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Weakly interacting massive particles (WIMPs) can be captured in compact stars such as white dwarves
(WDs) if they are in a dark matter (DM)-rich environment, leading to an increase in the star luminosity
through their annihilation process. N-body simulations suggest that the core of the Messier 4 globular
cluster (where plenty of WDs are observed) is rich of DM. Assuming this is the case, we use a recent
improvement in the calculation of the WD equation of state to show that when the WIMP interacts with the
nuclear targets within the WD through inelastic scattering, and its mass exceeds a few tens of GeV, the data
on low-temperature large-mass WDs in M4 can probe values of the mass splitting as large as δ≲ 40 MeV.
Such value largely exceeds those ensuing from direct detection and from solar neutrino searches. We apply
such improved constraint to the specific DM scenario of a self-conjugate bidoublet in the left-right
symmetric model (LRSM), where the standard SUð2ÞL group with coupling gL is extended by an additional
SUð2ÞR with coupling gR in order to explain maximal parity violation in weak interactions. We show that
bounds from WDs significantly reduce the cosmologically viable parameter space of such scenario, in
particular requiring gR > gL. For instance, for gR=gL ¼ 1.8 we find the two viable mass ranges 1.2 TeV ≲
mχ ≲ 3 TeV and 5 TeV ≲mχ ≲ 10 TeV, when the charged SUð2ÞR gauge boson massMW2

is lighter than
≃12 TeV. We also discuss the ultraviolet completion of the LRSM model, when the latter is embedded in a
grand unified theory. We show that such low-energy parameter space and compatibility to proton-decay
bounds require a nontrivial extension of the particle content of the minimal model. We provide a specific
example where MW2

≲ 10 TeV is achieved by extending the LRSM at high energy with color triplets that
are singlets under all other groups, and gR=gL > 1 is obtained by introducing SUð2ÞL triplets with no
SUð2ÞR counterparts, i.e., by breaking the symmetry between the multiplets of SUð2ÞL and SUð2ÞR.
DOI: 10.1103/PhysRevD.106.083012

I. INTRODUCTION

The discovery of the nature of cold dark matter (CDM) is
one of the most urgent pending issues of modern physics.
Weakly interacting massive particles (WIMPs) are the most
popular CDM candidates: their mass mχ falls in the GeV–
TeV range and they are expected to have only weak-type
interactions with ordinary matter. Such small but non-
vanishing interactions keep them in thermal equilibrium in

the Early Universe, providing an expected thermal relic
abundance in agreement with observation. They also
provide promising signals to detect them: in direct detec-
tion (DD) WIMP scattering events off nuclear targets are
searched for through the measurement of the ensuing
nuclear recoils in low-background detectors (see for in-
stance [1,2]); in accelerators WIMPs can be created from
the scattering of Standard Model (SM) initial states (see for
instance [3–5]); finally, in indirect detection (ID) the
products of the annihilations of DM particles in the halo
of our Galaxy or that of dwarf galaxies are searched for
both in ground-based and in satellite telescopes (see for
example [6–9]).
Annihilation is enhanced wherever the WIMP density is

large, so that a peculiar ID signal is provided by celestial
bodies such as the Sun or the Earth, that, through the same
WIMP–nucleus scattering processes that are searched for in
DD, can capture WIMPs developing a high-density pop-
ulation of them in their interior [10–16]. The opacity of the
celestial body plasma implies that among the WIMP
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annihilation products only neutrinos can escape from its
surface, with energies that can reach about one-third of the
WIMP mass [17–20]. The detection of neutrinos coming
out from the Sun or the Earth with energies ranging from
the GeV to the TeV scale would represent a smoking gun of
an exotic process, since it could not be explained by any
known mechanism [21,22]. The direction of the muons
produced by the conversion of such neutrinos in the vicinity
of a Cherenkov detector such as Super–Kamiokande or
IceCube is strongly correlated to that of the source,
providing a powerful background subtraction method
[23–25].
Both DD and capture are substantially modified in the

scenario of inelastic dark matter (IDM). In this class of
models a DM particle χ of mass mχ interacts with atomic
nuclei exclusively by upscattering to a second heavier state
χ0 with mass mχ0 ¼ mχ þ δ. A peculiar feature of IDM is
that there is a minimal WIMP incoming speed in the target
frame matching the kinematic threshold for inelastic
upscatters and given by

v�min ¼
ffiffiffiffiffiffiffi
2δ

μχN

s
; ð1:1Þ

withμχN theWIMP-nucleus reducedmass.TheWIMPspeed
in the halo of our Galaxy is bounded by the escape velocity
uesc ≃ 550 km=s and for both DD and capture in the Sun or
the Earth the targets move in the Galactic rest frame with a
relative speed v0 ≃ 220 km=s, corresponding to the rota-
tional curve at the solar system position [26]. As a conse-
quence the WIMP-scattering process in DD vanishes if
v�min ≳ vmax ¼ uesc þ v0 ≃ 800 km=s, because it becomes
kinematically not accessible, the incoming WIMP speed
being too slow to overcome the inelasticity threshold. Such
kinematic bound implies that the largest values of δ that DD
can probe are reached by the heaviest targets (xenon, iodine,
tungsten) employed in existing experiments and cannot
exceed δ ≃ 200 keV [27].
A trivial way to extend the sensitivity to the δ parameter

beyond DD is to look for processes where the WIMP
scatters off nuclei at higher speeds. For instance, the
gravitational potential accelerates the WIMP particles
before they scatter off the nuclei of a celestial body, so
that their speed can be larger than vmax. Indeed, it can reach
1600 km=s in the center of the Sun, implying that the
values of δ that can be probed in IDM by capture can reach
≃600 keV [28]. As a consequence, for these scenarios the
solar capture bounds are stronger than those from DD.
Clearly, even stronger bounds can in principle be

obtained from WIMP capture in celestial bodies with a
gravitational potential stronger than that of the Sun, such as
white dwarves (WDs) [29–31] and neutron stars (NSs)
[32,33]. Indeed, in such cases the speed of the scattering
WIMP can reach ≃ a few 104 km=s (for WDs) [34] or a few
105 km=s (for NSs) [35], potentially extending the values

of δ that can be probed up to several tens of MeV for WDs
and hundreds of MeV for NSs. WDs have already been
used in the literature to put constraints on other DM
scenarios [36].
In Ref. [34] the WD equation of state improved in [37]

was used to constrain the WIMP-nucleus cross section in
the case of elastic scattering. The aim of our paper is to
extend the analysis of Ref. [34] to the case of inelastic
scattering, showing how this can have dramatic conse-
quences on a specific realization of the IDM scenario,
bidoublet DM in left-right symmetric models (LRSM) [38].
In such scenario the DM particle has a nonvanishing

hypercharge, leading to a coupling to the Z boson whose
size is several orders of magnitude larger than that excluded
by DD experiments in the case of elastic scattering.
However, it can be reconciled to DD constraints by
selecting the parameter space for which the mass splitting
δ≳ 200 keV so that the nuclear-scattering process is
kinematically forbidden [39]. In particular, for bidoublet
DM in the LRSM only DD constraints have been discussed
so far. In Sec. III we will update its phenomenological
analysis including the improved bound from WDs.
The paper is organized as follows. In Sec. II we extend the

WD bounds discussed in [34] to IDM. In particular, in
Sec. II Awe review the present knowledge on the amount of
DM in the globular clusters (GCs) of our Galaxy and
specifically in Messier 4 (M4) showing that N-body simu-
lations suggest that it can be large in their core. Based on this
assumption, in Sec. II B wewill use the data collected by the
Hubble Space Telescope on low-temperature WDs in M4 to
constraint IDM, showing that indeed it is possible to probe in
thiswayvalues of δ as large as 30or 40MeV.At the endof the
same section we also provide a short discussion on how the
detection of low-temperature neutron stars could further
improve the bounds fromWDs to values of themass splitting
δ as large as ≃300 MeV. In Sec. III we summarize the main
features of the bidoublet LRSM model and show how the
results of Sec. II B substantially reduce the range of variation
of its parameters, in particular requiring a significant splitting
at low energy between the couplings gL and gR of the two
groups SUð2ÞL and SUð2ÞR in order to yield a thermal relic
abundance in agreement with observation. In Sec. III C we
discuss the consequences of the results of Sec. III on the
running of gL and gR and on their unification scale when the
LRSM is embedded in a grand unified theory (GUT) and
provide a specific realization of such scenario, whose
features are given in the Appendix. Finally, Sec. IV contains
our conclusions.

II. CONSTRAINTS ON INELASTIC DARK
MATTER FROM WHITE DWARVES

A. Dark matter content of the M4 globular cluster

The composition of massive white dwarves is a matter of
debate. In particular, recent computations of their interior
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suggest that their core could be composed of neon [40].
Depending on the metallicity of their surrounding medium,
their chemical composition can also include carbon and
oxygen.
They are the most abundant stellar remnants, providing a

promising means of probing DM interactions, complemen-
tary to terrestrial searches [34,41]. In particular, the core
temperature of a WD is too low to ignite nuclear fusion
reactions, and as a result, WDs have no internal energy
source. On the other hand, compared to the Sun their
interior density can be eight orders of magnitude larger
[34], while their local environment can be richer in DM
particles with a lower velocity dispersion, as is the case for
the M4 globular cluster, where low-temperature WDs have
been observed [29]. All these features imply that indeed
WDs in M4 can capture WIMPs more efficiently than the
Sun, and that the DM annihilation process inside the WD
can easily dominate its total luminosity, driving its temper-
ature beyond the observed ones. As a consequence, as
shown in Sec. II B, the observation of low-temperature
WDs in M4 can yield to constraints that are stronger
compared to those obtained fromWIMP capture in the Sun.
In order to set such limits it is necessary to estimate the

DM density surrounding the WDs in the inner region of
M4. Unfortunately, direct measurements of the velocity
dispersion of stars within globular clusters [42] do not
allow to reconstruct their gravitational potential with
enough precision to obtain their DM content. As a
consequence, one needs to rely on models of GC formation
based on N-body simulations [29,43]. This clearly repre-
sents the major source of uncertainty in our analysis and
other similar ones in the literature. It is fair to say that, for
instance, in [44], the presence of DM in GC is referred to as
a “controversial” issue, mainly due to the effect of tidal
disruption of the host galaxy. However, several analyses
suggest that the cores of DM halos in globular clusters
should indeed survive successive tidal interactions with the
host galaxy. The analysis of the following sections will
show that if indeed M4 is rich in DM this can have dramatic
consequences on some classes of particle-physics models
of dark matter. So, following previous phenomenological
analyses [29,34,41] we will assume this possibility. In the
present paper we will use the results of [29]. We summarize
such results below, addressing the reader to the original
literature for further details.
An estimate of the DM content in the M4 GC is obtained

in [29] by modeling the GC formation starting from an
original DM subhalo of massMDM ≃ 107 M⊙ that falls into
our host galactic halo [45]. Once the GC falls into the host
halo, mass loss occurs continually through tidal stripping,
and the orbit of the subhalo decays down toward the center.
Such mass loss can be significant, resulting in only a few
percent of the DM of the original subhalo surviving in-
side the final GC, with a baryon-dominated core with a
small mass-to-light ratio that actually resembles those of

observed globular clusters. The presence of baryons in the
GC must also be taken into account: on the one hand, in the
stellar core it can gravitationally enhance the DM density,
while on the other it can reduce it, as a consequence of the
heating due to the interaction of DM particles with stars
(albeit this latter effect is estimated to be negligible at the
radii where WDs are observed within M4). Moreover,
when the gas in the original halo which eventually forms
the globular cluster loses energy and falls into the core
conservation of angular momentum is expected to lead to a
contraction of the DM core: also such effect turns out to be
negligible at the position where the WDs are observed in
M4. Finally, the effect of tidal stripping is taken into
account by truncating the density distributions of stars and
DM at the tidal radius of the GC. The baryon and DM
density profiles within M4 ensuing from such procedure are
shown in Fig. 1 of [29], which implies that DM makes up
less then ≃ 40% of the total mass of the cluster, in
agreement with observations that indicate a lack of DM
in globular clusters. In this sense the authors of [29]
consider such estimation to be conservative. In particular,
such value corresponds to less than 1% of the original
107 M⊙ halo. Moreover, in Ref. [29] the value of the DM
density at the largest radius where WDs within M4 are
observed (≃2.3 pc, well inside the tidal radius) is estimated
to be ρDM ≃ 21 M⊙ pc−3 ¼ 798 GeV cm−3. Furthermore,
using the baryon and DM density profiles estimated with
such procedure a WIMP velocity dispersion of ≃8 km=s
can be obtained by assuming hydrostatic equilibrium and
spherical symmetry.
The quantitative estimations of Ref. [29] and summa-

rized in this section will be used in Sec. II B to evaluate the
effect of DM capture on the WDs within M4.

B. WIMP capture in white dwarves

Signals generated by pair annihilations of WIMPs
captured and accumulated inside the Earth and the Sun
have been discussed for a long time [10–13].
In the case of the Earth and the Sun only neutrinos

escape from the celestial body, which can be searched for in
the upgoing muons flux generated by their conversion in
the rock close to a Cherenkov detector. Such signals are
sensitive to the yield of the neutrinos produced above the
detector’s threshold by the particles produced in the WIMP
annihilation, typically fermions or gauge bosons, that are
boosted to an energy equal to the WIMP mass before
decaying. An exception to this mechanism is provided by
light quarks, which are stopped inside the medium before
decaying, producing below-threshold neutrinos that are not
detectable.
In compact stars such as white dwarves or neutron stars

the capture process is analogous. However, in this case the
observable effect is an increase of the total luminosity or of
the temperature of the star, which depends only on the total
electromagnetic energy Eγ injected by the annihilation
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process. In particular, for the high energies corresponding
to the values of the WIMP mass discussed in Sec. III, also
the neutrinos produced in the annihilation process are
converted into electromagnetic radiation, so that the signal
can be practically considered as bolometric and Eγ ¼ 2mχ .
While crossing a compact star DM particles may get

trapped in its gravitational potential, continue to lose
energy by scattering against its constituents, and get
ultimately captured. A DM particle χ (of mass mχ) can
undergo an inelastic transition to a second heavier state
(say, χ0) by scattering against a nucleus (of mass mN)
present inside the star if the total kinetic energy in the DM-
nucleus center of mass frame is larger than the mass
difference δ between the DM particle and the heavier state
[28,46–48], i.e.,

1

2
μχNw2 > δ; ð2:1Þ

which is equivalent to Eq. (1.1). The quantity w, which is
the speed of the DM particle at a radial distance r from the
center of the star, is given by

wðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ vescðrÞ2

q
; ð2:2Þ

where vescðrÞ is the local escape velocity from the star at
radius r and u is the asymptotic speed of the DM particles
far away from the star.
Considering the WD stars in a nearby globular cluster

such as M4, a common choice for the distribution of the
speed u in the cluster is a boosted Maxwell Boltzmann
(MB) one, which in the reference frame of a WD can be
expressed as

fðuÞ ¼ u
vdv�

ffiffiffiffiffiffi
3

2π

r �
exp

�
−

3

2v2d
ðu − v�Þ2

�

− exp

�
−

3

2v2d
ðuþ v�Þ2

��
; ð2:3Þ

where v� and vd are the velocity of the WD and the velocity
dispersion of DM inside the globular cluster, respectively.
Following [29,34], we have assumed conservative values
for v� and vd, which are v� ¼ 20 km=s and vd ¼ 8 km=s
for the WDs in M4.
Given the density profiles of nuclear elements in a WD,

one can estimate the corresponding escape velocity profile
vescðrÞ. In particular, the authors of Ref. [34] have used an
improved equation of state for WDs and calculated the
density profiles of thermal electrons and nuclear ions for
WDs with different configurations that are made of
elements like carbon, oxygen, etc. In particular, assuming
that the vast majority of heavier WDs are made of carbon,
oxygen, or neon, carbon provides the lowest rate for a

spin-independent (SI) cross section that scales with the
atomic mass number squared. Indeed, this is the most
common type of interaction expected for WIMPs with
nuclei, and it arises in the specific scenario analyzed in
Sec. III, so in the following we will assume that the WDs
are entirely made of carbon to get conservative bounds.
Among the various benchmarks for carbonWD tabulated in
[34] we take the heaviest WDs with massesM� ¼ 1.38 M⊙
and 1.25 M⊙ and extract the associated radial profiles for
the nuclear density and the escape velocity. The corre-
sponding radii of these two benchmark WDs are R� ≃
1.25 × 103 km and R� ≃ 3.29 × 103 km, respectively.
For the heaviest WD considered here, the escape velocity

vesc in the interior of the star can reach a very high value
∼0.1 c [34], which in turn extends the kinematic upper limit
[shown in Eq. (2.1)] on δ up to several tens of MeV. Due to
this reason, using heavier WDs it is possible to probe a high
value of δ, as will be described in detail in this subsection.
In the optically thin limit, DM particles crossing a WD

can become gravitationally bound to the star after a single
scattering. In this case, the rate of DM capture through
inelastic scattering is given by [28,46–48]

Copt−thin ¼
ρχ
mχ

Z
R�

0

dr 4πr2
Z

∞

0

du
fðuÞ
u

wΩðw; rÞ

× Θ
�
1

2
μχNw2 − δ

�
: ð2:4Þ

Here ρχ is the density of DM at the location of the WD
inside the globular cluster. As discussed in Sec. II A, in
the local environment of the WDs inside M4 we take
ρχ ¼ 798 GeVcm−3. Note that the Θ function in Eq. (2.4)
ensures that the capture rate goes to zero if the condition
given in Eq. (2.1) is violated. The interaction rate Ωðw; rÞ
can be obtained using the following expression:

Ωðw; rÞ ¼ ηNðrÞwΘðEmax − EcapÞ

×
Z

Emax

Emin

dE
dσ½χ þ N → χ0 þ N�

dE
ΘðE − EcapÞ;

ð2:5Þ

where ηNðrÞ is the number density distribution (extracted
from [34] for the two benchmark WDs considered) of the
target nuclear ion (in our case 12C) in the WD, and
dσ½χþN→χ0þN�

dE is the differential cross section (as a function
of the recoil energy E) for the DM-nucleus inelastic
scattering χ þ N → χ0 þ N. The minimum and the maxi-
mum recoil energies (i.e., Emin and Emax) corresponding to
this scattering process and the minimum energy transfer
Ecap required for the capture [i.e., to scatter a DM particle
from w to a velocity less than vescðrÞ] are
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Emin;max ¼ 1

2
mχw2

�
1−

μ2χN
m2

N

�
1�mN

mχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

δ

μχNw2=2

s �2�
−δ;

Ecap ¼ 1

2
mχu2−δ: ð2:6Þ

In Eq. (2.5) the first Heaviside step function Θ imposes the
condition Emax > Ecap which is required for the capture to
occur, while the second one sets the lower limit of the
energy integration to max½Emin; Ecap�.
Notice that, after the first upscattering of the DM particle

χ, there are two possible situations that may arise depend-
ing on the lifetime of the heavier state χ0. If the lifetime of χ0
is very short, it quickly decays back to χ along with other
particle(s) which are much lighter and carry away most of
the energy produced in the decay, so that no significant
kinetic energy is imparted to χ. As a consequence,
Eqs. (2.4) and (2.5) can be used to calculate the capture
rate because a single scattering with E > Ecap is sufficient
to keep the χ particle gravitationally bound during the
lifetime of the star, eventually driving it to the core of the
celestial body after subsequent interactions with its nuclear
targets. We will see that this is the situation which occurs in
the types of DM models discussed in the next section. On
the other hand, if the lifetime of χ0 is large enough it
eventually downscatters off a WD nuclear target back to a χ
through an exothermic process that can in principle eject
the outgoing DM particle to a nonbound orbit. In this case
Eqs. (2.4) and (2.5) cannot be used to describe the capture
process. However, if χ is much heavier than the target
nucleus, the latter carries away most of the energy, leading
to a situation where the DM particle does not have
sufficient kinetic energy to escape from the star’s gravita-
tional potential and thus also in this case it is eventually
captured [47]. Actually, in the present work we will be
interested in the capture of TeV-scale DM particles, so they
would be captured in the WD star after the first inelastic
scattering with E > Ecap even for χ0 lifetimes longer than
those discussed in Sec. III B.
The optically thin approximation holds when the scatter-

ing cross section [i.e., the integration of dσ
dE over E in

Eq. (2.5)] is small enough so that the effect of multiple
scatterings can be neglected. If the cross section becomes
very large, each DM particle that traverses the WD is
captured and the capture rate saturates to its maximum
value (known as the geometric limit), which is independent
of the DM-nucleus interaction [30,34,44,49,50]:

Cgeom ¼ πR2�

�
ρχ
mχ

�Z
∞

0

du
fðuÞ
u

w2ðR�Þ: ð2:7Þ

Finally, considering both regimes (i.e., optically thin and
geometric regimes), the capture rate of DM in a WD star
through inelastic scattering can be estimated as [31,44,49,51]

C� ¼ min½Copt−thin; Cgeom�: ð2:8Þ

After being captured, the DM particles continue to scatter
with the constituents of the WD and eventually thermalize
and settle down to theWD interior where they can annihilate
in pairs to produce various SM particles. The thermalization
timescale is expected to be several orders of magnitude
smaller than the typical age of the old and cold WDs (the
types of which have been considered here) in the M4
globular cluster [34]. The evolution of the number of DM
particles (Nχ) in the WD interior can be expressed as [34]

dNχ

dt
¼ C� − AN2

χ ; ð2:9Þ

where A is the annihilation coefficient (which is propor-
tional to the averaged annihilation cross section hσvi) and is
related to the annihilation rate as

Γann ¼
1

2
AN2

χ : ð2:10Þ

The primary SM particles injected by DM annihilation in
a WD interior lead to further cascades and give rise to
secondary particles which quickly thermalize in the
medium of the star and thus end up in heating the star.
Assuming that the total energy emitted in the DM anni-
hilation process contributes to heat up the star, the resulting
luminosity can be estimated as

Lχ ¼ 2mχΓann: ð2:11Þ

Note that, in reality, some percentage of the energy
produced in DM annihilation inside the WDmay be carried
away by neutrinos which escape the star without heating it
up. However, we have checked that, for the WDs consid-
ered here, neutrinos produced in the star core with energies
above a GeV cannot come out from the star as their mean-
free path, estimated using the number density of the WD
constituents (obtained in [34] considering an improved
analysis) and the interaction cross section of neutrinos with
those constituents [52], is much smaller than the typical
size of the WD star. The energetic neutrinos that cannot
escape the star eventually thermalize in the star and are
converted into electromagnetic radiation. In case of the
annihilation of a TeV-scale DM (which is our present
interest), the fraction of energy carried away by neutrinos
with energies below 1 GeV (that are produced in the
cascade of various primary annihilation states such as
WþW−; ZZ; bb̄) is less than 1–2% (estimated using
[53]). Thus, we can assume that almost all of the energy
produced in the annihilation contributes to the luminosity
of the star and use Eq. (2.11) to calculate it. Notice that this
implies that the ensuing bounds do not depend on assump-
tions on the primary SM states the DM particles annihilate
to. This is at variance with capture in the Sun or the Earth
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that may lead to a neutrino flux below the experimental
energy threshold when the DM particles annihilate only to
light states that are stopped before decaying.
The capture and annihilation processes inside the WD

star equilibrate (so that dNχ

dt becomes zero) over a timescale
τeq ¼ ðC�AÞ−1=2. A conservative estimate (following [31])
with the assumptions that hσvi ¼ hσvithermal and
C� ¼ Cgeom, the equilibrium timescale τeq (for DM par-
ticles of mass mχ ¼ 1 TeV) turns out to be of the order of
∼10−6 Gyr for our benchmark WDs. This timescale is
clearly several orders of magnitude lower than the typical
ages of the old and faint WDs in M4, which are expected to
be at least a few Gyrs [34]. Hence, one can in general
assume equilibrium between the capture and annihilation
processes inside these WDs in M4, and specifically in the
model discussed in Sec. III. In that case the DM annihi-
lation rate is Γann ¼ C�=2 and the corresponding lumino-
sity [given by Eq. (2.11)] becomes [30,34,41]

Lχ ¼ mχC�: ð2:12Þ

In Fig. 1, we show, as a function of the mass-splitting δ,
the luminosities that are induced by the annihilation of
inelastically captured DM particles in carbon WDs (located
in M4) with masses and radii M� ¼ 1.38 M⊙, R� ≃ 1.25 ×
103 km (left panel) and M� ¼ 1.25 M⊙, R� ≃ 3.29 ×
103 km (right panel). The blue and the red lines in each
panel represent the luminosities corresponding to the
capture of DM with masses mχ ¼ 500 GeV and 5 TeV,
respectively, assuming a standard SI cross section with an

exponential (Helm) nuclear form factor [14,48] for the
WIMP scattering events off carbon (12C) in the optically
thin limit [Eq. (2.4)]. In particular, two illustrative values of
the DM-nucleon cross section σN have been used. The
cyan horizontal lines in both panels of Fig. 1 show the
luminosities obtained for the two benchmark WDs con-
sidering the capture of DM in the geometric limit
[Eq. (2.7)]. Note that, since the capture rate falls as the
inverse of mχ in the geometric limit as well as in the
optically thin limit (for mχ ≲Oð105Þ GeV [34] and much
larger than the target nucleus mass), the estimated lumi-
nosities in both regimes are independent of the DM mass.
The additional black lines shown in Fig. 1 represent the

luminosities for the two considered WDs in M4 observed
by the Hubble Space Telescope [54,55] and taken from
[34]. These two WDs are among the faintest WDs observed
in M4. Therefore, if the DM-predicted contribution to the
total luminosity of these WDs is less than or at most equal
to the observed ones, then there will be no contradiction
between the DM prediction and the observations.
There are a few important points to notice in Fig. 1. The

first one is that the DM luminosities calculated for the
selected WDs in the optically thin limit are largely
independent of δ up to a certain value of this parameter,
beyond which the capture rates (hence the luminosities)
start falling rapidly and ultimately go to zero when δ
exceeds several tens of MeV. The second point is that the
maximally achievable DM luminosity (i.e., the luminosity
obtained in the geometric limit) for each WD is above the
observed limit. Based on these two points, a comparison
between the WD data and the DM luminosity [obtained

FIG. 1. DM-induced luminosities in both optically thin (blue and red lines) and geometric (cyan lines) limits as functions of δ,
considering two benchmark carbon WDs in M4 with masses M� ¼ 1.38 M⊙ (left panel) and M� ¼ 1.25 M⊙ (right panel). The blue
and the red lines are corresponding to the capture of 500-GeV and 5-TeV DM particles, respectively, assuming a spin-independent
DM-nucleus interaction. In both panels the black horizontal lines indicate the luminosities (taken from [34]) that are observed for the
consideredWDs, while the cyan horizontal lines show the luminosities of the two benchmarkWDs when DM capture is calculated in the
geometric limit.
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using Eqs. (2.8) and (2.12)] enables one to constrain the
DM interaction strength (for example, the DM-nucleon
cross section σN in the case of a SI interaction) up to a
maximum value of δ (a few tens of MeV for the WDs
considered here), above which the DM luminosity goes
below the observation. The maximum value of δ depends
on the WD parameters and is larger for heavier WDs, since
heavier and compact WDs have stronger gravitational
potential which increases the kinematic upper limit on δ
[see Eq. (2.1)]. Notice that the mass of the heaviest of our
benchmark WDs almost saturates the Chandrasekhar limit
M� ≲ 1.4 M⊙ [56,57], and so in practice it kinematically
saturates the best achievable bound on δ using WDs.
In order to illustrate the above discussion, we show in

Fig. 2 the regions of the σN vs δ plane (for a SI interaction)
that are excluded using the luminosity data of two selected
faint WDs located in M4, assuming that they are made of
carbon. The DM mass is taken to be mχ ¼ 1 TeV,
although, as mentioned earlier, for a sufficiently heavy
DM (much heavier than the target nucleus) these con-
straints do not depend on mχ . In the same figure the green
and the red dashed lines indicate the maximum values of δ
that can be probed in direct-detection experiments [27] and
in solar neutrino searches [28], respectively. Figure 2 shows
that WDs can improve the preexisting bounds on δ by more
than one order of magnitude, ruling out δ up to a few tens of
MeV for σN ≳ 3 × 10−43 cm2.
The constraints that we obtain here using the observa-

tions of faint and heavy WDs in M4 assume a spin-
independent interaction between DM and the target
nucleus. WDs are expected to be mostly composed of

spinless targets (12C, 16O or 20Ne),1 so that in order to derive
constraints on spin-dependent (SD)-type interactions one
needs to consider DM capture in other celestial objects such
as the Sun. Notice that, as already pointed out, the reach on
δ in the case of the Sun is considerably smaller (up to
≃300 keV for SD) [28,48].
Apart from WDs, one can also consider capture of DM

particles in more compact objects such as neutron stars (NSs)
[32,33,35,59], where the gravitational potential is so strong
that the infalling DM particles are accelerated to quasirela-
tivistic speeds. When such a high-speed DM particle collides
with the NS constituents it can upscatter to the heavier state
for a value of the inelastic splitting δ that can be as large as
∼300 MeV [32,33]. The capture process of DMparticles and
their subsequent annihilation at the star core can heat a NS
maximally up to a temperature T∞ (measured at a large
distance from the NS) which is given by [32,60,61]

T∞ ≃ 2300 K

�
ρχ

0.4 GeVcm−3

�
1=4

F

�
v�

230 km s−1

�
;

ð2:13Þ

where ρχ is the DM density at the location of the NS, v� is the
velocity of the NS in the halo, and the functionF is defined as

FðxÞ ¼
�
ErfðxÞ
xErfð1Þ

�
1=4

: ð2:14Þ

Equation (2.13) corresponds to a temperature ≃ a few ×
103 Kfor nearbyNSs.The observationofoldNSswith such a
low temperature is beyond the reach of existing telescopes but
could be achievable by forthcoming infrared telescopes such
as the JamesWebbSpaceTelescope (JWST), theThirtyMeter
Telescope (TMT), and the European Extremely Large
Telescope (E-ELT) [61–63].

III. CASE OF BIDOUBLET DM IN LEFT-RIGHT
SYMMETRIC MODELS

The phenomenological discussion of Sec. II shows how
WDs can provide bounds on the IDM scenario that are
significantly stronger compared to those from DD. In this
section we wish to illustrate the impact that such enhanced
bounds can have on a specific IDM model, the fermion
bidoublet extension of the LRSM.
The main motivation of the LRSM scenario is to explain

one of the most puzzling features of the Standard Model,
i.e., the observed maximal parity violation in its weak
sector that forces to arrange the left-handed chiral compo-
nents of fermions in SUð2Þ electroweak doublets and their
right-handed counterparts in singlets. In the LRSM

FIG. 2. Constraints in the σN vs δ plane (for a SI interaction)
obtained using the observed luminosities for the two selected
WDs in M4. The dashed green and red vertical lines show the
maximum values of δ that can be probed in present direct-
detection experiments and through solar neutrino searches,
respectively.

1The abundance of targets with spin such as 13C and 19O in
WDs is however subject to large uncertainties and strongly
depends on the WD progenitor [58].
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scenario the SM gauge group is enlarged in order to contain
an SUð2ÞL and an SUð2ÞR, so that the doublets of SUð2ÞL
are singlets of SUð2ÞR and the doublets of SUð2ÞR are
singlets of SUð2ÞL. Interestingly, such scenarios can be
easily extended by a multiplet that contains a dark matter
candidate that is automatically stable [64,65] and whose
mass is the only required additional free parameter. A
detailed description of the LRSM scenario can be found in
[66], and a discussion of the phenomenology of its DM
extensions in [38]. In Sec. III A we will summarize the
specific scenario where the LRSMmodel is extended with a
fermion bidoublet that contains an IDM candidate, and in
Sec. III B we apply the results of Sec. II B to constrain its
parameter space. Moreover, in Sec. III C we discuss how
the low-energy LRSM parameter space compatible with
observation can be obtained when the LRSM model is
embedded in a grand unified theory at high energy.

A. Model description

The gauge symmetry of LRSM is SUð3Þ × SUð2ÞL×
SUð2ÞR ×Uð1ÞB−L, with B and L the baryon and lepton
number. The representations under the different gauge
groups of the fermions and scalars contained in the model
are listed in Table II of the Appendix for both its minimal
realization and for various extension that will be discussed
in Sec. III C. In its minimal realization the LRSM preserves
D parity, i.e., it is invariant by the interchange of any
multiplet of SUð2ÞL into the corresponding SUð2ÞR multi-
plet. In particular, in one of the most popular variants of
minimal LRSM the scalar sector contains an SUð2ÞL triplet
TL, an SUð2ÞR triplet TR, and a scalar bidoubletΦ. The LR
symmetry of the model is broken spontaneously down to
the SM in two steps. First, the SUð2ÞR ×Uð1ÞB−L sym-
metry is broken spontaneously to Uð1ÞY at a high scaleMR
by the vacuum expectation value (VEV) vR of TR, and the
masses of the SUð2ÞR gauge bosons WR and ZR are
generated. This breaks the parity invariance of the model
and implies the relation Y ¼ T3

R þ 1
2
ðB − LÞ between the

generator of Uð1ÞY and those of Uð1ÞB−L and SUð2ÞR. In
particular, ZR is a linear combination of W3

R (the gauge
boson corresponding to the generator T3

R) and B [the gauge
boson for Uð1ÞB−L], while the orthogonal combination BY
[the gauge boson corresponding to the remnant Uð1ÞY
symmetry] remains massless at this stage. Notice that the
breaking of SUð2ÞR ×Uð1ÞB−L also generates large
Majorana masses for right-handed neutrinos. The second
stage of symmetry breaking happens at the electroweak
scale, when the scalar bidoublet Φ gets VEVs v1=

ffiffiffi
2

p
and

v2=
ffiffiffi
2

p
, and the intermediate SUð2ÞL ×Uð1ÞY breaks down

to the Uð1Þem symmetry, leading to the usual relation
Q ¼ T3

L þ Y, so thatQ ¼ T3
L þ T3

R þ 1
2
ðB − LÞ. This leads

to the mass generation of all the known SM particles.
Moreover, since Φ is a bidoublet, its VEVs generate
mixings among left-handed and right-handed gauge

bosons. This also relates the gauge couplings in the
following manner2:

1

g2Y
¼ 1

g2R
þ 1

g2B−L
; ð3:1Þ

1

e2
¼ 1

g2L
þ 1

g2Y
; ð3:2Þ

where gα is the gauge coupling of Uð1Þα (α ¼ B − L, Y).
The SUð2ÞLðRÞ gauge coupling is denoted by gLðRÞ while e
is the gauge coupling of the residual Uð1Þem. The three
mixing angles among the neutral gauge bosons, i.e., θR
(mixing between W3

R and B), θW (mixing between W3
L and

BY , the Weinberg angle), and ϕ (mixing between ZR and
ZL) are given by [38]

θW ¼ tan−1
�
gY
gL

�
; θR ¼ sin−1

�
gL
gR

tan θW

�
;

ϕ ≃
1

2
tan−1

�
−2 cos θW cos θR

gR
gL

M2
ZL

M2
ZR

�
; ð3:3Þ

where

M2
ZL

≃M2
Z1

¼ g2L
4 cos2 θW

v2 ¼ M2
Z;

M2
ZR

≃M2
Z2

¼ g2R
cos2 θR

v2R þ g2R
4
cos2 θRv2: ð3:4Þ

In Eq. (3.4) the mixing ϕ is neglected sinceMZR
≫ MZL

, Z
is the Standard Model massive neutral gauge boson and
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
¼ 246 GeV. The expression of ϕ in

Eq. (3.3) is valid in the phenomenological limit where
vR ≫ v1; v2 and the VEVof TL (vL) → 0. Similarly, when
v1 and v2 are real the mixing angle betweenW�

R andW�
L is

given, in the phenomenological limit, by [38]

ξ ≃
1

2
tan−1

�
−4

gR
gL

M2
WL

M2
WR

v1v2
v2

�
; ð3:5Þ

with

M2
WL

≃M2
W1

¼ g2L
4
v2 ¼ M2

W;

M2
WR

≃M2
W2

¼ 1

4
g2Rðv2 þ 2v2RÞ; ð3:6Þ

where MW is the mass of the electroweak charged gauge
boson of the Standard Model.

2When models are embedded into a grand unified theory, the
normalization of gR and gB−L is that of Eqs. (A2) and (A3).
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In the DM scenario that we wish to discuss, the LRSM is
minimally extended by adding a self-conjugate fermionic
bidoublet Ψ (with Ψ̃≡ −σ2Ψcσ2 ¼ Ψ) having zero B − L
charge. In 2 × 2 matrix representation, the bidoublet Ψ can
be written explicitly in terms of two Dirac field ψ� and ψ0

as [38]

Ψ ¼
�
ψ0 ψþ

ψ− −ðψ0Þc
�
: ð3:7Þ

The Lagrangian for Ψ is given by

LBD ¼ 1

2
Tr½Ψ̄iDΨ� − 1

2
MΨTr½Ψ̄Ψ�; ð3:8Þ

with covariant derivative:

DμΨ ¼ ∂μΨ − i
gL
2
σaWa

LμΨþ i
gR
2
ΨσaWa

Rμ: ð3:9Þ

Substituting the expressions ofDμ andΨ in Eq. (3.8), the
Lagrangian in terms of the component fields reads

LBD ¼ iψ0
∂ψ0 þ iψ−

∂ψ− þ gL
2
ðψ0W3

Lψ
0 − ψ−W3

Lψ
− þ

ffiffiffi
2

p
ψ0Wþ

Lψ
− þ

ffiffiffi
2

p
ψ−W−

Lψ
0Þ

−
gR
2
ðψ0W3

Rψ
0 þ ψ−W3

Rψ
− þ

ffiffiffi
2

p
ψ0W−

Rψ
þ þ

ffiffiffi
2

p
ψþWþ

Rψ
0Þ −MΨψ

0ψ0 −MΨψ
−ψ−: ð3:10Þ

Although in Eq. (3.10) ψ� and ψ0 have the degenerate tree-
level mass MΨ, a mass splitting

MψQ −Mψ0 ≃Q

�
Qþ 2Y

cos θW

�
ΔM; ð3:11Þ

with

ΔM ¼ g2L
4π

MWL
sin2

θW
2

≃ 166 MeV;

is generated between the neutral and charged components
by radiative corrections [64]. Due to such mass splitting the
charged component ψ� is unstable and decays into ψ0 and
π� or a pair of light leptons on very short timescales
Oð10−11Þ s [38]. Notice that the specific representation of
Ψ in Eq. (3.7) only allows the terms in Eq. (3.8), auto-
matically preventing the decay of its lightest component
ψ0, that is then a natural DM candidate.
Moreover, the Dirac nature of ψ0 is only protected by the

SUð2ÞL × SUð2ÞR symmetry, which is no longer a good
symmetry after the bidoublet Φ acquires nonvanishing
VEVs. Specifically, the W�

R −W�
L mixing induces a

transition at the one-loop level between ψ0 and ðψ0Þc
(with either W�

1 or W�
2 and ψ∓ running in the loop) that

generates a tiny (∼OðkeV–MeVÞ) off-diagonal Majorana
mass term δM between ψ0 and ðψ0Þc proportional to
sinð2ξÞ [38]. Consequently, the Dirac fermion splits into

two quasidegenerate Majorana fermions χ1;2 with opposite
CP given by

χ1;2 ¼
1ffiffiffi
2

p ðψ0 ∓ ðψ0ÞcÞ; ð3:12Þ

with

Mχ1;2 ¼ MΨ ∓ δM; ð3:13Þ

providing in a natural way a specific realization of the IDM
scenario that we discussed at the phenomenological level in
Sec. II. Themass splitting between χ1 and χ2 is given by [38]

δ ¼ 2δM ¼ g2L
16π2

gR
gL

sinð2ξÞMΨ½fðrW1
Þ − fðrW2

Þ�; ð3:14Þ

where rV ¼ MV=MΨ and the loop function fðrVÞ given by

fðrVÞ ¼ 2

Z
1

0

dxð1þ xÞ log ½x2 þ ð1 − xÞr2V �: ð3:15Þ

In particular, in the phenomenological analysis of Sec. III B
wewill assumev1 ¼ v2 in order tomaximize the splitting δ at
fixed MW2

and gR [see Eq. (3.5)].
Finally, in terms of the physical states χ1 and χ2

Eq. (3.10) is given by

LBD ¼ i
2
χ1∂χ1 þ

i
2
χ2∂χ2 þ iψ−

∂ψ− −
Mχ1

2
χ1χ1 −

Mχ2

2
χ2χ2 −Mψ−ψ−ψ−

þ 1

2
χ1ðgLW3

L − gRW3
RÞχ2 −

1

2
ψ−ðgLW3

L þ gRW3
RÞψ−

þ
�
1

2
χ1ðgLWþ

L − gRW
þ
R Þψ− þ 1

2
χ2ðgLWþ

L þ gRW
þ
R Þψ− þ H:c:

�
; ð3:16Þ

where Mψ− ≃MΨ þ ð1þ sec θWÞΔM from Eq. (3.11).
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Depending on the mass splitting δ the heavier bidoublet
state χ2 decays into the lighter state χ1 via different
channels, with the radiative decay χ2 → χ1γ always kine-
matically allowed having a lifetime ≃10−3 sð1 MeV

δ Þ3 [38]
[such expression is valid when MΨ ≃OðTeVÞ and
δ ≪ MΨ]. As a consequence, for the choice of parameters
in the next section, by the present time all the χ2 states have
decayed and χ1 is the DM candidate in our Universe.

B. Bounds from white dwarves
on LRSM bidoublet dark matter

In this section we will identify χ and χ0 with χ1 and χ2.
The process of inelastic scattering of χ against a WD
nucleus occurs dominantly through the exchange of the
light Z boson. The corresponding interaction Lagrangian
(involving χ, χ0, and Z) can be written as

Lχχ0Z ¼ gχ χ̄=Zχ0; ð3:17Þ

where

gχ ¼
1

2
ðgL cos θW cosϕþ gR sin θW sin θR cosϕ

þ gR cos θR sinϕÞ: ð3:18Þ

The coupling gχ is obtained by expressing W3
L and W3

R in
Eq. (3.16) in terms of the mass eigenstate Z, using the
neutral gauge boson mixing matrix given in the appendix of
[38]. Since the typical values of the momentum transfer in
such a process are always much lower than MZ, one can
express the interaction of χ and χ0 with SM quarks in terms
of the following dimension-6 operators:

Oð6Þ
V;q ¼ Cð6Þ

V;qðχ̄γμχ0Þðq̄γμqÞ;
Oð6Þ

A;q ¼ Cð6Þ
A;qðχ̄γμχ0Þðq̄γμγ5qÞ; ð3:19Þ

with

Cð6Þ
V;q ¼

gχgLg
q
V

M2
Z cos θW

; Cð6Þ
A;q ¼

gχgLg
q
A

M2
Z cos θW

; ð3:20Þ

where gqV and gqA are defined in [67].
In the nonrelativistic limit the above interaction terms

lead to a WIMP-nucleon interaction driven by the effective
Hamiltonian:

H ¼
X

N¼p;n

ðcN1 ON
1 þ cN7 ON

7 þ cN9 ON
9 Þ; ð3:21Þ

(in the operator base of [68]), with p, n indicating proton
and neutron. The Wilson coefficients cN1 , cN7 , and cN9 in

terms of the Cð6Þ
V;q and Cð6Þ

A;q quantities can be obtained for
instance, from [69]. In particular, the effective operator O1

leads to a spin-independent WIMP-nucleus cross section
proportional to the square of the atomic mass number of the
target, while the O7 and O9 operators, which are velocity
and momentum suppressed, vanish in the case of the
spinless targets (12C, 16O or 20Ne) that constitute the interior

of a WD. Specifically, for the operator Oð6Þ
V;q one has c

N
1 ¼P

q¼u;d C
ð6Þ
V;qF

ðqÞ
N with

FðuÞ
p ¼ 2; FðdÞ

p ¼ 1; ð3:22Þ

FðuÞ
n ¼ 1; FðdÞ

n ¼ 2; ð3:23Þ

while the WIMP-nucleon cross section σN introduced in
Sec. II is given by σN ¼ ðcN1 Þ2μ2χN =π. In order to evaluate
the WD capture rate we have assumed that the WDs
observed in M4 are made of carbon and we have calculated

the differential cross section dσ½χþN→χ0þN�
dE in Eq. (2.5) using

the WimPyDD code [70,71].
In Fig. 3 the solid blue line and the dashed red line

represent the result of the evaluation of the expected
luminosity of Eq. (2.12) for the capture of LRSM bidoublet
DM by WDs in the optically thin limit as a function of the
mass-splitting parameter δ for DM masses mχ ¼ 500 GeV
and mχ ¼ 5 TeV, respectively, for gL ¼ gR and for the
same carbon WDs of Fig. 1. In both plots the cyan and
black dotted horizontal lines are the same of Fig. 1 and
represent, respectively, the geometrical limit of the capture
rate and the corresponding observed luminosities [34]. As
expected, unless the capture process in the WD is kine-
matically forbidden the large WIMP-nucleus cross section
implied by the nonvanishing hypercharge of the bidoublet
saturates the geometrical capture upper bound and exceeds
the observation. This is achieved for δ≳ 40 MeV
(17 MeV) for M� ¼ 1.38 M⊙ (M� ¼ 1.25 M⊙).
Notice that, as described in Sec. III A, the heavier

bidoublet state χ0 decays to the DM state χ within a
timescale that is extremely small compared to the typical
age of the WDs in M4, expected to be a few Gyrs. In such a
case, the expressions of the capture rate given in Sec. II B
apply, and the final population of DM particles in the WD
core consists of only χ. The pair annihilation of these
particles, which is driven by t-channel processes, injects
electroweak gauge bosons whose cascade products ther-
malize in the WD medium and heat up the star.
As already pointed out in Sec. II, the bound fromWDs is

much more constraining than that expected from direct
detection and from solar neutrino searches. The impact
from such bound on the mχ–MW2

parameter space of the
LRSM bidoublet dark matter is shown in Fig. 4 for
gR ¼ gL, which represents the most commonly used value
in phenomenological and experimental analyses. In the
upper-left corner the green-shaded area shows the part of
parameter space excluded by direct detection, which can
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probe δ≲ 200 keV [27], while the red-shaded one the part
of parameter space excluded by the solar neutrino searches,
which can probe δ≲ 600 keV [28]. On the other hand, the
pink-shaded region is excluded by the nonobservation of

the W2 boson at the LHC (MW2
< 3.8 TeV [72]), and the

black band represents the region where the thermal relic
density is in the observed range (0.11 ≤ Ωh2 ≤ 0.13). As
shown in such figure, when only the direct detection, solar
neutrino searches, and the LHC bounds are considered (as
done in the literature so far [38]) the LRSM bidoublet is a
viable DM candidate in a wide range of masses, 1.1 TeV≲
mχ ≲ 30 TeV and for gR ¼ gL. However, when the bound
fromWD is considered this changes considerably: in Fig. 4
the blue-shaded area, which lies above the dashed blue line
for δ ¼ 40 MeV, represents the parameter space excluded
byWDs. Indeed, for gR ¼ gL the full cosmologically viable
parameter space now lies in such region and is ruled out. As
pointed out below Eq. (3.14) in our calculation we have
maximized δ at fixedmχ , gR, andMW2

in terms of the other
parameters of the model. As a consequence, for other
choices of such parameters the MW2

values excluded by
WDs would be even lower, so that the excluded region of
Fig. 4 should be considered as a conservative one.
In order to evade the WD constraint one needs to

increase further the value of the mass-splitting parameter
δ at fixed mχ and MW2

. As shown in Eq. (3.14), the only
way to achieve this within the available parameter space is
to choose gR > gL. This is done in Fig. 5, where gR=gL ¼
1.2 in the left-hand plot, and gR=gL ¼ 1.8 in the right-hand
plot. Indeed, now in both cases some cosmologically viable
parameter space is recovered. In particular, for gR=gL ¼ 1.2
this requires MW2

≲ 6 TeV, and 3.5 TeV≲mχ ≲ 5 TeV,
while for gR=gL ¼ 1.8 MW2

≲ 12 TeV and two bidoublet
allowed mass ranges are found: 1.2 TeV≲mχ ≲ 3 TeV
and 5 TeV≲mχ ≲ 10 TeV. In Sec. III C we will discuss
how gR=gL > 1 can be achieved at low energy when the

FIG. 3. Bidoublet DM-induced luminosities in optically thin (solid blue and red dashed lines) and geometric (horizontal cyan lines)
limits as functions of the mass splitting δ, considering two benchmark carbon WDs in M4 with masses M� ¼ 1.38 M⊙ (left panel) and
M� ¼ 1.25 M⊙ (right panel). The solid blue line and the red dashed line correspond to the capture of 500-GeVand 5-TeV DM particles,
respectively. The black dotted lines in both panels represent the luminosities observed for the considered WDs [34]. The vertical gray
lines indicate the maximum values of δ that are possible to probe for these WDs.

FIG. 4. The region of the bidoublet parameter space (spanned
by MW2

and the bidoublet DM mass mχ) that is excluded by the
observation of the faintest and heaviest (M� ¼ 1.38 M⊙) WD
(assuming it is made of carbon) in M4 is shown by the blue-
shaded area, considering gR ¼ gL. The pink, green, and red
shaded areas correspond to the regions excluded by LHC search,
DD experiments, and solar neutrino search, respectively. The
black band consists of parameter points where the calculated
thermal relic density is in the observed range.
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LRSM model is embedded at high scale in a grand unified
theory, and provide an explicit example with gR=gL ≃ 1.2.
On the other hand we consider gR=gL ¼ 1.8 a reasonable
estimation of the maximal allowed value of such ratio since
it roughly coincides to the perturbative upper bound
discussed in [73].3

For the calculation of the bidoublet relic abundance in
Figs. 4 and 5 we have modified the FeynRules [74]
implementation of the LRSMmodel of Ref. [75] in order to
allow gR ≠ gL, and used it to produce a CalcHEP [76]
output file, which we have then modified implementing the
Lagrangian of Eq. (3.10).4 Finally, we have used such
modified CalcHEP file in MicrOMEGAs [77].

C. Consequences at high scale

The implementation of the bound from WDs in the
phenomenological analysis of Sec. III B singles out a
relatively well-defined parameter space in order for the
LRSM bidoublet scenario to provide a viable DM candi-
date, characterized by a low mass for the W2 boson
(MW2

≲ 10 TeV) and gR > gL. In this section we wish
to discuss whether such parameter space can be obtained,
and how naturally, when the LRSMmodel is embedded in a
grand unified theory, which represents its most popular
ultraviolet completion.
The LRSM scenario naturally arises in GUT. Indeed,

many scenarios have been discussed in the literature

[78–83], where the LR group SUð2ÞL × SUð2ÞR is
embedded into a GUT SO(10). Specific examples include:
(i) SOð10Þ⊃SUð2ÞL×SUð2ÞR×SUð4ÞC×D; (ii) SOð10Þ ⊃
SUð2ÞL × SUð2ÞR × SUð4ÞC, (iii) SOð10Þ ⊃ LRSMD ≡
SUð2ÞL × SUð2ÞR × SUð3ÞC × Uð1ÞB−L × D, and
(iv) SOð10Þ ⊃ LRSMD ≡ SUð2ÞL × SUð2ÞR × SUð3ÞC×
Uð1ÞB−L. HereD stands for the parity symmetry that leaves
the theory invariant by the interchange of any multiplet of
SUð2ÞL into the corresponding SUð2ÞR multiplet. The low-
energy scenario discussed in Secs. III A and III B corre-
sponds to either LRSMD or LRSMD extended with the DM
bidoublet Ψ (LRSMDþ Ψ and LRSMDþ Ψ in the
following).
In the analysis of Sec. III B we have used WDs to

constrain the bidoublet LRSM parameter space at the
phenomenological level, i.e., taking the low-energy param-
eters of the model introduced in Sec. III A (Mχ1 ¼ mχ ,
MW2

, gR, and v1=v2) as independent without assuming any
specific ultraviolet completion. In a GUT theory context
such parameters are expected to be correlated. In the
literature, most often the so-called minimal version of
the LRSM assumes D parity. However, in the following
we will consider both cases, conservedD parity and broken
D parity.
The most important appeal of GUT is the unification of

gauge couplings at high energy, which comes together with
the salient prediction of proton decay. Therefore, once the
embedding of the LR models in a GUT framework comes
into play we need to pay attention to the GUT scale and to
the proton decay rate. In particular, in some of its
realizations LRSM models embedded in SO(10) typically
achieve a unification scale around 1015 GeV, which leads
to proton decay rates incompatible with the experimental
constraints. Specifically, for the minimal particle content of
Table II and the embedding (i) the breaking of the SUð2ÞR

FIG. 5. Same as Fig. 4, but considering scenarios with gR=gL ¼ 1.2 (left panel) and gR=gL ¼ 1.8 (right panel).

3See Fig. 7 of [73]. However, at variance with Fig. 5, in the
discussion of Ref. [73] gR=gL ¼ 1.8 is correlated to a high MW2

mass, MW2
≳ 90 TeV.

4The relic abundance can be directly calculated in terms of the
Ψ0 and ψ� Dirac fermions of the bidoublet of Eq. (3.7), since in
the early Universe the effect of the mass splitting is negligible in
the calculation of the annihilation cross section.

ANIRBAN BISWAS et al. PHYS. REV. D 106, 083012 (2022)

083012-12



is achieved at aroundMR ≈ 1013 GeV and the GUT scale is
MGUT ≈ 1015 GeV. On the other hand, for (ii)MR is around
1011 GeV, while MGUT ≈ 1016 GeV. For (iii) LRSMD,
MR ≈ 1010 GeV, while the unification scale is achieved
aroundMGUT ≈ 1015 GeV. Finally, for (iv) LRSMD,MR ≈
109 GeV and MGUT ≈ 1016 GeV [84].5

These basic scenarios hence do not offer an explanation
of why vR ≃MW2

≲ 104 GeV, as emerging from Fig. 4
(notice that, depending on the specific mechanism of

symmetry breaking, it is natural to expect that vR also
determines the WIMP mass mχ).
Extending the LRSMD model by adding only the DM

bidoublet fermion (the LRSMDþΨ case) actually slightly
increases the valueMR ≃ vR of the scale at which SUð2ÞR is
broken and increases the proton decay (PD) lifetime (see
Table I).6 So, although adding Ψ to the model can increase
the PD lifetime (albeit not enough in most cases), it is of no
help to reduceMR. This case is shown in the top-left plot of
Fig. 6, where the running of the coupling constants is

FIG. 6. Running of the inverse of the gauge couplings αi of the LRSM models we consider. Top panels: D -parity conserving
scenarios. Top left: LRSMDþ Ψ, minimal model plus dark matter bidoublet. Top right: LRSMDþ Ψþ 4F0

c þ Fd. Bottom panels:
scenarios with broken D parity. Bottom left: LRSM=Dþ Ψ, minimal model plus dark matter bidoublet. Bottom right:
LRSM=Dþ Ψþ 4Fa þ Fb þ 4Fc. The definition of the fermions Fi is given in Table II. The value of MR (MGUT) corresponding
to each case is indicated by the black solid (dotted) line.

5For the exact values of MR and MGUT in each case check the
original references and the updates of [85,86].

6It is well known that in nonsupersymmetric theories the
dominant decay channel is p → π0eþ. For specific formulas see
for example Appendix D of [85] and Secs. 3 and 4.2 of [87].
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plotted as a function of the energy scale μ. As a conse-
quence, in order to lowerMR one needs to add extra matter
(in particular, all the additional degrees of freedom dis-
cussed in the following examples are listed in Table II). In
[88] it was found that adding color multiplets is key to
lower MR down to 105 or 104 GeV. Notice that such
additional high-scale degrees of freedom do not affect the
phenomenology discussed in Sec. III B. In the top-right
plot of Fig. 6 we show a specific example of this, where the
MLRSM model is extended to include, besides the DM
fermion bidoublet Ψ, four fermions F0

c, which are triplets
under SUð3ÞC and singlets under all other interactions
except for the D -parity charge, and one fermion Fd, which
is a bidoublet under SUð2ÞR and SUð2ÞL and can have a
nonzeroD-parity charge. We can see that now the scaleMR
is lowered. However, the ratio gR=gL is still smaller than
one at the electroweak scale MEW ≃ 102 GeV.
The feature gRðMEWÞ=gLðMEWÞ < 1 (that for simplicity

will be just indicated as gR=gL in the discussion below) is
always present in D -parity conserving models since the
running of gR and gL only splits below MR, where gR
practically stops evolving while the value of gL gets larger
as the energy scale is decreased (notice that in Fig. 6 inverse
couplings are plotted). So, the only way to obtain gR=gL >
1 is to break D parity at high scale, i.e., to split the running
of gR and gL for MR < μ < MGUT, so that gR > gL already
at MR. This can be achieved in different ways which are
anomaly free [88]. The most straightforward is by simply
omitting the left-handed triplet TL [73] (also this does not
affect the phenomenology). This case, indicated by
LRSMDþ Ψ, is shown in the bottom-left plot of Fig. 6.
Since the scale MR is lower than for the LRSMDþΨ case
the ratio gR=gL turns out to be slightly bigger but never-
theless less than 1 (notice also that in this case PD is not

consistent with observation). For this reason, in the final
example shown in the bottom-right plot of Fig. 6 we add
more fermions transforming under SUð2ÞL only than under
SUð2ÞR, so that the slope of gL with respect to the energy
scale μ gets steeper compared to gR. In such scenario,
indicated with LRSMDþ Ψþ 4 Fa þ Fb þ 4 Fc, we add
four fermions Fa which are doublets of SUð2ÞL, triplets of
SUð3ÞC, and singlets of the other groups, one fermion Fb,
which is a doublet of SUð2ÞR, triplet of SUð3ÞC, and singlet
of the other groups, and four fermions Fc which are triplets
of SUð3Þc and singlets under the rest of the groups (see
Table II). Indeed, now gR=gL ≃ 1.2 is achieved. This case
then provides an example where the value of MR can be
explained to be around 104 GeV without any fine-tuning,
MGUT ≳ 1016 GeV so that the PD lifetime can be accept-
able (see Table I), and gR=gL > 1:
The values of the ratio gR=gL are provided for all the

models discussed above in Fig. 6. To get the plots of Fig. 6
we obtained the corresponding beta functions, given in
Table III, using the code pyr@te [92] and used them in a
private Runge-Kutta code.

TABLE II. The matter content of the minimal left-right sym-
metric model and its extensions discussed in Sec. III C. The
LRSM with broken D parity does not contain TL, while the one
with D -parity conservation does.

Minimal left-right symmetric model

Matter Generations SUð2ÞL × SUð2ÞR × Uð1ÞB−L × SUð3ÞC
Fermions
LL 3 (2; 1;−1; 1)
LR 3 (1; 2;−1; 1)
QL 3 (2; 1;þ 1

3
; 3)

QR 3 (1; 2;þ 1
3
; 3)

Scalars
Φ 1 (2; 2̄; 0; 1)
TR 1 (1; 3;þ2; 1)
TL 1 (3; 1;þ2; 1)

DM Candidates

Fermion
Ψ 1 (2; 2; 0; 1)

Additional matter for conserving D parity

Fermions
F0
c 4 ð1; 1; 0 3ÞL ⊕ ð1; 1; 0; 3ÞR

Fd 1 ð2; 2; 0 1ÞL ⊕ ð2; 2; 0; 1ÞR

Additional matter for =D parity

Fermions
Fa 4 (2; 1; 0 3)
Fb 1 (1; 2; 0; 3)
Fc 4 (1; 1; 0; 3)

TABLE I. Proton decay lifetime τðp → π0eþÞ½yrs�. The 1σ
errors are extracted from a chi square with the observables at the
electroweak scale.

Model predictions

LRSMD ð1.3� 0.9Þ × 1032

LRSMDþ Ψ ð2.9� 1.9Þ × 1032

LRSMDþ Ψþ 4F0
c þ Fd ð5.4� 3.7Þ × 1036

LRSM=D ð3.8� 2.5Þ × 1036

LRSM=Dþ Ψ ð7.6� 5.2Þ × 1032

LRSM=Dþ Ψþ 4Fa þ Fb þ 4Fc ð2.0� 1.3Þ × 1037

Experimental bounds=discovery

Current bound: 1.6 × 1034

at 95% CL [89,90]
Projected discovery:

6.3 × 1034 [91]
Projected bound: 7.8 × 1034

90% CL [91]
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IV. CONCLUSIONS

Models of structure formation suggest that the inner part
of globular clusters may have a DM density that largely
exceeds that estimated in the solar neighborhood.
Assuming this is so and that the DM is a WIMP particle,
compact stars such as white dwarves can capture WIMPs
through a process similar to that studied in the case of the
Sun or the Earth, leading to an increase of the star
luminosity through their annihilation process. As a conse-
quence the issue of the amount of DM in globular clusters,
and specifically in M4, has drawn increasing interest in the
literature [29,34,41]. We have shown that if the WIMP
interacts with the nuclear targets within the WD through
inelastic scattering, the data on low-temperature large-mass
WDs in the Messier 4 globular cluster can lead to a
constraint on the mass splitting δ≲ few tens of MeV that
largely exceeds that ensuing from direct detection in
terrestrial underground experiments, δ≲ 200 keV, and
from solar neutrino searches, δ≲ 600 keV, for a generic
WIMP with a spin-independent cross section off nucleons
larger than ≃ a few × 10−43 cm2, assuming conservatively
that the WD is entirely composed of carbon.
We have applied such improved constraint to the specific

DM scenario of a self-conjugate bidoublet in the LRSM,
where the standard SUð2ÞL group with coupling gL is
extended by an additional SUð2ÞR with coupling gR in
order to explain maximal parity violation in weak inter-
actions. The ensuing bounds significantly reduce the
cosmologically viable parameter space of such scenario,
in particular requiring gR > gL. For instance, for gR=gL ¼
1.8 we have found the two viable mass ranges for the
bidoublet DM candidate, 1.2 TeV≲mχ ≲ 3 TeV and
5 TeV≲mχ ≲ 10 TeV, when the charged SUð2ÞR gauge
boson mass MW2

is less than ≃12 TeV.

In Sec. III C we have provided a short discussion on
how such phenomenological parameter space at low
energy can be achieved when the LRSM model is
embedded at high scale in a GUT, showing that in the
minimal scenario of LRSMþ DM bidoublet one naturally
gets MW2

, mχ ≳ 1010 GeV, and gR < gL, with a GUT
scale MGUT ≃ 1015 GeV incompatible with proton decay
bounds. As a consequence, one needs to extend the
ultraviolet completion of the LRSMmodel with additional
multiplets besides the DM bidoublet in order for the latter to
explain the DM in the Universe in agreement with the WD
bounds discussed in Sec. III B. Specifically, we found
that adding color triplets that are singlets under all other
groups and carry zero B-L charges can naturally yield
MW2

; mχ ≲ 10 TeV. On the other hand, the only way to
obtain gR > gL is to split the running of gR and gL by
assuming that D parity is broken at high scale, i.e., by
introducing an asymmetry between the multiplets of SUð2ÞL
and SUð2ÞR. We provided a specific example of such
scenario in Fig. 6, with the particle content of Table II.
We conclude by reminding that the amount of DM in M4

is still controversial. Our analyses motivate further studies
to settle this issue. Moreover, at the end of Sec. II B we
pointed out that the WDs bounds discussed in the present
paper could be extended using more dense stellar object
such as neutron stars, probing values of the inelastic
splitting δ as large as ∼300 MeV. In particular, a future
observation of neutron stars with temperatures T ≲ a few
thousand kelvin would rule out the full parameter space of
LRSM bidoublet DM.
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7

−7

1
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0
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209=6 9=2 27=2 12
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81=2 81=2 115=2 4

9=2 9=2 1=2 −26

1
CA

LRSMDþΨþ 4F0
c þ Fd

0
B@

−1=3
−1=3
7

−13=3

1
CA

0
BB@

307=6 15=2 27=2 12

15=2 307=6 27=2 12

81=2 81=2 115=3 2

9=2 9=2 1=2 74=3

1
CCA

LRSM=Dþ Ψ 0
B@

−7=3
−5=3
11=2
−7

1
CA

0
B@

97=6 9=2 3=2 12

9=2 209=6 27=2 12

9=2 81=2 61=2 4

9=2 9=2 1=2 −26

1
CA
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0
B@

5=3
−2=3
11=2
−7=3

1
CA

0
BB@

391=6 9=2 3=2 28

9=2 565=12 27=2 16

9=2 81=2 61=3 −1
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1
CCA
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APPENDIX: ULTRAVIOLET COMPLETIONS OF
THE LRSM MODEL AND BETA FUNCTIONS

The beta functions of the gauge couplings at two loops
determine to a pretty good accuracy the unification and
breaking of the SUð2ÞR scales. At two loops, the gauge
couplings are only affected by their own running and the
running of the top Yukawa coupling and hence one can
consider the running of these quantities, without making
any assumptions about the running of all of the other
parameters of the theory. Obviously, for a specific model
one must perform a complete running of all the parameters,
but MR and MGUT can be determined to a great accuracy.
For the beta functions of the gauge couplings of the models
we present, we adopt the convention

dgi
dt

¼ bi
16π2

g3i þ
g3i

ð16π2Þ2
�Xj¼3

j¼1

bijg2j − ciy2t

�
; ðA1Þ

where gi are the gauge couplings of each i factor and yt is
the gauge couplings of top Yukawa coupling. The coef-
ficients bi, bij, and ci are determined by group invariants
and the matter content of the theory. The beta functions
of the basic LR symmetric model are well known for the
D -parity conserving case, e.g., at one loop [88] and at two
loops [86,93], and can be easily checked with pyr@te [92].
For the one-loop beta functions of other models we use [88]
and pyr@te [92] for cross checking and two-loop compu-
tations. The coefficients of the beta functions for all the
models we present in Sec. III C are given in Table III. Due
to GUT embedding the matching of the LR gauge cou-
plings to the SM gauge couplings is given by

gLRB−LðMRÞ ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

5z2
þ 3

5

�s
gSM1 ðMRÞ;

gLRL ðMRÞ ¼ gSM2 ðMRÞ;
gLRC ðMRÞ ¼ gSM3 ðMRÞ; ðA2Þ

where

gLRB−LðMRÞ ¼ zgLRR ðMRÞ: ðA3Þ

Here, z is a real number ofOð1Þ that is determined through
the constraint of unification at MGUT. The gauge couplings
obtained in the plots in Fig. 6 correspond to the last running

of the program that looks for convergence of the up and
down running of the gauge couplings with the boundary
conditions at MEW and gauge unification at MGUT. The
matching to the SM model is given by

1

g21ðMRÞ
¼ 2

5

1

g2B−LðMRÞ
þ 3

5

1

g2RðMRÞ
; ðA4Þ

gSM2 ðMRÞ ¼ gLRL ðMRÞ; ðA5Þ

gSM3 ðMRÞ ¼ gLR3 ðMRÞ: ðA6Þ

We have used the input parameters given in Table 1 of [87].
In order to understand why the addition of color triplets

can drastically lower the scaleMR, we consider the one-loop
beta function coefficients of the minimal LRSM models
(bothD conserving andD breaking). These coefficients can
be written as

0
BBB@

bL
bR
bB−L
b3

1
CCCA ¼

0
BBB@

−6
−6
4=3

−29=3

1
CCCAþ NHBD

0
BBB@

1=3

1=3

0

0

1
CCCA

þ NHTL

0
BBB@

0

2=3

3

0

1
CCCAþ NHTL

0
BBB@

2=3

0

3

0

1
CCCA; ðA7Þ

where NHBD is the number of Higgs bidoublets, NHTL
and

NHTR
are the number of Higgs left triplets and right triplets,

respectively. The first term on the right-hand side of Eq. (A7)
corresponds to the one-loop beta functions from gauge
interactions and the three families of fermions of the
LRSM. In the D -parity conserving case both the left- and
right-handed triplets TL and TR are present and
bL ¼ bR ¼ −5=3. On the other hand, when only TR is
included D parity is broken and bR > bL ¼ −7=2.
In order to obtain a phenomenologically viable scenario at

low energy one needs to push the MR and MGUT scales
further apart compared to the minimal cases LRSMDþ Ψ
and LRSMDþ Ψ. In Fig. 6 bi < 0 implies a positive slope
for 1=αi. Indeed, the addition of color triplets makes b3 less
negative, flattening the running of1=α3 and shiftingMGUT to
higher scales andMR to lower scales. However, adding only
color triplets is not enough becausemultiplets of all the other
groups are required in order to ensure that gL and gR unify at
high scale. In particular, in order to increase the gR=gL ratio
more multiplets of SUð2ÞL than of SUð2ÞR are needed in
order to keep the one-loop beta function bR as negative as
possible so that gRðMRÞ > gLðMRÞ already at the scaleMR
(moreover, to overcome the running of gL the hierarchy
between the two couplings needs to be strong enough).
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