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Detailed analysis of the special points on M — R solutions of hybrid/twin stars
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Hadron-quark phase transition in neutron star cores is achieved in the present work with the help of the
Maxwell construction. For this purpose, we employ six different and well-known hadronic models for the
pure hadronic phase. The quark phase is described with the MIT bag model in which the density
dependence of the bag pressure B(p) is invoked for different asymptotic values (B,,) of B(p). The resulting
hybrid star (HS) configurations exhibit twin star characteristics and distinct special points (SPs) on the
mass-radius diagram of the HSs irrespective of the transition densities and the value of B,,. We find that for
any particular value of B, the mass corresponding to SP (Mgp) and the maximum mass (M, ) of the HSs,
obtained with different hadronic models, follow a nearly linear (fitted) relationship where the slope is
independent of the value of B,,. The Msp — M, dependence of the HSs is found to be consistent with any
hadronic equation of state (EoS) chosen to obtain the hybrid EoS, and thus, such relations can be
considered as universal relations in the context of formation of SPs. A change in the value of B, shifts the

position of the fitted line in the Mgp — M, plane, with the linearity, however, retained.
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I. INTRODUCTION

Theoretical modeling of neutron star (NS) matter (NSM)
is the best way to understand the composition and inter-
action of matter at high density (5—10 times nuclear density
po) in the absence of any conclusive knowledge from
experimental perspectives. The equation of state (EoS) of
the NSM is constrained to a certain extent by certain
astrophysical and observational results. Such constraints
include those on the maximum mass of the NSs obtained
from high mass pulsars like PSR J0348 4 0432 [1] and
PSR J0740 + 6620 [2]. Recently, the NICER experiment
also put constraints on the radius of PSR J0740 4 6620
[3,4]. The limit on the dimensionless tidal deformability
of a 1.4 My NS is set from the GW170817 observational
data [5]. Other constraints on the mass-radius (M — R)
plane of the NSs are prescribed from GW170817 data
analysis [5] and also from recent NICER experiments for
PSR J0030 + 0451 [6,7].

With the theoretical modeling of NSM, the EoS is
thus dependent on the composition and interactions con-
sidered. Theoretically, the dense environment of the NS
core can support the formation of different stable exotic
matters [8]. It is often speculated that at such densities
deconfinement of hadronic matter may occur to form quark
matter via phase transition and thereby forming hybrid stars
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(HSs) [8-45]. Not only in compact star cores, the phe-
nomenon of hadron-quark phase transition finds its appli-
cation in various interesting contexts like heavy-ion
collision physics, supernova explosions, and binary neutron
star mergers (BNSMs). Quantum chromodynamics (QCD)
calculations help us to speculate at high temperature (as in
case of the early stages of the Universe) and at high density
(as in case of compact stars) the formation of quark-gluon
plasma. This helps to picture the QCD phase diagram
which provides the notion of hadron-quark phase transition
along the chemical potential (density) and temperature
axes. The high temperature—low baryon density regime of
the QCD phase diagram is accessible to the heavy-ion
collision experiments to a certain extent, and the first-
principle calculations of QCD predict a smooth crossover
transition from a hadronic to deconfined quark phase at
around T = (156.5 4+ 1.5) MeV [46]. The low (negligible)
temperature—high density regime conditions are highly
challenging to be accessible in experiments. Such con-
ditions prevail ideally in the core of neutron/compact stars.
However, due to lack of proper understanding of matter and
its interaction at such high density, the composition and the
possible presence of exotic matter inside the neutron/
compact star core still remain one of the most interesting
and unsolved aspects of dense matter physics. Whether
quark matter can be a possible candidate at such a dense
environment is still an open question and one of the current
topics of interest. At high densities relevant to the core of
compact stars, the asymptotic freedom of QCD indicates a
possible transition of phase from hadronic matter to quark
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matter under such conditions, likely in the form of a first-
order phase transition [8]. In other words, deconfinement of
hadronic matter to quark matter is expected at such extreme
conditions of density at the core of NSs thereby forming
HSs. Moreover, it is also suggested that when density
increases, strong first-order phase transitions with large
density jumps can trigger supernova explosions via propa-
gation of shock waves. This ultimately results in the
formation of protoneutron stars inside the collapsing star’s
core [47]. Also, in the era of the BNSM detection, the
phenomena of phase transition has gained special attention
and interest. To date, the detection of the inspiraling phase
of the merger especially in case of GW170817 helped to
constrain the radius and tidal deformability of a 1.4 Mg
NS. Unfortunately, the postmerger phase could not be
detected for the GW170817 event. However, it has been
suggested that if the postmerger phase can be detected in
the future then the peak frequency of the ringdown signal
can disclose further information about compact star proper-
ties. The joint information from both the inspiraling and
postmerger phases may also be helpful to understand the
possibility of a first-order phase transition in the NS
merger [48].

In the case of HSs, hadron-quark phase transition is
achieved generally with the help of Gibbs and/or Maxwell
constructions depending on the value of surface tension at
the hadron-quark interface. The former is based on a global
charge neutrality condition and the formation of a mixed
phase [8,19,41,43], while the later is characterized by a
density jump, and the local charge neutrality condition is
considered [17-22,25,41,42,44]. It is well known that if the
surface tension at the boundary is too high, the mixed phase
becomes unstable, and then, the Maxwell construction is
favored [49]. However, the actual value of the surface
tension at the boundary is not known, and in the present
work, we assume it to be high enough to invoke phase
transition using the Maxwell construction. For the quark
phase, we consider the MIT bag model [50]. As the quarks
acquire asymptotic degrees of freedom at high densities
relevant to HS cores, in the present work, we consider the
density dependence of the bag pressure following a
Gaussian distribution form [51,52]. We obtain the EoS
of HSs and consequently their structural properties for
different values of B, of the bag pressure B(p), where B
is the value of B(p) where the quarks become asymptotic.
The chosen values of B,, are consistent with those
prescribed by [53,54] using specific models in the light
of GW170817 data. For the pure hadronic phase, we adopt
six different relativistic mean field (RMF) models. As
stated earlier, the EoS of a compact star is, in general,
dependent on its composition which is largely unknown at
present from experimental perspectives. Theoretically, at
high density relevant to NS cores, there may be the
possibility of existence of exotic forms of matter like the
hyperons, delta baryons, paired and unpaired quarks, and

boson condensates. However, at present, the precise con-
ditions of temperature, density, and isospin asymmetry are
not well known which broadly regulate the threshold for the
appearance or disappearance of these exotics [55].
Considering the hadronic composition, theoretically, the
hyperons and delta baryons may appear when the neutron
chemical potential matches with and surpasses the rest of
the mass of the hyperons. Therefore, several theoretical
models suggest different thresholds of their appearance.
Moreover, the hyperon couplings in the hadronic sector are
still not well determined and are chosen on the basis of the
potential depths of individual hyperon species. Among all
the hyperon species, the only value of the potential depth
which is reasonably known is that of the A hyperon [56].
Also, their presence is known to soften the EoS and reduce
the maximum mass of the NSs [8,42,43,56-58]. This leads
to the well-known hyperon/delta puzzle. Many works have
suggested various ways to solve the puzzle with mecha-
nisms like considering the effect of repulsive hyperon-
hyperon interaction via exchange of mesons [57], inclusion
of repulsive hyperonic three-body forces [59], and invoking
phase transition from hadronic to deconfined quark matter
forming HSs [10,12-16]. Now, considering quarks as con-
stituents of compact stars via phase transition, their threshold
density is also inconclusive, and several theoretical models
have suggested different values. Few works [55] have
suggested that in the case of HSs under certain circum-
stances, the threshold densities of appearances of hyperons
and quarks are often very close or overlapping. Therefore,
considering all the above facts and for simplicity, we do not
consider the presence of hyperons in the hadronic phase of
the present work similar to [34,45,60,61].

With the obtained hybrid EoS, we compute the structural
properties of the HSs in static conditions. In this context,
we obtain twin star configurations and special points (SPs)
on the M — R diagram with all the considered hadronic
models. Several works have suggested that phase transition
from hadronic to unpaired or color-flavor locked quark
matter often leads to the formation of a “third family” of
compact stars [8,17,27,55,62—72] and twin star configura-
tions under certain circumstances of strong first-order
phase transitions mainly with considerable density jumps.
The M — R plot in such cases often show nonidentical
branches with two distinct maxima at two different radii. In
other words, twin stars are two separate points with the
same mass but different radii on the mass-radius diagram of
the HSs. Usually, one of these twins is a regular neutron
(hadronic) star located on the first stable branch, whereas
the other is a HS lying on the second stable branch,
disconnected from the first (hadronic) branch by an instable
region. However, depending on its transition density, the
twins with nearly identical masses can both be located in
the second stable branch [73]. Few works have classified
such twin stars broadly into four categories depending on
the location of these twins in terms of mass [29,30,66].
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A SP (Msp, Rgp) on the M — R plot indicates the small
region where all the HS solutions merge irrespective of the
different transition densities for different values of bag
pressure. This feature is of great interest in the context of
formation of hybrid and twin stars [65,74,75]. It is
particularly pronounced in the case of HSs with strong
phase transitions that exhibit third family solutions and the
twin star phenomenon [76,77]. There are a few works that
have already obtained the SP feature of HSs using some
more realistic effective quark models. This feature was first
identified in [74] for the generic constant speed of sound
(CSS) quark model. Later on [65,75] with the CSS model,
it was found that the existence of SPs can be treated as a
universal property of HS models because their location
on the mass-radius diagram is insensitive to the transition
density. Hence, SPs serve as a remarkable tool to interpret
the recent multimessenger observational results as signals
for the possible existence of HS branches [65,75]. In [65],
even advanced MIT bag models like the vector bag (vBag)
model [78] were also adopted that yielded SPs on the mass-
radius diagrams of HSs. Reference [64] adopted the color
superconducting  generalized nonlocal Nambu-Jona-
Lasinio model for the quark phase and obtained SPs on
the mass-radius diagrams of HSs using both the Maxwell
construction and an interpolation procedure with a poly-
nomial function, while [67] obtained SPs with both the
Maxwell construction and interpolation procedure with a
polynomial function in terms of a mixed phase parameter.
Reference [79] adopted the relativistic density-functional
approach [76] to model the color superconducting quark
matter and studied the properties of HSs. They obtained
SPs for the variation of the pairing or gap parameter and the
effective quark mass. Reference [72] studied a smooth
phase transition with the Gibbs construction and obtained
SPs on the mass-radius diagram for different values of the
bag constant. In the present work, with the considered
number of hadronic models and for different values of B,
for the density-dependent bag model, we have achieved
phase transition with the Maxwell construction and ana-
lyzed the properties of HSs. The locations of the SPs
obtained in this work are compared with the various recent
constraints on the mass-radius relationship of compact
stars. We have also constrained the value of the maximum
gravitational mass M ., of the HSs with respect to Mgp. As
we obtain a linear M ,,, — Mgp involving the six hadronic
models, these relations can be treated as universal relations
in the context of existence of SPs.

The paper is organized as follows. In Sec. II, we address
the six hadronic models adopted (Sec. I A). In Sec. II B,
the main features of the density-dependent bag model for
the pure quark phase are highlighted along with the
mechanism of phase transition with the Maxwell construc-
tion. We then present our results and relevant discussions in
Sec. III. We summarize and conclude in the Sec. IV.

II. FORMALISM

A. Pure hadronic phase

For the pure hadronic phase, we employ six different
RMF models viz. TM1 [80] BSR2, BSR6 [81], GM1 [82],
NL3wp4 [83], and NL3 [84]. The saturation properties of
these models differ from each other and are in reasonable
agreement with the different experimental and empirical
data. In Table I, we list the saturation properties like the
saturation density (pg), binding energy per particle (e),
nuclear incompressibility (K), symmetry energy coeffi-
cient (Jy), and slope parameter (L) of the chosen hadronic
models.

The symmetry energy coefficient (Jy) and the slope
parameter (L) of the chosen hadronic models are quite
consistent with the recent findings of [85] obtained from
the correlation between them and the neutron skin thick-
ness of %®Pb (R2%) as measured by the PREX-II experi-
ment. The binding energy per particle (e;) and the
saturation density (py) of the different hadronic models
are also consistent with the phenomenological analysis
of [86]. However, the saturation density of TM1 is slightly
less than that prescribed in [86]. In absence of any direct
experimental determination of energy per particle and
saturation density, they are extracted from certain exper-
imental data analysis [87-89]. Reference [87] has presented
a helpful list of references in this regard. The nuclear
incompressibility (K,) of certain hadronic models like
TM1, GM1, NL3wp4, and NL3 are slightly larger than
the prescribed experimental finding of [90] but consistent
with [91]. The values of K, in such works have a
wide range of uncertainties pertaining to it, and the value
of K is still not an experimentally well-measured quantity.
All the chosen hadronic models in this work are quite well
known and have been extensively adopted in the literature,
even in recent works, to determine the properties of
neutron/hybrid stars.

As mentioned in Sec. I, we do not include the hyperons
and the delta baryons in the hadronic sector because these
heavier baryons soften the EoS which results in low masses
of the HSs [8,42,43,57,58]. Also their couplings are not
experimentally well known except for that of the A hyperon
[56]. Therefore, similar to works like [34,45,60,61] in the
context of phase transition, we consider f equilibrated

TABLE 1. The nuclear matter properties at saturation density p,,
for different hadronic models.

Model p, (fm~3) ey (MeV) K, (MeV) J, (MeV) Ly (MeV)
TMI 0.145 -1626 2812 36.9 110.8
BSR2  0.149 —16.03  240.0 31.4 62.2
BSR6  0.149 -16.13 2359 35.4 85.6
GM1 0.153 -1630  300.1 325 93.9
NL3wpd 0.148 —1625 2716 33.1 68.2
NL3 0.148 -1625 2716 37.4 118.5
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matter consisting of the nucleons, electrons, and muons as
the composition of the hadronic phase described with the
six different RMF models.

B. Pure quark phase and hadron-quark
phase transition

We adopt the MIT bag model [50] with u, d, and s quarks
along with the electrons to describe the pure quark phase.
The masses of the u and d quarks are quite small compared
to that of the s quark (m, ~ 95 MeV). The model is based
on the hypothesis that the unpaired quarks are constrained
within a hypothetical region known as the “bag”, charac-
terized by a specific bag pressure B that determines the
strength of the quark interaction. This bag pressure signifies
the difference in energy density between the perturbative
vacuum and the true vacuum [51,52]. The value of B is still
inconclusive, and it is often taken as a free parameter that
plays an important role in determining the properties of the
HSs. In light of the constraints from GW170817 observa-
tion, [53,54] have put limits on the value of B for HSs
considering a few well-known hadronic models for the
hadronic phase.

It is well known that the quarks at high densities, relevant
to NS/HS cores, enjoy asymptotic freedom [51,52]. This
fact justifies that the bag pressure is density dependent
rather than being a constant. Therefore, in the present work,
we consider the density dependence of the bag pressure
B(p) following a Gaussian distribution form [51,52]
given as

B(p) = Bas + (BO - Bas) exp[_ﬂ(p/p())z]v (1)

where B\ and B, are the values attained by B(p) atp =0
and asymptotic densities, respectively. f controls the
decrease of B(p) with the increase of density. Such a
distribution form, regulating the density dependence of the
bag pressure, involves the asymptotic behavior of the
quarks at high densities relevant to HS cores. It is already
shown that this can significantly affect the structural
properties of HSs [44,51,52]. In the present work, we
choose By =400 MeVfm™ and p=0.17 following
[51,52]. As hadron-quark phase transition is expected at
high densities, therefore the precise value of B, is not
important in the present context. However, B, is of greater
significance and relevance in the case of HSs. Thus, to
obtain the hybrid EoS, we vary B, consistent with the
limits proposed by [53,54]. In the present work, we
consider the simplistic form of the bag model without
involving the strong repulsive interactions between the
quarks. A first-order correction due to a strong interaction
[92] and perturbative effects [10,93-96] may also be
considered. However, [8,19,35-40] noted that the effects
of perturbative corrections can also be realized by varying
the bag pressure.

In the MIT bag model, the energy density and pressure of
the quarks can be expressed as [8]

3 1
f

1oy (B Ky

and
1 2 5 2
Po = =Blp) + 3 77z ks (4 ~35)
f

3 +k
+5mf;1n<u>], 3)

ny

where, my is the mass of individual quarks, and the
chemical potential of individual quark is

iy = (6 4 ), @)
The total density is

k3
2 : f
= —, 5
P 7 372 ( )
where f = u, d, and s are the quark flavors.
The chemical potential equilibrium is given by

Ha = Mg = Hy + He- (6)

The individual quark chemical potentials in terms of up
and p, are as follows:

Hy — %(MB - 2)“6)’ (7)
Ha = Hy = %(ﬂB + He). (8)

The total charge is to be conserved by following the
relation:

pe=) aiwi=0. 9)

where i = u, d, s, and e. ¢g; and p; are individual charge and
density of the particles, respectively.

In the present work, we assume that the surface tension
at the hadron-quark boundary is sufficiently large, and
thus, phase transition is achieved using the Maxwell
construction [49]. Following the Maxwell construction,
the transition from the hadronic phase to the quark phase
occurs with sharp jumps in density when the pressure and
baryon chemical potential of the individual charge neutral
phases are equal [17-22,41,42]; i.e.,
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it = u§ (10)
and

We compute the hybrid EoS for different values of the
bag pressure by varying B,.

For the outer crust region, we adopted the Baym-
Pethick-Sutherland EoS [97], and for the inner crust, we
have considered the EoS including the pasta phases [98].
Consequently, we proceed to study the structural properties
of the HSs in static conditions with the obtained
hybrid EoS.

C. Structural properties of hybrid stars

With the obtained hybrid EoS, the structural properties
like the gravitational mass (M) and the radius (R) of the
HSs in static conditions are computed by integrating the
following Tolman-Oppenheimer-Volkoff (TOV) equations
[99] based on the hydrostatic equilibrium between gravity
and the internal pressure of the star:

dP  G(e+ P)(M+4zr’P)
dr—r (r-2GM) (12)

M
il—r = 4nrle. (13)

The dimensionless tidal deformability (A) is obtained
in terms of the mass, radius, and tidal love number (k,)
following [100]. From the deformation of the metric /4 in
Regge-Wheeler gauge,
has = diagle ™" Hy, eV H,, r*K(r), r? sin® 0K (r)]

X Y2 (0. §). (14)

the tidal Love number k, is obtained which in turn gives the
tidal deformability parameter A as

2

The dimensionless tidal deformability A is then calcu-
lated as a function of the love number, gravitational mass,
and radius [100] as

A= %kZ(R/M)S. (16)

III. RESULTS

The EoSs for the pure hadronic matter with the six
chosen models are calculated individually. For the quark

TABLE II. Hadron-quark transition densities for different
hadronic models and the chosen values of B,.
Hadronic model B,, (MeV fm~3) 27 /po 22 /po
TM1 30 1.59 3.24
50 1.70 3.40
70 1.83 3.59
BSR2 30 1.47 3.24
50 1.56 3.39
70 1.64 3.57
BSR6 30 1.48 3.23
50 1.61 3.39
70 1.69 3.57
GM1 30 1.51 3.23
50 1.64 3.38
70 1.76 3.56
NL3wp4 30 1.37 3.22
50 1.50 3.37
70 1.64 3.54
NL3 30 1.31 3.22
50 1.41 3.36
70 1.51 353

phase, we choose the asymptotic value B,, of the bag
pressure as 30, 50, and 70 MeV fm~3. With these chosen
values of B,,, we obtain the EoS of the quark phase using
Egs. (2) and (3). With each hadronic EoS, we compute the
hybrid EoS for each value of B, following the Maxwell
construction.

We compare the pressure as a function of the baryon
chemical potential of both phases in order to obtain the
hadron-quark transition or the crossover points for different
values of B,, with each hadronic EoS. The transition
chemical potential (4,) and the transition pressure (P,)
decide the hadron-quark crossover points. We tabulate in
Table II the transition densities of the hadronic (pf) and

quark (p?) phases corresponding to the crossover points
(4, P,) for different hadronic models and B.

For any hadronic model, the crossover shifts to higher
values of chemical potential (transition densities) with
higher values of B,,. For any particular value of B,,, phase
transition is the earliest with the NL3 model and most
delayed in the case of the TM1 model in terms of transition
density. We then proceed to compute the hybrid EoS with
the six chosen hadronic EoS for each value of B,,. The

difference in the values of p/ (¢/) and p2 (¢2) decides the
region of phase transition with a jump in density according
to the Maxwell construction.

With the obtained hybrid EoS, the structural properties are
obtained in static conditions using the TOV equations [99] as
shown in Eqgs. (12) and (13). In Figs. 1 and 2, we show the
variation of gravitational mass M with radius R of the HSs in
static conditions. It is seen that for any particular value of B,
the maximum mass (M, ) of the HSs is highest for the NL3
model (2.27 M, for B, = 30 MeV fm~>) and lowest for the
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FIG. 1. Mass-radius relationship of static hybrid star with hadronic models (a) TM1, (b) BSR2, and (c) BSR6 and different values of
B,. Observational limits imposed from the most massive pulsar PSR J0740 + 6620 (M = 2.08 £ 0.07 M) [2] and R = 13.7f12"§’ km
[3]or R = 12.39:{38 km [4]) are also indicated. The constraints on the M—R plane prescribed from GW170817 [5]) and the NICER
experiment for PSR JO030 + 0451 [6,7] are also compared. The points marked with asterisks indicate the special points, those with
triangles indicate phase transitions, and the parts of the curves between the triangular and solid dot points indicate the regions of
instability.

TM1 model (1.98 My, for B,, = 30 MeV fm~). For any = Table II. However, all the HS solutions, obtained with
particular hadronic model, M ,,, of the HSs decreases with ~ different hadronic models show that the values of M,
increasing values of B,,. For example, the HSs obtained  decrease with increasing values of M, and B . Same relation-

with the GM1 model for the hadronic phase has M., =  ship between M,,, and M, is also reported in other works
2.03 M, for B,, = 30 MeV fm~3 and 1.80 M, for B,, = like [55,64,65].
70 MeV fm~3. However, the radii of HSs (R,,,,) correspond- The maximum mass [2] and the corresponding radius

ing to M, for different values of B,, do not show any [3,4] constraints from PSR J0740 + 6620 are found to be
substantial change for any particular hadronic model. The satisfied by the HS solutions with hadronic models BSR2,
mass and radius coordinates (M,, R,) corresponding to phase ~ BSR6, and GMI for B,, = 30 MeV fm~ only. The same
transition or the onset of quarks are marked with solid M — R constraints from PSR J0740 + 6620 are satisfied by
triangles in Figs. 1 and 2. For any particular hadronic model, ~ the HS results with the NL3wp4 hadronic model for both
we find that M, increases with increasing values of B,,. Thisis ~ B,s = 30 and 50 MeV fm™>. Our HS solutions with the
because the transition is delayed in terms of chemical =~ NL3 model are consistent with these constraints for all the
potential (density) with increasing B,, as seen from  chosen values of B,. Other constraints on the M—R plane
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FIG. 2. Same as Fig. 1 but with hadronic models (a) GM1, (b) NL3wp4, and (c) NL3.
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from GW170817 [5] and the NICER experiment for PSR
JO030 4 0451 [6,7] are not satisfied by the hadronic
branches before phase transition. They are, however, well
satisfied by all the HS configurations obtained with all the
hadronic models for each of the chosen values of B,.
Overall, our mass-radius results of the HS configurations,
as plotted in Figs. 1 and 2, show that the hadronic branch is
not massive enough and is incapable of satisfying the
NICER data for PSR JO030 + 0451. This is because phase
transition occurs quite early (at low mass) for almost all the
considered models (also seen from Table II in terms of
transition density). Therefore, the transition mass M, is
quite low, while the corresponding radius R, is large for
most of the models considered in this work. Hence, the
hadronic branch does not reach mass high enough to satisfy
the NICER constraint for PSR J0030 + 0451. This con-
straint is satisfied with all the stable HS branches or the
second stable branch obtained only after phase transition in
case of all the models considered in this work. It is also
noted from Figs. 1 and 2 that the hadronic branches for
none of the models considered in this work can satisfy
the GW 170817 data either. For all the considered models,
only the second stable branch after phase transition have
successfully satisfied this constraint. The reason is again
due to the early phase transition that restricts the hadronic
branch to reach the mass and radius corresponding to the
GW170817 data.

Interestingly, for all the HS configurations presented in
Figs. 1 and 2, we obtain twin solutions on two different
stable branches separated by an unstable region (between

16 | I J

M (Mo)

12 F T™1 -

08 |

0.6 |

in 1 1 1 1

0 0.5 1 1.5 2 25 3

£ (101 gm cm™3)
(@)

FIG. 3.

the points marked with solid triangular and circular points
in Figs. 1 and 2). This region of instability corresponds to
the points when dM/de. <0, where ¢, is the central
energy density. The region is noticed for a considerable
density (radius) following phase transition. The solutions
become stable again from the circular point onward which
marks the end of the unstable region and the beginning of
the second stable branch. This is thus even better reflected
if we study the variation of the central energy density ¢,
with respect to mass. In Fig. 3, we show the same for HSs
obtained with hadronic models TM1 and NL3, where we
find that the unstable region is clearly seen as a dip in mass
with respect to e, following the flat (M = constant) region
of phase transition.

The decrease in mass is up to a certain point (marked
with circular dot) as also in the M — R plots in Figs. 1
and 2. Beyond this point, M again increases with ¢. and
also with respect to the radius in the M — R plot, forming
the second stable branch. The two stable branches are thus
characterized by two distinct maxima. Of them, the one on
the hadronic branch occurs at low mass (M,) and larger
radius and corresponds to the point of phase transition
(marked by triangles in Figs. 1 and 2). Thus, in the hadronic
branch, the transition point also denotes the maxima, while
in the second stable branch, formed after phase transition,
the maxima occurs at high mass (M,,,) and low radius.
This maxima denotes the maximum mass of the overall HS.
In Fig. 4(a), we show the variation of M ,,, with respect to
M, for the HSs obtained with different hadronic models. In
this figure, each line is for the HSs obtained with particular

.....
e

22

M (Mz)

NL3 -

B,s=30 MeV fm=3 —mm

, 70 i
¥ L L L L L
0 0.5 1 15 2 25 3
& (103 gm cm™3)
(b)

Variation of mass with central energy density of a hybrid star with hadronic models (a) TM1 and (b) NL3 and different values

of B,,. The points indicate the initiation of stable branch after phase transition.

083008-7



SEN, ALAM, and CHAUDHURI

PHYS. REV. D 106, 083008 (2022)

23 ' r r T .
T™I —o—
BSR2 —m—
BSR6 —¥—
GM1 —p—
22 FNL3wp4 —o— 7
NL3 —a—
21 F -
~~
s
~ 2 L |
§
S
19 F -
18 F -
1.7 L L L L L
0.9 1 1.1 12 13 14 1.5
M, (M)
(@)
FIG. 4.

XXX S
NN\ S
NN\

1.6 SO -
ITARRRRAN A
NN
SOOOOTHOOO
’é \\\\\\\\\\\\\\\
s M \ NI .
N
12 -
GW170817 M2
1B .
08 | -
L L L L L L
8 9 10 11 12 13 14 15
R (kms)
(b)

(a) Variation of maximum mass (M ,,,) with respect to transition mass (M,) of the hybrid star with different hadronic models.

The points represent different the values of M, and M, for different values of B,,. (b) Location of special points (asterisks) on the
mass-radius plot of hybrid stars with different hadronic models. The possible positions of the special points for the CSS quark model
with C2 = 0.7 [65] is also compared. The allowed [5] and excluded [101] regions on the mass-radius plane from GW170817 are also

indicated.

hadronic model. The points on any particular line indicate
the values of (M,, M ,,, ) with different values of B,. In the
M, vs M .. plane, we obtain nearly parallel lines for HSs
with different hadronic models. The same nature of M, vs
M .« 1s also noticed in other works like [65]. As also seen
in Figs. 1 and 2, we notice in Fig. 4(a) that for HSs with any
particular hadronic model M., decreases with increasing
values of B,,, while the reverse trend is noticed in the case
of M, with respect to B,.

Figures 1 and 2 also show the existence of twin star
configurations characterized by points on the M — R plot
having same mass but different radii. From [29,30,66], it is
often seen that the two maxima on the two branches may
have close values of mass that exceed 2 M, (category I). In
other cases, the two maxima differ in mass. In the present
work, our results mostly belong to category Il as categorized
by [29,30,66] in which the maxima on the hadronic branch is
just above 1 M, while that on the hybrid branch is above
2 Mg mostly for B,, = 30 MeV fm=3. In a few cases (Fig. 1)
for the lowest value of B,,, we have found that our HS
configurations belong category IV since in such cases the
maxima on the hadronic branch is slightly below 1 M.

Another interesting feature of our present study is that
the HS configurations obtained with the different values of
B, exhibit SPs (Mgp, Rgp) on the M — R diagram (indi-
cated by asterisks in Figs. 1 and 2). This phenomenon is

noticed for HSs irrespective of the chosen hadronic model.
The SPs indicate a small region where the solutions for HSs
with different values of B, coincide. Irrespective of the
values of B, or M, the HS solutions intersect at these SPs.
This feature of obtaining SP in the M — R diagram of HSs
is also noted in works like [65,74]. In the present work, we
find that these SPs lie on the second stable branch obtained
after phase transition. In [65] it is seen that SPs can serve as
a remarkable tool to interpret the recent multimessenger
observational results as signals for the possible existence of
HS branches. Comparing the results of [65] obtained
with the CSS quark model with our results, we find from
Fig. 4(b) that our locations of the SPs with different
hadronic models are within the possible region of SPs
prescribed by [65] for constant speed of sound C? = 0.7
with the CSS quark model. Also, our locations of the SPs
do not violate the excluded regions of the mass-radius
plane as prescribed from the GW170817 analysis [101].
However, our locations of SPs do not reach high values of
Mgp beyond 2 M. Therefore, the maximum mass con-
straint region is not satisfied by the Mgp values obtained
with any of the models in this work. This constraint is,
however, satisfied by the maximum mass of our HS
configurations mainly with the chosen lowest value of B,.

In the present work, the coordinates (Mgp, Rgp) vary
widely for the HSs with different hadronic models.
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FIG. 5. Variation of mass corresponding to special point (Mgp)

with respect to maximum mass (M,,,,) of a hybrid star with
different hadronic models. The different lines represent the fitted
functions for different values of B,.

In Fig. 5, we show the variation of the mass corresponding
to the SPs (Mgp) with respect to M, for HSs with
different hadronic models for particular values of B,.

For any particular value of B,,, Mgp is found to follow a
nearly linear (fitted) relationship with M,,,,. The particular
relation between Mgp and M, for different B, is
obtained as

Mgp = —0.81914 + 1.154 M,
for B,, = 30 MeV fm3,

Mgp = —0.67738 + 1.1525 M .
for B,y = 50 MeV fm™3,

2000 2000

and

Mgp = —0.56679 + 1.1632 M,

for B,, = 70 MeV fm=3. (19)

Thus, following Egs. (17)-(19), we have obtained the
constraints on the M., — Msp plane for individual values
of B,. Such fitted linear relations, given by Eqs. (17)—(19),
can be treated as universal relations in the context of
existence of SPs in the case of HSs. These relations do not
depend on the transition densities and are found to be
satisfied by HS configurations obtained with any of the
chosen hadronic models. The lines in Fig. 5 are almost
parallel to each other, and hence, the slope is also indepen-
dent of B,. The shaded regions in Fig. 5 indicate the
uncertainty of the fits. These fitted results are thus almost
independent of the hadronic EoS. However, a change in the
value of B, causes a shift in these fits as B, controls the
value of M, of HSs, while Mgp is independent of B,.
However, the linearity in the M ,,, — M sp relationship is still
seen to be maintained for each value of B,,. We therefore
obtain nearly parallel fitted lines in the M, — M, plane
for different values of B.

We next calculate the tidal deformability (A) of the HSs
obtained with various hadronic models and the chosen
values of B, using Eq. (16). In Figs. 6 and 7, we show the
variation of tidal deformability A with respect to gravita-
tional mass M of the HSs.

As expected, A decreases with M showing that massive
stars are less deformed. All the HS configurations obtained
with different hadronic models and the chosen values of B,
are seen to satisfy the constraint on A;, obtained from
the data analysis of the GW170817 observation [5].
Interestingly, in these plots, the A — M curves for different
values of B, either overlap over a region in the vicinity of

2000

T —
Bas=30 MeV fm 3 .-
50

70

1500+ 1500 |

T T T
Bas=30 MeV fm3
50 --

T T T
Bas=30 MeV fm 3 =
50

70

1500

< 1000} < 1000 | < 1000
™I BSR2 BSR6
5001 500 500 |
0 G\I1V170817 x . i 0 G\I)V170817 >< . e 0 G\I’V170817 >< . -
1 12 14 16 1.8 2 1 12 1.4 1.6 18 2 1 12 14 16 2
M Mo) M (Mo) M (Mo)
(@) (b) ©

FIG. 6. Variation of tidal deformability with respect to mass of hybrid stars with hadronic models (a) TM1, (b) BSR2, and (c) BSR6
and different values of B,,. Constraint on A4 from GW170817 observations (A4 = 70-580 [5]) is also shown.
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FIG. 7. Same as Fig. 6 but with hadronic models (a) GM1, (b) NL3wp4, and (c) NL3.

Mgqp or converge at Mgp. This feature is similar to that
obtained in the M — R plots in Figs. 1 and 2.

IV. SUMMARY AND CONCLUSION

The possibility of hadron-quark phase transition in NS
cores and the formation of HSs are investigated in the
present work. For this purpose, six different RMF hadronic
models are employed for the hadronic phase, while the
density-dependent MIT bag model is adopted for the pure
quark phase. The density dependence of the bag pressure is
considered for different values of B,,. We studied the
structural properties of the HSs in light of the various
astrophysical constraints on them. The results highlight the
possible formation of twin stars with special emphasis on
the existence of SPs on the mass-radius diagram of the HSs

with different values of B, using each of the six hadronic
models. For each value of B,,, we obtain nearly hadronic
model-independent relations between Mgp and M, in
almost linear forms. Thus, these relations can be considered
to be universal relations in the context of SPs on the mass-
radius relationship of HSs. The calculated HS properties
satisfy the present day astrophysical constraints on the
M — R relationship obtained from PSR J0740 + 6620,
GW170817, and the NICER experiment for PSR J0030 +
0451 and also on A4 obtained from the GW170817 data
analysis.
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