
Quantum gravitational decoherence in the three neutrino flavor scheme

Dominik Hellmann ,1 Heinrich Päs,1 and Erika Rani1,2
1Fakultät für Physik, Technische Universität Dortmund D-44221, Germany

2UIN Maulana Malik Ibrahim Malang 65144, Indonesia

(Received 26 August 2022; accepted 28 September 2022; published 18 October 2022)

In many theories of quantum gravity quantum fluctuations of spacetime may serve as an environment for
decoherence. Here we study quantum-gravitational decoherence of high-energy astrophysical neutrinos in
the presence of fermionic dark sectors and for a realistic three neutrino scenario. We show how violation of
global symmetries expected to arise in quantum gravitational interactions provides a possibility to pin down
the number of dark matter fermions in the Universe. Furthermore, we predict the expected total neutrino
flux and flavor ratios at experiments depending on the flavor composition at the source.
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I. INTRODUCTION

The search for a reliable and consistent theory of dark
matter (DM) and the quest for a testable theory of quantum
gravity (QG) are two of the most important open topics in
modern physics. Due to the feeble interaction of both
sectors with known matter, it is difficult to find out if any of
the existing theoretical models is realized in nature. In the
case of DM,1 this is because it is most likely made up from
singlets with respect to the unbroken Standard Model (SM)
gauge group SUð3Þc ×Uð1ÞEM and thus at most interact
weakly (if at all) with our experimental setups. For QG on
the other hand, we know that all types of matter are
fundamentally linked to spacetime and the dynamics of
one also influences the dynamics of the other, but the
energy scale at which quantum gravity effects would
become visible, i.e., at the Planck scale, is far outside of
the reach of current experiments. Hence, we need to
employ an indirect mechanism to learn more about either
of both subjects.
In this work, we analyze for the first time quantum

gravitational decoherence in a complete system with three
light neutrinos and n additional fermions from dark sectors.
This extends our previous discussions from [1] where we
have proposed a possibility to search for such indirect
effects from both new physics sectors by examining a
single and possibly sensitive physical system, astrophysical
neutrinos.

As mentioned above, all kinds of matter are indirectly
coupled to each other due to their interaction with space-
time. If spacetime itself has quantum properties it is subject
to quantum fluctuations manifesting themselves for exam-
ple as Planck scale black holes [2,3]. Subsequently, every
system of particles S evolving through spacetime is coupled
to this dynamical environment E. Interactions between
degrees of freedom in S and E cause quantum decoherence
if only information about S is accessible [4]. If, further-
more, virtual black holes in spacetime foam also obey the
no-hair theorem [5–7], their interaction with propagating
particles would violate global quantum numbers, such as
lepton and flavor numbers. In the following, we assume
that this is the case and show how this property can be
exploited by considering astrophysical neutrinos to pin
down the number of neutral fermions in a certain
mass range.
As many fermionic dark matter candidates [8–11],

neutrinos are SUð3Þc ×Uð1ÞEM singlets, too. According
to the assumed flavor blindness of QG interactions, a
propagating neutrino system will therefore develop DM
components after a sufficiently long distance. This, sub-
sequently, leads to different oscillation signatures in neu-
trino oscillation experiments carrying the imprint of the
DM fermions.
Of course this effect might be damped if dark matter

particles do not carry the same weak isospin quantum
numbers as neutrinos, but since SUð2ÞL ×Uð1ÞY is broken
interactions with the Higgs field would allow for transitions
between particles of different weak isospin at the cost of
damping by appropriate factors of m=E (mass over energy
of the particles).
One reason why no quantum gravitational decoherence

effects have been observed yet [12,13] may be that these
effects are very weak and are most likely to manifest
themselves in systems which traveled a very long distance
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1Assuming that DM is comprised of new particle species.
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and carry very high energies. Astrophysical neutrinos fulfill
both requirements and hence might represent the most
sensitive possibility to test these kinds of effects.
From now on, we consider a system of three mixed,

active neutrino species and n additional neutral fermions
using the density matrix formalism of open quantum
systems. The application of open quantum system tech-
niques to mixed particle systems under the influence of QG
interactions was pioneered by Ellis, Hagelin, Nanopoulos,
and Srednicki (EHNS) in the kaon system [14,15] (see also
[16]) and later applied to systems of two and three neutrino
generations [17–22]. To extend this approach to an arbi-
trary number of fermions, we consider the time evolution of
the density matrix ρðtÞ defined on the (nþ 3)-dimensional
Hilbert space H of flavor configurations. In general, the
time evolution of the state of the full system Sþ E is
governed by a Hamiltonian HSþE . In case this Hamiltonian
is partially unknown or too complicated, one can resort to
taking the partial trace over the degrees of freedom of E,
i.e.,

d
dt
ρSþEðtÞ ¼ −i½HSþE ; ρSþEðtÞ�

⟶
TrE d

dt
ρSðtÞ ¼ −i½HS; ρSðtÞ� þD½ρSðtÞ�; ð1Þ

yielding the so called Lindblad equation2 of the system S.
The dissipator D arising in the process is identically zero if
S and E do not interact, i.e., HSþE ¼ IE ⊗ HS þHE ⊗ IS,
but is nonzero if a termHint exists coupling S and E. Hence,
it describes the effective influence of E on S while HS only
incorporates the physics of S itself detached from the
environment.
In the full description of the system, this coupling gives

rise to entanglement between degrees of freedom in S and
E, but in our approximation it gives rise to mixed states
Trðρ2SÞ < 1, i.e., decoherence. This is just the consequence
of the fact, that our system is not properly described by the
degrees of freedom in S and hence we can only give
probabilities in which quantum state our system is in.
In the following sections, we discuss how such a

dissipator can be modeled for quantum gravity effects
influencing our (nþ 3)-level flavor system.

II. MODELING QUANTUM GRAVITY EFFECTS

For the light Standard Model neutrino mass eigenstates
νk propagating in vacuum, we employ the usual ultra-
relativistic approximation

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

k

q
≈ pþm2

k

2p
: ð2Þ

Note that this approximation is used for convenience but is
not necessary in order to derive the results in the following.
Subsequently the three neutrino Hamiltonian reads

HS ¼ pIS þ
1

2p
diagðm2

1; m
2
2; m

2
3Þ: ð3Þ

Since only the commutator of HS and ρ impacts the
evolution of the system, we can always subtract a part
proportional to the identity IS from the Hamiltonian.
Hence, it simplifies to

HS ¼
1

2p
diagð0;Δm2

21;Δm2
31Þ; ð4Þ

with Δm2
ji ≔ m2

j −m2
i . Furthermore, we include n addi-

tional fermions either carrying the same gauge quantum
numbers as neutrinos or being Standard Model (SM) gauge
singlets. In order to obtain a similar Hamiltonian for this
generalized case, we need to require p ≫ mmax ≔
maxðfmkgnþ3

k¼1Þ where m1, m2, m3 are the neutrino masses
and the remaining ones correspond to the additional
fermions. Therefore, the Hamiltonian of the full system
reads

HS ¼
1

2p
diagðfΔm2

j1gnþ3
j¼1 Þ: ð5Þ

Until now we only discussed the details of the coherent
evolution of the system and it is time to turn towards the
modelling of the decoherence effects. In total there are two
important effects which have to be taken into account:
(1) Wave packet (WP) separation, and
(2) Quantum gravitational (QG) induced decoherence.

The first one arises because realistic neutrino states always
occur as a superposition of finitely sized wave packets
with spatial width σx since they are produced in processes
of finite duration. These wave packets of different mass
eigenstates don’t travel at the same group velocity
vk ¼ dEk=dp due to the different masses of the νk.
Thus, after some coherence length Lwp

jk the wave functions
of νj and νk barely overlap and coherence is lost.3 In the
simplest meaningful model this can be described by
exponential damping of the off-diagonal elements of the
density matrix [23,24] in the mass basis, i.e.,

2In order for this equation to hold, we need to assume that S
and E are only weakly coupled which is a reasonable assumption
in our case since we are considering quantum gravity effects on a
beam of particles traveling through spacetime.

3If the measurement process occurs in sufficiently short time
before the other mass eigenstate wave packets arrive at the
detector, it can distinguish between the different states. Only in
this case the coherence is lost.
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Dwp ¼ −
X
j>i

1

Lwp
ji

T ji; ð6Þ

where T ji applied to the density matrix yields the same
matrix with all elements set to zero but the entries ρji and
ρij and the coherence length is given by

Lwp
ji ¼ σx

jΔvjij
≈ σx

2p2

jΔm2
jij

: ð7Þ

Quantum gravitationally induced decoherence on the other
hand is due to the interaction of the system with the
spacetime foam. Following EHNS, we assume that in each
of these interactions the no-hair theorem applies and all
information about the flavor composition of the state is lost.
Hence, considering an ensemble of initially pure flavor
states encountering these stochastic spacetime interactions,
we find that after a sufficiently long travel distance the
system gets maximally entropic since no information of the
initial flavor can be restored. This corresponds to an
uniform flavor distribution.

A. A useful set of basis matrices

Before discussing the form of the QG dissipator, we
introduce a useful set of basis matrices in which we will
expand the density matrix. This is the set of hermitian
SUðN ≔ nþ 3Þ generators (plus a matrix proportional to
the identity) fλkgN2−1

k¼0 where we already adjusted the
dimension of the group to fit our (nþ 3)-level system.
These basis matrices fulfill the following criteria:

(i) Orthonormality: hλj; λki ≔ 2Trðλj · λkÞ ¼ δjk
(ii) Trace identities: TrðλjÞ ¼ 0 iff j ¼ 1;…; N2 − 1

and Trðλ0Þ ¼
ffiffiffiffiffiffiffiffiffi
N=2

p
(iii) Commutation relations: ½λ0; λj� ¼ 0, ∀ j ¼ 0;…; N

and ½λj; λk� ¼ i
P

N2−1
l¼1 fjklλl

where fjkl are the totally antisymmetric SUðNÞ structure
constants.
For practical reasons, we use the following ordering for

the basis matrices,

fλkgN2−1
k¼0 ¼ fλ0; λ1;…; λNðN−1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

off−diagonal

; λNðN−1Þþ1;…; λN2−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diagonal

g; ð8Þ

with

ðλjÞkl ¼
1

2
ðaδkk0δll0 þ a�δlk0δkl0Þ; 1 ≤ j ≤ NðN − 1Þ

ð9Þ

λNðN−1Þþm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðmþ 1Þp diagð1;…; 1|fflfflffl{zfflfflffl}

m×

;−m; 0;…; 0Þ;

1 ≤ m ≤ N − 1: ð10Þ

For the off-diagonal matrices, we use an ordering such that
a alternates between 1 and i for increasing index j and the
indices k0 and l0 are arranged that

ðk0; l0Þ ¼ ð2; 1Þ; ð3; 1Þ;…; ðN; 1Þ; ð3; 2Þ;…;

ðN; 2Þ;…; ðN;N − 1Þ; ð11Þ

where each tuple is attained twice: Once for a ¼ 1 and once
for a ¼ i. For example for N ¼ 2 we get the rescaled Pauli
matrices and for N ¼ 3 we get a rearranged set of rescaled
Gell-Mann matrices. This rearrangement of the basis
matrices implies that also the ordering of vector and matrix
components is different from the usual ordering in the
literature concerned with three neutrino oscillations with
decoherence.

B. The Lindblad equation in the new basis

Using this basis, the Lindblad equation (1) becomes

dϱ⃗ðxÞ
dx

¼ Cϱ⃗ðxÞ þDϱ⃗ðxÞ ≔ Λϱ⃗ðxÞ; ð12Þ

where ϱ⃗ is the coefficient vector of ρ,C is the representation
matrix of the commutator −i½H; ·� and D is the representa-
tion matrix of the dissipator D in our basis. Furthermore,
we employ the ultrarelativistic approximation in order to
substitute the traveled path x for the time variable t.
The antisymmetric commutator matrix C is given by

Ckl ¼ −
XN2−1

j¼1

hjfjkl ¼ −Clk; ∀ k; l ¼ 1;…; N2 − 1;

ð13Þ

C0l ¼ 0 ¼ −Cl0; ∀ l ¼ 0;…; N2 − 1; ð14Þ

where hl is the coefficient vector of the Hamiltonian.
The action of Dwp on a given density matrix ρ is simple

and only amounts to multiplying its off-diagonal elements
by the appropriate negative inverse wave packet coherence
lengths, −1=Lwp

ji . Expressed in the chosen basis this
corresponds to a diagonal dissipator of the form

Dwp ¼ −diag
�
0;

1

Lwp
21

;
1

Lwp
21

;
1

Lwp
31

;
1

Lwp
31

;…;

1

Lwp
NN−1

;
1

Lwp
NN−1

; 0;…; 0

�
: ð15Þ

Now, we return to the discussion of the dissipator matrix
Dqg corresponding to the quantum gravity effects. Since we
have no accepted theory of quantum gravity yet, we need to
employ some basic assumptions in order to constrain the
shape of Dqg. At first, we assume that the effect is
homogeneous and isotropic since there should be no
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preferred location or direction in the vacuum. Therefore,
Dqg depends only on the average energy E of the system.
From now on, we use the approximation p ≈ E for all
formulas to align with the literature. Second, we assume a
universal power-law energy dependence [25–27] of

Dqg
jkðEÞ ¼ djk

Eα

Mα−1
Planck

; ð16Þ

where α and djk are free, dimensionless parameters of the
model andMPlanck is the Planck mass serving as the energy
scale of the problem.
Next, we need to specify the shape of parameter matrix

d. The requirement of monotonically increasing entropy,
i.e., dS=dt ≥ 0, and probability conservation4 1≡ TrðρÞ ∝
ϱ0 yields

d0j ¼ dj0 ¼ 0; ∀ j ¼ 0;…; N2 − 1: ð17Þ

Hence, we only need to consider the ðN2 − 1Þ × ðN2 − 1Þ
submatrix fdijgN2−1

i;j¼1 . In the following, we assume a
symmetric dissipator because each matrix can be written
as the sum of a symmetric and an antisymmetric matrix.
The antisymmetric matrix can then be directly compared to
the commutator part whose entries are assumed to be much
larger and hence we can neglect the effects of the
antisymmetric part. Therefore only the symmetric part of
D gives rise to new, significant effects.
The simplest scenario fulfilling these criteria is a

diagonal dissipator

d ¼ diagð0; d1;…; dN2−1Þ: ð18Þ

Similarly toDwp, this matrix results in a damping of all off-
diagonal elements of ϱ at different rates but with the
difference that d also damps the excess/lack of each particle
species over flavor equilibrium according to the dj ≤ 0

with j > NðN − 1Þ. For this case, we can analytically solve
the Lindblad equation.
The corresponding result will be shown in the next

section.
The same asymptotic effect of convergence towards

flavor equilibrium is achieved by all dissipators that have
only one zero eigenvalue corresponding to the invariance of
the trace with respect to time evolution.5 Hence this effect
can be achieved by a much bigger class of dissipators than
only diagonal ones, but since we are solely interested in the
asymptotic limit in the following it is much simpler to
resort to a diagonal D.

III. OSCILLATION PROBABILITIES AND
NEUTRINO FLUXES

Since in our approach the matrix Λ is independent
of the traveled distance x, the analytic solution of Eq. (12)
is given by

ϱ⃗ðxÞ ¼ expðΛðx − x0ÞÞ · ϱ⃗ðx0Þ: ð19Þ
Hence, our only remaining task is to choose a suitable ϱ⃗ðx0Þ
for the scenarioswewant to consider. In all of these scenarios,
we start with an ensemble of initially pure neutrino flavor
eigenstates produced in an astrophysical environment via the
weak interaction. The simplest way to find the corresponding
initial ϱ⃗ðx0Þ, is to start from ϱ⃗fðx0Þ in the flavor basis and then
transform it into the mass basis using the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix UPMNS. Since we are not
only considering the simple three neutrino case but also
including n additional fermions into the system, we need to
extend this mixing matrix as follows:

U ¼ UPMNS ⊕ In×n: ð20Þ
Because neutrinos do not mix with the other fermions in the
system andour initial state is a pure neutrino flavor eigenstate,
it is sufficient to extendUPMNS using the identity, even though
the other fermion species might also mix with each other.
Therefore, the transformation due to thematrix shown in (20)
is only a partial transformation to the neutrino flavor basis.
The initial density matrix in the mass basis is then given by

ρðx0Þ ¼ ρα ¼ U†ρfαU; ð21Þ

where ðρfαÞab ¼ δaαδbα is the neutrino flavor projector for
flavor να. The respective coefficient vector reads

ϱ0α ¼
ffiffiffiffi
2

N

r
;

ϱ1α ¼ 2ReðU�
α2Uα1Þ;

ϱ2α ¼ 2ImðU�
α2Uα1Þ;

ϱ3α ¼ 2ReðU�
α3Uα1Þ;

ϱ4α ¼ 2ImðU�
α3Uα1Þ;

ϱ2N−1
α ¼ 2ReðU�

α3Uα2Þ;
ϱ2Nα ¼ 2ImðU�

α3Uα2Þ;
ϱNðN−1Þþ1
α ¼ jUα1j2 − jUα2j2;

ϱNðN−1Þþ2
α ¼ 1ffiffiffi

3
p ðjUα1j2 þ jUα2j2 − 2jUα3j2Þ;

ϱNðN−1Þþk
α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

kðkþ 1Þ

s
; ∀ 3 ≤ k ≤ N − 1;

all other components vanish.

4We assume that our system does not loose particles, but only
information.

5See Appendix A for details.
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Using these initial density matrices, we can calculate the
oscillation probabilities as

PαβðLÞ ¼ TrðρβρðLÞÞ; with ρð0Þ ¼ ρα ð22Þ

¼ 1

2
hρβ; ρðLÞi ð23Þ

¼ 1

2
ϱ⃗Tβ ϱ⃗ðLÞ ð24Þ

¼ 1

2
ϱ⃗Tβ expðΛLÞϱ⃗α: ð25Þ

For the simplest case of a purely diagonal dissipator, the
general oscillation formula reads

PαβðLÞ ¼
1

N
þ 1

2
ðjUα1j2 − jUα2j2ÞðjUβ1j2 − jUβ2j2Þe−ΓNðN−1Þþ1L þ 1

6
ðjUα1j2 þ jUα2j2 − 2jUα3j2ÞðjUβ1j2 þ jUβ2j2

− 2jUβ3j2Þe−ΓNðN−1Þþ2L þ
XN−1

k¼3

e−ΓNðN−1ÞþkL

kðkþ 1Þ þ 2
X3
j>i¼1

ReðU�
αjUαiUβjU�

βiÞe
− L
Lwp
ij e−Γ̄lþ1lL cosðωijLÞ

þ 2
X3
j>i¼1

ReðU�
αjUαiU�

βjUβiÞ
ΔΓlþ1l

ωij
e
− L
Lwp
ij e−Γ̄lþ1lL sinðωijLÞ

− 2
X3
j>i¼1

ImðU�
αjUαiUβjU�

βiÞ
ΔEij

ωij
e
− L
Lwp
ij e−Γ̄lþ1lL sinðωijLÞ; ð26Þ

where we introduce the following quantities

ΔEij ≔
Δm2

ij

2E
; ð27Þ

ωij ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔEijÞ2 − ðΔΓlþ1lÞ2

q
; ð28Þ

ΔΓlþ1l ≔
Γlþ1 − Γl

2
; ð29Þ

Γ̄lþ1l ≔
Γlþ1 þ Γl

2
; ð30Þ

Γl ≔ jdlj
Eα

Mα−1
Planck

; ð31Þ

and the index l is a function of the indices i and j such that

lði; jÞ ≔

8>><
>>:

1; i ¼ 1 ∧ j ¼ 2

3; i ¼ 1 ∧ j ¼ 3

2N − 1; i ¼ 2 ∧ j ¼ 3

: ð32Þ

For the more complicated scenarios where the QG dis-
sipator also contains off-diagonal elements the solution has
to be calculated semianalytically.

A. Asymptotic limits

Now, we want to inspect the behavior of the formula just
derived for some baselines of interest. In the small baseline
regime, where by small we mean small compared to all

cohernce lengths Lwp
ij ≪ Γ−1

k in the system, the standard
three neutrino oscillation formula is recovered, i.e.,

PαβðLÞ ≈ δαβ − 4
X
j>i

ReðU�
αjUαiUβjU�

βiÞ sin2
�Δm2

jiL

4E

�

þ 2
X
j>i

ImðU�
αjUαiUβjU�

βiÞ sin
�Δm2

jiL

2E

�
; ð33Þ

but only if ΔΓlþ1l ≪ ΔEij for the corresponding lði; jÞ.
This must be the case, otherwise we would already see
significant discrepancies between the observed and pre-
dicted oscillation patterns in earth bound or solar neutrino
oscillation experiments. For a set of exemplary parameters
given in Table I, we plot the oscillation probability from
Eq. (26) against the standard probability (33) for baselines

TABLE I. Exemplary parameter configuration used for the
oscillation plots assuming normal ordering (NO) of the neutrino
masses.

Parameter Value Source

Δm2
21 7.53 × 10−5 eV2 [28]

Δm2
32 (NO) 2.453 × 10−3 eV2 [28]

sin2ðθ12Þ 0.307 [28]
sin2ðθ13Þ 2.18 × 10−2 [28]
sin2ðθ23Þ (NO) 0.545 [28]
σx 10−13 m [29]
N 13 � � �
α 2 � � �
d ≔ dk ∀ k ≥ 1 −10−25 � � �
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up to L ≤ 105 km in Fig. 1. The plot shows the expected
agreement of both curves for small baselines L≲ 2 ×
104 km and a growing difference between them as L
approaches the smallest coherence length Lwp

31 .

For baselines comparable to the coherence length
induced by the effect of wave packet separation, the
oscillation formula becomes

PαβðLÞ≈
X3
k¼1

jUαkj2jUβkj2þ2
X3
j>i¼1

ReðU�
αjUαiUβjU�

βiÞe
− L
Lwp
ij cosðΔEijLÞ−2

X3
j>i¼1

ImðU�
αjUαiUβjU�

βiÞe
− L
Lwp
ij sinðΔEijLÞ: ð34Þ

Here, we assumed Γ−1
k ≫ Lwp

ij and hence expð−ΓkLÞ ≈ 1which is reasonable since quantum gravity effects are supposed to
be very weak.
For L ∼ Γ−1

k , the asymptotic oscillation probability reads

PαβðLÞ ≈
1

N
þ 1

2
ðjUα1j2 − jUα2j2ÞðjUβ1j2 − jUβ2j2Þe−ΓNðN−1Þþ1L

þ 1

6
ðjUα1j2 þ jUα2j2 − 2jUα3j2ÞðjUβ1j2 þ jUβ2j2 − 2jUβ3j2Þe−ΓNðN−1Þþ2L þ

XN−1

k¼3

e−ΓNðN−1ÞþkL

kðkþ 1Þ ; ð35Þ

which approaches flavor equilibrium, i.e.,

PαβðL ≫ Γ−1
k Þ ∼ 1

N
; ð36Þ

iff ΓNðN−1Þþk ≠ 0 for k ≥ 1.
In view of what follows in the next subsections, we

should also consider the behavior of the oscillation prob-
abilities for different energy regimes. Here, we note that
wave packet separation is a low-energy effect since

L−1
ij ∝ E−2; ð37Þ

while quantum gravitationally induced decoherence domi-
nates at high energies because

Γk ∝ Eα; ð38Þ

with α ≥ 1, typically. Depending on the decoherence
parameters of the system there might exist a region between
the wave packet separation and quantum gravity regimes
where oscillations are dominating. In Figs. 2(a) and 2(b),
we show the asymptotic behavior of Pee for variable base
length and energy, respectively. For the plot at fixed base
length, we choose LS ≈ 2 kpc which corresponds to the
approximate distance of earth to Cygnus OB2 representing
a potentially interesting source of ν̄e according to [26].

B. Neutrino fluxes

Since quantum gravity effects are expected to be
extremely weak, we need to investigate on neutrinos of
high energy which already traveled a significant distance
from their origin to our detectors. Therefore, we have to
improve on measuring astrophysical neutrinos originating
from quasars and other stellar objects which are boosted
relative to earth such that they can reach energies of
OðPeVÞ or even OðEeVÞ. If we are able to identify a rich
high-energy neutrino source using future neutrino experi-
ments, we could be able to measure the previously
described effects and hence learn something about the
quantum nature of spacetime and dark matter fermions.
These sources will reside at a fixed baseline LS and provide
neutrinos of different energy. Thus, we need to study the
impact of quantum gravitational decoherence on the neu-
trino energy flux spectra corresponding to the neutrino
sources. In the following, we demonstrate how to estimate
neutrino fluxes using the previously calculated neutrino
oscillation probabilities.
A realistic neutrino source can be one of two kinds:

FIG. 1. Comparison of the standard oscillation formula (black)
versus the formula from Eq. (26) (red) for p ¼ 1 GeV.
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(i) Primary source; neutrinos directly emerge from the
approximately pointlike source.

(ii) Secondary source; the source produces particles
(pions, neutrons, …) which decay into neutrinos
on their path to earth.

In the first case, the flux density6 of neutrino flavor να
reaching earth Φ⊕

α ðEÞ is given by

Φ⊕
α ðEÞ ¼

Xτ

β¼e

PβαðLS; EÞΦS
βðEÞ; ð39Þ

where ΦS
βðEÞ is the flux density of neutrinos of flavor β

emerging at the source,7 LS is the physical distance to the
source and E is the neutrino energy.
The second case is a little bit more complicated since one

has to take into account that the primary particles do not
decay instantaneously but may travel for significant dis-
tances due to a huge Lorentz boost relative to the lab frame.
Furthermore, the dynamics and kinematics of the decay
process need to be considered in order to translate the
spectrum of primary particles to the neutrino spectrum.
Using the law of total probability one can derive the flux of
neutrinos arriving at earth to be

Φ⊕
α ðEÞ ¼

X
η∈S

Xτ

β¼e

Z
∞

mη

Z
LS

0

ΦS
ηðEηÞπηβðE;EηÞ

×
e

−l
vητη

vητη
PβαðE;LS − lÞdldEη; ð40Þ

which is a generalized version of the corresponding
expression given in [26]. In the following, we briefly
discuss the physical meaning of this formula. We start
with particles η (e.g., π�; n;…) emerging from the source S
with energy Eη and the flux density ΦS

ηðEηÞ. These primary
particles then decay according to the exponential distribu-
tion with mean lifetime τη after a distance l from the source
and become a neutrino of flavor β and energy E with the
probability πηβðE; EηÞ. These neutrinos travel the remain-
ing distance LS − l to earth and are measured at earth as a
neutrino of flavor α with probability PβαðE; LS − lÞ.
Lastly, we have to sum or integrate over all unmeasured
quantities, such as the energy of the primaries, the distance
l, all occurring particle species η form the source and the
initially produced neutrino flavors β. As shown in
Appendix B Eq. (40) contains Eq. (39) as a limiting case.
Now, we can turn towards the influence of quantum

gravity effects on the flux spectra. In the following, we
consider two sensitive observables:

(i) The total neutrino flux spectrum;
(ii) Neutrino flavor ratios.

In order to discuss these observables, we introduce the
threshold energy

Edip ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα−1

Planck

minjjdjjL
α

s
; ð41Þ

where quantum gravitational effects become relevant, i.e.,
where ΓjL ¼ Oð1Þ. From there on the oscillation proba-
bility approaches a uniform flavor distribution over all
neutral fermions and the total probability for measuring any
type of neutrino behaves as

(a) (b)

FIG. 2. Oscillation probability Pðνe → νeÞ for variable base length (at E ¼ 1 PeV) (left) and variable energy (at L ¼ 2 kpc) (right).
The L and E regions are chosen such that the asymptotic behavior of Eq. (26) becomes appearant. Furthermore, we use σx ¼ 10−9 m in
order to allow for an oscillatory regime in the right plot.

6Here flux density means the number of particles per area, time
and energy, i.e., ∂3N=∂A∂t∂E.

7Of course this flux density is scaled appropriately such that it
represents the flux of particles at earth if no oscillation effects
would occur.
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Xτ

β¼e

PαβðE ≫ EdipÞ →
3

N
; ð42Þ

i.e., it exhibits a dip after this threshold. This is the crucial
observation for everything we discuss from now on.

1. Total neutrino fluxes

According to the asymptotic behavior of the oscillation
probabilities discussed in the last section, we expect a dip in
the total neutrino flux spectrum beginning at the energy
Edip. The sharpness of the dip will be influenced by whether
we observe neutrinos originating from primary sources or
from secondary ones and by the background of neutrinos
from other sources. This is because two neutrinos from the
same secondary source will in general travel different
distances depending on the point where their mother
particles decay. This shifts Edip to higher or lower values
depending on the respective distance and hence the dip
appears smeared out. The same argument holds for two
different neutrino sources at distances L1 and L2.
In Fig. 3(a) we plot the neutrino flux from a primary

electron neutrino source with source flux [30,31]

ΦS
eðEÞ ¼ Φ0E−γ; with γ ¼ 2.5: ð43Þ

The dip starts around Edip as expected and Φν;totðEÞ ≔P
α Φ⊕

α ðEÞ quickly approaches the expected fraction of
3=N compared to the initial flux. The figure is obtained for
LS ¼ 2 kpc and using the parameters from Table I. Here,
we also choose LS to be the approximate distance to the
potentially interesting astrophysical neutrino source
Cygnus OB2 [26], as before.
As an example for a neutrino flux from a secondary

source, we consider a source emmitting neutrons

subsequently decaying into ν̄e. For simplicity, we assume
that neutrinos emerge from β-decay with a fixed mean
energy ϵ0 ≈ 0.5 MeV in the neutron rest frame. Using this
approximation and the parameters from Table I, we can
show that by summing over all final state neutrino flavors
Eq. (40) becomes

ΦtotðEÞ ¼
mn

2ϵ0

Z
∞

Emn
2ϵ0

dEn
ΦS

nðEnÞ
En

×

�
3

N
ð1− e−

LS
vnτnÞþ ðN − 3Þ

N −NvnτnΓ
ðe−ΓLS − e−

LS
vnτnÞ

�
:

ð44Þ

Here mn is the neutron’s mass, vn represents its velocity
and τn is its mean lifetime in the lab frame. The total
neutrino fluxes obtained from Eq. (44) for the decoherence
and standard cases can be seen in Fig. 3(b). As expected the
dip towards the asymptotic value 3=N ·Φstd

tot is washed out
compared to that from primary neutrino sources, but still
occurs around Edip. Furthermore, the neutrino spectrum
falls off more rapidly at the end of the considered energy
range since at these energies the neutron mean free path
amounts to

ln ≔ vnτn ¼
pn

En
γτ0n ¼

pn

mn
τ0n

����
En≈10 PeV

≈ 100 pc:

Therefore, a few neutrons might even reach earth before
decaying into neutrinos.
At this point, we can draw an intermediate conclusion.

Regardless of the kind of the source (primary or secondary)
the total neutrino flux exhibits a characteristic dip
if quantum gravity affects neutrino oscillation over

(a) (b)

FIG. 3. Total Neutrino Flux Φν;tot ¼
P

α Φ⊕
α ðEÞ for a primary (left) and secondary (right) neutrino source according to Eqs. (39) and

(44). The black line corresponds to the total particle flux reaching earth, while the red line represents Φν;tot calculated incluing
decoherence effects. The black dashed line shows the asymptotic limit of Φν;tot ¼ 3=N ·Φtot. Furthermore, we include a red, vertical,
dashed line to show the position of the dip in the neutrino flux spectrum.
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astrophysical distances the way we have described it above.
The strength of this dip depends on the number of addi-
tional fermions N present in the beam, whereas its position
and steepness depend on the model parameters dj and α.
Hence observing such a dip in a neutrino flux spectrum
immediately yields an upper bound on the number of
neutral fermions in the Universe and an estimate of the
relevant decoherence parameters.

2. Flavor ratios at neutrino telescopes

The other QG sensitive observables at neutrino tele-
scopes are the reconstructed neutrino flux ratios [26]. They
depend on the flavor composition rS at the source and on
the details of the evolution of the system. Especially, we
expect flavor equilibrium, i.e.,

ΦeðEÞ ≃ΦμðEÞ ≃ΦτðEÞ; ð45Þ

for energies where QG effects become relevant, i.e., at
E ≥ Edip, according to the asymptotic behavior of the
oscillation probabilities.
In the following, we denote the neutrino flavor ratios as

r ¼ ðre∶rμ∶rτÞ ð46Þ

¼
�

Φe

Φν;tot
∶

Φμ

Φν;tot
∶

Φτ

Φν;tot

�
; ð47Þ

such that a pion source producing two νμ per each νe and no
ντ yields an initial flavor ratio of

rπ
�

S ¼
�
1

3
∶
2

3
∶0

�
: ð48Þ

Although flavor ratios are insensitive to the number of
additional fermions in our model, they still provide insight
about if quantum gravity effects are present. In the case of
democratic quantum gravity effects, flavor ratios always
approach a ð1=3∶1=3∶1=3Þ ratio at high energies regardless
of the initial flavor composition. For an initial pion source,
as exemplified above, it is important to note that this
signature is already expected for wave packet decoherence
effects due to the maximal mixing of νμ and ντ [32,33].
Hence, it would be beneficial to examine multiple sources
of different initial flavor compositions in order to tell both
effects from each other. In the following, we mainly focus
on three kinds of idealized sources as they are the most
commonly used ones [26,32]:

(i) Pion source ⇔ rS ¼ ð1=3∶2=3∶0Þ;
(ii) Neutron source ⇔ rS ¼ ð1∶0∶0Þ;
(iii) Muon damped pion source ⇔ rS ¼ ð0∶1∶0Þ.

This is of course not an exhaustive list and it was shown
[32] that one has to be careful with assuming such idealized
scenarios in order to infer neutrino oscillation parameters
from experiment. In our case this does not play a role since

we only want to demonstrate how the impact of quantum
gravitational decoherence alters the observed flavor ratios
at the detector. To do so, we compare for each example the
respective final flavor compositions of wave packet sep-
aration decoherence only and with additional quantum
gravitational decoherence.
Pion Source:
Figure 4 shows the final flavor ratios for a pion source at

different energies. Here, we can see that for an initial flavor
ratio of ð1=3∶2=3∶0Þ it is difficult to distinguish pure wave
packet decoherence from additional quantum gravitational
decoherence effects, since both lead to a final uniform
flavor distribution, as discussed above. For arbitrary high
statistics and very low systematical error it might be
possible for experiments to tell both cases apart, but such
beneficial conditions are only to be expected in the very far
future, if at all.
Neutron Source:
For an astrophysical neutron source giving rise to an

initial ratio of (1:0:0), we obtain a different picture as can
be inferred from Figs. 5(a) and 5(b). Both plots show the
final flavor ratios for different energy intervals E ∈
½1 TeV; 1 PeV� and E ∈ ½3Edip; 1 PeV�, respectively. The
first interval includes energies below the critical energy
Edip ∼ 20 TeV which is why in Fig. 5(a) the QG
decoherence points start at the WP-only point and approach
the democratic scenario for increasing energy. The second
interval is chosen to show that after the threshold Edip all
flavor ratios are located at the ð1=3∶1=3∶1=3Þ point.

FIG. 4. Final flavor ratios for E ∈ ½1 TeV; 1 PeV� at LS ¼
2 kpc with rS ¼ ð1=3∶2=3∶0Þ (pion source). The blue dots
represent the ratios obtained from the full quantum gravity
model, the green square shows the outcome of the wave packet
decoherence-only case and the red star denotes full flavor
equilibrium.
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In both figures pure wave packet decoherence and
quantum gravitational decoherence can be nicely distin-
guished as soon as the confidence intervals of the exper-
imental measurement is small enough which requires
significantly less statistics compared to the former case.
Muon damped pion Source:
For a muon damped pion source we assume that the

muon from the pion decay quickly looses energy to the

surrounding matter. Consequently, the νμ and νe following
from the decaying muon also have much less energy than
the νμ released during pion decay. Hence, even if they reach
the detector they would not be regarded as high-energy
neutrinos and discarded. In this case, the effective initial
flavor ratio is (0:1:0) and the resulting final ratios are shown
in Figs. 6(a) and 6(b). As for the neutron source, we show
plots for both energy intervals.

(a) (b)

FIG. 5. Final flavor ratios for the respective energy intervals (E ∈ ½1 TeV; 1 PeV� left and E ∈ ½3Edip; 1 PeV� right) at LS ¼ 2 kpc
with rS ¼ ð1∶0∶0Þ (neutron source). The blue dots represent the ratios obtained from the full quantum gravity model, the green square
shows the outcome of the wave-packet-decoherence-only case and the red star denotes full-flavor equilibrium.

(a) (b)

FIG. 6. Final flavor ratios for the respective energy intervals (E ∈ ½1 TeV; 1 PeV� left and E ∈ ½3Edip; 1 PeV� right) at LS ¼ 2 kpc
with rS ¼ ð0∶1∶0Þ (muon damped source). The blue dots represent the ratios obtained from the full quantum gravity model, the green
square shows the outcome of the wave packet decoherence-only case and the red star denotes full flavor equilibrium.
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IV. CONCLUSIONS

Quantum gravitational (QG) decoherence in astrophysi-
cal neutrinos could provide important insights into the
nature and composition of dark matter. A thorough analysis
using the formalism of neutrino density matrices shows that
a wide class of possible decoherence models leads to a
uniform flavor distribution over all fermionic degrees of
freedom. These additional fermions need to carry the same
unbroken gauge quantum numbers as neutrinos in order to
be indistinguishable by interactions with the spacetime
foam. Hence, all fermions contributing to dark matter with
masses smaller than the beam energy can in principle be
observed using this effect. The impact of quantum gravity
decoherence might only become visible for highly ener-
getic neutrinos which traveled very long distances since
these effects might be very weak for non-Planck scale
neutrinos.
If a dip similar to the ones shown in Figs. 3(a) and 3(b)

is present in the total measured neutrino flux, this might be
a hint at the quantum properties of spacetime in combi-
nation with the presence of several dark matter fermions.
Moreover, the depth of the dip is a measure for how many
of these fermionic species exist.
Even if we don’t see a dip as shown in Sec. III B

quantum gravitational decoherence enforces a uniform
flavor distribution over all neutrino species. Thus, one
observes a ð1=3∶1=3∶1=3Þ flavor ratio in the high energy
region of astrophysical neutrino fluxes regardless of the
flavor composition at the source. Depending on the
original flavor composition at the source, already this
democratic flavor mix may hint at the quantum properties
of spacetime and that either interactions with the space-
time foam do not obey the no-hair theorem or that dark
matter is not made up from fermions with masses smaller
than the beam energy.
Finally, because of the inherent energy dependence of

the neutrino flavor ratios, QG implies that the usual ansatz
parametrizing the neutrino fluxes as

Φα ¼ fαCE−γ; ð49Þ

where the flavor fraction fα is constant with respect to
energy, is no longer valid. According to our previous
findings regarding the total neutrino flux as well as neutrino
flavor ratios the flavor composition at the detector can
actually vary significantly with respect to energy.
In conclusion, we see that the observation of highly

energetic neutrinos of astrophysical origin at future experi-
ments bears significant potential regarding the search for
effects beyond the Standard Model of particle physics.
Hence, pushing efforts to observe a significant flux of these
neutrinos should be considered.
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APPENDIX A: CLASSIFICATION OF
DISSIPATORS LEADING TO FLAVOR

EQUILIBRIUM

Here, we want to show briefly which dissipators will
inevitably lead to an asymptotic final state of maximal
entropy, considering an N level system as we do in this
paper. For the case of neutrino oscillations this corresponds
to maximal flavor equilibrium. A maximally entropic state
is described by a density matrix proportional to the identity
or, if we use the language of the basis matrices from Sec. II,
which is proportional to λ0, i.e.,

ρ ¼ ϱ0λ0: ðA1Þ

This is achieved by any dissipator D damping all other
components but ϱ0 in the asymptotic limit. Recall that the
Lindblad equation reads

d
dx

ρðxÞ ¼ −i½H; ρðxÞ� þD½ρ�: ðA2Þ

By choosing an operator basis in which we can expand the
density matrix and the hamiltonian as

ρ ¼ ϱ0λ0 þ ϱ⃗ · λ⃗; ðA3Þ

H ¼ h0λ0 þ h⃗ · λ⃗; ðA4Þ

we can rewrite this for a trace preserving system as

_ϱ0 ¼ 0; ðA5Þ

_ϱ⃗ ¼ C̃ ϱ⃗þD̃ ϱ⃗ : ðA6Þ

Here C̃ ¼ −C̃T and D̃ are the representation matrices of the
commutator part and the dissipator, respectively, reduced
by the zeroth row and column. The commutator part of this
equation conserves the length of ϱ while a nontrivial
dissipator will change it, since

d
dt
ðϱ⃗T · ϱ⃗Þ ¼ _ϱ⃗T · ϱ⃗þ ϱ⃗T _ϱ⃗ ðA7Þ

¼ ðC̃ ϱ⃗þD̃ ϱ⃗ÞT ϱ⃗þ ϱ⃗TðC̃ ϱ⃗þD̃ ϱ⃗Þ ðA8Þ

¼ ϱ⃗TC̃T ϱ⃗þ ϱ⃗TC̃ ϱ⃗þϱ⃗TD̃T ϱ⃗þ ϱ⃗TD̃ ϱ⃗ ðA9Þ

¼ −ϱ⃗TC̃ ϱ⃗þϱ⃗TC̃ ϱ⃗þϱ⃗TD̃T ϱ⃗þ ϱ⃗TD̃ ϱ⃗ ðA10Þ

¼ ϱ⃗TD̃T ϱ⃗þ ϱ⃗TD̃ ϱ⃗ : ðA11Þ
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Furthermore, we assume the dissipator to be a symmetric
matrix, i.e., D̃ ¼ D̃T (which is usually the case) and as such
it can be diagonalized using an orthogonal matrix
O ∈ OðN2 − 1Þ, i.e.,

D̃ ¼ OΔ̃OT; ðA12Þ

where Δ̃ ¼ diagðδ1;…; δN2−1Þ contains the eigenvalues of
D̃ on its diagonal. This orthogonal transformation corre-
sponds to a partial change of basis where only λ0 remains
unchanged. Applying this procedure to the Lindblad
equation yields

_ϱ⃗ ¼ OC̃0OT ϱ⃗þOΔ̃OT ϱ⃗; ðA13Þ

OT _ϱ⃗ ¼ C̃0OT ϱ⃗þ Δ̃OT ϱ⃗; ðA14Þ

_ϱ⃗0 ¼ C̃0ϱ⃗0 þ Δ̃ϱ⃗0: ðA15Þ

Here we introduce the transformed quantities ϱ⃗0 ¼ OT ϱ⃗ and
C̃0 ¼ OTC̃O and moreover assume that _O≡ 0. Since the
commutator part remains antisymmetric under this trans-
formation,

ðC̃0ÞT ¼ ðOTC̃OÞT ¼ OTC̃TO ¼ −OTC̃O ¼ −C̃0; ðA16Þ

it still preserves the length of ϱ⃗ as shown above. Hence, the
square of ϱ⃗ evolves according to

d
dt
ϱ⃗T ϱ⃗ ¼ 2ϱ⃗TD̃ ϱ⃗ ðA17Þ

¼ 2ϱ⃗TOOTD̃OOT ϱ⃗ ðA18Þ

¼ 2ϱ⃗0TOTD̃Oϱ⃗0 ðA19Þ

¼ 2ϱ⃗0TΔ̃ϱ⃗0 ðA20Þ

¼ 2
XN2−1

k¼1

δkðϱ0kÞ2: ðA21Þ

In case δk < 0 for all k ≥ 1, the system is asymptotically
damped to the identity, i.e., ρ ¼ ϱ0λ0, regardless of the
initial state of the system. Consequently, all negatively
definite dissipators lead to a maximally entropic final state
in the asymptotic limit.

APPENDIX B: INSTANTANEOUS DECAY
APPROXIMATION OF THE FLUX FORMULA

Now, we verify that Eq. (40) reduces to Eq. (39) if the
emerging η particles decay instantaneously into neutrinos
of flavor β with the same energy, i.e., S is a source
emmitting only neutrinos. This means η represents a mere
mathematical tool to relate both formulas. This corresponds
to

πηβðE;EηÞ ¼ δðE − EηÞδηβ; ðB1Þ

τη → 0þ; ðB2Þ

and yields

Φ⊕
α ðEÞ ¼

X
η∈S

Xτ

β¼e

Z
∞

mη

ΦS
ηðEηÞπηβðE;EηÞ lim

τη→0þ

Z
LS

0

e
−l
vητη

vητη
PβαðE;LS − lÞdldEη ðB3Þ

¼
X
η∈S

Xτ

β¼e

Z
∞

mη

ΦS
ηðEηÞδðE − EηÞδηβ lim

τη→0þ

Z
LS

0

e
−l
vητη

vητη
PβαðE;LS − lÞdldEη ðB4Þ

¼
Xτ

β¼e

ΦS
βðEÞ lim

τη→0þ

Z
LS

0

e
−l
vητη

vητη
PβαðE; LS − lÞdldEη ðB5Þ

¼
Xτ

β¼e

PβαðE;LSÞΦS
βðEÞ: ðB6Þ

From the second step to the last step, we used the relation

I ≔ lim
τ→0þ

Z
L

0

e−
l
vτ

vτ
PβαðE;L − lÞdl ¼ PβαðE; LÞ: ðB7Þ
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Proof.—To derive this, we simplify the expression above
by introducing T ≔ L=v, changing variables from l to
t ≔ l=v and defining gðtÞ ≔ PβαðE;L − vtÞ. This yields

I ¼ lim
τ→0þ

Z
T

0

e−
t
τ

τ
gðtÞdt ¼! gð0Þ: ðB8Þ

In the following, we use the definition of limτ→0þ and
choose an arbitrary but positive null sequence ðτnÞn∈N
replacing

lim
τ→0þ

→ lim
n→∞

: ðB9Þ

Therefore, we get

I ¼ lim
n→∞

Z
T

0

e−
t
τn

τn|{z}
≥0

gðtÞdt ðB10Þ

¼ lim
n→∞

gðξnÞ
Z

T

0

e−
t
τn

τn
dt ðB11Þ

¼ lim
n→∞

gðξnÞð1 − e−
T
τnÞ ðB12Þ

¼ gð0Þ: ðB13Þ

This is what we had to show. Here we made use of the
generalized mean value theorem of integration and
exploited that ξn → 0, since

gðtÞe−t
τ → 0 ðB14Þ

is sufficiently rapid for all t > 0, due to the exponential
decay of the integrand.
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