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Dark matter (DM) with a mass below a few keV must have a phase space distribution that differs
substantially from the Standard Model particle thermal phase space: otherwise, it will free stream out of
cosmic structures as they form.We observe that fermionic DM ψ in this mass range will have a non-negligible
momentum in the early Universe, even in the total absence of thermal kinetic energy. This is because the
fermions were inevitably more dense at higher redshifts, and thus experienced Pauli degeneracy pressure.
They fill up the lowest-momentum states, such that a typical fermion gains a momentum ∼OðpFÞ that can
exceed its mass mψ . We find a simple relation between mψ , the current fraction fψ of the cold DM energy
density in light fermions, and the redshift at which they were relativistic. Considering the impacts of the
transition between nonrelativistic and relativistic behavior as revealed by constraints on ΔNeff and the matter
power spectrum, we derive qualitatively new bounds in the fψ −mψ plane. We also improve existing bounds
for fψ ¼ 1 to be mψ ≥ 2 keV. We remark on implications for direct detection and suggest models of dark
sectors that may give rise to cosmologically degenerate fermions.
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I. INTRODUCTION

As searches for canonical weak-scale dark matter (DM)
candidates return null results, novel theoretical possibilities
for the identity of the DM are gaining unprecendented
traction [1]. Driven by these pressures from experiments,
searches for “light” DM particles are entering a new and
productive phase [2].
Conventional wisdom provides several definitions for

the dividing mass below which DM particles are “light.”
First is the operational definition driven by the fact that
conventional direct detection searches with cryogenic
materials suffer from poor kinematics for DM masses
below a few GeV. Next is the definition from considering
the growth of structure that can be divined from studying
the cosmic microwave background (CMB) or Universe’s

structures larger than Oð10Þ kpc: if thermally produced
DM is less massive than a few keV, then the observed CMB
and matter power spectrum will be modified. Finally, one
can define light DM particles as those which are necessarily
in a high occupation mode in the Milky Way (MW) today:
DM is considered light if its de Broglie wavelength satisfies
mDMvDM;MW ≲ ðρDM;MW=mDMÞ1=3, which is true for
mDM ≲Oð10Þ eV. An interesting corollary to this final
statement holds for fermions, which obey the Pauli exclu-
sion principle [3] and thus are endowed with a “Fermi
momentum,” pF ¼ ð6π2nψ=gψ Þ1=3 for a fermion ψ with gψ
internal degrees of freedom: if the DM is fermionic and
lighter than∼Oð10Þ eV, then the Pauli degeneracy pressure
could “crowd it out” of the Milky Way.
The focus of this paper is to explore the minimal

mass bound—a mass floor—on fermionic dark matter
by considering the impact of degenerate pressure on
cosmological scales, rather than only in the context of
local objects that has been extensively studied previously
[4–10]. For clarity, we will explicitly enumerate some
of the assumptions that will allow us to extrapolate the
physics of degenerate fermion systems to different tem-
perature and density scales than have been considered
before. We assume that

(i) The DM is thermally cold: the ψ particles have
negligible random thermal motion, so their kinetic
energy comes solely from their degeneracy.
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(ii) The DM has a fixed comoving number since the
beginning of the big bang nucleosynthesis (BBN)
until today: the DM does not annihilate away. The
DM can either be asymmetric or its annihilation is
kinematically forbidden.

(iii) The DM does not form bound states in high-density
environments: such as confinement via non-Abelian
symmetry since the beginning of the BBN.

(iv) There is a single “flavor” of ψ : we will assume gψ ¼
2 for most of the discussion, appropriate for a single
spin-1=2 degree of freedom. If we allow Nf flavors
of ψ particles, then our constraints on mψ weaken

such that mψN
1=4
f remains constant.

Furthermore, we will consider the possibility that only a
subdominant component of the present-day (z ¼ 0) dark
matter density is in the form of ψ particles. We will para-
metrize this fraction by the constant fψ ≡ ρψ=ðΩDMρcÞ,
where ρψ is the present-day energy density of ψ particle,
ΩDM ≃ 0.25 is the fraction of the present-day energy density
of the Universe in dark matter, and ρc ¼ 3H2

0=8πG is the
present-day critical density. When we consider fψ < 1, we
imagine that the remaining 1 − fψ of today’s DM behaves
like a conventional cold DM (CDM) at all relevant times.
In this paper, we provide constraints on light fermionic

DM (or a subcomponent thereof) by considering the fact
that the DM number density was higher at larger redshift,
according to nψ ∝ ð1þ zÞ3. The Fermi momentum corre-
spondingly scales like pF ∝ ð1þ zÞ. Thus, at some red-
shift, zt, the Fermi momentum will satisfy pFðztÞ ¼ mψ.
At zt and higher redshifts, we have pF ≥ mψ , in which case
the typical ψ particle is relativistic, since the average
momentum hpi ¼ 3pF=4 for a degenerate fermion gas.
The fermionic DM becomes relativistic dark radiation at
z ≥ zt, even in the absence of a dark-sector temperature.
The fermionic dark “matter” therefore suffers two types of
constraints: cosmological constraints on the presence of
extra radiation, and bounds on the missing cold dark matter
during structure formation.

II. COSMIC DEGENERACY PRESSURE AND ΔNeff
CONSTRAINTS

For a given present-day energy density ρψ dominated by
the nonrelativistic particle’s rest energy, there will inevi-
tably be a redshift zt where the Fermi momentum becomes
comparable to the particle mass: pFðztÞ≡mψ . Given the ψ
particle number density nψ ðzÞ ¼ nψ ðz ¼ 0Þð1þ zÞ3 with
nψðz ¼ 0Þ ¼ ρψ

Nfmψ
, we obtain

pFðzÞ ¼
�
6π2nψðzÞ

gψ

�
1=3

¼
�

6π2ρψ
gψNfmψ

�
1=3

ð1þ zÞ;

1þ zt ¼
�

gψNfm4
ψ

6π2fψΩDMρc

�
1=3

≃
1500

f1=3ψ

�
mψ

eV

�
4=3

: ð1Þ

The last equality in the second expression comes from
assuming gψ ¼ 2 and Nf ¼ 1; these will be our default
values throughout. At z > zt, the DM particle redshifts like
radiation as long as it satisfies the assumptions laid out in
the introduction. We discuss the nonrelativistic to relativ-
istic transition in more detail in Appendix A, where we
calculate the equation of state w and show that pF ∼mψ is a
reasonable estimate of this transition.
Because the energy density in matter redshifts differently

than the energy density in radiation, the relative value of
the energy density of ψ compared to the conventional
radiation energy density will change as a function of z, up
to the redshift zt. We will characterize the energy density
of ψ over the redshift range for which it is relativistic
by its equivalent number of effective neutrino degrees of
freedom, ΔNeff . At z ¼ zt, the energy density from ψ
particle is ρψ ð1þ ztÞ3, while neutrino energy density is
κNνΩγρcð1þ ztÞ4. Here Ωγ ≃ΩDM=5500 is the present-
day energy density of photon, Nν ¼ 3.045 is the number of
Standard Model neutrinos, and κ ¼ 7

8
ð 4
11
Þ4=3 ¼ 0.22. ΔNeff ,

staying as a constant for z > zt, can be estimated as

ΔNeffðmψ ; fψÞ ¼
ρψ ð1þ ztÞ3

κNνΩγρcð1þ ztÞ4
Nν ¼

ρψ
κΩγρcð1þ ztÞ

;

¼ fψΩDM

κΩγ

f1=3ψ

1500

�
eV
mψ

�
4=3

; ð2Þ

where we have substitute 1þ zt in the denominator for its
expression in Eq. (1). We plot contours of fixed values of zt
and ofΔNeffðmψ ; fψÞ in the fψ −mψ plane in Fig. 1. Along
the dashed portions of the lines, zt is negative, which leads
to unphysical values of ΔNeff .
One observable way in which ρψ can pose a problem

is if the amount of extra radiation energy that ψ carries at
z ≥ zt exceeds the allowed energy density from cosmo-
logical constraints; we will label this maximum allowed

FIG. 1. Contours of zt as in Eq. (1) and of ΔNeff as in Eq. (2).
We define zmr ¼ 3300 and zhk ¼ 2 × 107.
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energy density in terms of the corresponding ΔNmax
eff ðzÞ.

Requiring ΔNeff in Eq. (2) to be smaller than ΔNmax
eff ðzÞ

and using Eq. (1) to replace zt, we have the bound

fψ <
h
ΔNmax

eff ðzÞ
0.1

i
3=4 mψ

46 eV. We should also check that zt does

not exceed the value of z from which we extract the bound
on ΔNeff . Note that this bound only applies if ρψ ≥
κΔNmax

eff ðzÞΩγρc (fψ ≥ fmin ≡ 4 × 10−6ΔNmax
eff ðzÞ=0.1).

Summarizing, we have the bound

fψ < max

�
fmin;

�
ΔNmax

eff ðzÞ
0.1

�
3=4 mψ

46 eV

�
: ð3Þ

Values of fmin are shown as the horizontal line segments in
Fig. 1 for two values of ΔNmax

eff ðzÞ ¼ 0.1 and 0.5. The two
numbers of ΔNmax

eff ðzÞ cover a range of ΔNeff bounds
obtained with different model priors and choices of data,
and we plot the two curves only to show the dependence of
the fψ constraint on ΔNmax

eff ðzÞ. In a single-parameter
extension of the baseline ΛCDM model, the constraint
is ΔNmax

eff ðz ≃ zCMBÞ ≃ 0.28 at 95% C.L. due to CMB
temperature and polarization measurements plus a prior
on the baryon density from baryon acoustic oscillations,
where zCMB ¼ 103 [11]. A BBN-only calculation using the
latest value of the Dðp; γÞ3He rate [12] provides the
independent constraint ΔNmax

eff ðz ≃ zBBNÞ ≃ 0.12 [13] from
fitting the free parameter ΔNeff to the observed abundances
of baryons, deuterium, and helium, where zBBN ≃ 3 × 109 is
the temperature of n − p freeze-out [14,15]. This is relaxed
to ΔNmax

eff ðz ≃ zBBNÞ ≃ 0.37 from a joint fit of the deuterium
and helium abundances only [12]. Multiple-parameter
extensions of ΛCDM, particularly those that reduce the
Hubble tension, broaden the posteriors on all parameters,
and the constraint is relaxed to ΔNmax

eff ≃ 0.5 [11]. We plot
Eq. (3) with ΔNmax

eff ¼ 0.1 or 0.5 for all z in black in Fig. 3.
The fact that we use a bound from BBN justifies the
assumption that zt is smaller than the value of z from which
we extract the bound on ΔNeff .

III. STRUCTURE FORMATION CONSTRAINTS

Thus far, we have considered the impact of changing
the radiation energy density of the Universe. We may also
consider the impacts of changing the CDM density when
structures start to form. If too much of today’s ρCDM
remains relativistic below the redshift zhk ≃ 2 × 107 when
the high-k modes in the large scale structure, high-l modes
in the CMB, or galaxies with sizes k−1 ≳Oð10Þ kpc enter
the horizon, there can be observable consequences. These
consequences are revealed at low redshift by measurements
of the matter power spectrum at different characteristic
wave numbers.
If zt ≳ zhk, then ψ is cold for purposes of structure

formation and will be an indistinguishable part of the general
CDM density. Thus, the cyan line in Fig. 1 suggests that the

matter power spectrum is the same as ΛCDM for any value
of fψ if mψ ≳Oð1Þ keV. If on the other hand zt ≲ zhk, then
ψ is warm due to the degeneracy pressure and does not
clump to form structures sufficiently early. This slows down
the overall growth of matter density perturbations. The effect
can be constrained, as we discuss presently, by the Lyman-α
forest data or by countingMW satellite galaxies to determine
the subhalo mass function (SHMF).
A detailed simulation of the nonlinear physics involved

in the formation of the Lyman-α forest or the collapse of
small-scale halos is beyond the scope of this work. Instead,
we compare the linear power spectrum PψðkÞ for degen-
erate fermions to the results from the warm DM (WDM)
scenarios that saturate the bound obtained in [16]. We use
the momentum distribution with large chemical potential
in Appendix B to mimic the momentum distribution of
degenerate ψ particles. Using the noncold DM module of
CLASS [17] and the default ΛCDM parameters based on
[11], we calculate the linear matter power spectrum PψðkÞ
for a given fψ and mψ . Normalizing PψðkÞ to that of a
ΛCDM Universe augmented by the presence of the same
ΔNeff as obtained from Eq. (2) gives the transfer function
T2ðkÞ≡ Pψ ðkÞ=PΛCDMþΔNeff

ðkÞ. The calculation is done
for z ¼ 4.2, which is close to the redshift of Lyman-α data
from the MIKE=HIRESþ XQ-100 combined dataset used
in [16,18]. The result only changes mildly from z ¼ 0. The
T2ðkÞ spectrum varies between models with different DM
masses, density fractions, and momentum distributions.
We set bounds based on two separate criteria. The

Lyman-α forest is sensitive to wave numbers from
0.5 < kMpc=h < 20, and we estimate the corresponding
constraint to be T2ðk < 20 h=MpcÞ ≥ 0.7. This is chosen
by looking at the TðkÞ of WDM scenarios studied in [16]
that pass the Lyman-α constraint. This is supported by the
fact that the deviation of the 1D power spectrum in our
model mainly comes from the highest kmodes ≈20 h=Mpc
using the data in [16]. The SHMF is informed by the
fact that the smallest satellite galaxies have k ≈ 50 h=Mpc.
We estimate the bound from the SHMF to be
T2ðk < 50 h=MpcÞ ≥ 0.5. This is chosen based on the
power spectrum of the WDM model that passes the bound
obtained in [19] from DES [20] and Pan-STARRS1 [21]
data. We represent these constraints as shaded regions in
Fig. 2. In this figure, we also show examples of T2ðkÞ with
different fmψ ; fψg that pass these constraints, and we
compare the results to a scenario that only contains WDM,
with mWDM ¼ 5.3 keV, corresponding to the WDM con-
straint obtained in [18]. [Different values of ΛCDM
parameters lead to an ∼Oð10%Þ different value for this
bound [19].] The smallest wave number with significant
suppression depends on the transition redshift zt: lower zt
suppresses T2ðkÞ to smaller k.
In Fig. 3 we show in cyan the exclusion region due to

these Lyman-α and SHMF constraints. For fψ ¼ 1, we
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constrain fermion masses up to mψ ¼ 2 keV due solely to
the impacts of degeneracy pressure on structure formation
in the early Universe, particularly on the modes of size
k ¼ 50 h=Mpc. This is comparable to a similar bound
derived in [22]. Our bounds asymptote to approximately
fψ ≲ 3% for mψ ≲ 1 eV. We are able to constrain down
to fractions as low as 3% despite having constraints only at

the level of T2ðk < 20 h=MpcÞ ≥ 0.7 (see, e.g., the blue
dot-dashed in Fig. 2), as these degenerate fermions add
non-negligibly to the total energy density of the Universe in
the form of radiation during the time of cosmic structure
formation. This depletes the total CDM energy density and
changes the rate at which density perturbations grow [23].
We emphasize that all of our results have been derived

in the zero-Tψ limit, with the bounds serving as a mass
floor for all thermal/nonthermal fermionic dark matter
satisfying our minimal assumptions. These bounds are
only strengthened if the dark sector has a nonzero temper-
ature, which could be understood intuitively as follows:
degenerate fermions occupy the lowest-available states,
and thus include fewer relativistic particles before and
during the structure formation era compared to a fully
thermalized WDM scenario. Therefore, for a given fψ and
mψ , fermionic WDM produces larger values of ΔNeff and
modifies the matter power spectrum more than a degenerate
fermion fluid. Allowing lower temperature weakens the
bounds from both ΔNeff and structure formation on mψ

until it saturates our constraint in Fig. 3. We discuss these
behaviors in more detail in Appendix B.
Our results thus give the minimal mass of fermionic

particles allowed with a given flavor number, requiring
only their comoving number density to be conserved since
the beginning of BBN to the present time. When fψ ¼ 1,
our estimate of the Lyman-αþ SHMF bound shows that
fermionic DM that are stable and freeze out before BBN
should be heavier than ≈2 keVðNf ¼ 1Þ, irrespective of
their thermal history or phase-space distribution.

IV. LOCAL IMPLICATIONS

Degeneracy pressure from ψ particles can also modify
DM structure at scales smaller than Oð20Þ kpc if fψ ≈ 1.
Constraints from a survey of the density profiles of MW
dwarf satellites give the constraint mψ ≥ 130 eV [10].
This constraint is weaker than the Lyman-α and SHMF
ones obtained in the present study by considering the
matter power spectrum at wave numbers smaller than
k ¼ 50 h=Mpc. A related application of this analysis is
as an explanation [4–8] of the core density profiles of dwarf
galaxies [9]. For this purpose, light fermionic DM should
be in the range 70 ≤ mψ=eV ≤ 400 [8], which however has
been excluded by our constraints. The fmψ ; fψg bound
may be relaxed by increasing the number of flavors Nf

[24]: as shown in Eq. (1), there is a parameter degeneracy

mψ ∝ N−1=4
f between mψ and Nf when fixing zt and fψ to

determine cosmological observables. However, as derived
in [8], the core radius in the degenerate fermionic DM
scenario also scales as mψN

1=4
f . Thus, relaxing our bounds

by increasing the number of flavors also reduces the
degeneracy pressure in dwarf galaxies. We conclude that
repulsion from fermion degeneracy as an explanation of the

FIG. 2. The transfer function T2ðkÞ, normalized as described in
the text. Black line: warm DM model with mWDM ¼ 5.3 keV.
Green dotted line: degenerate fermions with fmψ ; fψg ¼
f2 keV; 1g. Magenta dashed line: degenerate fermions with
fmψ ; fψg ¼ f500 eV; 20%g, Blue dot-dashed line: degenerate
fermions with fmψ ; fψg ¼ f10 eV; 4%g. Transfer functions that
pass through the yellow (red) shaded regions are in violation of
Ly-α observations (subhalo counts).

FIG. 3. Shaded regions are excluded due to fermion degen-
eracy. The energy density in the ψ fluid in the early Universe
exceeds the bound from measurements of ΔNeff Eq. (3) (black).
The novel redshift dependence of the ψ fluid diminishes the
matter power spectrum as measured by the Lyman-α forest and
the subhalo mass function of the MW (cyan). The velocity due
to degeneracy pressure alters the phase-space distribution of ψ
particles in the MW (magenta), due to the smooth background
density (dashed) or due to the local Milky Way–based over-
density (dotted).
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core-cusp problem is incompatible with matter power
spectrum measurements, if the model satisfies our initial
assumptions.
Similarly, the Fermi velocity of degenerate fermions

will modify features of the ψ population in larger halos
such as the MW, which has a local DM density ρlocalDM ≃
0.3 GeV=cm3 corresponding to an overdensity of size

δMW ≡ ρlocalDM
ΩDMρc

≃ 2 × 105. If the local ψ density equals the
homogeneous ψ density ρψ ¼ fψΩDMρc, then the non-

relativistic Fermi velocity vFðz ¼ 0Þ ≃ ðmψ=eVÞ−4=3f1=3ψ ×
198 km=s will exceed the MW escape speed, vesc;MW ≃
540 km=s if ψ is sufficiently light. In this case, ψ particles
would not be gravitationally bound to the MW’s halo and
the actual local energy density ρlocalψ would not exceed ρψ .
The situation corresponds to the region on the left of the
magenta dashed line in Fig. 3. To the right of the magenta
dashed line (with larger mψ ), the Pauli degeneracy of ψ
does not entirely prevent ψ particles from accumulating in
the MW. For parameter space to the right of the dashed
magenta line there is a local overdensity of ψ particles,
though not necessarily as large as δMW: we expect
1 ≤ ρlocalψ =ρψ ≤ δMW.
At the dotted magenta line, the Fermi velocity vlocalF ¼

vesc;MW for ρlocalψ ¼ fψρlocalDM ; to the right of this line one can
obtain ρlocalψ ¼ δMWρψ while satisfying vlocalF < vesc;MW.
This suggests that the ψ particles with these parameters
have roughly the same velocity distribution as the CDM.
Between the dashed and dotted lines, we examine two cases
to understand the ψ phase-space distribution. In the first
case, we require the Fermi velocity to be below vesc;MW,
implying that the local ψ overdensity must be smaller
than δMW. Therefore, the ρlocalψ < δMWρψ , and the velocity
distribution may or may not be skewed relative to the virial
velocity distribution of the local CDM. On the other hand,
we note that it is in fact allowed to have a small portion
of ψ particles with velocity above vesc;MW in the MW [25].
If this is the case, then ρlocalψ ≃ fψρlocalDM between the magenta
lines, forcing the ψ to have a velocity distribution with
vlocalF > vesc;MW. The higher velocity due to the degeneracy
pressure would make detecting such light DM particles
easier than if they had the virial velocity distribution [25],
potentially opening up new possibilities for detector
materials [26,27]. Both effects will likely contribute, such
that the ψ phase space density could be suppressed in the
process of MW formation, which can potentially be
revealed by N-body simulations.

V. A MODEL FOR ψ PRODUCTION

We discuss one possible mechanism for populating ψ in
a degenerate state in the early Universe here, and another in
Appendix C. The first possibility is that ψ particles are
generated from the decay of a coherently oscillating scalar

field. The scalar field could be the inflaton that generates a
fermionic reheating/preheating [28–32], or another scalar
field that later decays [33–35]. In the case of the fermionic
preheating through the CP-even inflaton field ϕ, one
assumes a potential VðϕÞ ¼ 1

2
m2

ϕϕ
2 and a Yukawa coupling

yϕψ̄ψ . Since we are considering fermionic particles with
mψ ≤ keV ≪ mϕ, we can approximate its parametric
resonance production using the estimates for a massless
fermion [30]. Parametric resonance production of ψ will
lead to a nearly degenerate Fermi spectrum with momenta
stochastically filling a sphere of radius pF ∼ c1=4mϕ where
c ¼ y2ϕ2

0=m
2
ϕ with ϕ0 the initial displacement of ϕ. For

c ∼ 1, an average fraction η ≈ 0.4 of the states below pF
could be filled up [30]. Fermions can also have a parametric
resonance production by coupling to an oscillating CP-odd
scalar field ϕA. References [36,37] consider such a pro-
duction of fermion ψ that has a derivative coupling to the
axion field. When mψ ∼mϕA

, the average occupation
probability could reach η ≈ 0.5 [36]. Since our bound
depends on the combination of ηm4

ψ for a fixed ρψ , as
shown in Appendix B, the bound on mψ therefore gets
η−1=4 ≈ 1.2 times stronger in these scenarios.

VI. CONCLUSIONS

Fermions cannot reach arbitrarily high density without
obtaining significant kinetic energy. In this paper, we
explored the cosmological implications of degeneracy-
induced Fermi momentum and derived qualitatively new
bounds on the fermionic DM at zero temperature. The
Fermi momentum can cause the dark matter to behave as
extra radiation density in the early Universe, thereby
contributing to ΔNeff at BBN and CMB. It can also prevent
the dark matter from aiding in the growth of structure until
too low of a redshift, resulting in a suppression of the matter
power spectrum.
The dark sector may be richer than just a single particle

species. If this is the case, then multiple species contribute
to the measured value of ΩDM. Parametrizing the contri-
bution of a particle ψ as the fraction fψ , we can establish
bounds throughout the mψ − fψ parameter space. Our
considerations of the matter power spectrum lead to
constraints that can be extended down to fψ as small as
3% for masses mψ ≲ 1 eV, and contributions to ΔNeff

allow constraints on values of fψ as small as 2 × 10−5 for
mψ ≲ 0.1 meV. For fψ ¼ 1we improve existing bounds on
mψ to mψ ≥ 2 keV. Moreover, we have shown that the
local phase space density of DM particles can differ from
the MW’s virial distribution, and may be suppressed for
mψ ≲ 10 eV f1=4ψ . Near the boundary of this region, it is
possible that these particles have an interesting, high-
velocity distribution that may be probed in upcoming
experiments.
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APPENDIX A: DEGENERATE FERMION
THERMODYNAMICS

For any instantaneous time with a given pF, using
Eqs. (1.7), (1.20), and (1.22) from Ref. [38], we have

nψ ¼ gψp3
F

6π2
; ρ ¼ gψ

Z
pF

0

d3pE
ð2πÞ3 ;

P ¼ ρ0nψ − ρn0ψ
n0ψ

; γ ¼ n2ψ
n2ψ 0

ρ00n0ψ − ρ0n00ψ
nψρ0 − n0ψρ

; ðA1Þ

where the n − pF relation can be taken to define pF, E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is the energy of the particle with m being its

mass, and 0 denotes d=dpF. As we are using the entire
energy E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
to calculate ρ, the equation of state

is simply w ¼ P=ρ.
We have analytic results for ρ, P, and γ:

ρ

m4
¼ gψ

16π2

h
ð2x3 þ xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
− asinhðxÞ

i
;

P
m4

¼ gψ
48π2

h
ð2x3 − 3xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ 3asinhðxÞ

i
;

γ ¼ 8x5=3

2x5 − x3 − 3xþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
asinhðxÞ ;

P
ρ
¼ 8x3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
=3

ð2x3 þ xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
− asinhðxÞ − 1; ðA2Þ

where x ¼ pF=m and asinhðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ. These

expressions are plotted in Fig. 4. The adiabatic index
asymptotes to 5=3 when x → 0, but w asymptotes to 0.
At high pF, both γ and 1þ w tend to 4=3. In the expanding
Universe, the quantities above would depend on the
instantanuous redshift. Since the second Friedman equation
is written dρ=da ¼ −3Hðρþ PÞ, ρ scales as ρ ∝ a−3ð1þwÞ
for slowly varying w. Therefore, we see that the ψ fluid
redshifts like radiation for pF ≳m and redshifts like cold
matter for pF ≲m.

APPENDIX B: COMPARISON WITH OTHER
DISTRIBUTIONS

Fermionic DM particles that are relativistic before
thermal decoupling follow a momentum distribution

fðqÞ ¼ η

1þ eðq−μÞ=Tψ
: ðB1Þ

Here q is the comoving momentum, and Tψ is the dark
sector temperature at z ¼ 0. η is a factor that depends on the
thermal history of the dark sector such as the occupation
probability of the fermion energy states. In the literature,
the chemical potential is usually set to μ ¼ 0 [39,40] as in
the discussion of warm DM models [40].
The physical momentum of DM is given by p ¼ q=a.

The number density, energy density, and pressure for each
flavor are given by

a3nψðaÞ ¼
gψ

ð2πÞ3
Z

d3q fðqÞ;

a3ρðaÞ ¼ gψ
ð2πÞ3

Z
d3q fðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ψ þ
	q
a



2

r
;

¼ m4
ψgψ

ð2πÞ3
Z

d3q fðqmψÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	q
a



2

r
; ðB2Þ

a3PðaÞ ¼ gψ
ð2πÞ3

Z
d3q fðqÞ

	q
a



2 1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ψ þ ðqaÞ2
q ;

¼ m4
ψgψ

ð2πÞ3
Z

d3q fðqmψÞ
	q
a



2 1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðqaÞ2

q :

Then we have ρψ ¼ Nfρða ¼ 1Þ. For μ ¼ 0, DM models
with the same ðρψ ; mψ

Tψ
Þ have identical ρðaÞ and PðaÞ, which

lead to the same contribution to ΔNeff and the same
structure formation process. Fixing mψ

Tψ
makes ρψ ∝

ηNfm4
ψ and leads to a degeneracy mψ ∝ N−1=4

f in the
power spectrum constraint.

FIG. 4. The adiabatic index γ and the parameter that controls
the redshift behavior, 1þ w, as a function of x ¼ pF=m.
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If μ ≠ 0, then ðρψ ; mψ

Tψ
Þ no longer specifies ρðaÞ and PðaÞ.

Since the ΔNeff and the matter power spectrum are mainly
sensitive to at ¼ ð1þ ztÞ−1 for particles transiting from
relativistic radiation to nonrelativistic matter, models with
the same at and ρψ produce similar ΔNeff and matter power
spectra. From numerically solving the integrals in Eq. (B2),
one can show that in order to keep a similar ΔNeff and
structure formation bound by fixing ðat; ρψÞ, lowering Tψ

would require an increase in μ=Tψ and a decrease in mψ .
This means when lowering the temperature of fermionic
DM, the bounds become weaker and asymptote to the zero
temperature bounds we derived. In the extreme case with
Tψ → 0, we thus expect the bounds give the minimal mass
allowed for fermionic dark matter, consistent with the
intuition discussed in the main text.
For degenerate fermionic state in the early Universe, the

momentum-space distribution in the comoving frame can
be written as

fðqÞ ¼ θðqF − qÞ; ðB3Þ
which could be realized by choosing η ¼ 1; μ ¼ qF and
Tψ ≪ qF in Eq. (B1). For the following discussions, we
keep the dependence on η explicitly. The number density at

z ¼ 0 is then calculated as nψ ðz ¼ 0Þ ¼ η
gψq3F
6π2

where we
identify qF ¼ pFðz ¼ 0Þ. The time-dependent PðaÞ and
ρðaÞ have the following analytical expression:

ρðaÞ
m4

¼ gψ
16π2

h
ð2x3 þ xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
− asinhðxÞ

i
;

PðaÞ
m4

¼ gψ
48π2

h
ð2x3 − 3xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ 3asinhðxÞ

i
; ðB4Þ

with x¼qF=ma, asinhðxÞ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

p
Þ. Thus degen-

erate fermion models with the same ðρψ ; mψ

qF
Þ would have

identical ρðaÞ andPðaÞ, predicting the sameΔNeff and large
scale structure. Fixing qF

m , it follows that ρψ ∝ ηNfm4
ψ , and

hence the bounds on mψ also scale as N−1=4
f .

APPENDIX C: ALTERNATE DEGENERATE-
FERMION GENESIS MECHANISM

Another possibility for obtaining a population of degen-
erate ψ particles is that ψ particles form composite states
at early times. Suppose that the ψ particle is coupled to a
scalar ϕ with a time-varying mass, mϕ, which mediates an
attractive Yukawa force. When the ψ particles are at high
density, and their spacing falls below the inverse of mϕ, the
Yukawa force can create bound states of the fermions. If the
bound states are composed of even numbers of ψ particles,
then these composite states can then achieve high densities
without experiencing degeneracy pressure. The redshift
dependence of the energy density of this ψψ condensate
will depend on the shape of the ϕ potential, but can scale
like nonrelativistic matter at early times. If mϕ increases at
late times, then the Yukawa force can be weakened, and
the bound states decay to a high density of individual ψ
particles. Models with more complicated dark sectors
giving rise to effective phononlike forces [41], or a model
with a non-Abelian gauge group [42,43], can also create
bound states in the early Universe. Before BBN starts, we
expect these bound states to decay to a high density of
individual ψ particles if a mechanism leading to massive
gauge bosons becomes effective.
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123527 (2015).
[6] V. Domcke and A. Urbano, J. Cosmol. Astropart. Phys. 01

(2015) 002.
[7] S. Alexander and S. Cormack, J. Cosmol. Astropart. Phys.

04 (2017) 005.
[8] L. Randall, J. Scholtz, and J. Unwin, Mon. Not. R. Astron.

Soc. 467, 1515 (2017).
[9] N. C. Amorisco, A. Agnello, and N.W. Evans, Mon. Not. R.

Astron. Soc. 429, L89 (2013).
[10] J. Alvey, N. Sabti, V. Tiki, D. Blas, K. Bondarenko, A.

Boyarsky, M. Escudero, M. Fairbairn, M. Orkney, and J. I.
Read, Mon. Not. R. Astron. Soc. 501, 1188 (2021).

[11] N. Aghanim et al. (Planck Collaboration), Astron. As-
trophys. 641, A6 (2020).

[12] V. Mossa et al., Nature (London) 587, 210 (2020).
[13] T.-H. Yeh, K. A. Olive, and B. D. Fields, J. Cosmol.

Astropart. Phys. 03 (2021) 046.
[14] A. Berlin, N. Blinov, and S. W. Li, Phys. Rev. D 100,

015038 (2019).
[15] E. Grohs and G. M. Fuller, Nucl. Phys. B911, 955 (2016).
[16] R. Murgia, A. Merle, M. Viel, M. Totzauer, and A.

Schneider, J. Cosmol. Astropart. Phys. 11 (2017) 046.
[17] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart.

Phys. 07 (2011) 034.
[18] V. Iršič et al., Phys. Rev. D 96, 023522 (2017).
[19] E. O. Nadler et al. (DES Collaboration), Phys. Rev. Lett.

126, 091101 (2021).
[20] T. M. C. Abbott et al. (DES, NOAO Data Lab Collabora-

tions), Astrophys. J. Suppl. Ser. 239, 18 (2018).
[21] K. C. Chambers et al., arXiv:1612.05560.

COSMOLOGICALLY DEGENERATE FERMIONS PHYS. REV. D 106, 083016 (2022)

083016-7

https://doi.org/10.1088/1361-6471/ab2ea5
https://doi.org/10.22323/1.333.0009
https://arXiv.org/abs/1904.07915
https://doi.org/10.1007/BF02980631
https://doi.org/10.1016/j.newast.2012.12.003
https://doi.org/10.1016/j.newast.2012.12.003
https://doi.org/10.1103/PhysRevD.92.123527
https://doi.org/10.1103/PhysRevD.92.123527
https://doi.org/10.1088/1475-7516/2015/01/002
https://doi.org/10.1088/1475-7516/2015/01/002
https://doi.org/10.1088/1475-7516/2017/04/005
https://doi.org/10.1088/1475-7516/2017/04/005
https://doi.org/10.1093/mnras/stx161
https://doi.org/10.1093/mnras/stx161
https://doi.org/10.1093/mnrasl/sls031
https://doi.org/10.1093/mnrasl/sls031
https://doi.org/10.1093/mnras/staa3640
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1038/s41586-020-2878-4
https://doi.org/10.1088/1475-7516/2021/03/046
https://doi.org/10.1088/1475-7516/2021/03/046
https://doi.org/10.1103/PhysRevD.100.015038
https://doi.org/10.1103/PhysRevD.100.015038
https://doi.org/10.1016/j.nuclphysb.2016.08.034
https://doi.org/10.1088/1475-7516/2017/11/046
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1103/PhysRevD.96.023522
https://doi.org/10.1103/PhysRevLett.126.091101
https://doi.org/10.1103/PhysRevLett.126.091101
https://doi.org/10.3847/1538-4365/aae9f0
https://arXiv.org/abs/1612.05560


[22] N. Bar, D. Blas, K. Blum, and H. Kim, Phys. Rev. D 104,
043021 (2021).

[23] J. Lesgourgues and S. Pastor, Phys. Rep. 429, 307 (2006).
[24] H. Davoudiasl, P. B. Denton, and D. A. McGady, Phys. Rev.

D 103, 055014 (2021).
[25] N. Kurinsky, D. Baxter, Y. Kahn, and G. Krnjaic, Phys. Rev.

D 102, 015017 (2020).
[26] A. Coskuner, T. Trickle, Z. Zhang, and K. M. Zurek, Phys.

Rev. D 105, 015010 (2022).
[27] C. Blanco, Y. Kahn, B. Lillard, and S. D. Mcdermott, Phys.

Rev. D 104, 036011 (2021).
[28] P. B. Greene and L. Kofman, Phys. Lett. B 448, 6 (1999).
[29] J. Garcia-Bellido, S. Mollerach, and E. Roulet, J. High

Energy Phys. 02 (2000) 034.
[30] P. B. Greene and L. Kofman, Phys. Rev. D 62, 123516

(2000).
[31] M.-C. Chen, M. Ratz, and A. Trautner, Phys. Rev. D 92,

123006 (2015).
[32] T. Moroi and W. Yin, J. High Energy Phys. 03 (2021) 301.
[33] O. E. Bjaelde and S. Das, Phys. Rev. D 82, 043504 (2010).

[34] G. Choi, M. Suzuki, and T. T. Yanagida, Phys. Rev. D 102,
035022 (2020).

[35] G. Choi, M. Suzuki, and T. T. Yanagida, Phys. Rev. D 101,
075031 (2020).

[36] P. Adshead and E. I. Sfakianakis, J. Cosmol. Astropart.
Phys. 11 (2015) 021.

[37] P. Adshead, L. Pearce, M. Peloso, M. A. Roberts, and L.
Sorbo, J. Cosmol. Astropart. Phys. 06 (2018) 020.

[38] R. L. Jaffe, Degenerate Fermion Systems Lecture Notes,
Quantum Theory II (MIT, 1996), https://web.mit.edu/8.322/
Spring%202007/notes/DFSCropped.pdf.

[39] S. Colombi, S. Dodelson, and L. M. Widrow, Astrophys. J.
458, 1 (1996).

[40] J. Baur, N. Palanque-Delabrouille, C. Yèche, C. Magneville,
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