; tÞ which
compensates the 1=R term appearing in the anisotropic
terms of the Misner-Sharp equations, keeping the param-
eter λ dimensionless, without introducing an additional
characteristic scale into the problem. In this case, using
kμ∇μ ¼ Dr combined with Eqs. (9) and (11), the EoS for pr

and pt read as

pr ¼
1

3
½ρ − 2λRDrpr� pt ¼

1

3
½ρþ λRDrpr�; ð13Þ

while when we combine Eq. (10) with Eq. (11), the
equations of state (EoS) are given by

pr ¼
1

3
½ρ − 2λRDrρ� pt ¼

1

3
½ρþ λRDrρ�: ð14Þ

Another interesting possibility is to choose gðr;tÞ¼ρnðr;tÞ,
where n is an integer. In that case, the anisotropy parameter
λ is not dimensionless, but the equations of state for pr and
pt depend only on local thermodynamic quantities of the
comoving fluid element, a key difference with respect to the
previous case where the choice of gðr; tÞ ¼ Rðr; tÞ makes
the EoS fully nonlocal. Using this second choice for gðr; tÞ,
if the EoS is given by Eq. (9) one obtains

pr ¼
1

3
½ρ − 2λρnDrpr� pt ¼

1

3
½ρþ λρnDrpr�; ð15Þ

while, when the EoS is given by Eq. (10), one has

pr ¼
1

3
½ρ − 2λρnDrρ� pt ¼

1

3
½ρþ λρnDrρ�: ð16Þ

As one can see, when λ ¼ 0 the fluid is isotropic and these
expressions reduce to the standard EoS pr ¼ pt ¼ ρ=3 for
an isotropic relativistic perfect fluid.

1For a relativistic fluid, E ≫ m and the fluid particles can be
considered as massless with the norm of the four-momentum
being very close to zero, i.e. kαkα ≃ 0, having as a consequence
the stress-energy tensor being traceless [72].
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IV. INITIAL CONDITIONS: MATHEMATICAL
FORMULATION

A. The curvature profile

PBHs are formed from the collapse of nonlinear cos-
mological perturbations after they reenter the cosmological
horizon. Following the standard result for large and rare
peaks we assume spherical symmetry on superhorizon
scales, where the local region of the Universe is charac-
terized by an asymptotic solution (t → 0) of Einstein’s
equations [73]. In this regime the asymptotic metric can be
written as

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − KðrÞr2 þ r2dΩ2

�
; ð17Þ

where KðrÞ is the initial curvature profile for adiabatic
perturbations, written as a perturbation of the 3-spatial
metric, which is time independent on superhorizon scales.
An alternative way to specify the curvature profile for

adiabatic cosmological perturbations is the function ζðr̃Þ,
perturbing the scale factor, with the asymptotic metric
given by

ds2 ¼ −dt2 þ a2ðtÞe2ζðr̃Þ½dr̃2 þ r̃2dΩ2�; ð18Þ

where r ¼ r̃eζðr̃Þ.
In the following we are going to describe the initial

conditions only in terms of KðrÞ, which allows a simpler
mathematical description, although one can always express
them with ζðr̃Þ, by making a coordinate transformation
[46]. This will be useful to connect the initial conditions to
the power spectrum of cosmological perturbations [48].

B. Gradient expansion approximation

Although the initial amplitude of the curvature profile is
nonlinear for perturbations giving rise to PBH formation,
the corresponding hydrodynamic perturbations, in energy
density and velocity, are time dependent and vanish
asymptotically going backwards in time (as t → 0).
These can be treated as small perturbations on superhorizon
scales, when the perturbed regions are still expanding,
parametrized by a small parameter ϵ defined as the ratio
between the Hubble radius H−1 and a characteristic scale L
(to be defined later),

ϵðtÞ≡H−1

L
≪ 1: ð19Þ

In the superhorizon regime, pure growing modes are of
Oðϵ2Þ in the first nonzero term of the expansion [46,74].
This approach is known in the literature as the long
wavelength [75], gradient expansion [76], or separate
universe approach [74,77] and reproduces the time evolu-
tion of the linear perturbation theory. The hydrodynamic

variables ρ, U, pr, pt, andM, and the metric ones A, B, and
R, can be expanded as [42]

ρ ¼ ρbðtÞ½1þ ϵ2ρ̃ðr; tÞ�

pr ¼
ρbðtÞ
3

½1þ ϵ2p̃rðr; tÞ�

pt ¼
ρbðtÞ
3

½1þ ϵ2p̃tðr; tÞ�
U ¼ HðtÞR½1þ ϵ2Ũðr; tÞ�

M ¼ 4π

3
ρbðtÞR3½1þ ϵ2M̃ðr; tÞ�

A ¼ 1þ ϵ2Ãðr; tÞ

B ¼ R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

p ½1þ ϵ2B̃ðr; tÞ�

R ¼ aðtÞr ½1þ ϵ2R̃ðr; tÞ�; ð20Þ

where one should note that the multiplicative terms outside
the parentheses do not always correspond to the back-
ground values. Looking at the velocity U, for example, the
perturbation of the Hubble parameter, described by Ũðr; tÞ,
is separated with respect to the perturbation of the areal
radius given by R̃ðr; tÞ.

C. The perturbation amplitude

Before perturbing the Misner-Sharp equations in the next
section, we introduce at this stage the definition of the
perturbation amplitude, consistent with the criterion to find
when a cosmological perturbation is able to form a PBH.
This depends on the amplitude measured at the peak of the
compaction function [39] defined as

C≡ 2
δMðr; tÞ
Rðr; tÞ ; ð21Þ

where δMðr; tÞ is the difference between the Misner-Sharp
mass within a sphere of radius Rðr; tÞ, and the background
massMbðr; tÞ ¼ 4πρbðr; tÞR3ðr; tÞ=3 within the same areal
radius, but calculated with respect to a spatially flat FLRW
metric. As shown in [46], according to this criterion, the
comoving length scale of the perturbation should be
identified with r ¼ rm, where the compaction function
reaches its maximum [i.e. C0ðrmÞ ¼ 0] with the perturbation
scale measured with respect the background, i.e. L≡ arm
and

ϵ ¼ 1

aHrm
: ð22Þ

The perturbation amplitude is defined as the mass
excess of the energy density within the scale rm, measured
at the cosmological horizon crossing time tH, defined when
ϵ ¼ 1 (aHrm ¼ 1). Although in this regime the gradient
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expansionapproximation is not very accurate, and the horizon
crossing defined in this way is only a linear extrapolation, this
provides a well defined criterion to measure consistently the
amplitude of different perturbations, understanding how the
threshold is varying because of the different initial curvature
profiles (see [46] for more details).
The amplitude of the perturbation measured at tH, which

we refer to just as δ≡ δðrm; tHÞ, is given by the excess of
mass averaged over a spherical volume of radius Rm,
defined as

δ≡ 4π

VRm

Z
Rm

0

δρ

ρb
R2dR ¼ 3

r3m

Z
rm

0

δρ

ρb
r2dr; ð23Þ

where VRm
¼ 4πR3

m=3. The second equality is obtained by
neglecting the higher order terms in ϵ, approximating
Rm ≃ aðtÞrm, which allows one to simply integrate over
the comoving volume of radius rm.

V. INITIAL CONDITIONS: ANISOTROPIC
QUASIHOMOGENEOUS SOLUTION

We are now ready to perform the perturbative analysis,
computing the initial conditions as functions of the curva-
ture profile KðrÞ. Introducing (20) into the Misner-Sharp
equations given by (8) one gets the following set of
differential equations:

2R̃þ ∂R̃
∂N

¼ Ãþ Ũ

2B̃þ ∂B̃
∂N

¼ −rÃ0

Ã0 ¼ −
1

4

�
p̃0
r þ

2

r
ðp̃r − p̃tÞ

�

ρ̃ ¼ 1

3r2
ðr3M̃Þ0

M̃ þ ∂M̃
∂N

¼ −4Ũ − 4Ã − p̃r

Ũ ¼ 1

2
½M̃ − KðrÞr2m�; ð24Þ

whereN ≡ lnða=aiÞ is measuring the number of e-foldings,
and ai is the scale factor computed at an initial time ti. In
the following, we solve this set of equations using the EoS
described earlier in Sec. III.

A. Equation of state with gðr;tÞ=Rðr;tÞ
At a first glance, the Misner-Sharp equations obtained in

(8) could have a nonregular behavior in the center (R ¼ 0)
because of the anisotropic corrections given by the two
terms:

2
U
R
ðpr − ptÞ and 2

Γ
R
ðpr − ptÞ:

The first one is naturally cured by the behavior of U ∼HR,
as specified in (20), while the second term, having
Γð0Þ ¼ 1, requires a careful choice of the energy density
profile, which will determine the difference ðpr − ptÞ.
However this problem can be avoided with a careful choice
of gðr; tÞ: in particular choosing gðr; tÞ ¼ Rðr; tÞ is both
canceling the possible divergence and making λ a naturally
scale independent parameter, having in this way a scale-
free problem as in the isotropic case.
This choice looks mathematically elegant and simple,

but it has the drawback of introducing into the EoS a
nonlocal quantity, namely Rðr; tÞ. Although it looks to be
ad hoc, it is useful to analyze such a case as a simple toy
model in order to study the structure of the solution of the
system of equations (24).
In this case, the explicit equations for the perturbation

of the radial pressure p̃r and the lapse perturbation Ã are
given by

p̃r − ρ̃ ¼ −
2λ

3
rfðrÞ; ð25Þ

Ã0 ¼ −
1

4
½p̃0

r − 2λfðrÞ�; ð26Þ

where

fðrÞ ¼ ð2jþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
·

�
p̃0
r if j ¼ 0

ρ̃0 if j ¼ 1:
ð27Þ

The index j allows to distinguishing between Eq. (13)
where the EoS is expressed in terms of pressure gradients
(j ¼ 0) and Eq. (14) when the EoS is expressed in terms of
density gradients (j ¼ 1).
Inserting Eqs. (25) and (26) into (24) one finds the

explicit quasihomogeneous solution of the initial perturba-
tion profiles as a function of the curvature profile KðrÞ:

ρ̃ ¼ 2

3

½r3KðrÞ�0
3r2

r2m

Ũ ¼ −
1

6
KðrÞr2m −

λ

2
F ðrÞ

M̃ ¼ 2

3
KðrÞr2m

Ã ¼ −
ρ̃

4
þ λ

2

½r3F ðrÞ�0
3r2

B̃ ¼ r

�
ρ̃

8
−
λ

4

½r3F ðrÞ�0
3r2

�0

R̃ ¼ −
ρ̃

8
þ Ũ

2
þ λ

4

½r3F ðrÞ�0
3r2

; ð28Þ

where KðrÞ is an effective curvature profile
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KðrÞ≡ KðrÞ − λ

r2m
F ðrÞ ð29Þ

and

F ðrÞ ¼
Z

r

∞
fðr0Þdr0 ð30Þ

is sourcing the anisotropic modification of the quasihomo-
geneous solution. In Appendix B, we show how to compute
explicitly the profile of fðrÞ, analyzing how it is varying
with λ.
It is easy to see that, when λ ¼ 0, from Eqs. (25) and (26)

we simply have p̃ ¼ ρ̃ ¼ 4Ã, canceling the two last terms
of the differential equation for M̃ in (24), and from (28) one
is recovering the quasihomogeneous solution for an iso-
tropic radiation fluid, which has been derived in [42], and
more extensively discussed in [46].
The effective curvature profile KðrÞ allows writing the

anisotropic quasihomogeneous solution in a form which is
very similar to the isotropic case (λ ¼ 0). Following this
strategy one can introduce effective energy density and
velocity perturbations, ρ̃eff and Ũeff , defined as

ρ̃eff ¼ ρ̃ − 2λ
½r3F ðrÞ�0

3r2
ð31Þ

Ũeff ¼ Ũ þ λ

2
F ðrÞ ¼ −

1

6
KðrÞr2m; ð32Þ

where one can appreciate that Ũeff expressed in terms of the
effective curvature KðrÞ takes the same form as in the
isotropic case. The effective energy density and velocity
perturbations allow writing all of the other perturbed
variables just as linear combinations of these two quantities,

M̃ ¼ −4Ũeff

Ã ¼ −
ρ̃eff
4

B̃ ¼ r
8
ρ̃0eff

R̃ ¼ −
ρ̃eff
8

þ Ũ
2
; ð33Þ

keeping the same functional form as the isotropic solution
(see [46] for more details).

B. Equation of state with gðr;tÞ= ρnðr;tÞ
An alternative choice for the equation of state is gðr; tÞ ¼

ρnðr; tÞ as suggested in [66], motivated by physical con-
siderations based on a microphysical description of the
matter. This makes the EoS for pr and pt just a function of
local thermodynamic quantities. However because in
Eq. (8) the anisotropic terms ðpr − ptÞ are multiplied by
1=R, one then needs to require that ρnðDrprÞ=R should

vanish at least as R → 0, in order to ensure a regular
behavior in the center (R ¼ 0).
In this case, the explicit equations to compute the

perturbation of the radial pressure p̃r and the lapse
perturbation Ã become

p̃r − ρ̃ ¼ −
2λ

3

ρnbðaÞ
a

rfðrÞ ð34Þ

Ã0 ¼ −
1

4

�
p̃0
r − 2λ

ρnbðaÞ
a

fðrÞ
�
; ð35Þ

where this time fðrÞ is defined as

fðrÞ ¼ ð2jþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

p
r

·

�
p̃0
r if j ¼ 0

ρ̃0 if j ¼ 1:
ð36Þ

As in the previous section, for j ¼ 0 the EoS is expressed in
terms of pressure gradients, following now Eq. (15), while
for j ¼ 1 it is expressed in terms of energy density
gradients, corresponding to Eq. (16).
Inserting these expressions into (24) one obtains the

following quasihomogeneous solution:

ρ̃ ¼ 2

3

½r3KðrÞ�0
3r2

r2m

Ũ ¼ −
1

6
KðrÞr2m −

λ

2
ΦðaÞF ðrÞ

M̃ ¼ 2

3
KðrÞr2m

Ã ¼ −
1

4
ρ̃þ λ

2

ρnbðaÞ
arm

½r3F ðrÞ�0
3r2

B̃ ¼ r

�
1

8
ρ̃þ λ

�
I1ðaÞ þ

ΦðaÞ
12

� ½r3F ðrÞ�0
3r2

�0

R̃ ¼ −
ρ̃

8
þ Ũ

2
− λ

�
I1ðaÞ þ

ΦðaÞ
12

� ½r3F ðrÞ�0
3r2

þ λ

�
I2ðaÞ þ

ΦðaÞ
6

�
F ðrÞ; ð37Þ

where Φ, I1, and I2 are three time dependent functions
multiplying the anisotropic terms, and it is simple to see
that when λ ¼ 0 one is recovering the isotropic limit of the
quasihomogeneous solution.
The effective curvature profile KðrÞ is now given by

KðrÞ≡ KðrÞ − λ

r2m
ΦðaÞF ðrÞ; ð38Þ

where F ðrÞ is defined as

F ðrÞ≡ rm

Z
r

∞
fðr0Þdr0; ð39Þ
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and in the Appendix B one can find the details to compute
explicitly the profile of fðrÞ, analyzing how this is varying
with λ.
The time dependent functionsΦ, I1, and I2, are solutions

of the following system of equations:

Φ0ðNÞ þ 3ΦðNÞ ¼ 3
ρnbðNÞ
aðNÞrm

I01ðNÞ þ 2I1ðNÞ ¼ −
ΦðNÞ
6

−
ρnbðNÞ

2aðNÞrm
I02ðNÞ þ 2I2ðNÞ ¼ −

ΦðNÞ
3

; ð40Þ

where we have chosenΦð0Þ ¼ I1ð0Þ ¼ I2ð0Þ ¼ 0 as boun-
dary conditions. This refers to the fact that at the initial time
N ¼ 0, corresponding to an initial scale factor a ¼ ai,
when one assumes the perturbations have been generated—
by inflation or any other physical mechanism in the very
early Universe—it is reasonable to consider the radiation
medium to be still isotropic. The solution for Φ, I1 and I2
obtained from the above mentioned system of differential
equations is given by the following expressions:

ΦðaÞ ¼ Φ0

�
a
ai

�
−3
��

a
ai

�
2ð1−2nÞ

− 1

�

I1ðaÞ ¼ −
1

6ð1 − 4nÞΦ0

�
a
ai

�
−3
�
1 − 4n

−4ð1 − 2nÞ a
ai
þ ð3 − 4nÞ

�
a
ai

�
2ð1−2nÞ�

I2ðaÞ ¼ −
1

3ð1 − 4nÞΦ0

�
a
ai

�
−3
�
1 − 4n

−2ð1 − 2nÞ a
ai
þ
�
a
ai

�
2ð1−2nÞ�

; ð41Þ

where

Φ0 ¼
3

2ð1 − 2nÞ
ρnb;i
airm

: ð42Þ

When n ¼ 1=2 and n ¼ 1=4 the solution for Φ, I1,
and I2 requires some care (see Appendix A for more
details). The crucial difference between this case and to the
previous one of Sec. VA, is the presence of the function
ΦðaÞ in Eq. (38), which is also sourcing the functions
I1ðaÞ and I2ðaÞ. In general, these three functions are not
dimensionless because of the time dependent coefficient
ρnb;iðaÞ=ðarmÞ, changing the nature of the anisotropic
parameter λ, which is also not dimensionless. This corre-
sponds to a characteristic physical scale for the problem, as
one can see in the definition of F ðrÞ in Eq. (39) where the
intrinsic scale rm is now explicitly appearing.
These functions modulate how the anisotropic behavior

of the medium is varying during the expansion of the

Universe, whereas in the previous case the anisotropy was
independent of the Universe expansion. In the limit of n ¼
−1=4 and a ≫ ai the functions Φ, I1, and I2 become time
independent, and normalizing ρnb;iðaÞ=ðarmÞ ¼ 1, we get
Φ ¼ Φ0 ¼ 1, I1 ¼ −1=3 and I2 ¼ −1=6, reproducing the
solution of Sec. VA.

VI. RESULTS

We can now compute explicitly the anisotropic initial
conditions for different values of λ in order to study the
effect of the anisotropy on the shape of the energy density
perturbation profiles, which will translate into a modified
threshold for PBHs. With the fourth order Runge-Kutta
numerical algorithm we compute the pressure and energy
density gradient profiles (see Appendix B for more details)
enabling explicit computation of the quasihomogeneous
solution derived in the previous section.

A. The shape parameter

As seen in [46–48] the threshold for PBHs depends on
the shape of the cosmological perturbation, characterized
by the width of the peak of the compaction function CðrÞ
defined in Eq. (21), measured by a dimensionless parameter
α defined as

α≡ −
r2mC00ðrmÞ
4CðrmÞ

: ð43Þ

The radius rm is the characteristic comoving scale of the
perturbation, identified where the compaction function has
a peak, corresponding to the location where the gravita-
tional field reaches its maximum. The apparent horizon of a
black hole forms in this region during the collapse if the
height of the peak, measuring the perturbation amplitude δ,
is larger than a threshold δc.
For larger values of α the peak of the compaction

function becomes sharper while the peak of the energy
density perturbation gets broader, whereas for smaller
values of α we have the opposite behavior. The strict
relation between the shape of the compaction function and
the shape of the energy density perturbation is related to the
Birkhoff theorem, where the collapse is mainly affected by
the matter distribution inside the region forming the black
hole, characterized just by one parameter, plus very small
second order corrections induced by the shape of the
perturbation outside this region [46].
Looking at the quasihomogeneous solution derived in

Sec. V we have

CðrÞ ≃ r2

r2m
M̃ þOðϵ2Þ ¼ 2

3
KðrÞr2; ð44Þ

which is a generalization of the expression for the isotropic
solution, replacing KðrÞ with KðrÞ. The value of rm is
computed imposing C0ðrmÞ ¼ 0, which gives
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KðrmÞ þ
rm
2
K0ðrmÞ ¼ 0: ð45Þ

Using Eq. (38), we can explicitly write Eq. (45) as

KðrmÞþ
rm
2
K0ðrmÞ¼

λ

r2m
ΦðaÞ

�
F ðrmÞþ

rm
2
F 0ðrmÞ

�
: ð46Þ

To calculate the shape parameter αwe insert Eq. (38) into
Eq. (44) and calculate the second derivative C00ðrmÞ. The
full expression for α in terms of KðrÞ, F ðrÞ, ΦðaÞ, λ, and j
is very complicated, but we can understand the qualitative
effect of the anisotropy by making a perturbative expansion
for λ ≪ 1

α ≃ α0f1þ ½pðrmÞ − qðrmÞ�ΦðaÞλ
þ pðrmÞqðrmÞΦ2ðaÞλ2g; ð47Þ

where α0 is the shape parameter when λ ¼ 0, and pðrÞ and
qðrÞ are two dimensionless functions defined as

pðrÞ≡ F ðrÞ
KðrÞr2 ð48Þ

qðrÞ≡ 1

r2
F 00ðrÞr2 þ 4rF 0ðrÞ þ 2F ðrÞ
K00ðrÞr2 þ 4rK0ðrÞ þ 2KðrÞ : ð49Þ

The shape parameter α0 of the isotropic solution is
related to a family of curvature profiles KðrÞ

KðrÞ ¼ A exp

�
−

1

α0

�
r

rm;0

�
2α0

�
; ð50Þ

where rm;0 is the comoving scale of the perturbation,
obtained from Eq. (46) when λ ¼ 0, and A is a parameter
varying the perturbation amplitude δ as (see [46] for more
details)

δ ¼ 2

3
e−1=α0Ar2m;0: ð51Þ

The left plot of Fig. 1 shows the compaction function
profiles, obtained from (50) when λ ¼ 0, for different value
of α. The peak of the compaction function becomes broader
(red lines) for smaller values of α, corresponding to a shape
of the energy density profiles more and more peaked.
Instead for larger values of α the compaction function is
more peaked (blue lines) while the energy density profiles
become broader. For α ¼ 1 we have the particular case of a
Mexican hat shape for the energy density, obtained using a
Gaussian profile for the curvature profile KðrÞ.

B. The threshold for PBH formation

As the numerical simulations have shown, in a radiation
dominated Universe there is a simple analytic relation for
the threshold of PBH formation as a function of the shape
parameter, α, corresponding to the numerical fit given by
Eq. (44) of [48]:

δc ¼

8>><
>>:

α0.047 − 0.50 0.1≲ α ≲ 7

α0.035 − 0.475 7≲ α≲ 13

α0.026 − 0.45 13≲ α≲ 30:

ð52Þ

This is represented in the right plot of Fig. 1, where the
numerical data is plotted with a blue line, while the fit given
by (52) is plotted with a dashed line.

FIG. 1. The left-hand plot shows the behavior of the compaction function varying the shape parameter α while the right-hand panel
shows the numerical data for δc, using a blue line, in terms of α while the analytic fit given by (52) is plotted with a dashed line. In
particular we are using here the curvature profile given by (50) for λ ¼ 0.
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Inserting (50) into Eq. (38), and solving numerically for
the functionF ðrÞ (see Appendix B) to compute the profiles
of the pressure or energy density gradients, we can study
how the Mexican hat profile of the energy density, taken as
a typical perturbation, is modified by the anisotropy,
varying λ. To do this we consider a constant value of
the perturbation amplitude δ ¼ 0.5, taking into account that
δc ≃ 0.5 is the threshold for the Mexican hat shape (α0 ¼ 1
and λ ¼ 0). The relation between δc and α given in (52)
then allows the corresponding value of the threshold to be
computed in terms of λ.
Here we are assuming that the effect of the anisotropy

could be computed with the nonlinear modification of the
shape, without modifying the relation between the shape
and the threshold. This is a reasonable approximation
without performing full nonlinear simulations of the
anisotropic collapse.

After normalizing r2m;0 ¼ 1 and inserting this into
Eq. (46) we find that rm ≃ rm;0 which means that there
is no a significant change in the characteristic scale because
of the anisotropy. The main effect on the shape is given by
the competition of the two functions pðrÞ and qðrÞ defined
in Eqs. (48) and (49). In general we have observed that
pðrmÞ > qðrmÞ and therefore from Eq. (47) one can easily
infer that, considering terms up to order OðλÞ in Eq. (47),
for positive values of λ the value of the shape parameter α
increases, making the shape of the compaction function
sharper while the shape of the energy density perturbation
profile becomes broader. On the other hand, negative values
of λ give a smaller value of α, broadening the shape of the
compaction function while the energy density perturbation
profile gets steeper.
This behavior is shown explicitly in Fig. 2, where we plot

ρ̃ for different values of λ when gðr; tÞ ¼ Rðr; tÞ: the upper

FIG. 2. In this figure, we show the behavior of ρ̃ plotted against r=rm for the special case n ¼ 0 from the family of models with
gðr; tÞ ¼ Rðr; tÞ. In the top panels, we consider the case where the equation of state of the anisotropic fluid is given in terms of pressure
gradients, following Eq. (13), whereas in the bottom panels we account for the case where the equation of state is given in terms of
energy density gradients, following Eq. (14). The left panels consider negative values of the anisotropy parameter λ while the right ones
account for positive values.
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plots correspond to the EoS expressed in terms of pressure
gradients (j ¼ 0) while the bottom ones refer to the EoS
expressed in terms of energy density gradients (j ¼ 1). The
left plots of this figure are characterized by negative values
of λ while the right plots are characterized by positive
values of λ.
Starting from λ ¼ 0 when the fluid is isotropic, we

observe for λ < 0 an increase of the amplitude of the
peak of the energy density perturbation and the central
profile sharpens more and more, consistently with the
increase of the pressure gradients in the center observed
in the left panels of Fig. 2. This translates into a broad-
ening of the peak of the compaction function, decreasing
the value of δc and enhancing in this way the formation
of PBHs.
This could be explained with simple physical arguments

by the following reasoning: given the fact that the pressure/
energy density gradient profile is mainly negative (see
Appendix B), from pr − pt ¼ −λRDr (pr or ρ), one has that
pr < pt and the radial pressure is reduced with respect to
the tangential one. Because of this, one would expect it to
be easier for a cosmological perturbation to collapse along
the radial direction with respect to the isotropic case and
consequently the peak of the energy density perturbation to
be larger compared to the isotropic case with λ ¼ 0.
On the other hand, when λ > 0we have pr > pt, giving a

larger value of the radial component of the pressure
compared to the isotropic case. In this case the pressure
gradients are increased around rm as shown in the right
panels of Fig. 2. This translates into a reduced amplitude of
the peak of the energy density perturbations with respect to
the isotropic case, which makes the collapse of cosmo-
logical perturbations into PBHs more difficult, increasing
consequently the value of δc.

In Fig. 3, we analyze the effect of the anisotropy on the
profile of the energy density perturbation when the equa-
tion of state is characterized by gðr; tÞ ¼ ρnðr; tÞ, rescaling
the anisotropic parameter, measured at horizon crossing
aHC, in a dimensionless form

λ̃≡ λΦðaHCÞ; ð53Þ

which allows he EoS to be rewritten as

pr ¼
1

3

�
ρ−2λ̃rmχnðaÞ

�
ρ

ρb;i

�
n
Dr

�
pr ðj¼ 0Þ
ρ ðj¼ 1Þ

	�
; ð54Þ

where

χnðaÞ≡ 2aið1 − 2nÞ
3

ðaaiÞ3h
ðaaiÞ2ð1−2nÞ − 1

i : ð55Þ

In this case, we consider only positive values of λ̃ because
of the structure of the equations for the pressure or energy
density gradients [see Eqs. (B5) and (B6) in Appendix B 2].
As we have discussed in Sec. V B, this EoS introduces a

characteristic scale into the problem, which requires speci-
fication of an additional parameter μ≡ ðρb;HCρb;i

Þ1=4, defined as
the ratio between the energy scales at horizon crossing
(ϵHC ¼ 1) and at the initial time ti, when the perturbations
are generated. This time depends on the particular cosmo-
logical model of the early Universe being considered (e.g.
inflation).
From the EoS seen in Eq. (54) one can identify three

main contributions: the dimensionless parameter λ̃ account-
ing for the anisotropy of the medium, the term ð ρ

ρb;i
Þn

FIG. 3. In this figure, we show the behavior of ρ̃ against r=rm when gðr; tÞ ¼ ρnðr; tÞ. In the left panel, we consider the case where the
equation of state of the anisotropic fluid is given in terms of pressure gradients, following Eq. (15), whereas in the right panel we account
for the case where the equation of state is given in terms of energy density gradients, following Eq. (16).
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measuring the effect of cosmic expansion, and finally Dr
(pr or ρ) which accounts for the effect of the pressure or
energy density gradients. As it seems reasonable, we
assume that for t → ∞ the contribution of the pressure
and energy density gradients disappears. This constrains
the value of the exponent of ρ just to non-negative values
(n ≥ 0), and it is interesting to note that this is discarding
the solution analyzed in Sec. VA.
In Fig. 3 we analyze the simplest model with n ¼ 0 and

μ ¼ 10−10. The qualitative behavior is similar to the
case where gðr; tÞ ¼ Rðr; tÞ with a positive value of λ̃
enhancing the radial pressure compared to the tangential
one and reducing the height of the peak of ρ̃ with
respect the isotropic case, making in this way more
difficult for cosmological perturbations to collapse into
PBHs. This is confirmed by the behavior of the pressure
gradients seen in Fig. 7, similar to the one seen in the right
plots of Fig. 6.
The effect of the anisotropy on the shape of the energy

density perturbation can be used to estimate the corre-
sponding effect on the threshold δc for PBH formation. To
do so, we make the assumption that δc has the same
dependence on the shape of the initial energy density
perturbation profile seen in the isotropic case, as given by
(52). This enables us to study how δc is varying with respect
to the amplitude of the anisotropy, as shown explicitly in
Fig. 4, both for the model plotted in Fig. 2 when gðr; tÞ ¼
Rðr; tÞ (left panel) and for the model of Fig. 3, when
gðr; tÞ ¼ ρnðr; tÞ, using in particular n ¼ 0 and μ ¼ 10−10

(right panel). Finally in Fig. 5 we study the behavior of δc
when gðr; tÞ ¼ ρnðr; tÞ for different values of n, consider-
ing in the left panel the EoS written in terms of pressure
gradients while in the right one the EoS written in terms of
density gradients is used.

In general we observe an initial increase of δc with
respect to λ or λ̃, which is somehow expected, as already
explained, because the shape parameter α becomes larger
for an increasing amplitude of the anisotropy, enhancing
the radial pressure with respect to the tangential one.
However from these figures we can see a critical value
of λ and λ̃, followed by a decreasing behavior of δc, when
the modification of the shape parameter due to the
anisotropy is nonlinear. This effect is due to the term
Oðλ2Þ in Eq. (47), becoming important when λ ∼ 1.
Obviously this regime is challenging the validity of our
approximation of computing the threshold using the iso-
tropic relation between δc and α, and this result should
therefore be considered with care.
Figure 5 shows that, while the model in terms of pressure

gradients has a different behavior for different values of n,
the model of the EoS written in terms of density gradients
shows a universal behavior, independent of the particular
value of n. This difference can be explained by the implicit
solution of the equation of state, when this is expressed in
terms of the pressure gradients with respect to the explicit
form, which has when written in terms of the density
gradients.
Although these results are genuinely interesting and find

a clear physical explanation, we stress again that one cannot
fully trust the perturbative approach in the regime where δc
is decreasing and full numerical simulations solving the
nonlinear hydrodynamic equations are necessary to con-
firm to which extent Eq. (52) holds for a nonlinear
amplitude of the anisotropy.
Despite this, the results obtained here give a reasonable

estimation of the effect of the anisotropy on the threshold of
PBH formation when the anisotropy is not too large, with a
change of the threshold up to 25%. This would mean,

FIG. 4. This figure shows the threshold of PBHs δc as a function of the amplitude of the anisotropy in linear scale. In the left panel, we
see the case where gðr; tÞ ¼ Rðr; tÞwhile in the right panel we consider a more general model with gðr; tÞ ¼ ρnðr; tÞ. For both cases the
blue dots indicate the values of the threshold when the anisotropic term of the equation of state is modeled in terms of pressure gradients
while the red dots correspond to values of the threshold when the anisotropic term is written in terms of gradients of the energy density.
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potentially, a relevant change of the abundance for PBHs if
the early Universe was significantly nonisotropic.

VII. CONCLUSIONS

In this work, we have studied the formation of PBHs
within a radiation fluid described by an anisotropic pres-
sure. By making use of a covariant formulation of the
equation of state and performing a gradient expansion
approximation on superhorizon scales we have computed
the anisotropic quasihomogeneous solution describing the
initial conditions that one would need to use in the future
for numerical simulations. Using this solution we have
investigated the effect of the anisotropy on the shape of the
energy density perturbation profile, estimating the corre-
sponding value of the threshold for PBHs, assuming that δc
has the same behavior with the shape of the energy density
profile as when the fluid is isotropic.
Although the estimation of the threshold for PBH

computed here is consistent only for small values of the
anisotropy parameter (λ ≪ 1), the qualitative behavior
found for δc looks to be consistent, and gives a reasonable
solution to a problem that has never been studied before. To
obtain a more quantitative and precise answer to such a
problem, when the amplitude of the anisotropy is not small,
it would be necessary to perform full numerical simula-
tions, generalizing for example the code used in previous
works of this type, as in [41–44,46,48].
Before concluding we should comment here on the

model with gðr; rÞ ¼ Rðr; tÞ where the behavior of α
and δc is significantly different when pr − pt is propor-
tional to the pressure gradients from the case when it is
proportional to the energy density gradients. In the first

case δc is initially increasing with λ up to a critical point and
then decreases, while in the second case δc is first
decreasing and then increasing. It is difficult to understand
the physical motivation of this discordant behavior. This
model however is not based on solid physical grounds,
because the EoS with gðr; tÞ ¼ Rðr; tÞ is not expressed in
terms of local quantities, as one would normally expect.
This is a special case of the model described in Sec. V B,
with n ¼ −1=4, where the pressure or energy density
gradients do not vanish for an infinite expansion, as one
would expect.
Analyzing this first model has been useful to simplify the

problem, understanding how to write the anisotropic
quasihomogeneous solution in a clear and self consistent
form. However, only the model elaborated later in Sec. V B,
where the EoS is written only in terms of local quantities,
and the anisotropy is varying also with the expansion of the
Universe, looks to be physically plausible, and therefore
should be seriously taken into account for further studies on
the subject, with particular attention to the version where
the EoS is written in terms of density gradients, charac-
terized by an explicit solution.
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APPENDIX A: EOS WITH gðr;tÞ= ρnðr;tÞ AND
n= 1=2;1=4

Here we discuss the particular cases when n ¼ 1=2 and
n ¼ 1=4. Looking at Eq. (41), one can see that the
functions Φ, I1, and I2 diverge due to the prefactor 1=ð1 −
2nÞ in Φ and 1=½ð1 − 2nÞð1 − 4nÞ� in I1 and I2. However,
computing carefully these limits for n → 1=2 one gets

ΦðaÞ ¼ 3
ffiffiffiffiffiffiffi
ρb;i

p
airm

�
a
ai

�
−3

ln

�
a
ai

�
ðA1Þ

I1ðaÞ ¼
ffiffiffiffiffiffiffi
ρb;i

p
2airm

�
a
ai

�
−3
�
2 − 2

a
ai
þ ln

�
a
ai

��
ðA2Þ

I2ðaÞ ¼
ffiffiffiffiffiffiffi
ρb;i

p
airm
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ai
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ln

�
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ai

�
−

a
ai
þ 1

�
; ðA3Þ

while for n → 1=4 one has

I1ðaÞ ¼
ρ1=4b;i

2airm

�
a
ai

�
−3
�
a
ai

�
1 − 2 ln

�
a
ai

��
− 1

	
ðA4Þ

I2ðaÞ ¼
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ai

��
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: ðA5Þ

APPENDIX B: DENSITY AND PRESSURE
GRADIENTS

In this appendix, we give some additional details con-
cerning the pressure and energy density gradient profiles
for both EoSs, gðr; tÞ ¼ Rðr; tÞ and gðr; tÞ ¼ ρnðr; tÞ.

1. Equation of state with gðr;tÞ=Rðr;tÞ
In the case where the equation of state is given in terms

of pressure gradients, following Eq. (13), in order to get ∂p̃r
∂r ,

one should combine Eq. (25) and the equation for ρ̃ from
Eq. (28) to find the behavior of fðrÞ defined in Eq. (27) as
solution of the following differential equation:

4λ

3
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
f0ðrÞ þ

�
7λ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
þ 3

2

�
fðrÞ

−
�½r3KðrÞ�0

3r2

	0
r2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
¼ 0; ðB1Þ

with the boundary condition fð0Þ ¼ 0, as imposed by
Eq. (12). For λ ¼ 0 one recovers the isotropic quasihomo-
geneous limit,

fλ¼0ðrÞ ¼
2

3

�½r3KðrÞ�0
3r2

	0
r2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
: ðB2Þ

Solving Eq. (B1) for fðrÞ, which allows to compute
explicitly F ðrÞ in Eq. (30), one obtains the explicit for of
the quasihomogeneous solution given in (28) written in
terms of a given curvature profile KðrÞ.
In the case where the equation of state is given in terms

of energy density gradients, following Eq. (14), with the
same reasoning as before one gets the following equation
for fðrÞ:

2λ

3
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
f0ðrÞ þ

�
8λ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
þ 1

�
fðrÞ

þ −2
�½r3KðrÞ�0

3r2

	0
r2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
¼ 0; ðB3Þ

with the boundary condition fð0Þ ¼ 0.
In Fig. 6, we show the pressure and energy density

gradient profiles for positive and negative values of the
anisotropy parameter λ. As one can clearly see, in the case
where λ < 0, there is a divergence of the pressure and
energy density gradient profile in the center below a critical
value. This behavior is due to the mathematical structure of
Eq. (B1) and Eq. (B3), where the radial derivatives of p̃r
and ρ̃ diverge at r ¼ 0, for λ < −9=14 and λ < −3=8,
respectively.
To see this more in detail, consider for example the EoS

in terms of the pressure gradients (the same applies also for
the energy density gradients) and develop fðrÞ defined in
Eq. (27) around zero as

fðrÞ ¼ j0 þ j1rþ j2r2=2;

where

j0 ¼ fð0Þ ¼ p̃0
rð0Þ; j1 ¼ f0ð0Þ and j2 ¼ f00ð0Þ;

and then using the differential equation (B1) we get

8λr
9

�
1 −

Ar2

2

�
ðj0 þ j1rÞ þ

�
14λ

9

�
1 −

Ar2

2

�
þ 1

�

×

�
j0 þ j1rþ

j2r2

2

�
− p̃0

r;iso

�
1 −

Ar2

2

�
¼ 0: ðB4Þ

Taking now the limit as r → 0 we obtain

j0 ¼ p̃0
rð0Þ ¼ lim

r→0

p̃0
r;isoðrÞ
1þ 14λ

9

;

where p̃0
r;iso ¼ 2

3
f½r3KðrÞ�0

3r2 g0r2m.
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If λ < −9=14 one gets that p̃0
rð0Þ ¼ 0þ which is not

consistent because p̃0
rð0Þ should approach zero from

negative values, namely p̃0
r;isoð0Þ ¼ 0−. However, if λ >

−9=14 one obtains the consistent result that p̃0
rð0Þ ¼ 0−.

For the critical value λ ¼ −9=14, applying the De l’Hopital
theorem and considering that p̃00

r;isoð0Þ < 0, one gets

p̃0
rð0Þ ¼ lim

r→0

p̃0
r;isoðrÞ
1þ 14λ

9

¼ −∞ ≠ 0−:

In the case of pr − pt ¼ −λRDrpr with λ < 0 one gets that
λ should be larger than a critical value, namely λ > λc ¼
−9=14. When pr − pt ¼ −λRDrρ, following the same
procedure, one obtains λ > λc ¼ −3=8 in order to avoid
∂ρ̃
∂r diverging at r ¼ 0.

2. Equation of state with gðr;tÞ= ρnðr;tÞ
In the case where the EoS is given in terms of pressure

gradients, following Eq. (15), one should combine Eq. (34)
and ρ̃ from Eq. (37) to obtain after a straightforward
calculation the following differential equation for the
function fðrÞ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q �
ρnbðaÞ
ρnb;i

χnðaÞ
a

þ 1

3

�
λ̃rf0ðrÞ

þ
��

ρnbðaÞ
ρnb;i

χnðaÞ
a

þ 4

3

�
λ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
þ 3r
2rm

	
fðrÞ

−
�ðr3KðrÞÞ0

3r2

�0
rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
¼ 0; ðB5Þ

FIG. 6. In this figure, we show the behavior of ∂p̃r
∂r and ∂ρ̃

∂r plotted against r=rm. The top panels concern the case where the equation of
state is given in terms of pressure gradients, following Eq. (13), whereas the bottom panels are for the case where the equation of state is
given in terms of energy density gradients, following Eq. (14). The left figures show the gradient profiles when λ < 0 whereas the right
ones consider values of λ > 0.
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where fðrÞ is defined in Eq. (36). The above differential
equation should satisfy theboundary condition limr→0fðrÞ¼
0 as imposed by Eq. (12).
Finally, in the case where the equation of state is given in

terms of energy density gradients, following Eq. (16), with
the same reasoning as before one obtains the following
differential equation for the function fðrÞ:

2λ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

p
3

rf0ðrÞ þ
�
8λ̃

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
þ r
rm

	
fðrÞ

− 2

�ðr3KðrÞÞ0
3r2

�0
rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

q
¼ 0; ðB6Þ

with limr→0 fðrÞ ¼ 0.
In Fig. 7 we show the pressure and energy density

gradient profiles for different values of λ and n ¼ 0. In this
case, negative values of λ lead to a divergence of the radial
derivatives of p̃r and ρ̃ at r ¼ 0 and therefore they should
not be taken into account. This can be seen by applying
the same gradient expansion around zero for Eq. (B5) as
before, which gives

p̃r
0ð0Þ ¼ lim

r→0

p̃0
r;isoðrÞ

2
3ð1−2nÞ

λρnb;i
μ



μ
ϵ

�
3
h
ð3 − 2nÞ



μ
ϵ

�
4n−2

− 2
i ;

where p̃0
r;iso ¼ 2

3

�
½r3KðrÞ�0

3r2

	0
r2m, and the necessary condition

in order not to have a divergence at r ¼ 0 is

3

2ð1 − 2nÞ
λ

μ

�
μ

ϵ

�
3
�
ð3 − 2nÞ

�
μ

ϵ

�
4n−2

− 2

�
> 0: ðB7Þ

From the above expression, fixing μ and ϵ one may identify
two regimes, n > 1=2 and n < 1=2. In particular, when n >
1=2 assuming that μ=ϵ ≪ 1, one sees that the second term
within the square brackets of Eq. (B7) is dominant and
λ > 0. On the other hand, if n < 1=2 the first term within
the brackets is now dominating, and one again gets λ > 0.
Therefore, if μ=ϵ ≪ 1 one has in general that λ > λc ¼ 0.
Finally, when the difference between the radial and the

tangential pressure is proportional to the energy density
gradients, by following the same reasoning, one gets the
following necessary condition to avoid divergences around
r ¼ 0:

4

1 − 2n
λ

μ

�
μ

ϵ

�
3
�
1 −

�
μ

ϵ

�
4n−2

�
< 0; ðB8Þ

and if μ=ϵ0 ≪ 1, we again have λ > 0 for any value of n.
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