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Low internal friction coatings are key components of advanced technologies such as optical atomic
clocks and high-finesse optical cavities and often lie at the forefront of the most advanced experiments in
physics. Notably, increasing the sensitivity of gravitational-wave detectors depends in a very large part on
developing new coatings, which entails developing more suitable methods and models to investigate their
loss angle. In fact, the most sensitive region of the detection band in such detectors is limited by the coating
thermal noise, which is related to the loss angle of the coating. Until now, models which describe only ideal
physical properties have been adopted, wondering about the use of one or more loss angles to describe the
mechanical properties of coatings. Here we show the presence of a systematic error ascribed to
inhomogeneity of the sample at its edges in measuring the coating loss angle. We present a model for
disk-shaped resonators, largely used in loss angle measurements, and we compare the theory with
measurements showing how this systematic error impacts on the accuracy with which the loss model
parameters are known.

DOI: 10.1103/PhysRevD.106.082007

I. INTRODUCTION

The search for low internal friction coatings lies today at
the forefront of various branches of physics requiring ever
more accurate measurements of time and space: optical
atomic clocks [1] and high-finesse optical cavity for
quantum devices [2], laser stabilization [3] and optome-
chanical resonators [4], or the ground-based gravitational-
wave detectors (GWDs) [5,6], on which depends the
emergence of a new branch of astrophysics.
GWDs are large interferometers in which massive

suspended mirrors play the role of gravitational-field
probes [7]. The current GWDs mirror coatings are Bragg
reflectors, made of titania-tantala (TiO2∶Ta2O5) and silica
(SiO2) doublets, two amorphous materials with, respec-
tively, high and low refractive indices, and which are
deposited by ion-beam sputtering [8–11]. After the first

successful observation runs [12,13], GWDs are now enter-
ing in an upgrade phase to improve their sensitivity. One of
the most critical tasks is to reduce the coating thermal noise,
which limits detection in the central band where the
interferometers are the most sensitive [14].
This thermal noise is especially large in coatings due to

their strongly out-of-equilibrium nature, where their struc-
ture is far from being relaxed due to the deposition
procedure. But it is not specific to them. It is found in
bulk glass, where it is believed to arise from thermally
driven transitions between metastable atomic configura-
tions resulting from structural disorder. Thanks to the
fluctuation-dissipation theorem, it can be related to internal
friction, i.e., the attenuation of mechanical excitations in
the bulk of material, a property characterized by loss
angles, respectively associated with compressive and shear
strains. Precise and reliable measurements of these proper-
ties are hence crucial to characterize thermal noise and
provide information about its structural origin [15–18].*a.amato@maastrichtuniversity.nl

PHYSICAL REVIEW D 106, 082007 (2022)

2470-0010=2022=106(8)=082007(14) 082007-1 © 2022 American Physical Society

https://orcid.org/0000-0001-9557-651X
https://orcid.org/0000-0002-3628-1591
https://orcid.org/0000-0003-3275-1186
https://orcid.org/0000-0002-6865-9245
https://orcid.org/0000-0001-8490-4872
https://orcid.org/0000-0001-8696-2435
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.082007&domain=pdf&date_stamp=2022-10-27
https://doi.org/10.1103/PhysRevD.106.082007
https://doi.org/10.1103/PhysRevD.106.082007
https://doi.org/10.1103/PhysRevD.106.082007
https://doi.org/10.1103/PhysRevD.106.082007


Most experiments used to access the intrinsic elastic
moduli and loss angles in coatings rely on the principle of
the resonant method [19], via measurements of the resonant
frequencies and internal friction for various types of
resonators [20,21], the more reliable and widely used
technique being the so-called Gentle Nodal Suspension
(GeNS) for disk-shaped resonators. [20–23]. In these
setups, one may neglect non-viscous dissipation contribu-
tions like the thermoelastic loss. However, one does not
access independently the targeted loss angles, because
every resonant mode combines both compressive and shear
contributions. These angles can only be estimated after
matching experimental resonant data with a loss model,
while taking into account the distribution of local strains in
every vibration mode. For this purpose, most of the recent
GeNS studies of amorphous coatings assume that, non-
viscous dissipation being negligible, the total coating
dissipation results only from the bulk internal friction of
the deposited material, characterized by the two loss angles
one seeks to measure [24,25].
In this work, we show, on the example of GeNS

measurements, that this procedure leads to a severe mis-
estimation of the targeted intrinsic loss angles, due to the
existence of excess losses arising from the coating edge. A
similar edge effect was previously evidenced in uncoated
disks [26]. It should be expected to be the rule in coatings
[27] because they are highly prone to the existence of edge
inhomogeneity arising, e.g., from spills off at the substrate
edge or from tapering on the front side due to the sample
holder during deposition. Our work shows that a very slight
excess of loss at the edge suffices to strongly affect the
measured loss at higher frequencies because modes are then
increasingly localized near the disk edge. It results in a
large error of the fitted intrinsic loss angles. We also point
out that a lack of coating near the disk edge introduces an
artifact similar to the existence of a negative edge effect,
that must also be taken into account in order to access the
desired intrinsic loss angles.

II. STATE OF THE ART

A. The resonant method

The Gentle Nodal Suspension (GeNS) [20–23] is one of
the most reliable tools to access the mechanical properties
of coatings. It follows on the principle of the resonant
method [19], via measurements of the resonant frequencies
and internal friction of non-coated and coated disks. To
interpret measurements of the loss angle made with this
device, and access the intrinsic coating loss, it was recently
proposed [26] to proceed as follows. First, the system is
decomposed into groups of static degrees of freedom, such
as shear vs bulk strains, in different subparts of the system,
each one being associated with a stored elastic energy and
susceptible to various dissipation mechanisms (e.g., struc-
tural relaxation and thermoelastic effect). Then, when

examining a given resonance of the system, the rate
associated with each dissipation mechanism is assumed
to be proportional to the averaged stored energy in the
corresponding group over a period of vibration for that
resonant mode. Thus, a system is divided into several
domains (e.g., substrate vs coating, indexed by i) and
several groups of degrees of freedom (e.g., bulk vs shear
strains, indexed by k); the average elastic energy of group
ðk; iÞ over a period of the considered resonant mode is
denoted Ei;k; and in each group the dissipation rate via the
mechanisms m is assumed to be ϕk

i;mEi;k. Writing the total
energy dissipation rate as the sum of these contributions,
the loss angle of the whole (composite) system, associated
with the decay of a single mode, reads:

ϕtot ¼
X
i

X
k

Di;k

�X
m

ϕk
i;m

�
; ð1Þ

where

Di;k ¼
Ei;k

Etot
; ð2Þ

is the so-called dilution factor, which depends on the
considered resonant mode.

B. The coating loss angle

Equation (1) appears in its simplest form when merely
splitting substrate (s) from coating (c) contributions.
Assuming the latter homogeneous and isotropic, and the
total energy E entirely distributed between the two part s
and c, leads to

ϕtot ¼ Dsϕs þDcϕc

¼ ð1 −DÞϕs þDϕc; ð3Þ

where ϕs and ϕc are the loss angles associated to the
internal friction of the substrate and the coating respec-
tively, and D ¼ Dc ¼ 1 −Ds. This is how the coating loss
angle is usually deduced, as

ϕc ¼
1

D
½ϕtot − ð1 −DÞϕs�: ð4Þ

We thus obtain the loss angle of the coating directly from
the measurement of the total (coated) sample from which
we remove the measurement of the bare substrate, by
weighting the contributions with the dilution factor. In the
following, we assume that the substrate loss ϕs does not
change during the coating deposition and postdeposition
treatments.
Equation (4) highlights that the measurement of the

coating loss angle rests entirely of a precise evaluation of
the dilution factor for each resonant mode.
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From the geometry of the sample, it is possible to obtain
the dilution factor after calculating the energies stored in
the either part of the system using finite-element simu-
lations. This procedure, however, requires a detailed knowl-
edge of the mechanical parameters of both substrate and
coating, which may be quite limiting when examining new,
lesser known, materials.
Alternatively, the dilution factor may be directly

accessed experimentally via the shift of resonant frequen-
cies after coating deposition, as detailed in Appendix A.
For a thin disk with a homogeneous coating covering the
entire surface of the substrate, we have

D ¼ 1 −
ms

mtot

�
fs
ftot

�
2

; ð5Þ

where fs, ftot, ms and mtot are the resonant frequencies and
the mass of the sample before and after coating deposition,
respectively. Once D is estimated through Eq. (5) the
coating loss angle ϕc can be worked out following Eq. (4).

C. Bulk and shear

A first step towards the modeling of coating loss consists
in constructing Eq. (1) while separating the contributions of
different elastic strains. Even though coatings display an
evident asymmetry between the normal and longitudinal
directions, there are various indications [28,29] that, when
they grow amorphous, this does not usually induce a
significant structural anisotropy [30].
This justifies focusing on structurally isotropic coatings,

the elastic response of which can be assumed to be fully
captured by just two elastic constants. Accordingly, we are
then led to expect that the film loss can be fully captured to

just two contributions associated with either bulk or shear
strains [31], in which case Eq. (1) reduces to

ϕc ¼ Dbulkϕbulk þDshearϕshear; ð6Þ

where Dbulk, Dshear ¼ 1 −Dbulk are the bulk and shear
dilution factors, which are computed in Appendix B, which
can be found in table III.
For a disk, the values of Dbulk and Dshear only depend on

the Poisson ratio, and on the radial and azimuthal numbers
characterizing each mode. To illustrate the factors affecting
the dilution factors, a few resonant modes of a thin disk are
displayed in Fig. 1. As shown in panel (a), modes having
only azimuthal nodes feature mostly shear strains, hence
tend to present the largest Dshear values. In contrast, as
illustrated in panels (b) and (c), as the radial number grows,
the modes display increasing areas undergoing compres-
sive strains near antinodes, so that Dshear tends to decrease
with m. The resulting dilution factors are displayed in
Fig. 2 as a function of frequency for the same disk.
This figure illustrates that the values of the dilution

factors for different m’s lie on different curves, with
multiple families of modes resonating across the frequency
range of interest. This is why typical coating loss angle data
[Eq. (6)] is not a single-valued function of frequency but lie
on different curves. In contrast, the intrinsic loss angles
ϕbulk and ϕshear are material properties, hence should be
continuous functions of frequency.

D. Loss angle models

The last step towards the modelling of coating loss
consists in considering a proper theory for the dissipation
mechanisms. The most common model assumes that

FIG. 1. Normal displacement amplitude for a few resonant modes of a 75 mm, 1 mm thick, silica (ν ¼ 0.16) disk-shaped resonator, as
obtained from finite element simulations. The displacement goes from zero (blue) to the maximum of the deformation during the
vibration (red) highlighting the mode shape. A mode ðm; nÞ has m radial nodes and n angular or azimuthal nodes. The three examples
show mode (0,4) in panel (a), mode (2,0) in panel (b) and mode (1,3) in panel (c). In modes of family ð0; nÞ, like mode (0,4) in panel (a),
the local curvatures along the radial and orthoradial directions have opposite signs, which causes the associated strains to be primarily
deviatoric (shear). In modes having nonzerom values, like the (1,3) reported in panel (c), these two curvatures have the same sign over a
significant part of the disk area, which corresponds primarily to compressive (bulk) strains. The sketches at the bottom left of the modes
in panels (a) and (c) represent the dominant local deformation.
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dissipation results from two-level systems (or TLS’s), i.e.,
microstructural elements that flip between states separated
by a potential energy barrier, thus inducing fluctuations of
the local elastic modulus M, hence a phase lag between
stress and strain. TLS’s are typically modelled by asym-
metric double-well potentials [32], with distributed param-
eters, in which case the loss angle reads

ϕ ¼
Z

∞

0

Z
∞

0

�
δM
M

�
ωτ

1þ ðωτÞ2 gðΔ; VÞdΔdV; ð7Þ

where δM is the variation of the elastic modulus, ω ¼ 2πf,
τ ¼ τ0 expðV=kBTÞ=ð1þ expð−Δ=kBTÞÞ the characteristic
flip time, and where g is the distribution of the asymmetry
Δ and barrier height V of the asymmetric double-well
potential, which accounts for the complexity of the amor-
phous structure.
At that stage, the frequency dependence of ϕ is entirely

encoded in the integration of Eq. (7), using a particular type
of g. To progress, in common oxide materials like silica and
tantala, Δ and V are typically assumed to be independent
and to be, respectively, uniformly and exponentially dis-
tributed [33,34]. The distribution of V being written

υðVÞ ¼ 1

V0

e−V=V0 ; ð8Þ

with V0 a material-dependent constant, one then finds the
loss angle ϕ to scale as a power law of frequency

ϕ ¼ ϕ0ðωτ0ÞαðTÞ; ð9Þ

with an exponent αðTÞ ¼ kBT=V0 that grows linearly with
temperature.
Such a power law dependence of ϕ has been observed in

vitreous silica at low temperatures [34,35]. It gives strong
support to the idea that the distribution of V is indeed
exponential, yet only in a small energy range corresponding
to temperatures up to about 130 K. The available evidence
coming from this work suggests that at higher temper-
atures, the exponent α no longer grows with temperature
but instead drops. This casts doubts on the relevance of a
frequency power law estimate for ϕ at room temperature,
although such fits are commonly employed to analyze
experimental data. Thus, while power law fits of the loss
angles remain empirically instructive, for lack of a better
option, they should be considered with a degree of
skepticism.
Let us also point out that, when power law expressions

for the loss angles are used, one sometimes finds Eq. (9)
combined with Eq. (6) as follows [25]:

ϕc ¼ DbulkA1fα1 þDshearA2fα2 ; ð10Þ

with distinct coupling constants A1 and A2, and exponents
α1 and α2.
Within the TLS model, the constants A1 and A2 result

from the material elastic properties, parameters of the TLS
distribution and strain couplings; meanwhile, as explained
above, the exponents α1 and α2 are expected to be kBT=V0

with V0 the characteristic energy of the TLS distribution.
From this standpoint, the coupling constants A1 and A2 are
legitimately distinct, but the two exponents α1 and α2
should be equal. By allowing these two exponents to have
different values, as is sometimes seen in literature, one
implicitly introduces the hypothesis that there is not one
population of TLS but two, which are coupled to either bulk
or shear strains, or that there is a variable strain coupling
constant that is related to the distribution gðV;ΔÞ differ-
ently for bulk and shear strains. Under the assumption of a
unique coupling constant, the bulk and shear losses have a
frequency behavior that depends only on the parameters of
a single barrier population, V0 in the case of the exponential
distribution. To have two different barrier populations, in
our opinion, is rather dubious, unless it is only used as a
mathematical trick to simulate a correlation while main-
taining a single coupling constant.

(a)

(b)

FIG. 2. (a) Bulk dilution factor Dbulk, (b) shear dilution factor
Dshear ¼ 1 −Dbulk. The frequency modes are those of a 75 mm,
1 mm thick disk. For these numbers a Poisson’s ratio of 0.16 for
the mode shape wðr; θÞ and 0.16 for the coating have been
considered.
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III. EDGE EFFECTS

A. Fully coated disk

It was recently shown [26] that, in noncoated silica disk-
shaped resonators, the purely azimuthal modes ð0; nÞ
present an excess loss that cannot be described by a simple
decomposition in bulk and shear strains, but should be
attributed to spurious losses near the disk edge, where
purely azimuthal modes display their largest strains. This
so-called edge effect is expected to arise from surface
inhomogeneities. In coated resonators, these losses con-
tribute to ϕs and are eliminated when evaluating the coating
loss ϕc via Eq. (4).
The present paper emphasizes that a similar effect should

arise from the coating edge, hence impacting ϕc measure-
ments. Consider, indeed, the bulk and shear dilution factors
of Fig. 2: their values for different mode families (i.e., for
different values of the radial numberm) tend to come closer
at higher frequency. Thus, since the intrinsic loss angles
ϕbulk and ϕshear are continuous functions of the frequency,
one should expect from Eq. (6) to see a similar trend in ϕc,
i.e., a relative narrowing of the differences between mode
families with the increasing frequency. But existing silica
loss data [11] do not follow this trend and visibly show the
opposite. In particular, the ð0; nÞ modes, which display
their largest strain at the coating edge, tend to deviate more
visibly from others at higher frequency. This clearly points
to the existence of excess losses at the coating edge, which
is expectedly nonuniform due to a variety of issues arising
during deposition such as spill-off, tapering due to the
sample holder, or lack of adhesion arising from imperfect
surface polishing.
In order to take these excess edge losses into account, we

further divide the coating of a disk of radius R, as sketched
in Fig. 3, into a bulk region that extends over all radial
distances r < R − l and an outer annular ring of width l,
i.e., corresponding to r ∈ ½R − l; R�. The width l is
expected to be much smaller than the disk radius: for
modes having frequency up to about 70 times the funda-
mental one [the mode (0,2)] l needs to be less than 1% of
the disc radius R in order to have an error less than 10% on
the energy computation. In practice the true value of l
depends on the several mechanisms affecting the homo-
geneity of the coating. Furthermore, we assume the outer
annular region to present a different loss angle than the rest
of the disk. Applying again Eq. (1), while further separating
the bulk and shear energies, the total loss angle now reads

ϕc ¼ ðDbulk −Dedge
bulk Þϕbulk þ ðDshear −Dedge

shearÞϕshear

þDedge
bulkϕ

edge
bulk þDedge

shearϕ
edge
shear: ð11Þ

Here ϕc is the total film loss angle, which can be
experimentally accessed using Eq. (4): ϕbulk and ϕshear
are the intrinsic loss angles one seeks to measure to
characterize the film; Dedge

bulk and Dedge
shear are the edge dilution

factors for the bulk and shear elastic energies; and ϕedge
bulk and

ϕedge
shear are loss angles accounting for bulk and shear losses in

the outer annular region.
We are exclusively concerned by situations in which the

edge is small compared with the disk radius, i.e., l ≪ R. In
such cases, as we detail in Appendix C (which extends a
calculation presented in Ref. [26]), we find that the edge
dilution factors are of the form

Dedge
bulk ¼ l

R
εbulk; Dedge

shear ¼
l
R
εshear; ð12Þ

where εbulk and εshear are dilution factor densities. The total
film loss angle can then be recast as

ϕc ¼ Dbulkϕbulk þDshearϕshear þ
l
R
εbulkδϕ

edge
bulk

þ l
R
εshearδϕ

edge
shear; ð13Þ

where δϕedge
bulk ¼ ϕedge

bulk − ϕbulk and δϕedge
shear ¼ ϕedge

shear − ϕshear
are excess losses at the edge compared with the bulk values.
The values of εbulk and εshear are displayed in Appendix C

and in Table III for various modes and parameters. To
illustrate our discussion, we display them in Fig. 4 using
the same geometric parameters and Poisson ratio as in Figs. 1
and 2. As expected, from our initial discussion of edge
effects, they become more spread out at high frequency,
because the elastic energy is then increasingly localized on
the edge. This sharply contrasts with the bulk and shear
dilution factors of Fig. 2 where the values ofDbulk andDshear
for different m are coming closer with the increasing
frequency. Thus a rule-of-thumb guess for the importance
of edge effects consists of considering the spread in loss angle
values between modes of different azimuthal numbers: if it
increases, or does not strongly reduce with the increasing
frequency, this is a strong indication for the presence of an
edge effect.

B. Signature of an incomplete coating

A particular type of edge effect arises when the coating
deposition does not extend to the edge of the disk. This
occurs in some deposition systems in which the sample
holder masks the disk edge during deposition, leading to
the formation of an coating-free annulus of width l on the
rim of the disk. As l is typically of the order of a few tenths
of a millimeter, the condition l ≪ R holds and the coating
loss angle can be written as

FIG. 3. Cross section of the disk, showing the substrate (blue),
the bulk of the coating (light red), and the coating edge
(deep red).
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ϕc ¼
�
Dbulk −

l
R
εedgebulk

�
ϕbulk þ

�
Dshear −

l
R
εedgeshear

�
ϕshear:

ð14Þ

This is just the same equation as Eq. (13), yet with excess
edge loss angles that are negative and exactly opposite to
the bulk values

δϕedge
bulk ¼ −ϕbulk;

δϕedge
shear ¼ −ϕshear: ð15Þ

Note that if Eq. (13) is used to represent the case of an
incomplete coating, the obtained negative value of the loss
angle at the edge is due to the reference used to derive the
model and not to the physical concept of the loss angle.

IV. CASE STUDY: A POWER LAW MATERIAL
WITH EDGE EFFECT

In order to illustrate how edge inhomogeneities affect
GeNS measurements, let us consider an idealized coating
material obeying exactly the TLS prediction, i.e., display-
ing bulk and shear loss angles, ϕbulk and ϕshear that are
power law functions of the frequency. Under these assump-
tions, Eq. (13) can be written

ϕc ¼ A1

�
f

10 kHz

�
α1
Dbulk þ A2

�
f

10 kHz

�
α2
Dshear

þ l
R
εbulkδϕ

edge
bulk þ

l
R
εshearδϕ

edge
shear; ð16Þ

where we have redefined the coupling constants A1 and A2

to normalize the frequency by 10 kHz, a typical scale in the
range at which data are obtained. We will refer to Eq. (16)
as the BSE model (for bulk, shear, and edge).
The BSE model should be always used in its general

form, as expressed by Eq. (16). However, it contains several
fitting parameters and sometimes assumptions are needed
to reduce them in number and simplify the analysis. Here,
in order to better illustrate edge-induced artifacts, we will
additionally use the conservative assumption that the same
two-level systems couple to both bulk and shear strains, in
which case α1 ¼ α2 ¼ α. In addition, we will consider for
simplicity that the excess edge loss angles are frequency-
independent and identical, δϕedge

bulk ¼ δϕedge
shear ¼ δϕedge, a

constant, in which case, the two edge terms add up
l
R εbulkδϕ

edge
bulk þ l

R εshearδϕ
edge
shear ¼ l

R εδϕ
edge with ε ¼ εbulk þ

εshear. Thus restricted, the BSE model comprises only four
parameters: A1, A2, α, and δϕedge.
An experimentalist studying this material may be

tempted to fit ϕc using Eq. (10), which we henceforth call
the BS (bulk and shear) model. This model overlooks edge
effects and uses different power law exponents for bulk and
shear losses, thus comprising four fitting parameters, A1,
A2, α1, and α2.
In order to simulate the experimental process, we use the

BSE model to generate a complete set of ϕc values for the
low frequency modes of a 75 mm silica disk. Specifically,
we assume the coating has a Poisson ratio ν ¼ 0.16, and an
exponent α ¼ 0.3, a value that was found in silica at 100 K
[34,35], and which is hence highly plausible for coatings in
a low temperature range. In addition, as seen on Fig. 5(a),

(a)

(b)

(c)

FIG. 4. (a) Bulk dilution factor density εbulk, (b) shear dilution
factor density εshear evaluated at the edge of a disk-shaped
resonator, and (c) total edge dilution factor density
ε ¼ εbulk þ εshear. The frequency modes are those of a 75 mm,
1 mm thick, silica disk. For these numbers a Poisson’s ratio of
0.16 for the mode shape wðr; θÞ and 0.16 for the coating have
been considered.
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we targeted a total film loss angle in the range of 10−4,
which is typical of low noise applications, while making
sure, for the sake of the illustration, that the edge term
lεδϕedge remained at least 3 times smaller than the other
contributions for each frequency.
After adding a 5% error on every data point, we fit these

data using the BS model, Eq. (10): the BS fit, displayed in
Fig. 5(b), is remarkably convincing, although erroneous by
construction. The parameters used to generate the data and
the fit results are listed in Table I. We see from their
comparison that the fitted material properties (A1, A2, α1,
and α2) are grossly erroneous even though the edge loss
contribution is quite small comparedwith all other terms. It is
especially striking that the fitted power law exponents
present distinct values, while the idealized BSE material
does not. For the sake of completeness, we examined (not
shown) cases when α1 and α2 are distinct in the BSE model,
and found that the fitted exponents (as well asA1 and A2) are
again systematically grossly erroneous. Moreover, when the
edge loss contribution increases and approaches the bulk and
shear contributions, we also found that the fitted exponents
may become negative, which is unphysical.

It follows from these observations that the presence of a
very small edge effect induces a severe error on the intrinsic
loss properties of the film as deduced from BS fitting.
Let us now use our test scenario in order to illustrate how

an incomplete coating also distorts the estimation of
material properties; a case of interest for most deposition
methods when the sample holder covers the edge of the
disk during deposition. We thus consider that the coating is
just the same material as in the above example, and is
deposited on an identical 3-inch disk with a ν ¼ 0.16
Poisson’s ratio. However, we now assume that the edge
effects arises solely from the absence of coating over a
l ¼ 0.5 mm outer rim. The coating loss angle hence is
described by the following equation:

ϕc ¼ A1

�
f

10 kHz

�
α1
�
Dbulk −

l
R
εbulk

�

þ A2

�
f

10 kHz

�
α2
�
Dshear −

l
R
εshear

�
; ð17Þ

which is identical to Eq. (16), yet for δϕedge
bulk and δϕedge

shear
values that are opposite to their bulk counterpart.

(a)

(c)

(b)

(d)

FIG. 5. BS fits of BSE data for the low frequency modes of a ∅ 75 mm, 1 mm thick silica disk-shaped resonator with a ν ¼ 0.16
coating. The parameters are listed in Table I and the dilution factors in Table III. Top: a complete coating with excess edge loss; bottom,
an incomplete coating. Left panels: decomposition of the BSE data (blue circles) into bulk (green squares), shear (orange diamonds), and
the edge (violet triangles, top) terms. Right panels: comparison of the BS fits with the BSE data tainted with a 5% error. The BS model
fits the BSE data remarkably well, yet with erroneous estimates of the material parameters, as shown in Table I.

SYSTEMATIC ERROR IN THE INTERNAL FRICTION … PHYS. REV. D 106, 082007 (2022)

082007-7



As before, we fit the resulting loss angle data using the
BS model so as to mimic an erroneous analysis. The fit,
which is displayed in Fig. 5(d) looks excellent with anMSE
of 0.006. While the fitted values of A1 and A2 remain
comparable with the actual values, the exponent α1 is
tainted with an error of over 30% and more strikingly the
exponents appear to be different while they actually are not.
Therefore, to access material properties, one should

worry about the possible tapering of the coating at the
edge. When the coating is incomplete, one should fit the
data using an equation of the form (17) with a precise
measurement of the width l of the uncoated region. One
may further need to consider a model comprising both the
tapering and an edge contribution arising from the outer rim
of the coated area.

V. ANALYSIS OF EXPERIMENTAL DATA

Let us now assess the relevance of the edge effect to the
analysis of real data. For this purpose, we consider room
temperature loss angle measurements for tantala (Ta2O5)
and silica (SiO2) coatings deposited under the same
conditions as those used for the manufacture of gravita-
tional-waves detectors [11], namely, by ion-beam sputtering
at the Laboratoire des Matériaux Avancés. In both cases, to
avoid additional stress coming from the mismatch of
mechanical properties between substrate and coating, dep-
osition was performed on both sides of a silica disk-shaped
resonator (diameter 50 and 75 mm, and 1 mm thick).
The coating loss angles data were fitted with either the

BS [Eq. (10)] or the BSE model [Eq. (16)]. For the BSE fit,
we tried to use different power law exponents or distinct
excess edge loss angles for the bulk and shear components.

However, we found that the MSE (which depends on the
number of fitted parameters) is smaller when using a unique
power law exponent and a unique excess loss angle.
Moreover, we found that the power law exponents was
so small that it was compatible with zero. This is consistent
with the observation by Travasso et al. [34,35] that α grows
linearly with T, as predicted by the TLS theory, only up to
about 120 K, but decreases significantly with the further
increase of temperature. This led us to use a reduced BSE
model in which α1 ¼ α2 ¼ 0 and with a single excess edge
contribution, hence comprising overall just three fitting
parameters

ϕc ¼ A1Dbulk þ A2Dshear þ
l
R
εδϕedge: ð18Þ

Subsequently, we refer to this model as the reduced BSE, or
BSE-r for short.
We fit both Ta2O5 and SiO2 coatings data using either

the BS or BSE-r models. The fit parameters are reported in
Table II and the fits in the left panels (a) and (d) of Fig. 6.
The middle and right panels of this figure present a
decomposition of the loss angle into the bulk, shear, and
edge contributions (each of which is weighted by the proper
dilution factor), as deduced from the BSE-r [panels (b) and
(e)] and BS fit [panels (c) and (f)].
For Ta2O5, the BSE-r fit has only a slightly larger MSE

than the BS one, yet within a range compatible with
irreducible experimental errors. As we already said, the
BS fit is problematic for two reasons. First, because the
TLS model is not demonstrated to hold up to room
temperature. Second, because even if it extended up to
these conditions, one should expect both bulk and shear

TABLE I. Parameters used to generate the data and fit results with the mean squared error (MSE), obtained using Eq. (10) (BS) and the
Levemberg-Marquadt minimization algorithm. The elements of the correlation matrix ρij have been obtained by the elements of the
covariance matrix Cij up to 1 standard deviation from the minimum of the χ2 function, ρij ¼ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
. They show that the bulk and

shear parameters are strongly anticorrelated, presumably because the associated dilutions are complementary to 1. The correlation is
higher between either A1 and A2 or α1 and α2, which significantly increases the uncertainties on these fitted values.

lϕbulk
edge ð×10−7Þ lϕshear

edge ð×10−7Þ A1 ð×10−4Þ α1 ð×10−1Þ A2 ð×10−4Þ α2 ð×10−1Þ
Case 1

Parameters: 2 2 4 3 7 3
Fit BS: MSE ¼ 0.003 � � � � � � 2.80� 0.07 1.26� 0.16 7.408� 0.017 3.181� 0.014

Case 2
Parameters: (l ¼ 0.5 mm) 2 2 4 3 7 3
Fit BS: MSE ¼ 0.006 � � � � � � 4.85� 0.08 3.98� 0.11 6.70� 0.002 2.75� 0.03

Correlation matrix

case 1 ¼

0
BBB@

A1 α1 A2 α2
A1 1.000 0.806 −0.969 −0.706
α1 0.806 1.000 −0.765 −0.926
A2 −0.969 −0.765 1.000 0.631
α2 −0.706 −0.926 0.631 1.000

1
CCCA case 2 ¼

0
BBB@

A1 α1 A2 α2
A1 1.000 0.410 −0.959 −0.618
α1 0.410 1.000 −0.520 −0.901
A2 −0.959 −0.520 1.000 0.665
α2 −0.618 −0.901 0.665 1.000

1
CCCA
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exponents to display a unique value, whereas the fit only
works for widely different values of α1 and α2. For these
reasons, the reduced BSE fit is far more satisfactory. It
hence supports that (i) the bulk and shear loss angles are
essentially frequency independent on the investigated range
(1 to 40 kHz); (ii) the edge contribution is systematically
smaller than the bulk and shear ones; (iii) strikingly, this
small edge contribution suffices to mislead the BS fit into
predicting spurious frequency dependencies of the bulk and
shear loss angles.
For SiO2, the BS fit is grossly inconsistent since it yields

an A1 value that is negative. Instead, the BSE-r fit works
remarkably well and displays an MSE which is 3 times
smaller than the BS one. Compared with the Ta2O5 data,
the edge term has a comparable magnitude, ranging
between 1 × 10−5 and 1 × 10−4, while the shear and bulk
contributions are smaller. This results in a stronger relative
importance of the edge contribution, which may be larger
than some bulk contributions [compare the upper triangle
and squares in panel (e) of Fig. 6]. This effect would seem
to explain why the BS fit works so poorly for SiO2

coatings.
Finally, when fitting SiO2 coatings data, we noted that

the BSE-r fit produces A1 and A2 values that are close to
one another. This led us to perform, tentatively, an even

more reduced fit, which we call BSE-r’, in which it is
assumed that A1 ¼ A2. In such a case, the loss angle
reduces to the remarkably simple expression

ϕc ¼ Aþ l
R
εδϕedge; ð19Þ

with A≡ A1 ¼ A2 being a constant. This fit works remark-
ably well, and displays a smaller MSE than the BSE-r one.
It predicts that the frequency dependence of ϕc comes
solely from the edge term, more specifically, from the edge
dilution factor density ε. This is consistent with the
observation that, in silica coatings, the ϕc values for
different mode families (different radial numbers) are
strongly split at higher frequency, a signature of excess
edge loss contributions.
The reason why A1 and A2 should be identical on

fundamental grounds remains uncertain. It would seem
to suggest that, in silica, the bulk and shear strains are
strongly coupled and disperse energy via a unique channel,
an idea that is certainly worth exploring in the future.

VI. CONCLUSION

In this work, we have investigated the consequences of
a systematic error arising from edge effects on the

TABLE II. Fit results obtained by the Levemberg-Marquadt algorithm by analyzing different coatings using Eqs. (10) and (16). The
elements of the correlation matrix ρij have been obtained by the elements of the covariance matrix Cij up to 1 standard deviation from
the minimum of the χ2 function, ρij ¼ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
. The best fits using the full BSE model give exponent values compatible with 0,

which motivates using the reduced (BSE-r, see text) model.

Ta2O5

Parameters: lϕbulk
edge ð×10−7Þ lϕshear

edge ð×10−7Þ A1 ð×10−4Þ α1 ð×10−1Þ A2 ð×10−4Þ α2 ð×10−1Þ
Fit BS: MSE ¼ 0.60 � � � � � � 4.3� 0.9 3� 2 6.74� 0.16 0.31� 0.13
Fit BSE-r: MSE ¼ 0.72 4.4� 0.6 ¼ lϕbulk

edge 8.1� 0.6 � � � 5.67� 0.07 � � �
Correlation matrix

Fit BS Fit BSE-r0
BBB@

A1 α1 A2 α2
A1 1.000 −0.405 −0.988 −0.500
B1 −0.405 1.000 0.273 −0.562
A2 −0.988 0.273 1.000 0.608
B2 −0.500 −0.562 0.608 1.000

1
CCCA

0
BB@

A1 A2 lϕedge

A1 1.000 −0.688 −0.706
A2 −0.688 1.000 −0.016

lϕedge −0.706 −0.016 1.000

1
CCA

SiO2

Parameters: lϕbulk
edge ð×10−7Þ lϕshear

edge ð×10−7Þ A1 ð×10−4Þ α1 ð×10−1Þ A2 ð×10−4Þ α2 ð×10−1Þ
Fit BS: MSE ¼ 6.18 � � � � � � −1.0� 0.5 8� 3 2.92� 0.13 1.7� 0.3
Fit BSE-r: MSE ¼ 2.36 4.9� 0.5 ¼ lϕbulk

edge 1.72� 0.17 � � � 1.77� 0.06 � � �
Fit BSE-r’: MSE ¼ 2.11 4.9� 0.4 ¼ lϕbulk

edge 1.76� 0.02 � � � ¼ A1 � � �
Correlation matrix

Fit BS Fit BSE-r Fit BSE-r’0
BBB@

A1 B1 A2 B2
A1 1.000 0.734 −0.914 −0.630
B1 0.734 1.000 −0.455 −0.044
A2 −0.914 −0.455 1.000 0.766
B2 −0.630 −0.044 0.766 1.000

1
CCCA

0
BB@

A1 A2 lϕedge

A1 1.000 −0.846 0.350
A2 −0.846 1.000 −0.692

lϕedge 0.350 −0.692 1.000

1
CCA

0
B@ A lϕedge

A 1.000 −0.766
lϕedge −0.766 1.000

1
CA
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measurement of coating loss angle in disk-shaped reso-
nators. Excess edge losses may arise from a variety of
reasons such as, to name a few: coating thickness non-
uniformity at the edge, coating spill-off during the depo-
sition, tapering due to the sample holder during deposition,
or coating deposition on an unpolished surface and an
associated lack of adhesion near the edge. They are hence
expected to be widespread and should be systematically
assessed when analyzing experimental data.
By producing artificial loss data, we showed that this

excess edge loss contribution could introduce a significant
error in the fitted values of the bulk and shear loss angles.
This idea was confirmed by the analysis of experimental
data for Ta2O5 and SiO2 coatings. The BS model, indeed,
appeared at best suspicious (α1 ≠ α2) and at worst fully
inconsistent. Meanwhile, the BSE-r model introduces a
very limited set of assumptions and fewer parameters,

while yielding a mean-square error that is comparable
(Ta2O5) or much smaller (SiO2).
These results unambiguously support that coating loss

angle measurements are affected by an excess edge contri-
butionwhich, although small invalue, dramatically affects the
fitting procedure and may lead to the attribution of erroneous
values to the bulk and shear loss angles, which are the key
intrinsic material properties targeted by these measurements.
In particular, it now appears in Ta2O5 and SiO2 coatings that,
at room temperature conditions, over the accessible frequency
range, any frequency dependence of ϕbulk and ϕshear is too
small to be measurable using GeNS data.
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(a) (b)

(c) (d)

FIG. 6. Analysis of loss angle data for Ta2O5 (top) and SiO2 (bottom) coatings. Left panels (a) and (d): fits of the data (blue) with the
BS [orange crosses, Eq. (10)] or the BSE-r [red plus symbols, Eq. (16)] model. Middle panels (b) and (e): the bulk (green squares), shear
(orange diamonds), and edge (purple triangles) contributions as deduced by the BSE-r fit. Right panels (c) and (f): the bulk (green
squares) and shear (orange diamonds) contributions as deduced by the BS fit. In panel (f) the bulk term is not shown because a negative,
nonphysical, loss angle is required to fit the data.

ALEX AMATO et al. PHYS. REV. D 106, 082007 (2022)

082007-10



APPENDIX A: DILUTION FACTOR COATING/
SUBSTRATE

When the disk is free to oscillate in one of its resonant
modes, its elastic energy must be equal to the kinetic energy

K ¼ 1

2
ρω2

Z
w2ðr; θÞdzrdrdθ; ðA1Þ

where ρ is the mass density, wðr; θÞ is the maximum off-
plane displacement that represents the mode shape in
circular coordinates, and ω is the angular frequency. By
solving the integral for the bare substrate thickness h along
z, we obtain

Ks ¼
1

2
ρshω2

s

Z
w2
sðr; θÞrdrdθ; ðA2Þ

whereas for a sample coated on both sides, with a coating
thickness c,

Ktot ¼
1

2
ρtotðhþ 2cÞω2

tot

Z
w2
totðr; θÞrdrdθ: ðA3Þ

Since the kinetic energy must be equal to the elastic energy,
it is possible to write(

1
2
ρshω2

s

R
w2
sðr; θÞrdrdθ ¼ Es;

1
2
ρtotðhþ 2cÞω2

tot

R
w2
totðr; θÞrdrdθ ¼ Etot:

ðA4Þ

The integrals in Eqs. (A4) depend on the mode shape
wðr; θÞ of the disk (see Appendix B). The elastic energy of
the substrate Es and of the coated sample Etot can be
evaluated analytically [36].
Since the coating is substantially small compared to the

substrate, it reasonable to assume that the mode shape of
the coated disk wtot is equal to that of the bare disk ws. This
implies also that the neutral plane—the imaginary surface
that has zero deformation at all times during the oscillation
—remains in the same position. Under this assumption,
dividing each members of Eqs. (A4) we obtain

ρsh
ρtotðhþ 2cÞ

�
ωs

ωtot

�
2

¼ Es

Etot
: ðA5Þ

Considering that Etot ¼ Es þ Ec and that Aρsh ¼ ms and
Aρtotðhþ 2cÞ ¼ mtot, where A is the area of the disk and
ms, mtot the mass of the disk before and after the coating
deposition, respectively, we obtain

D ¼ 1 −
ms

mtot

�
ωs

ωtot

�
2

; ðA6Þ

where D ¼ Ec=Etot is the dilution factor. Equation (A6) is
very important because it gives the dilution factor as a
function of measurable parameters, without any prior

knowledge of coating elastic constants or thickness. The
masses and frequencies after coating deposition are sig-
nificantly different from those of the bare substrates, so that
they can be measured with an analytical balance and a
GeNS system, respectively. However, the validity of
Eq. (A6) is based on the homogeneity of the coating on
the entire surface of the substrate. Since the resonant
frequency depends on the disk curvature, the same coating
must be deposited on both sides of the substrate, avoiding
additional stress and bending of the sample [20]. A work
dedicated to the stress dependence of the mode frequencies
will be submitted soon by some of the authors.
Once the substrate loss is subtracted from the measure-

ments, the coating can be considered as an independent
disk. Indeed, assuming that the coating dissipation path-
ways can be related to angles ϕ1;ϕ2;…, the total loss angle
reads

ϕtot ¼ ð1 −DÞϕs þDðD1ϕ1 þD2ϕ2 þ � � �Þ; ðA7Þ

with D ¼ Ec=Etot: we see that the coatings dilution factors
are Di ¼ Ei=Ec and can be calculated by identifying the
energies stored in the coating subdomains and degrees of
freedom only.

APPENDIX B: DILUTION FACTOR FOR BULK
AND SHEAR

A deformation can be decomposed in bulk, where the
dilatation changes the volume of the sample, and shear,
where the deformation does not affect the volume.
Therefore, the free energy density can be written as [37]

E ¼ 1

2

�
λþ 2

3
μ

�
u2ll þ μ

�
uik −

1

3
δikull

�
2

ðB1Þ

¼ 1

2
Ku2ll þ μ

�
uik −

1

3
δikull

�
2

; ðB2Þ

where uik are the elements of the strain tensor, λ, μ are the
Lamé’s coefficients, and K ¼ λþ 2

3
μ is the bulk modulus,

which are related to the Young’s modulus Y and Poisson’s
ratio ν as follows:

Y ¼ 9Kμ

3K þ μ
; ν ¼ 1

2

3K − 2μ

ð3K þ μÞ ; ðB3Þ

so that

K ¼ 1

3

Y
ð1 − 2νÞ : ðB4Þ

The first term of Eq. (B2) is the energy related to the bulk
modulus and can be expressed in polar coordinates as
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urr ¼
∂ur
∂r

; ðB5Þ

uθθ ¼
1

r
∂uθ
∂θ

þ ur
r
; ðB6Þ

uzz ¼ −
ν

1 − ν
ðurr þ uθθÞ; ðB7Þ

the latter comes from the imposition of the condition
σzz ¼ 0. Furthermore, ur, uθ, and uz can be expressed
by three off-plane displacement w as in the following:

ur ¼ −z
∂w
∂r

; ðB8Þ

uθ ¼ −
z
r
∂w
∂θ

; ðB9Þ

uz ¼ w: ðB10Þ

The infinitesimal bulk energy is

dEbulk ¼
1

2
Ku2llrdrdθdz ðB11Þ

TABLE III. Values of the dilution factors Dbulk and dilution factor densities εbulk, εshear, and ε ¼ εbulk þ εshear, for the low vibrational
modes of a substrate with Poisson’s ratio ν ¼ 0.16. The modes are indexed by ðm; nÞ, where m (n) stand for the numbers of radial
(angular, or azimuthal) nodes. Four cases are considered for the Poisson’s ratio of the coating: ν ¼ 0.31 (Ta2O5), ν ¼ 0.30
(TiO2:Nb2O5), ν ¼ 0.19 (SiO2), and ν ¼ 0.16 (Corning SiO2).

ν ¼ 0.31 ν ¼ 0.30 ν ¼ 0.19 ν ¼ 0.16

Mode Dbulk ε εbulk εshear Dbulk ε εbulk εshear Dbulk ε εbulk εshear Dbulk ε εbulk εshear

(0,2) 0.062 1.004 0.145 0.859 0.063 1.007 0.149 0.858 0.070 1.047 0.179 0.869 0.070 1.061 0.184 0.878
(0,3) 0.096 1.731 0.259 1.472 0.098 1.738 0.266 1.472 0.110 1.839 0.325 1.513 0.111 1.871 0.336 1.535
(0,4) 0.118 2.327 0.356 1.971 0.120 2.340 0.367 1.973 0.136 2.501 0.454 2.047 0.138 2.552 0.471 2.081
(0,5) 0.133 2.848 0.443 2.404 0.136 2.866 0.457 2.409 0.155 3.086 0.571 2.515 0.157 3.155 0.594 2.561
(0,6) 0.144 3.318 0.523 2.795 0.147 3.341 0.540 2.801 0.169 3.618 0.680 2.938 0.172 3.703 0.708 2.996
(0,7) 0.152 3.753 0.599 3.154 0.156 3.780 0.618 3.162 0.181 4.111 0.782 3.329 0.184 4.213 0.815 3.398
(0,8) 0.159 4.160 0.669 3.491 0.163 4.192 0.691 3.501 0.190 4.575 0.879 3.696 0.193 4.692 0.917 3.775
(0,9) 0.165 4.546 0.737 3.809 0.169 4.582 0.761 3.820 0.197 5.014 0.971 4.043 0.201 5.146 1.014 4.132
(0,10) 0.170 4.914 0.802 4.112 0.174 4.954 0.828 4.125 0.204 5.434 1.060 4.374 0.208 5.580 1.108 4.473

(1,0) 0.328 0.491 0.090 0.401 0.340 0.495 0.093 0.402 0.443 0.546 0.121 0.425 0.464 0.561 0.127 0.434
(1,1) 0.263 0.306 0.023 0.284 0.271 0.310 0.023 0.287 0.337 0.349 0.029 0.320 0.349 0.360 0.030 0.330
(1,2) 0.235 0.434 0.002 0.432 0.242 0.440 0.002 0.438 0.295 0.506 0.002 0.504 0.304 0.524 0.002 0.522
(1,3) 0.222 0.623 0.002 0.621 0.229 0.631 0.002 0.629 0.277 0.720 0.002 0.718 0.284 0.744 0.002 0.742
(1,4) 0.216 0.816 0.012 0.804 0.222 0.826 0.013 0.813 0.268 0.933 0.015 0.917 0.275 0.961 0.016 0.945
(1,5) 0.213 1.001 0.028 0.973 0.219 1.012 0.029 0.983 0.264 1.132 0.035 1.097 0.271 1.164 0.036 1.128
(1,6) 0.212 1.175 0.047 1.128 0.218 1.187 0.048 1.139 0.262 1.318 0.058 1.260 0.268 1.353 0.059 1.293
(1,7) 0.211 1.338 0.067 1.271 0.217 1.351 0.069 1.282 0.261 1.491 0.083 1.408 0.268 1.528 0.085 1.443
(1,8) 0.211 1.492 0.088 1.404 0.217 1.506 0.090 1.416 0.261 1.653 0.109 1.544 0.268 1.692 0.112 1.581
(1,9) 0.212 1.639 0.109 1.529 0.217 1.653 0.112 1.541 0.262 1.807 0.135 1.672 0.268 1.848 0.139 1.709
(1,10) 0.212 1.779 0.131 1.648 0.218 1.793 0.135 1.659 0.262 1.953 0.162 1.791 0.269 1.995 0.166 1.829

(2,0) 0.260 0.107 0.020 0.088 0.268 0.108 0.020 0.088 0.333 0.113 0.025 0.088 0.344 0.115 0.026 0.089
(2,1) 0.250 0.127 0.009 0.117 0.257 0.128 0.010 0.118 0.317 0.143 0.012 0.131 0.328 0.147 0.012 0.135
(2,2) 0.242 0.228 0.003 0.226 0.249 0.231 0.003 0.229 0.306 0.266 0.003 0.263 0.315 0.276 0.003 0.273
(2,3) 0.236 0.357 0.000 0.357 0.243 0.362 0.000 0.362 0.297 0.418 0.000 0.418 0.306 0.433 0.000 0.433
(2,4) 0.232 0.492 0.001 0.491 0.239 0.498 0.001 0.497 0.292 0.573 0.001 0.572 0.300 0.593 0.001 0.592
(2,5) 0.230 0.624 0.005 0.619 0.236 0.632 0.005 0.627 0.288 0.723 0.006 0.717 0.296 0.748 0.006 0.742
(2,6) 0.228 0.750 0.010 0.740 0.234 0.760 0.011 0.749 0.285 0.865 0.013 0.852 0.293 0.894 0.013 0.880
(2,7) 0.226 0.870 0.018 0.853 0.233 0.881 0.018 0.863 0.283 0.999 0.022 0.977 0.291 1.031 0.023 1.008
(2,8) 0.226 0.984 0.026 0.958 0.232 0.996 0.027 0.969 0.282 1.124 0.033 1.092 0.290 1.159 0.034 1.125
(2,9) 0.225 1.092 0.036 1.056 0.231 1.105 0.037 1.068 0.281 1.242 0.044 1.198 0.289 1.279 0.046 1.234
(2,10) 0.224 1.194 0.046 1.149 0.231 1.208 0.047 1.161 0.280 1.354 0.057 1.297 0.288 1.393 0.059 1.334

(3,0) 0.249 0.045 0.008 0.037 0.256 0.046 0.009 0.037 0.316 0.048 0.011 0.037 0.326 0.048 0.011 0.037
(3,1) 0.245 0.068 0.005 0.063 0.253 0.069 0.005 0.063 0.311 0.076 0.006 0.070 0.321 0.078 0.007 0.072
(3,2) 0.242 0.137 0.002 0.135 0.249 0.139 0.002 0.137 0.306 0.160 0.003 0.157 0.316 0.166 0.003 0.163
(3,3) 0.239 0.228 0.0004 0.227 0.247 0.231 0.0004 0.230 0.302 0.267 0.0005 0.266 0.311 0.276 0.001 0.276
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¼ 1

6

Y
ð1 − 2νÞ

�
−z

∂
2w
∂r2

−
z
r2
∂
2w
∂θ2

−
z
r
∂w
∂r

�
2

rdrdθdz ðB12Þ

¼ Y
6ð1 − 2νÞ ð∇

2wÞ2z2rdrdθdz: ðB13Þ

The infinitesimal total elastic energy is instead [36]

dE ¼ Y
1þ ν

�
1

2ð1 − νÞ
�
∂
2w
∂r2

þ 1

r
∂w
∂r

þ 1

r2
∂
2w
∂θ2

�
2

−
�
∂
2w
∂r2

�
1

r
∂w
∂r

þ 1

r2
∂
2w
∂θ2

�

−
�
∂

∂r

�
1

r
∂w
∂θ

��
2
��

z2dzrdrdθ: ðB14Þ

From the equation of motion (not shown here) one can
derive the expression for the off-plane displacement w

wðr; θÞ ¼ Am;n

�
Jn

�
λm;n

r
R

�
þ Cm;nIn

�
λm;n

r
R

��
cosðnθÞ;

ðB15Þ

where Cm;n and λm;n are obtained by the boundary con-
ditions, which in the case of free-edge vibrating plate
correspond to the Kirchhoff-Kelvin boundary conditions at
the edge of the disk [38], Jn and In are the Bessel functions
and the modified Bessel functions of the first type,
respectively. Therefore, for each mode ðm; nÞ it is possible
to integrate the infinitesimal energies (B13) and (B14). The
coefficient Am;n simplifies once the ratio is performed. All
along this article we have considered the mode shapes wm;n

as they come from a substrate of fused silica with ν ¼ 0.16.
The coating can have a different Poisson’s ratio but its
thickness is so small that in first approximation the mode
shapes wm;n are fixed only by the substrate properties. The
only exception at this approximation is when the coating
Poisson’s ratio is very close to 0.5. In that case, the coating
bulk energy becomes dominant over that of the substrate,
but this is not the case.
The bulk dilution factors Dbulk ¼ Ebulk=E values are

reported in Table III for some modes. In Fig. 2 the values of

the bulk and shear dilution factor are plotted, considering
Dshear ¼ 1 −Dbulk. It can be observed that the modes
having only angular nodes, therefore those whose defor-
mation is mostly at the edge, are largely dominated by shear
deformations.

APPENDIX C: DILUTION FACTORS
FOR THE EDGE

When considering the coating, there are three edge
dilution factor densities that have to be calculated for each
wm;n:

ε ¼ lim
l→0

R
l
Dedge ¼ lim

l→0

R
l

Eedge

Ed
; ðC1Þ

and

εbulk ¼ lim
l→0

R
l
Eedge
bulk

Ed
; εshear ¼ lim

l→0

R
l
Eedge
shear

Ed
: ðC2Þ

In each expression the denominator Ed comes from the
integration of the total infinitesimal energy (B14) over the
whole disk (0 ≤ θ ≤ 2π; 0 ≤ r ≤ R). On the contrary,
the numerator always comes from an integration performed
all around the annular edge (0 ≤ θ ≤ 2π; r ¼ R) of thick-
ness

R
dr ¼ l. For EB we consider the total energy

expression (B14), whereas for Eedge
bulk we consider the

expression (B13) related to the dilatation elastic energy
only. Using the expression for the shear elastic energy we
have verified that the shear energy at the edge Eedge

shear (not
reported here) is exactly Eedge − Eedge

bulk. The values of the
three edge dilution factors are listed in Table III for some
modes. In Fig. 4 the dilution factor ε at typical resonant
frequency for a 75 mm silica disk 1 mm thick is shown. It
can be observed from the figure that ε follows a trend in
which one can identify the separation of modes in families.
Each family is identified by the radial node number m as
shown in Fig. 1. In each family the higher angular node
number the more the vibration is confined to the edge.
The values of the bulk and shear dilution factor evaluated

at the edge of a disk-shaped resonator are plotted in Fig. 4.
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