
Testing the robustness of simulation-based gravitational-wave
population inference

Damon H. T. Cheung ,1,* Kaze W. K. Wong ,2 Otto A. Hannuksela ,1 Tjonnie G. F. Li,1,3,4 and Shirley Ho2,5,6,7
1Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong

2Center for Computational Astrophysics, Flatiron Institute, New York, New York 10010, USA
3Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium

4Department of Electrical Engineering (ESAT), KU Leuven,
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

5Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA
6Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

7Department of Physics, New York University, New York, New York 10012, USA

(Received 14 January 2022; revised 4 May 2022; accepted 26 September 2022; published 19 October 2022)

Gravitational-wave population studies have become more important in gravitational-wave astronomy
because of the rapid growth of the observed catalog. In recent studies, emulators based on different machine
learning techniques are used to emulate the outcomes of the population synthesis simulation quickly. In this
study, we benchmark the performance of two emulators that learn the truncated power-law phenomenological
model by using Gaussian process regression and normalizing flows technique to see which one is a more
capable likelihood emulator in the population inference. We benchmark the characteristic of the emulators by
comparing their performance in the population inference to the phenomenological model using mock and real
observation data. Our results suggest that the normalizing flows emulator can recover the posterior
distribution by using the phenomenological model in the population inferencewith up to 300 mock injections.
The normalizing flows emulator also underestimates the uncertainty for some posterior distributions in the
population inference on real observation data. On the other hand, the Gaussian process regression emulator
has poor performance on the same task and can only be used effectively in low-dimension cases.

DOI: 10.1103/PhysRevD.106.083014

I. INTRODUCTION

Since the first detection of a gravitational-wave (GW)
event was announced by the LIGO-Virgo Collaboration in
2016 [1], GWevents are being detected routinely at a rapid
pace. Construction of second-generation global GW detec-
tion networks was done in the past five years including the
upgrade of Advanced LIGO/Virgo [2,3] and the Kamioka
Gravitational Wave Detector (KAGRA) in Japan [4]. We
are getting more observed GW events from these detectors
and recently, the LIGO-Virgo-KAGRA Collaboration
(LVK) announced 35 candidate events in the second half
of the third observational run (O3b) [5]. By adding the
observed events in the first, second, and the first half of the
third observational run (O1, O2, and O3a) [6,7], the third
Gravitational-Wave Transient Catalog (GWTC-3) contains
over 60 events across the first three observing runs [8].
Moreover, there is a proposed construction of more power-
ful detectors with higher sensitivity, such as Einstein
Telescope in Europe [9] and Cosmic Explorer in the
USA [10]. The rapid growth of observed events in the

catalog is forecasted as ∼106 GW events to be observed per
year in this third-generation detectors network [11]. It
opens up a unique window to study the population proper-
ties of compact objects [e.g., black holes (BHs) and neutron
stars (NSs)] which helps to find the fundamental physics
of the Universe. For example, the population studies can
improve the existing GW constraints on theory-agnostic
modifications to general relativity and explore gravity
theories beyond general relativity [12].
Typical analyses assume the underlying population of

GW sources is described by some phenomenological model
(e.g., [13,14]). For instance, one can assume the mass
distribution of a merging binary BH follows a power law.
Such a simple assumption of the likelihood can provide a
low computational cost and a clear statistical interpretation
behind it. As the size of the GW catalog grows rapidly, a
more complex phenomenological model is needed to capture
a more sophisticated statistical relation. However, phenom-
enological models do not come from a first principle physics
simulation or calculation. Alternatively, one can use pop-
ulation synthesis simulations that are based on some physical
parameters such as the BH natal kick velocity [15], the
common envelope efficiency of binary evolution [16], and*damoncheung@link.cuhk.edu.hk

PHYSICAL REVIEW D 106, 083014 (2022)

2470-0010=2022=106(8)=083014(12) 083014-1 © 2022 American Physical Society

https://orcid.org/0000-0003-3905-0665
https://orcid.org/0000-0001-8432-7788
https://orcid.org/0000-0002-3887-7137
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.083014&domain=pdf&date_stamp=2022-10-19
https://doi.org/10.1103/PhysRevD.106.083014
https://doi.org/10.1103/PhysRevD.106.083014
https://doi.org/10.1103/PhysRevD.106.083014
https://doi.org/10.1103/PhysRevD.106.083014


the metallicity of the environment [17]. The population
synthesis simulations simulate complex physics rather than
only describing the structure of the distribution. However,
they take a long time to simulate and have high computa-
tional costs. In this case, we can use a nonparametric density
estimator to emulate the outcomes of the population syn-
thesis simulation with fast speed. Then, we can perform the
population inference efficiently by using the estimator to
provide direct physical insights into GW population studies.
There are recent developments on emulating simulations

through machine learning to build the population proba-
bility density emulator for GW population studies [18–20].
The emulator interpolates simulation output without going
through sophisticated simulations that are fast enough to
be used in hierarchical Bayesian analysis (HBA) for
population inference. One of these techniques is to combine
Gaussian process regression (GPR), principal component
analysis (PCA), and space-filling algorithms to train the
emulator [18]. Another example is applying a deep gen-
erative flow technique; normalizing flows (NF) [20] to train
the emulator. However, we lack benchmark results to show
howwell they perform and what limitations they havewhen
utilized in the GW population inference.
In this study, we investigate the performance of the

emulators trained by using these two techniques, which we
refer to as the GPR emulator and the NF emulator. We train
the emulators to learn the truncated power-law phenom-
enological model [21] and demonstrate their ability by
comparing the performance in event sampling and pop-
ulation inference to the phenomenological model. More
specifically, we use the emulators to sample GW events to
see if the distributions match the phenomenological model.
We also implement the emulators in the HBA framework to
act as the population probability density emulator and
compare the sampled posterior distribution to the phenom-
enological model by injecting mock and GWTC-2 data.
Note that the selection bias caused by the limitation of
instruments [22] will bias the sampled posterior distribution
in the population inference [19,23]. Therefore, we account
for the selection bias in the population inference when
benchmarking the emulators.
This paper is structured as follows. In Sec. II, we review

the GW population data analysis pipeline. In Sec. III, we
describe the details of the two machine learning emulators
we used in this paper. In Sec. IV, we present the emulators’
performance by using both mock data and GWTC-2 data.
And lastly, in Sec. V, we discuss the limitation of the
emulators and the future directions of this work.

II. METHOD

A. Hierarchical Bayesian analysis

In this section we summarize the pipeline of GW
population data analysis. We start with the data analysis
on a single GWevent. Then we show how we make use of a

set of observed GW events to study the population proper-
ties using the HBA. First, GW data d announced by LVK is
usually in the form of a time series which contains no
physical quantities directly. The data can be modeled using
a waveform model characterized by source properties θ
(e.g., masses, masses ratio, redshift, spin) known as the
event parameters. In order to extract physical quantities
from a time series, we often use Bayesian inference to
adopt a parameter estimation process [24]. Given a time
series d, the event posterior pðθjdÞ can be obtained using
Bayes’ theorem,

pðθjdÞ ¼ πðθÞpðdjθÞ
pðdÞ ; ð1Þ

where πðθÞ is the prior of event parameters, pðdjθÞ is the
event likelihood of observing the data given the source
properties with a specific waveform model, and pðdÞ is the
evidence. πðθÞ carries the physical intuition (e.g., mass
cannot be negative and masses ratio cannot be greater
than 1) which can also affect the estimation result [25,26].
To study the population, we can employ a phenomeno-

logical population model or simulation-based model which
is characterized by the hyperparameters λ and then infer the
hyperparameters favored by the observed catalog [27]. For
example, if we take the route of employing a phenomeno-
logical model, the distribution of mass can follow a power
law with spectral index α, i.e., pðθjλÞ ¼ pðmjαÞ ∼mα with
α being the hyperparameter. On the other hand, we can
employ a simulation-based model that can provide a
synthetic catalog of GW events instead of an analytical
expression of the population probability density function.
In this case, we can train an emulator on this model using
machine learning techniques to emulate the pðθjλÞ, where
the hyperparameters could be some physical parameters
such as the metallicity of the environment [17]. In the
following, we summarize a statistical framework of infer-
ring the hyperparameters given a set of observations in the
content of the GW population. The framework is com-
monly labeled as hierarchical modeling [27]. We refer
interested readers to more detailed explanations in the
literatures [27–29]. Similar to the parameter estimation of a
single GWevent, we now want to infer the hyperparameters
of the population model given some time series data.
Therefore, we start by writing down Bayes’ theorem in
terms of d, and λ as

pðλjdÞ ¼ πðλÞpðdjλÞ
pðdÞ ; ð2Þ

where pðλjdÞ is the population posterior, pðdjλÞ is the
likelihood of observing the data set given the population
model characterized by the hyperparameters λ, πðλÞ is
the prior of hyperparameters, and pðdÞ is the evidence.
However, population synthesis simulations give the

CHEUNG, WONG, HANNUKSELA, LI, and HO PHYS. REV. D 106, 083014 (2022)

083014-2



population in terms of event parameters instead of time
series. Therefore, we need to expand the marginalized
likelihood pðdjλÞ as pðdjλÞ ¼ R

pðdjθÞppopðθjλÞdθ and
replace pðdjθÞ by using Eq. (1) to get

pðλjdÞ ¼ πðλÞ
Z

pðθjdÞppopðθjλÞ
πðθÞ dθ; ð3Þ

where ppopðθjλÞ is the population probability density of
observing the event given the population model charac-
terized by the hyperparameters.
Furthermore, if the dataset contains multiple observed

GW events that are drawn independently from the pop-
ulation, in other words, the signals are not overlapping and
the parameter estimation is not correlated for different
events, we can separate the likelihood of observing that
particular set of events [i.e., pðdjλÞ in Eq. (2)], the integral
in Eq. [(3)]) into the product of the individual likelihoods.
Therefore, we can rewrite Eq. (3) as

pðλjdÞ ¼ πðλÞ
YNobs

i¼1

Z
piðθijdiÞ
πiðθiÞ

ppopðθijλÞdθ; ð4Þ

where di refers to the segment of the whole time series
which contains the ith event characterized by θi and Nobs is
the number of observed events. By separating the like-
lihood into a product of individual likelihoods, we assume
the event parameter estimation is not correlated. This is a
valid assumption for the current generation detector.
However, we need to revise the assumption for detectors
in the next generation, such as the Einstein Telescope and
Cosmic Explorer. They can detect a large number of GW
signals and may eventually overlap, and the interference of
the overlapped waveform may affect the parameter esti-
mation and thus the population inference [30].
In real life data, there is often a selection bias that comes

from the limitations of ground-based interferometers. The
detectors can only detect signals from a specific frequency
range above a signal-to-noise ratio threshold [31]. It limits
the ability to detect weak signals and misses many low
mass GWevents. In addition, the sensitivity of the detectors
depends on the sky location [22] and the luminosity
distance correlates with the redshift of the event [32,33].
As a result, some events are easier to observe than others,
which introduces a bias on the observed population.
Whether we can detect the event is not a binary yes or
no because the detectors are noisy. The best we can do is
to calculate pdetðθÞ i.e., the probability of detecting an event
with event parameters θ [23]. When we account the
selection bias, Eq. (4) becomes

pðλjdÞ ¼ πðλÞ
YNobs

i¼1

Z
piðθijdiÞ
πiðθiÞ

ppopðθijλÞ
αðλÞ dθ; ð5Þ

where αðλÞ ¼ R
ppopðθ0jλÞpdetðθ0Þdθ0 is the selection bias

term. Notice that the computation of multidimensional θ
integrals are very expensive. Therefore, the event posterior
piðθijdiÞ is often given in a form of discrete samples from
event parameter estimation [34,35]. We can then separate
the event parameter estimation from sampling the popula-
tion posterior. First, we perform event parameter estimation
and save the event posterior samples. Then, we compute
pðλjdÞ using the event posterior samples to avoid unnec-
essary recomputation of event parameter estimation which
significantly reduces the computation load for each run.
The above process is equivalent to computing the integral
in Eq. (5) as the expectation value of the population
probability density that has been reweighted by the prior.
That is, replace the integral with the sum of the discrete-
event posterior samples as

pðλjdÞ ¼ πðλÞ
YNobs

i¼1

1

Si

XSi
j¼1

ppopðθji jλÞ
πðθjiÞαðλÞ

; ð6Þ

where j labels the jth posterior sample of the ith event and
Si is the number of discrete posterior samples for the ith
event. Notice that we do not include event rate in our
derivation so Eq. (6) is the governing equation for the HBA
framework. Once we get all the ingredients, we can sample
the posterior using various methods such as nested sam-
pling and Markov Chain Monte Carlo (MCMC). In this
study, we use MCMC to sample the posterior. The samples
represent pðλjdÞ which tells us the inferred hyperpara-
meters of the simulation that favored by the observation
data. We summarize the pipeline in a schematic diagram
shown in Fig. 1.

B. Computation of selection bias

In order to compute αðλÞ in Eq. (6), one needs to inject
a large amount of signals and recover them with a search
pipeline to estimate αðλÞ; this incurs an expensive
computational cost not to mention αðλÞ will be computed
for each step in the MCMC. Therefore, we approximate
it via Monte Carlo with importance sampling [36]. By
drawing events from a known distribution θ ∼ pdraw, we
can then get the selection bias term by averaging the
population probability of detectable events over the
drawn samples as

αðλÞ ≈ 1

Ndraw

XNdet

j¼1

ppopðθjλÞ
pdrawðθÞ

; ð7Þ

where j labels the jth detectable sample of drawn events,
Ndraw is the number of event samples to be drawn from
pdraw, and Ndet is the number of detected events from
drawn event samples.
When we inject the O1þ O2þ O3a catalog into the GW

population data analysis pipeline, αðλÞ is evaluated by

TESTING THE ROBUSTNESS OF SIMULATION-BASED … PHYS. REV. D 106, 083014 (2022)

083014-3



reweighting an injection campaign done by the LVC [21].
When we test our pipeline by injecting mock data, αðλÞ is
evaluated by using the pdetðθÞ function in the developed
interpolation package GWDET [37] for simplicity.

III. EMULATOR

In computing the population posterior pðλjdÞ in Eq. (6),
the population probability density function ppopðθjλÞ is the
most important part since it relates the event distribution
and the hyperparameters of the simulation. A common
approach is writing down an analytic or semianalytic
population probability density function. However, in the
case of population synthesis simulation, it is not so simple.
As a result, we need to simulate each sampling step to
calculate pðλjdÞ in Eq. (6). In addition, a typical population
synthesis simulation takes ∼3–4 hours to complete. If we
simulate each step, the population pipeline becomes com-
putationally expensive [38–41]. Hence, we train a emulator
by using machine learning techniques to learn the like-
lihood function ppopðθjλÞ from population synthesis sim-
ulations. A trained emulator can approximate the output of
simulation by giving the hyperparameters λ without going
through the sophisticated simulations. To benchmark the
capability of the emulators, we test whether they can
recover the phenomenological model likelihood and com-
pare their performance in the HBA framework. The inferred
posterior by using the phenomenological model is treated
as a control set for the comparison. In this study, truncated
power law phenomenological model [21] (see Appendix) is
chosen for the comparison with the GPR emulator and the
NF emulator respectively. The truncated power law phe-
nomenological model’s event parameters are m1, m2, and z
which correspond to the primary mass, secondary mass,
and redshift of the GW event, respectively, while the

hyperparameters λ ¼ ½α; β; mmin; mmax�. In the following
three subsections, we will present the method used for
generating training data. Then, we review how we train our
GPR emulator and NF emulator.

A. Training data

In this study, we use 400 simulations as our training
set. We choose the hyperparameters λtrain ¼ fλig, i ¼
1; 2;…; 400 of the simulations by Latin-hypercube sam-
pling (LHS). LHS gives the advantage that stratifies each
univariate margin simultaneously [42] with variance reduc-
tion form compared with uniform random sampling [43]. It
does not contain a duplicate number in each hyperpara-
meter dimension. Therefore, LHC gives more uniform
coverage in the hyperparameter space than Cartesian grid
sampling to help the training. We use python package

pyDOE [44] to carry out the LHS. Then we draw 105 events
from each simulation by rejection sampling as the training
set for both emulators. 100 more simulations are generated
as a validation set for training the NF emulator.

B. Gaussian process regression emulator

Gaussian process regression is a nonparametric density
estimation method. Instead of parametrizing the underlying
density function, it places a Gaussian prior characterized
by a mean and covariance to describe the possible density
function. Then we can fit the density function by inferring
the mean and covariance with the training data [45]. We
follow the method in [18] tightly to construct the GPR
emulator. First, we produce histograms with equal-sized
bins over event parameters to summarize the event dis-
tribution for simulations characterized by different hyper-
parameters. Then, we form a matrix Am×n by using the

FIG. 1. Schematic diagram of GW event population data analysis pipeline. Training data is generated by running a set of simulations
with different hyperparameters inputs. Then we use the training data to train the likelihood emulator with a machine learning technique.
Event parameters and priors are obtained by performing Bayesian inference on observation data. Lastly, given the event parameters,
prior and the population probability density emulator, we sample the posterior of hyperparameters using the MCMC method.

CHEUNG, WONG, HANNUKSELA, LI, and HO PHYS. REV. D 106, 083014 (2022)

083014-4



information of histograms, where m is the number of
simulations in the training set and n is the number of flatten
bins over all event parameters in the histograms. The
probability of having the event (represented by the bin)
is proportional to the height of each histogram bin; there-
fore, we can apply GPR to learn how the input hyper-
parameters affect the height. However, some components
of the basis obtained by such naive binning might be
unnecessary if the training data can be described only by
some main features. It will increase the computational cost
exponentially. Therefore, before applying GPR, we use
PCA to form a new set of data-driven basis which is smaller
in number than the basis obtained in the naive binning
method. PCA decomposes the data matrix Am×n as

Am×n ¼ Um×mSm×nWT
n×n ð8Þ

where U and W are constituted by orthonormal eigenvec-
tors chosen from AAT and ATA respectively, AT is the
transpose of A. Sm×n is a positive-semidefinite matrix
which can be interpreted as a rectangular diagonal matrix
with the variance σm of each basis. With this form, we can
then eliminate the basis corresponding to σm < ϵ to reduce
the dimensions of U, S, W as

Am×n⇒
PCAðAm×nÞσm>ϵ
¼ Ãm0×n0

¼ Ũm0×m0 S̃m0×n0W̃T
n0×n0

¼
�
Ũm0×m0 S̃m0×n0ffiffiffiffiffiffiffiffiffiffiffi

Nbasis
p

�
ð

ffiffiffiffiffiffiffiffiffiffiffi
Nbasis

p
W̃T

n0×n0 Þ; ð9Þ

where ϵ is a small number, Nbasis is the number of basis
after reducing dimensions and Ũ, S̃, W̃ are formed by
restricting U, S, W on a basis with σm < ϵ condition. The
columns of Ũm0×m0 S̃m0×n0=

ffiffiffiffiffiffiffiffiffiffiffi
Nbasis

p
are the principal compo-

nents (PCs) of the data matrix, while
ffiffiffiffiffiffiffiffiffiffiffi
Nbasis

p
W̃T

n0×n0 is the
projection of the original histogram heights into the new
basis. This helps to reduce data complexity without losing
too much information as the basis after PCA describes the
main features of the whole training data set. Then, we use
SCIKIT-LEARN [46] to apply GPR on each basis with correct
PC weighting by inferring training data with a Gaussian
prior. The trained emulator gives the resulting posterior-
predictive distribution with Gaussian noise that comes from
the credible region. We can obtain a point prediction of
ppopðθjλÞ using the mean of the posterior distribution.
In this study, we are not able to obtain a satisfactory

GPR emulator by using 400 simulations, each containing
105 or even 106 events as the training data. Therefore, we
construct the matrix Am×n using the theoretical probability
density of the phenomenological model as the height for
each histogram bin. After reducing the complexity using
PCA, we keep 114 PCs to train the emulator.

C. Normalizing flows emulator

Another approach we use to emulate conditional proba-
bilities is using conditional neural density estimators, in
particular, a flow-based generative (often referred to as
normalizing flows) model [47]. Unlike other neural density
estimators using variational autoencoders [48] or generative
adversarial networks [49] that can only generate new data
that mimics the target distribution (in our case, the GWevent
distribution of the simulation), a flow-based generative
model can also provide an estimate of the probability density
which can be evaluated fast enough in HBA. In this section
we present the basic principles behind the model we use.
The idea of NF is to transform a simple probability

density (e.g., a Gaussian) z ∼ pz into a target probability
density which is much more complicated x ∼ px by an
invertible transformation with tractable Jacobian. The
transformation is a mapping function g∶ Rd → Rd for
x; z ∈ Rd. We can then get the change of variable relation
from the normalization condition of probabilities as

pxðxÞ ¼ pzðzÞ
���� det ∂z

∂x

����
¼ pzðg−1ðxÞÞ

���� det ∂g
−1ðxÞ
∂x

����; ð10Þ

which requires the transformation to be invertible and thus
gives a tractable Jacobian to evaluate pxðxÞ. For estimating
more complex high-dimensional distribution, we need
more complex transformations, which can be done by
applying a series of invertible transformations as

x ¼ zk ¼ gk∘gk−1∘ � � � ∘g1ðz0Þ; ð11Þ

where zk is the distribution after the kth transformation
function. The condition on invertibility is still fulfilled since
the composition of invertible functions is invertible. At the
same time, we need to be aware of the time for training
since the computation of high-dimensional Jacobian deter-
minants is expensive. In conclusion, the transformations g
should be invertible and simple.
Then, we can write down the overall transformation as

pxðxÞ ¼ pz0ðz0Þ
YNtransf

k¼1

���� det ∂zk−1
∂zk

����

¼ pz0ðz0Þ
YNtransf

k¼1

���� det ∂g
−1
k ðzkÞ
∂zk

����; ð12Þ

where Ntransf is the number of transformations.
However, choosing the correct transformation is crucial

to designing an efficient network for a specific problem.
Our target is to emulate ppopðθjλÞ so the network should be
capable to model conditional probabilities. A specifically
designed flow-based generative model known as masked

TESTING THE ROBUSTNESS OF SIMULATION-BASED … PHYS. REV. D 106, 083014 (2022)

083014-5



autoregressive flow (MAF) [47] is capable of such a
purpose. It is a particular implementation of the NF that
uses the masked autoencoder for distribution estimation
(MADE) [50] as a building block instead of the fully-
connected layer. MADE masks some autoencoder’s param-
eters of hidden layers to respect autoregressive constraints
that each node is only from previous inputs in a given
ordering so that the node only depends on some nodes from
the previous layer. It expands the joint probability into the
products of the conditional probabilities’ relation with a
different order [51]. Therefore, we use MAF with a 10 layer
network as the “flow” in the emulator.
We can then train the emulator with a loss function

defined as

L ¼ −
1

jDj
X
x∈D

logðpxðxÞÞ; ð13Þ

whereL is the loss function,D is the dataset and pxðxÞ is the
entire transformation. L gives the indicator whether the
emulator provides a similar distribution compared to target
distribution x. Then, the emulator with the best transforma-
tion is obtained by finding the global minimum of L [52].

IV. RESULT

A. Comparison on event distribution

We compare the performance of emulators on sampling
GW events to the phenomenological model. In Fig. 2,

we show the event distributions predicted by two emulators
with test hyperparameter ½α; β; mmin; mmax� ¼ ½3.0; 0.5; 6.0;
74.0�. The event distributions predicted by the phenom-
enological model represent the true event distributions. The
distributions predicted by the GPR emulator have signifi-
cant discrepancies with the true event distributions. In
marginalizedm1 distribution, the one predicted by the GPR
emulator does not agree with the true event distributions
where the largest discrepancies appear at the mass limits.
Furthermore, the joint distributions of m1 have an irregular
shape when compared to the true event distributions.
Although the marginalized distribution of m2 and z have
low discrepancies, the joint distribution is still significantly
different from the true event distributions. On the other
hand, both the marginalized and joint distributions pre-
dicted by the NF emulator match the true distributions. It
can also recover the truncation characteristic at the limit of
the event parameters. The distribution similarity between
using the NF/GPR emulator and the phenomenological
model, as quantified by the Kullback-Leibler divergence
[53], is DKL ¼ 0.141, 0.277 nat respectively. A smaller
DKL indicates that two distributions are more similar,
implying that the NF emulator’s event distributions are
more similar to the true distributions than the GPR
emulator.

B. Inference on mock data

Next, we examine the performance of the emulators on a
population level. To begin with, we build a mock catalog

FIG. 2. Test of the NF emulator and the GPR emulator. The test hyperparameter ½α; β; mmin; mmax� ¼ ½3.0; 0.5; 6.0; 74.0� is not
included in the training set and validation set. The black curves show the events sampled by using the phenomenological model (true
distributions), the blue curves (left panel) show those by using the NF emulator, and the green curves (right panel) show those by
using the GPR emulator. The diagonal plots are marginalized distributions for each event parameter while the off-diagonal plots are
the joint distributions between the event parameters. The three contour levels represent the 50%, 70%, and 90% credible regions of
the distributions.

CHEUNG, WONG, HANNUKSELA, LI, and HO PHYS. REV. D 106, 083014 (2022)

083014-6



with the truncated power-law model by using rejection
sampling. The hyperparameters that characterize it (true
hyperparameters) are ½α;β;mmin;mmax�¼½2.0;0.5;8.0;80.0�.
Then, we evaluate the performance of two emulators by
injecting 50 GW events from the mock catalog with
selection bias. The sampled posterior distributions by using
the phenomenological model represent the true posterior
distributions.
In Fig. 3, we show the joint and marginalized posterior

distributions of the hyper-parameter that favor the injected
50 GW events. The sampled posterior distributions by
using the GPR emulator diverge and scatter with only
50 GW events. They have multiple local minimums which
are different from the true posterior distributions. The result
suggests that the GPR emulator is not capable to act as a
likelihood emulator even at a low-injection regime. On the
other hand, using the NF emulator can recover the true
posterior distribution with low discrepancy. They agree
with each other in both marginalized distributions, joint
distributions, and the most probable values.

As the number of observed GW events is rapidly
increasing, the bias of inferred hyperparameters in
simulation-based inference will become significant.
Therefore, we evaluate the performance of the NF emulator
on more injections and compare with the phenomenologi-
cal model. We draw 50, 100, 150, 300 GWevents from the
mock catalog and infer the hyperparameters. Figure 4
shows the violin plots of marginalized posterior distribution
of inferred hyperparameters by using the phenomenologi-
cal model and the NF emulator. Although the NF emu-
lator’s posterior distribution does not perfectly match that
of the phenomenological model, the inferred hyperpara-
meters agree with the true answers with 90% credible
regions up to 300 injections. The marginalized posterior
distribution of inferred hyperparameters by using the
phenomenological model converges toward the true answer
as the number of injections increases. On the other hand,
the NF emulator gives similar convergence behavior. The
result shows the NF emulator is still a capable likelihood
estimator when Ninj ¼ 300 and selection bias is included.
However, notice that we use a smooth model (NF) to
interpolate a hard cutoff phenomenological model.
Therefore, the poor mmin=mmax convergence performance
is inevitable. Figure 5 shows the variance of inferred
mmin=mmax posterior distribution against the number of
injections. When compared to the phenomenological
model, the mmax uncertainty shrinks slower when using
the NF emulator, but there is no big difference for the mmin
uncertainty. Because we have more observed events near
mmax than mmin, the limitation of the NF emulator is more
clearly shown in the inferred mmax posterior distribution.

C. Data from GWTC-2

We also evaluate the performance of the emulator on real
data. For simplicity, we only use 44 high-significance
events from GWTC-2 [7] because our goal is to compare
the emulators’ performance to the phenomenological
model. The dataset is the same subset chosen for the
population analyses in [21]. In particular, we exclude
three events with a large false-alarm rate (GW190426,
GW190719, GW190909) and three events with m2 <
3 M⊙ (GW170817, GW190425, GW190814).
We performed two population inferences on GWTC-2

data by using the GPR emulator as shown in Fig. 6. One
only trained the GPR emulator on three hyperparameter
½α; β; mmin� (left panel), another one trained on all hyper-
parameters (right panel). Since those hyperparameters are
independent of each other, the result of inferring three or
four hyperparameters will be the same. For inferring three
hyperparameters, the GPR emulator can recover the pos-
terior distribution by using the phenomenological model
with fair convergence. In the four hyperparameters cases,
they have irregular and diverge distributions, which do not
agree with the sampled distributions obtained by using the
phenomenological model.

FIG. 3. The sampled posterior distribution after injecting 50
events from a mock catalog with selection bias. The hyper-
parameters that characterize the mock catalog ½α;β;mmin;mmax�¼
½2.0;0.5;8.0;80.0� (true answers) are marked by the black lines.
The black curves show the sampled posterior distributions by
using the phenomenological model (true posterior distributions),
the blue curves show those by using the NF emulator, and the
green curves represent those by using the GPR emulator. The two
contour levels represent the 50% and 90% credible regions of the
distributions. The posterior distribution obtained by using the
GPR emulator can barely recover the true posterior distribution.
Even after training the GPR emulator with more data, the
distributions remain to scatter and diverge. In contrast, the NF
emulator recover the true posterior distribution.

TESTING THE ROBUSTNESS OF SIMULATION-BASED … PHYS. REV. D 106, 083014 (2022)

083014-7



The performance of the population inference on GWTC-
2 data by using the NF emulator is shown in Fig. 7. The NF
emulator is capable of recovering the sampled distribution
by using the phenomenological model except for the mmin

and mmax related distributions. Although their most prob-
able values are aligned, the uncertainties predicted by the
NF emulator are smaller for mmin and mmax. The result
shows the NF emulator can not learn the truncation
characteristic perfectly.

V. DISCUSSION

We showed the performance of the GPR and NF
emulators by employing a truncated power-law model.
For the GPR emulator, it is hard to sample the correct event
distribution near the truncation as shown in Fig. 2. In
addition, the sampled posterior distribution of mmin, mmax
scatter more strongly than α and β in Fig. 3. The results
reveal the inability of the GPR emulator to learn the
truncation property. For a truncated power-law distribution,
we have relatively fewer data near the truncation. However,
we need relatively more data to learn the sharp edge. As a
result, we have insufficient training data to learn the
truncation property and thus have poor performance on
the population inference. Moreover, we need to specify the
number of bins and bin width to train a GPR emulator. It
introduces the Poisson uncertainty in each bin which is
∝ 1ffiffiffi

N
p , where N is the number of events in that bin. The

number of events in some bins may equal zero even if the
theoretical probability density is not zero; consequently, it
will produce a large Poisson uncertainty. A sufficiently
large number of events is needed to recover the theoretical
probability density before training. For high-dimensional
cases, the number of events needed to recover the

FIG. 5. Variance of inferred mmin,mmax posterior distribution in
Fig. 4. The upper/bottom panel shows the variance of inferred
mmin=mmax posterior distribution. Green lines represent the
sampled posterior distributions by using the phenomenological
model while orange lines represent those by using the NF
emulator. The mmax uncertainty shrinks slower when using the
NF emulator.

FIG. 4. Marginalized posterior distribution on inferred hyperparameters by using the phenomenological model (green) and the NF
emulator (orange). Inferences on different numbers of injections Ninj ¼ 50, 100, 150, 300 are performed. Horizontal black ticks and
dashed grey lines mark the 90% credible regions and true answers. The inferred hyper-parameters by using the NF emulator agree with
the true answers with 90% credible region up to 300 injections.

CHEUNG, WONG, HANNUKSELA, LI, and HO PHYS. REV. D 106, 083014 (2022)

083014-8



theoretical joint probability density grows exponentially.
To solve the problem, one possible approach is to divide
the event parameter space into two regions—region 1 with
plenty of samples and region 2 with fewer samples. Then
we can continue drawing samples in region 2 until we have
enough. After that, we can construct the GPR emulator with
the reweighted samples. However, even if we used theo-
retical probability density, the number of bins still affects
the resolution of the density estimation. The comparison
shown in Fig. 6 demonstrates the inability of the GPR
emulator on higher dimensions. We tried using more
simulations as training data with the higher binning
resolution, but the scatter and diverge problem persisted.
The largest training dataset we tried took around a week to
train using a 4-core CPU. Not to mention the time spent on
generating the training data. As a result, training a good
GPR emulator for population inference is unaffordable in
terms of time and computational cost. The result may reveal
GPR’s limitations in estimating high-dimensional density
[54,55]. GPR learns the model by inferring training data
with a Gaussian prior. As a result, the predicted likelihood
function will look like a sine curve that connects the
training data; it has many local minimums and provides
an explanation for the scattered posterior distribution in
Figs. 3 and 6.

On the other hand, the NF emulator performs well
except for underestimating the uncertainty for some
hyper-parameter as shown in Fig. 7. But the uncertainty
estimated by the emulator should be greater than the
phenomenological model because of the limited training
data. The problem of the underestimated uncertainty may
come from the nature of the NF emulator [56]. NF is a
series of continuous transformations so has relatively
bad performance on learning truncation property. At the
truncation of distribution, NF prefers a smooth change
rather than a sharp truncation as shown in Fig. 8 at
m1 ¼ mmax. It requires infinitely many continuous trans-
formations to get a sharp truncation. In addition, the
training depends on the loss function which is the like-
lihood of the entire transformation. The loss function
takes care of the entire training data at the same time so
that it is unlikely to have binning and resolution problems.
As a result, the uncertainty near the truncation will smooth
out. Studies on controlling the uncertainty accumulated in
the training should be carried out.
After understanding the characteristics of the emulator,

we should use with caution when applying the techniques
to those state-of-art models [16,57–59] for more sophisti-
cated GW population studies. We can use the technique to
eliminate the synthesis simulations which are not favored

FIG. 6. Comparison of sampled posterior distributions on GWTC-2 data by using the phenomenological model and the GPR emulator.
The black curves represent the sampled posterior distributions by using the phenomenological model, the orange curves (left) represent
those by using the GPR emulator trained on only three hyperparameters ½α; β; mmin�, while the green curves (right) are those by using the
GPR emulator trained on all four hyperparameters:½α; β; mmin; mmax�. The two contour levels represent the 50% and 90% credible
regions of the sampled posterior distribution. For three hyperparameters, the GPR emulator can reconstruct the distribution using the
phenomenological model, but not for four hyper-parameters. Even after training the GPR emulator with more data, the distributions
persist to scatter and diverge.

TESTING THE ROBUSTNESS OF SIMULATION-BASED … PHYS. REV. D 106, 083014 (2022)

083014-9



by the observation data by marginalizing the population
posteriors from two models and computing the Bayes
factor between the two models [24,60]. However, some
simulations may be ruled out wrongly because of the
underestimated uncertainty behavior of the NF emulator.
Furthermore, with the fast growth of the GW observed

catalog, one potential research direction is to train an
emulator using real GW data to sample the real GW
distribution without employing any population model.
However, each GW event is expressed as the posterior
samples from the parameter estimation because of the
measurement uncertainty. Machine learning frequently fails
to handle such type of training data. In particular, the
technique we used in the NF emulator is not regulated to
train by using such type of data. One approach is to
construct the Bayesian neural network [61] with NF.
Studies and performance tests of this technique in GW
population analysis should be carried out in the future.

ACKNOWLEDGMENTS

K.W. K.W. and S. H. are supported by the Simons
Foundation. O. A. H. was partially supported by grants
from the Research Grants Council of the Hong Kong
(Project No. CUHK 14306218), T. G. F. L was partially
supported by grants from theResearchGrants Council of the
Hong Kong (Project No. CUHK 14306419), The Croucher
Foundation of Hong Kong and Research Committee of the
Chinese University of Hong Kong. This project was con-
ducted using computational resources at the Rusty cluster of
the Flatiron Institute. This project made use of the following
PYTHON packages: MATPLOTLIB [62], NumPy [63], SciPy [64],
SCIKIT-LEARN [46], CORNER [65], EMCEE [65], and PyTorch

[66]. This material is based upon work supported by NSF’s
LIGO Laboratory which is a major facility fully funded by
the National Science Foundation. This research has made
use of data, software and/orweb tools obtained from theGW
OpenScienceCenter [67], a service of LIGOLaboratory, the
LIGO Scientific Collaboration and the Virgo Collaboration.
Virgo is funded by the French Centre National de Recherche
Scientifique (CNRS), the Italian Istituto Nazionale della
Fisica Nucleare (INFN) and the Dutch Nikhef, with con-
tributions by Polish and Hungarian institutes.

APPENDIX: MOCK DATA CATALOG

Here is the detail about the formulas used to generate
mock Gravitational-wave events catalog.
First, the distribution of m1 follows a power-law dis-

tribution with spectral index α:

pðm1jα;mmin;mmaxÞ∝
�
m1

−α mmin<m1<mmax

0 otherwise:
ðA1Þ

Second, the mass ration q ¼ m2=m1 follows a power-law
distribution with spectral index β:

FIG. 8. The marginalized m1 distributions near mmax on event
sampling. The test hyperparameter are ½α; β; mmin; mmax� ¼
½3.0; 0.5; 6.0; 74.0� which approximately equal to the most
probable inferred hyperparameters in Fig. 7. The black curves
represent the marginalized probability density predicted by the
phenomenological model while blue curves present those by the
NF emulator. The NF emulator can not capture the truncation
perfectly.

FIG. 7. Comparison of sampled posterior distributions on
GWTC-2 data by using the phenomenological model and NF
emulator. The black curves indicate the sampled posterior
distributions by using the phenomenological model while the
blue curves represent those by using the NF emulator. The two
contour levels represent the 50% and 90% credible regions. The
NF emulator can recover the distribution by using the phenom-
enological model except for the occurrence of underestimated
uncertainty in the mmin and mmax distributions.

CHEUNG, WONG, HANNUKSELA, LI, and HO PHYS. REV. D 106, 083014 (2022)

083014-10



pðqjβ; mmin; m1Þ ∝
�
qβ mmin < m2 < m1

0 otherwise:
ðA2Þ

And lastly, the red-shift distribution can be written as:

pðzÞ ∝ ð1þ zÞκ−1 dVc

dz
z ∈ ½0; 2.3�; ðA3Þ

where κ is the redshift evolution parameter and is set to 1,
and dVc=dz is the differential comving volume.

[1] B. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese,
K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari
et al., Phys. Rev. D 93, 122003 (2016).

[2] J. Aasi et al., Classical Quantum Gravity 32, 074001 (2015).
[3] F. Acernese et al., Classical Quantum Gravity 32, 024001

(2014).
[4] T. Akutsu et al. (KAGRA Collaboration), Nat. Astron. 3, 35

(2019).
[5] R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams,

N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D.
Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D.
Aguiar, L. Aiello, A. Ain et al. (The LIGO Scientific, the
Virgo, the KAGRA Collaborations), arXiv:2111.03606.

[6] B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Acernese,
K. Ackley, C. Adams, R. Adhikari, V. Adya, C. Affeldt
et al., Phys. Rev. X 9, 031040 (2019).

[7] R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley,
A. Adams, C. Adams, R. Adhikari, V. Adya, C. Affeldt
et al., Phys. Rev. X 11, 021053 (2021).

[8] R. Abbott et al. (The LIGO Scientific, the Virgo, the
KAGRA Collaborations), arXiv:2111.03634.

[9] M. Maggiore, C. V. D. Broeck, N. Bartolo, E. Belgacem, D.
Bertacca, M. A. Bizouard, M. Branchesi, S. Clesse, S. Foffa,
J. García-Bellido et al., J. Cosmol. Astropart. Phys. 03
(2020) 050.

[10] D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019),
https://baas.aas.org/pub/2020n7i035/release/1.

[11] B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F.
Acernese, K. Ackley, C. Adams, V. B. Adya, C. Affeldt,
M. Agathos et al., Living Rev. Relativity 23, 3 (2020).

[12] S. E. Perkins, N. Yunes, and E. Berti, Phys. Rev. D 103,
044024 (2021).

[13] D. Wysocki, D. Gerosa, R. O’Shaughnessy, K. Belczynski,
W. Gladysz, E. Berti, M. Kesden, and D. E. Holz, Phys. Rev.
D 97, 043014 (2018).

[14] D. Wysocki, J. Lange, and R. O’Shaughnessy, Phys. Rev. D
100, 043012 (2019).

[15] G.Wiktorowicz,Ł.Wyrzykowski,M.Chruslinska, J.Klencki,
K. A.Rybicki, andK.Belczynski, Astrophys. J.885, 1 (2019).

[16] J. W. Barrett, I. Mandel, C. J. Neijssel, S. Stevenson, and A.
Vigna-Gómez, Proc. Int. Astron. Union 12, 46 (2016).

[17] K. Belczynski, M. Dominik, T. Bulik, R. O’Shaughnessy, C.
Fryer, and D. E. Holz, Astrophys. J. 715, L138 (2010).

[18] S. R. Taylor and D. Gerosa, Phys. Rev. D 98, 083017
(2018).

[19] K.W. K. Wong and D. Gerosa, Phys. Rev. D 100, 083015
(2019).

[20] K.W. K. Wong, G. Contardo, and S. Ho, Phys. Rev. D 101,
123005 (2020).

[21] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K.
Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B.
Adya, C. Affeldt et al., Astrophys. J. Lett. 913, L7 (2021).

[22] H.-Y. Chen, R. Essick, S. Vitale, D. E. Holz, and E.
Katsavounidis, Astrophys. J. 835, 31 (2017).

[23] S. Vitale, D. Gerosa, W. M. Farr, and S. R. Taylor, arXiv:
2007.05579.

[24] E. Thrane and C. Talbot, Pub. Astron. Soc. Aust. 36, e010
(2019).

[25] S. Vitale, D. Gerosa, C.-J. Haster, K. Chatziioannou, and A.
Zimmerman, Phys. Rev. Lett. 119, 251103 (2017).

[26] C. Pankow, L. Sampson, L. Perri, E. Chase, S. Coughlin, M.
Zevin, and V. Kalogera, Astrophys. J. 834, 154 (2017).

[27] D.W. Hogg, A. D. Myers, and J. Bovy, Astrophys. J. 725,
2166 (2010).

[28] I. Mandel, W.M. Farr, and J. R. Gair, Mon. Not. R. Astron.
Soc. 486, 1086 (2019).

[29] C. Talbot and E. Thrane, Astrophys. J. 856, 173 (2018).
[30] Y. Himemoto, A. Nishizawa, and A. Taruya, Phys. Rev. D

104, 044010 (2021).
[31] D. Martynov, E. Hall, B. Abbott, R. Abbott, T. Abbott, C.

Adams, R. Adhikari, R. Anderson, S. Anderson, K. Arai
et al., Phys. Rev. D 93, 112004 (2016).

[32] L. P. Singer, H.-Y. Chen, D. E. Holz, W.M. Farr, L. R. Price,
V. Raymond, S. B. Cenko, N. Gehrels, J. Cannizzo, M. M.
Kasliwal et al., Astrophys. J. 829, L15 (2016).

[33] H.-Y. Chen, D. E. Holz, J. Miller, M. Evans, S. Vitale, and J.
Creighton, Classical Quantum Gravity 38, 055010 (2021).

[34] G. Ashton et al., Astrophys. J. 241, 27 (2019).
[35] J. Veitch et al., Phys. Rev. D 91, 042003 (2015).
[36] W.M. Farr, Res. Notes AAS 3, 66 (2019).
[37] D. Gerosa, dgerosa/gwdet: v0.1, 2017.
[38] K. Belczynski, V. Kalogera, F. A. Rasio, R. E. Taam, A.

Zezas, T. Bulik, T. J. Maccarone, and N. Ivanova, As-
trophys. J. Suppl. Ser. 174, 223 (2008).

[39] J. R. Hurley, C. A. Tout, and O. R. Pols, Mon. Not. R.
Astron. Soc. 329, 897 (2002).

TABLE I. Summary of truncated power-law hyper-parameters.

Hyper-
parameter Description Prior

α Power law index on m1 Uð−6; 6Þ
β

Power law index
on q ¼ m1=m2

Uð−6; 6Þ

mmin
Minimum mass for mass
distribution m1

Uð2 M⊙; 10 M⊙Þ

mmax
Maximum mass for mass
distribution m1

Uð60 M⊙; 100 M⊙Þ

TESTING THE ROBUSTNESS OF SIMULATION-BASED … PHYS. REV. D 106, 083014 (2022)

083014-11

https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1038/s41550-018-0658-y
https://arXiv.org/abs/2111.03606
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/2111.03634
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.1088/1475-7516/2020/03/050
https://baas.aas.org/pub/2020n7i035/release/1
https://baas.aas.org/pub/2020n7i035/release/1
https://baas.aas.org/pub/2020n7i035/release/1
https://doi.org/10.1007/s41114-020-00026-9
https://doi.org/10.1103/PhysRevD.103.044024
https://doi.org/10.1103/PhysRevD.103.044024
https://doi.org/10.1103/PhysRevD.97.043014
https://doi.org/10.1103/PhysRevD.97.043014
https://doi.org/10.1103/PhysRevD.100.043012
https://doi.org/10.1103/PhysRevD.100.043012
https://doi.org/10.3847/1538-4357/ab45e6
https://doi.org/10.1017/S1743921317000059
https://doi.org/10.1088/2041-8205/715/2/L138
https://doi.org/10.1103/PhysRevD.98.083017
https://doi.org/10.1103/PhysRevD.98.083017
https://doi.org/10.1103/PhysRevD.100.083015
https://doi.org/10.1103/PhysRevD.100.083015
https://doi.org/10.1103/PhysRevD.101.123005
https://doi.org/10.1103/PhysRevD.101.123005
https://doi.org/10.3847/2041-8213/abe949
https://doi.org/10.3847/1538-4357/835/1/31
https://arXiv.org/abs/2007.05579
https://arXiv.org/abs/2007.05579
https://doi.org/10.1017/pasa.2019.2
https://doi.org/10.1017/pasa.2019.2
https://doi.org/10.1103/PhysRevLett.119.251103
https://doi.org/10.3847/1538-4357/834/2/154
https://doi.org/10.1088/0004-637X/725/2/2166
https://doi.org/10.1088/0004-637X/725/2/2166
https://doi.org/10.1093/mnras/stz896
https://doi.org/10.1093/mnras/stz896
https://doi.org/10.3847/1538-4357/aab34c
https://doi.org/10.1103/PhysRevD.104.044010
https://doi.org/10.1103/PhysRevD.104.044010
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.3847/2041-8205/829/1/L15
https://doi.org/10.1088/1361-6382/abd594
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.3847/2515-5172/ab1d5f
https://doi.org/10.1086/521026
https://doi.org/10.1086/521026
https://doi.org/10.1046/j.1365-8711.2002.05038.x
https://doi.org/10.1046/j.1365-8711.2002.05038.x


[40] M. Giersz, D. C. Heggie, J. R. Hurley, and A. Hypki, Mon.
Not. R. Astron. Soc. 431, 2184 (2013).

[41] N. Giacobbo and M. Mapelli, Mon. Not. R. Astron. Soc.
480, 2011 (2018).

[42] D. Donovan, K. Burrage, P. Burrage, T. A. McCourt, H. B.
Thompson, and E. S. Yazici, arXiv:1510.03502.

[43] M. Stein, Technometrics 29, 143 (1987).
[44] M. Baudin, pyDOE, the experimental design package for

PYTHON, 2013, https://github.com/tisimst/pyDOE.
[45] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes

for Machine Learning (The MIT Press, 2016).
[46] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A.

Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort,
J. Grobler, R. Layton, J. Vanderplas, A. Joly, B. Holt, and G.
Varoquaux, arXiv:1309.0238.

[47] G. Papamakarios, T. Pavlakou, and I. Murray, arXiv:
1705.07057.

[48] D. P. Kingma and M. Welling, arXiv:1312.6114.
[49] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, arXiv:
1406.2661.

[50] G. Papamakarios, T. Pavlakou, and I. Murray, arXiv:1705
.07057.

[51] B. Uria, M.-A. Côté, K. Gregor, I. Murray, and H.
Larochelle, arXiv:1605.02226.

[52] H. Liao and J. He, arXiv:2102.06539.
[53] S. Kullback andR. A. Leibler, Ann.Math. Stat. 22, 79 (1951).
[54] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, arXiv:1807.01065.

[55] L. P. Swiler, M. Gulian, A. L. Frankel, C. Safta, and J. D.
Jakeman, J. Mach. Learn. Model. Comput. 1, 119 (2020).

[56] J. Hermans, A. Delaunoy, F. Rozet, A. Wehenkel, and G.
Louppe, Averting a crisis in simulation-based inference
(2021).

[57] N. Giacobbo, M. Mapelli, and M. Spera, Mon. Not. R.
Astron. Soc. 474, 2959 (2018).

[58] K. Breivik, S. Coughlin, M. Zevin, C. L. Rodriguez, K.
Kremer, C. S. Ye, J. J. Andrews, M. Kurkowski, M. C.
Digman, S. L. Larson et al., Astrophys. J. 898, 71 (2020).

[59] M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K.
Belczynski, C. Fryer, D. E. Holz, T. Bulik, and F. Pannarale,
806, 263 (2015).

[60] C. R. Jenkins and J. A. Peacock, Mon. Not. R. Astron. Soc.
413, 2895 (2011).

[61] C. Louizos and M. Welling, arXiv:1703.01961.
[62] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
[63] S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput.

Sci. Eng. 13, 22 (2011).
[64] P. Virtanen, Nat. Methods 17, 261 (2020).
[65] D. Foreman-Mackey, J. Open Source Software 1, 24 (2016).
[66] A. Paszke et al., in Advances in Neural Information Process-

ing Systems 32, edited by H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Curran
Associates, Inc., Red Hook, NY, 2019), pp. 8024–8035,
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

[67] https://www.gw-openscience.org.

CHEUNG, WONG, HANNUKSELA, LI, and HO PHYS. REV. D 106, 083014 (2022)

083014-12

https://doi.org/10.1093/mnras/stt307
https://doi.org/10.1093/mnras/stt307
https://doi.org/10.1093/mnras/sty1999
https://doi.org/10.1093/mnras/sty1999
https://arXiv.org/abs/1510.03502
https://doi.org/10.1080/00401706.1987.10488205
https://github.com/tisimst/pyDOE
https://github.com/tisimst/pyDOE
https://arXiv.org/abs/1309.0238
https://arXiv.org/abs/1705.07057
https://arXiv.org/abs/1705.07057
https://arXiv.org/abs/1312.6114
https://arXiv.org/abs/1406.2661
https://arXiv.org/abs/1406.2661
https://arXiv.org/abs/1705.07057
https://arXiv.org/abs/1705.07057
https://arXiv.org/abs/1605.02226
https://arXiv.org/abs/2102.06539
https://doi.org/10.1214/aoms/1177729694
https://arXiv.org/abs/1807.01065
https://doi.org/10.1615/JMachLearnModelComput.2020035155
https://doi.org/10.1093/mnras/stx2933
https://doi.org/10.1093/mnras/stx2933
https://doi.org/10.3847/1538-4357/ab9d85
https://doi.org/10.1111/j.1365-2966.2011.18361.x
https://doi.org/10.1111/j.1365-2966.2011.18361.x
https://arXiv.org/abs/1703.01961
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.00024
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.gw-openscience.org
https://www.gw-openscience.org
https://www.gw-openscience.org

