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Entanglement generation by Newtonian gravitational potential between objects has been widely
discussed to reveal the quantum nature of gravity. In this paper, we perform a quantum field theoretical
analysis of a slightly modified version of the gedanken experiment by Mari and co-workers [A. Mari et al.,
Sci. Rep. 6, 22777 (2016).]. We show that decoherence due to the presence of a detector propagates with the
speed of light in terms of a retarded Green’s function, as it should be consistent with causality of relativistic
field theories. The quantum nature of fields, such as quantum fluctuations or emission of gravitons expressed
in terms of the Keldysh Green’s function also play important roles in the mechanism of decoherence due to
on-shell particle creation. We also discuss the trade-off relation between the visibility of the interference and
the distinguishability of the measurement, known as the particle-wave duality, in our setup.
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I. INTRODUCTION

Direct detections of gravitational waves from mergers of
black holes [1] provide us with solid evidence that the
gravitational interaction is indeed mediated by a gravita-
tional field. However, it is not yet experimentally proved
that the gravitational field should be quantized. Even
theoretically, there remains a possibility that gravity is
something like an entropic force [2,3] and not necessarily
quantized. So it is becoming more and more important to
get any hint of the quantum nature of gravity [4]. The
complementarity of quantum mechanics demands that, if
gravity is quantized, it must show both the particle and
wave behaviors such as the photoelectric effect of light or
the double-slit experiment of an electron. In the double-slit
experiment of an electron, the interference pattern of the
electron field is destroyed if the electron is observed to be
localized at one side of the double slit. Thus, if we can
make a coherently superposed state of the gravitational
field and then destroy its interference by measurement, it
becomes a proof of the quantum nature of the gravitational
field. Bose et al.-Marletto-Vedral (BMV) experiment was

proposed in Refs. [5,6] and many theoretical studies of the
experiment are given [7–13]. In particular, the authors in
Refs. [14–16] argued how the complementarity of quantum
mechanics is consistent with causality in the relativistic
theory by discussing how the coherence is casually
destroyed by measurement.
In this paper, we explicitly investigate a slightly modified

version of the gedanken experiment by Mari and co-
workers [17] within relativistic quantum field theories as
a toy model of the BMV experiment. Before explicit
calculations, let us recall the basic properties of Green’s
functions in relativistic quantum field theories. Relativistic
quantum field theories describe local interactions between
sources JðxÞ of the field ϕðxÞ, and various types of Green’s
functions play different important roles. As in classical
field theories, the retarded Green’s function GRðx; yÞ ≔
iθðtx − tyÞh½ϕðxÞ;ϕðyÞ�i describes causal influence of a
source at y ¼ ðty; yÞ on the field ϕðtx; xÞ in future. Since the
field operators ϕðxÞ and ϕðyÞ commute if they are
separated in the spacelike region, the retarded Green’s
function vanishes there. The advanced Green’s function
GAðx; yÞ ≔ −iθðty − txÞh½ϕðxÞ;ϕðyÞ�i is also important as
well, since the theory itself does not distinguish the past
and the future. The classical electromagnetic (EM)
field is usually given by the retarded Liénard-Wiechert
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potential generated by sources of the EM field as
ARðxÞ ¼

R
d4yGRðx; yÞJðyÞ. The advanced potential is

also a solution, and selecting AR requires a specific
boundary condition for the homogeneous part of solutions.
Indeed, the retarded potential is selected by imposing a
condition that there are no incoming flux from the past to
the volume of our interest (see, e.g., [18], Chap. 5).
A Green’s function specific to quantum field theories is

theKeldyshGreen’s function [19],GKðx;yÞ≔hðϕðxÞϕðyÞþ
ϕðyÞϕðxÞÞ=2i. Its Fourier transform is proportional to
the on-shell δ function δðk2 þm2Þ, as the field operator
ϕðxÞ creates on-shell states. Thus, this Green’s function
appears when we calculate, e.g., an emission rate of
radiation. The Feynman Green’s function is written as a
sum GFðx; yÞ≔ hTϕðxÞϕðyÞi ¼GK − iðGR þGAÞ=2. Each
Green’s function plays a different role. In a nutshell, GR
reflects classical causality and GK expresses quantum or
vacuum fluctuations.
In this paper, we discuss two effects of decoherence on

the visibility of interference, one by the Keldysh Green’s
function and the other by the retarded Green’s function in
the gedanken experiment as an example. We show that
decoherence by measurement is described by the retarded
Green’s function and propagates with the speed of light,
while decoherence by emission of on-shell particles is
described by the Keldysh Green’s function. We also discuss
the trade-off relation between the visibility and the dis-
tinguishability of the measurement, known as wave particle
duality, in our setup. We use the natural units ℏ ¼ c ¼ 1.
The paper is organized as follows. In Sec. II, we explain

our setup and summarize the results through three ques-
tions and answers. In Sec. III, we introduce our method to
calculate various quantities. Reduced density operators of
the system are introduced in Sec. III A and then we explain
our method of closed time path integral formalism in
Sec. III B. Our results are given in Secs. IV and V is
devoted to conclusions. In Appendix A, we prove that the
dissipation factor ΓA is proportional to the created particle
number by Alice. In Appendix B, we show the inequality of
distinguishabilities DB ≤ DB;ϕ.

II. GEDANKEN EXPERIMENT

The setup of the gedanken experiment [14–16] shown in
Fig. 1 is as follows. A gravitational field is replaced by a
massive scalar field ϕðxÞ with mass m. We emphasize that
this replacement does not lose important characteristics of
the gravitational fields such as entanglement generation
mediated by the fields or emission of radiation caused by
nonadiabatic processes. We then introduce Alice and Bob
at fixed positions xA and xB, respectively. Suppose Alice
has a spin σz ¼ �1, which is coupled to the quantum field
ϕðxÞ as

HA ¼ −λAðtÞσzϕðt; xAÞ: ð1Þ

The time-dependent coupling (protocol) λAðtÞ corresponds
to the separation of σz ¼ �1 states in the Stern-Gerlach
type experiment of BMV [5,6]. Suppose that the initial spin
state is given by ðjþiA þ j−iAÞ=

ffiffiffi
2

p
, where j�iA corre-

spond to σz ¼ �1 states. The interference of j�iA is probed
by measuring σx or σy. We choose the protocol λAðtÞ as

λAðtÞ¼ ðθð−tÞð1− t=t0ÞþθðtÞθðtA− tÞð1− t=tAÞÞλ0A; ð2Þ

where θðtÞ is a step function, λ0A is a constant, and we take
the initial time t0 → −∞ at which the vacuum boundary
condition is imposed. Alice generates a different field
configuration corresponding to either σz ¼ 1 or −1. Bob
observes the value of the field at xB by using his quantum
mechanical variable χB and its conjugate πB satisfying
½χB; πB� ¼ i. The coupling of Bob to the field ϕðxÞ is
given by

HB ¼ λBðtÞπBϕðt; xBÞ: ð3Þ

The coupling is assumed to be nonzero λBðtÞ ¼ α during
t ¼ 0 and t ¼ tB > 0. Bob’s variable χB is shifted by

χðϕÞB ðtÞ ¼
Z

t
dt0λBðt0Þϕðt0; xBÞ: ð4Þ

In this sense, χBðtÞ is a meter variable that measures the

field configuration at xB. Notice that the shifted value χðϕÞB
is not a classical number but an operator given in terms of
the quantum field ϕðxÞ.
Suppose that the ϕ field is initially in the ground state.

Because of the coupling HA, a different field configuration
is generated corresponding to σz ¼ �1. Thus, the total state
of Alice, the field ϕ, and Bob is given by an entangled state,

FIG. 1. Setup of the gedanken experiment. The positions of
Alice and Bob are fixed at xA and xB. The blue and red-dashed
lines schematically represent trajectories of λAðtÞσz for σz ¼ þ1
and −1, respectively. Bob is equipped with a meter that can
measure a value of the field.
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jΨi ¼ 1ffiffiffi
2

p ðjþiAjΨþiϕ;B þ j−iAjΨ−iϕ;BÞ: ð5Þ

At t ¼ 0, Bob is not yet coupled to the field and we can
write

jΨ�iϕ;B ¼ jΩ�iϕjB0iB; ð6Þ

where jB0iB is the initial state of the meter of Bob, whose
wave function fðχÞ ¼ hχjB0iB is assumed to have the form

fðχÞ ≔ ðπϵ2Þ−1
4e−

χ2

2ϵ2 : ð7Þ

Here, ϵ2 represents the variance. For t > 0, the coupling
λBðtÞ is turned on and the meter variable χBðtÞ is involved
in an entangled state with jΨ�iϕ;B ¼ jΩ�; B�iϕ;B. Note
that it is not a tensor product of jΩ�iϕ and jB�iB.1
Under the above setup, we are interested in calculating the

interference of spin σz ¼ �1 states called the visibility,
which is given by v ≔ jhΨ−jΨþiϕ;Bj [20–22]. When the
meter of Bob is off, σz ¼ �1 states must be almost identical
jhΨ−jΨþiϕ;Bj≲ 1 as far as the protocol of Alice is suffi-
ciently adiabatic (tA ≫ 1=m). Because of complementarity,
if Bob measures to distinguish the states jΨ�iϕ;B, one might
expect that the interference disappears jhΨ−jΨþiϕ;Bj ∼ 0

since Bob observes different meter values for σz ¼ �1.
However, it apparently contradicts the causality if the space-
time point of observing hΨ−jΨþiϕ;B at ðtA; xAÞ and that of
the measurement at ð0; xBÞ are separated in the spacelike
region. The resolution of the paradox is investigated in
Refs. [14–16]. Focusing on the quantum fluctuations of
fields, the authors show that the nonadiabaticity of Alice’s
protocol emits on-shell radiation to destroy coherence and
this is correlated with an uncertainty of the meter variable of
Bob when tA < jxA − xBj. If the protocol of Alice is
adiabatic v ∼ 1, Bob cannot gain sufficient which-path
information. In the following, we will investigate the model
by an explicit field-theoretic calculation of hΨ−jΨþiϕ;B and
answer the following questions:

Q1: How much decoherence is generated by nonadia-
baticity associated with the Alice protocol λAðtÞ?

Q2: What meter value does Bob observe? And how
much information can Bob get to distinguish Alice’s
spin?

Q3: How fast does the decoherence by Bob’s measure-
ment propagate to Alice?

Different properties of Green’s functions, GR, GA, and
GK, can answer these questions in a consistent way. We use

the abbreviations GðpqÞðt; t0Þ ¼ Gððt; xpÞ; ðt0; xqÞÞ, where
p, q are either A, B, or x. Let us summarize our answers to
the above questions. If the field is strongly self-interacting,
decoherence by Alice and Bob becomes mixed and more
complicated. In a weak coupling limit, our calculation
shows the following:

A1: If the measurement of Bob is spatially separated,
decoherence is given by λAðtÞ as hΨ−jΨþiϕ;B ¼ e−ΓA ,
where

ΓA ≔ 2

Z
dt
Z

dt0λAðtÞGðAAÞ
K ðt; t0ÞλAðt0Þ: ð8Þ

It is due to the emission of on-shell radiation from
Alice [23]. The number of particles generated by the
protocol λAðtÞ of Alice is given as ΓA=2.

A2: Bob measures the meter value as hΨ�jχBjΨ�i ¼
�χB for given Alice’s spin, where

χB ¼
Z

dt
Z

dt0λBðtÞGðBAÞ
R ðt; t0ÞλAðt0Þ: ð9Þ

As it is written in terms of the retarded Green’s
function from Alice to Bob, it is not directly respon-
sible for the decoherence by Bob’s measurement
shown in A3. Nevertheless, it is indirectly related.
The distinguishability of Bob DB, defined later in
Eq. (47), has a trade-off relation with the visibility of
Alice v ¼ jhΨ−jΨþiϕ;Bj through the wave particle
duality relation v2 þD2

B ≤ 1 [22]. Thus, in the adia-
batic limit of v → 1, Bob cannot get any which-path
information for Alice. On the other hand, if Bob can
distinguish the which-path of Alice, the interference of
Alice’s spin is decohered v → 0 by an inevitable
emission of radiation [16]. We explicitly calculate v
and DB.

A3: If Bob’s measurement is not spatially separated from
Alice, interference observed by Alice at time tð>tAÞ is
given by hΨ−jΨþiϕ;B ¼ e−ΓAδϵðMÞ, where

δϵðχÞ ≔ expð−χ2=4ϵ2Þ ð10Þ

is an overlap of the wave function of meter, and

M ≔ −2
Z

dt
Z

dt0λAðtÞGðABÞ
R ðt; t0ÞλBðt0Þ: ð11Þ

Interference is decohered by the causal interaction from
λBðtÞ to λAðtÞ, and described by the retarded Green’s
function from Bob to Alice. Thus, if tA < jxA − xBj,
we have M ¼ 0 and δϵðMÞ ¼ 1. On the other hand, if
tA > jxA − xBj, additional decoherence δϵðMÞ is in-
duced by Bob’s measurement.

1If Alice at tA and Bob at t ¼ 0 are spatially separated, both
spin states can be transformed to a tensor product state by the
same unitary transformation [16] since the time slice of tA is
deformed to cross t < 0 point at Bob without using the
Hamiltonian HA, which is responsible for vanishing of δϵðMÞ.
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III. METHODS

Interference of σz ¼ �1 states can be probed by
Alice by measuring hσxi ¼ RehΨ−jΨþiϕ;B and hσyi ¼
−ImhΨ−jΨþiϕ;B. On the other hand, when Bob reads his
meter, it gives either hΨþjχBjΨþiϕ;B or hΨ−jχBjΨ−iϕ;B. In
order to calculate these quantities, we can use the closed
time path (CTP) formalism for the field ϕ. The spin
variables of Alice and the variable of Bob can be treated
in a simpler manner, since the HamiltoniansHA andHB are
diagonalized in terms of σz and ΠB.

A. Density operator of Alice and Bob

First, since σz commutes with the Hamiltonian, the time
evolution is block diagonalized in the σz ¼ �1 basis and
the state jΨðtÞi is given by

jΨðtÞi ¼ 1ffiffiffi
2

p ðjþiAjΨþðtÞiϕ;B þ j−iAjΨ−ðtÞiϕ;BÞ; ð12Þ

where each of the σz ¼ �1 states evolves by a unitary
operator as

jΨ�ðtÞiϕ;B ¼ UðtÞσz¼�1jΨ�iϕ;B: ð13Þ

Here, the unitary operator is given by UðtÞσz¼�1 ¼
h�jUðtÞj�iA with the time-evolution operator in the
interaction picture,

UðtÞ ¼ T exp

�
−i

Z
t
dsðHAðsÞ þHBðsÞÞ

�
; ð14Þ

where T is the time ordering operator.
Furthermore, πB also commutes with the Hamiltonian,

jΨ�ðtÞiϕ;B can be written in the form

jΨ�ðtÞiϕ;B ¼
Z

dΠf̃ðΠÞjΠiBjΩ�;ΠðtÞiϕ; ð15Þ

where

jΩ�;ΠðtÞiϕ ¼ Uσz¼�;πB¼ΠðtÞjΩiϕ ð16Þ

is the state of field ϕ for fixed Alice’s spin and Bob’s
momentum, and f̃ðΠÞ ¼ hΠjB0iB is the wave function of
Bob in the momentum space,

f̃ðΠÞ ¼
Z

dχffiffiffiffiffiffi
2π

p e−iΠχfðχÞ ¼
�
ϵ2

π

�1
4

e−
ϵ2

2
Π2

: ð17Þ

In many cases, we are interested in the degrees of
freedom of Alice and Bob, and it is convenient to trace
out the field degrees of freedom. For this purpose, we
introduce the reduced density operator,

ρA;B ≔ trϕjΨðtÞihΨðtÞi

¼
X

s1;s2¼�

Z
dΠ1

Z
dΠ2

f̃ðΠ1Þf̃�ðΠ2Þ
2

× hΩs2;Π2
ðtÞjΩs1;Π1

ðtÞijs1iAjΠ1iBhΠ2jBhs2jA: ð18Þ

Similarly, the reduced density operators of Alice or Bob
are obtained by taking further traces over Bob or Alice,
given by

ρA ≔ trϕ;BjΨðtÞihΨðtÞj

¼
X

s1;s2¼�

Z
dΠ

jf̃ðΠÞj2
2

hΩs2;ΠðtÞjΩs1;ΠðtÞijs1iAhs2jA;

ð19Þ

and

ρB ≔ trA;ϕjΨðtÞihΨðtÞj ¼
1

2
ρþB þ 1

2
ρ−B: ð20Þ

In the last line, we decompose ρB by introducing

ρ�B ¼ trϕjΨ�ðtÞihΨ�ðtÞj

¼
Z

dΠ1

Z
dΠ2f̃ðΠ1Þf̃�ðΠ2ÞhΩ�;Π2

ðtÞjΩ�;Π1
ðtÞi

× jΠ1iBhΠ2jB; ð21Þ

each of which corresponds to σz ¼ �1. For explicit
calculations, we need the computation of the inner product
of the field, hΩs2;Π2

ðtÞjΩs1;Π1
ðtÞi. This can be done in the

next section using the closed time path formalism often
used in nonequilibrium quantum field theories [19,24,25].
By using the density operators, we can obtain hσx;yi ¼
trρAσx;y or hΨ�jχBjΨ�iϕ;B ¼ trρ�BχB.

B. Closed time path formalism

The inner product hΩs2;Π2
ðtÞjΩs1;Π1

ðtÞi can be calculated
by using the technique of the CTP formalism. Since
Uσz¼si;πB¼Πi

represents the time evolution of fields at fixed
σz and πB, hϕjUσ¼si;πB¼Πi

ðtÞjΩi can be written in the
Feynman path integral form as

hϕjUσz¼si;πB¼Πi
ðtÞjΩi ¼

Z
DϕieiS½ϕi;Ji�; ð22Þ

where the action is

S½ϕi; Ji� ¼
Z

d4x

�
1

2
ð∂tϕiðxÞÞ2 −

1

2
ð∇ϕiðxÞÞ2

−
1

2
m2ðϕiðxÞÞ2 þ ϕiðxÞJiðxÞ

�
: ð23Þ
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Here, the Hamiltonians of Alice and Bob are treated as the
source term, Ji ¼ JAi þ JBi , with

JAi ðxÞ ¼ λAðtÞsiδð3Þðx − xAÞ; ð24Þ

JBi ðxÞ ¼ −λBðtÞΠiδ
ð3Þðx − xBÞ: ð25Þ

Using this path integral formula, we can also express the
inner product hΩs2;Π2

ðtÞjΩs1;Π1
ðtÞi as the path integral with

both the forward and backward time paths,

hΩs2;Π2
ðtÞjΩs1;Π1

ðtÞi

¼
Z

dϕhΩjU†
σ¼s2;πB¼Π2

ðtÞjϕihϕjUσ¼s1;πB¼Π1
ðtÞjΩi

¼
Z

Dϕ1Dϕ2eiðS½ϕ1;J1�−S½ϕ2;J2�Þ: ð26Þ

Here, the integral of ϕ at the final state is included in the
path integral, and the boundary condition ϕ1ðt; xÞ ¼
ϕ2ðt; xÞ is imposed. On the other hand, the vacuum
boundary condition is imposed for the initial state, which
corresponds to no incoming flux condition from the past for
the retarded Liénard-Wiechert potential in the classical
EM field.
Equation (26) is a Gaussian integration, so that the path

integral can be evaluated by using Green’s functions as
hΩs2;Π2

ðtÞjΩs1;Π1
ðtÞi ¼ expðiW½J1; J2�Þ [25], where

iW½J1; J2� ¼ −
1

2

Z
d4xd4yJiðxÞGijðx; yÞJjðyÞ ð27Þ

is the generating functional. Here, currents with upper
indices are defined as ðJ1; J2Þ ≔ ðJ1;−J2Þ, which reflect
the negative sign of the backward path in Eq. (26). Green’s
functions Gij are given by G11ðx;yÞ¼GFðx;yÞ, G12ðx;yÞ¼
hϕðyÞϕðxÞi, and G21ðx; yÞ ¼ hϕðxÞϕðyÞi, and G22ðx; yÞ ¼
GF̄ðx; yÞ is the antitime ordered product.
It is useful to recombine fields and currents as

ϕr ¼
1

2
ðϕ1 þ ϕ2Þ; ϕa ¼ ðϕ1 − ϕ2Þ;

Ja ¼ Jr ¼
1

2
ðJ1 þ J2Þ; Jr ¼ Ja ¼ ðJ1 − J2Þ: ð28Þ

In this new basis, the Green’s functions are given as
follows: First, Grrðx;yÞ¼GKðx;yÞ is the Keldysh Green’s
function, which describes quantum fluctuations and emis-
sion of on-shell particles. Second, Graðx; yÞ ¼ −iGRðx; yÞ
is the retarded Green’s function. Garðx; yÞ ¼ −iGAðx; yÞ ¼
−iGRðy; xÞ is similar. They describe causal processes since
they vanish in the spacelike region. Finally, Gaaðx; yÞ ¼ 0.
It follows from the unitarity that Eq. (26) becomes one if
s1 ¼ s2 and Π1 ¼ Π2.

To summarize, W is written as

iW ¼
Z

d4xd4y

�
−
1

2
JaðxÞGKðx; yÞJaðyÞ

þ iJaðxÞGRðx; yÞJrðyÞ
�
; ð29Þ

and the sources by Alice and Bob are given by

JAr ¼ λAðtÞsrδð3Þðx−xAÞ; JAa ¼ λAðtÞsaδð3Þðx−xAÞ;
JBr ¼−λBðtÞΠrδ

ð3Þðx−xBÞ; JBa ¼−λBðtÞΠaδ
ð3Þðx−xBÞ;

ð30Þ

where sr ¼ ðs1 þ s2Þ=2, sa ¼ s1 − s2, Πr ¼ ðΠ1 þ Π2Þ=2,
and Πa ¼ Π1 − Π2. In Ref. [12], the authors discuss causal
entanglement generation based on the second term in
Eq. (29), which they call on-shell action. As far as the
propagation of entanglement generation or decoherence is
concerned, it gives a correct answer. For discussing
quantum emission of particles like ΓA, the first term is
necessary in addition to the on-shell action. For later use, it
may be convenient to express iW as the following explicit
form,

iW ¼ −
s2a
4
ΓA −

Π2
a

4
ΓB −

Πasa
2

ΓAB þ iΠaΠrGBB
R − iΠasrχB

þ i
Πrsa
2

M; ð31Þ

where we define

ΓB ¼ 2

Z
dt
Z

dt0λBðtÞGðBBÞ
K ðt; t0ÞλBðt0Þ; ð32Þ

ΓAB ¼ −2
Z

dt
Z

dt0λAðtÞGðABÞ
K ðt; t0ÞλBðt0Þ; ð33Þ

GBB
R ¼

Z
dt
Z

dt0λBðtÞGðBBÞ
R ðt; t0ÞλBðt0Þ: ð34Þ

ΓA, χB, and M are defined in Eqs. (8), (9), and (11),
respectively. As will be shown, χB is the meter’s expect-
ation value when the spin of Alice is given by σz ¼ þ1. For
σz ¼ −1, the meter value is given by its opposite −χB.

IV. RESULTS

A. Observables of Alice and Bob

Now we are ready to calculate various quantities such
as hΨ−jΨþiϕ;B ¼ trAρAðσx − iσyÞ ¼ hþjρAj−i or a meter
value hΨ�jχBjΨ�iϕ;B ¼ trBρ�BχB. For calculating the
interference hΨ−jΨþiϕ;B, we set s1 ¼ þ, s2 ¼ −, and
Π1 ¼ Π2 ¼ Πr. By integrating Πr, we have
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hΨ−jΨþiϕ;B ¼
Z

dΠrjf̃ðΠrÞj2eiW

¼
ffiffiffiffiffi
ϵ2

π

r Z
dΠre−ϵ

2Π2
r−ΓAþiΠrM

¼ e−ΓAδϵðMÞ; ð35Þ

where ΓA,M, and δϵðMÞ are defined before in Eqs. (8) and
(10). ΓA contains the Keldysh Green’s function connecting
the protocol λAðtÞ of Alice. It can be estimated as

ΓA ¼
Z

d3k
ð2πÞ3

2ðλ0AÞ2
t2Aω

5
k

ð1 − cosðtAωkÞÞ; ð36Þ

where λ0A is the magnitude of λA defined in Eq. (2). Since it
contains the Keldysh Green’s function, it represents
decoherence caused by the emission of on-shell radiation
from Alice together with quantum fluctuation of fields in
the vacuum. The quantity ΓA=2 is nothing but the number
of created particles in the weak coupling limit, whose
derivation is shown in Appendix A. In the adiabatic limit of
tA → ∞, ΓA → 0 and the decoherence by Alice disappears,
as far as M ¼ 0 in the spacelike separated case dis-
cussed below.
Alice observes σx;y to probe the interference at ðt; xAÞ,

and Bob sets his meter on at ðt ¼ 0; xBÞ. Since M contains
the retarded Green’s function from Bob to Alice, the
decoherence due to M is generated by causal interaction2

from λBðtÞ to λAðtÞ. Thus, if tA < jxA − xBj, the retarded
Green’s function vanishes and M ¼ 0. As seen below, the
interference of Alice’s spin is not affected by the meas-
urement by Bob due to causality. The property δϵðMÞ ¼ 1
does hold even when Alice observes σx;y at a sufficiently far
future when it is causally connected to λBðtÞ. It is because
Alice’s spin system is already decoupled from the field
ϕðxÞ after t ¼ tA when it is not yet causally connected to
Bob’s measurement. On the other hand, if the information
of the measurement by Bob arrives earlier than tA, δϵðMÞ
can be smaller than 1 so that Bob decoheres the interference
of Alice’s spin.M can be large if Bob is near Alice and sets
his meter on much earlier than tA. Simultaneously, we can
take an adiabatic limit of large tA so that e−ΓA ∼ 1. Thus,
decoherence e−ΓA caused by the nonadiabaticity of Alice
and δϵðMÞ by the presence of the meter at Bob are
independent as far as the self-interaction of fields is
neglected.
Let us consider Bob’s measurement when Alice observes

σz ¼ �1. Suppose that Alice and Bob are spatially sepa-
rated. The conditional probability that Bob observes his
meter value as χB ¼ χ for a given Alice’s observable
σz ¼ � is defined by

P�ðχÞ ≔ trA;BρA;Bj�iAjχiBhχjBh�jA
trA;BρA;Bj�iAh�jA

¼ trBρ�B ðjχiBhχjBÞ;

ð37Þ

which is calculated as

P�ðχÞ ¼
Z

dΠ1dΠ2f̃ðΠ1Þf̃�ðΠ2Þ
eiχðΠ1−Π2Þ

2π
eiW

¼ 1

2π

ffiffiffiffiffi
ϵ2

π

r Z
dΠrdΠa

× e−ϵ
2Π2

r−
ϵ2þΓB

4
Π2

aþiðχ∓χBÞΠaeþiΠaΠrGBB
R : ð38Þ

Again, this is a Gaussian integral, and we can easily
perform the integration to obtain

P�ðχÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πΣ2

p exp

�
−

1

2Σ2
ðχ ∓ χBÞ2

�
; ð39Þ

where

Σ2 ¼ ðGBB
R Þ2
2ϵ2

þ 1

2
ðΓB þ ϵ2Þ: ð40Þ

The conditional probability is peaked around the value
χ ¼ �χB with variance Σ2.
Let us explicitly calculate the meter value trBρ�BχB. It is

given by

trBρ�BχB ¼
Z

dχχP�ðχÞ ¼ �χB

¼ �
Z

dt
Z

dt0λBðtÞGðBAÞ
R ðt; t0ÞλAðt0Þ: ð41Þ

Thus, the expectation value is determined by the source at
Alice in the causal past of Bob. Similarly, the variance is
given by

trBρ�B ðχB ∓ χBÞ2 ¼
Z

dχðχ ∓ χBÞ2P�ðχÞ ¼ Σ2: ð42Þ

The variance represents the uncertainty of the measure-
ment. From Eq. (40), we can see that there are three
contributions to the variance, ϵ2=2, ΓB=2, and ðGBB

R Þ2=2ϵ2.
ϵ2=2 represents the variance of the meter’s wave function
that determines the sensitivity of the meter. ΓB=2 represents
the number of created particles by Bob’s protocol λBðtÞ,
which causes the additional uncertainty of the measure-
ment. GBB

R represents the self-correlation through the field.
Obviously, there is the optimal value of Σ2, which is
obtained from dΣ2=dϵ2 ¼ 0,

ϵ2 ¼ jGBB
R j; ð43Þ

2Causality is reflected in commutators of separated operators
in the Hamiltonian formalism. See, e.g., Ref. [26].
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and the optimal value is

Σ2 ¼ jGBB
R j þ 1

2
ΓB: ð44Þ

Within our measurement model, this result implies that
there are unavoidable uncertainties of measurement due to
the interaction with the field. A large uncertainty prevents
Bob from distinguishing Alice’s spin. In the next sub-
section, we discuss the distinguishability of BobDB and the
relation between it and the visibility of Alice v, which is
given by the inequality v2 þD2

B ≤ 1.

B. Visibility of Alice and distinguishability of Bob

An inequality can be proved among the various quan-
tities of Alice and Bob, such as the visibility (related to
expectation values of Alice’s spin σx and σy) and the
distinguishability (related to the magnitude of Bob’s meter
value). For this, we introduce the following reduced density
operator:

ρ�B;ϕ ≔ jΨ�ðtÞiϕ;BhΨ�ðtÞjϕ;B; ð45Þ

describing the state of Bob and field, in addition to Eq. (21).
The off-diagonal element hΨ−ðtÞjΨþðtÞiϕ;B is measured by
observing σx;y and related to the interference of spin-up and
spin-down wave functions of Alice. On the other hand,
each diagonal element of spin-up hΨþðtÞjχBjΨþðtÞiϕ;B or
spin-down hΨ−ðtÞjχBjΨ−ðtÞiϕ;B gives the meter value of
Bob when Alice measures spin-up or spin-down.
An inequality known as the wave particle duality gives a

trade-off relation of Alice’s visibility and distinguishability
of Bob’s measurement. We first review the proof of the
inequality from a general argument. Our system is com-
posed of the states of Alice, Bob, and the field ϕ, and the
state of the total system is given as in Eq. (5). Visibility of
Alice is defined by [20–22]

v2 ≔ hσxi2 þ hσyi2 ¼ jhΨ−ðtÞjΨþðtÞiϕ;Bj2: ð46Þ

On the other hand, the distinguishability of Bob is defined
by the trace distance between ρþB and ρ−B,

DB ≔
1

2
trBjρþB − ρ−Bj: ð47Þ

Bob can distinguish Alice’s spin from the difference of
density operators ρþB and ρ−B. Some of the information of
Alice’s spin is lost in configurations of the fields. Suppose
that we can perform a complete measurement by using
the reduced density operator ρ�B;ϕ. Then defining the trace
distance of ρ�B;ϕ,

DB;ϕ ≔
1

2
trB;ϕjρþB;ϕ − ρ−B;ϕj; ð48Þ

the equality holds

v2 þD2
B;ϕ ¼ 1; ð49Þ

since the density operator ρ�B;ϕ describes a pure state. Indeed,
we can restrict the Hilbert space of Bob and the field into a
two-dimensional subspace spanned by jΨþðtÞiϕ;B and
jΨ−ðtÞiϕ;B. Then the nonzero eigenvalues of the operator

ðρþB;ϕ − ρ−B;ϕÞ are given by�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhΨ−ðtÞjΨþðtÞiϕ;Bj2

q
, and

Eq. (49) does hold. A proof is given in Appendix B.
If we abandon the information of the field and use the

limited information of Bob, described by distinguishability
DB instead of DB;ϕ, we have

DB ≤ DB;ϕ; ð50Þ

as shown in Appendix B. Thus, we have an inequality

v2 þD2
B ≤ 1; ð51Þ

which gives a trade-off relation between the visibility of
Alice and the distinguishability of Bob’s measurement.
The equality holds when the effect of the field does not
further mix the density operators ρ�B . This inequality is
used to show the complementarity of Alice’s interference
and Bob’s measurement by Ref. [22] in a case where Bob
is also described by a spin 1=2 system. In the following,
we apply this inequality to our system where Bob is
described by a continuous variable χB. In order to
evaluate DB, we use the following property of the trace
distance [27]:

DB ¼maxP½jtrBPðρþB −ρ−BÞj�≔maxPD
ðPÞ
B ¼DðP>Þ

B ; ð52Þ

where a maximum value is taken over all possible

projection operators P. The projector maximizing DðPÞ
B is

given by the projection operator P> on the vector space
spanned by all the eigenstates with a positive eigenvalue
of ðρþB − ρ−BÞ or, equivalently, on the states with negative
eigenvalues P<. For a general projector, the inequality

v2 þ ðDðPÞ
B Þ2 ≤ 1 is satisfied. The visibility of Alice, the

first term of Eq. (59), can take one in the adiabatic limit.
In the limit, Bob cannot distinguish Alice’s spin since the
second term must vanish. On the other hand, if Bob can
distinguish Alice’s spin, the difference of field values at
Bob generated by Alice’s spin-up or spin-down becomes
sufficiently large. Then the second term approaches one
and the visibility vanishes. Physically, the vanishing of
visibility is associated with the emission of on-shell
particles. Namely, in order to transmit the information
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from Alice to Bob, Alice must emit a sufficient amount of
on-shell particles into the open space.

C. Complementarity

Let us now apply the wave particle duality to our case.
The visibility is given by

v2 ¼ ½e−ΓAδϵðMÞ�2: ð53Þ

The distinguishability is obtained by calculating the eigen-
values of the operator

trAρA;Bσz ¼
1

2
ρþB −

1

2
ρ−B: ð54Þ

The trace distance between these two density operators can
be obtained by diagonalizing the operator ðρþB − ρ−BÞ in the
Hilbert space of Bob. Here we evaluate the trace distance by
choosing an appropriate projector Ph as follows. The
projector we choose is

Ph ≔
Z

dχhðχÞjχihχj; ð55Þ

where jχi is an eigenstate of χB representing the meter
value of Bob, and hðχÞ is a variational function with the
property of a projector hðχÞ ¼ 0 or 1. Namely, the function
hðχÞ is a step function taking value 1 in specific regions,

and 0 otherwise. Then the trace distanceDðPhÞ
B evaluated by

this variational projector is given by

DðPhÞ
B ¼

����
Z

dχhðχÞðPþðχÞ − P−ðχÞÞ
����: ð56Þ

Since P�ðχÞ are Gaussian given in Eq. (39) with the center

χ ¼∓ χB, the maximum value of DðPhÞ
B is given by

hðyÞ ¼ θðyÞ. Thus, we have the maximum value of DðPhÞ
B

among the above projectors

DðPθÞ
B ¼

����
Z

∞

0

dχðPþðχÞ−P−ðχÞÞ
����¼

����erf
�

χBffiffiffi
2

p
Σ

�����; ð57Þ

where the error function is given by

erfðxÞ ≔ 2

Z
x

0

dtffiffiffi
π

p e−t
2

: ð58Þ

The error function is monotonically increasing and is
bounded in −1 ≤ erfðxÞ ≤ 1.

From the wave particle duality of Alice’s and Bob’s
measurements, we have the inequality

½e−ΓAδϵðMÞ�2 þ
�
erf

�
χBffiffiffi
2

p
Σ

��
2

≤ 1: ð59Þ

Note that M is proportional to the classical solution of
field at Alice sourced by Bob, while χB is the classical
solution of field at Bob sourced by Alice. The first term in
Eq. (59) represents the visibility of Bob and becomes
one in the adiabatic limit. In this case, the second term
must vanish and Bob cannot distinguish Alice’s spin. It
occurs since Alice cannot generate a sufficient amount of
field configurations by which Bob distinguishes Alice’s
spin. On the other hand, if Bob can get sufficient
information to distinguish Alice’s spin, the visibility of
Alice must vanish by emitting a large number of on-shell
particles.

V. CONCLUSIONS

Quantum mechanics has complementarity: in some
situations, a system is in a coherent superposition of
states and, in another, interference is decohered by
measurement, and the state is localized. In relativistic
quantum theories, complementarity coexists in a consis-
tent way with relativistic causality. In this paper, we
explicitly investigated the gedanken experiment [14–16]
by using CTP formalism in relativistic quantum field
theories. A key ingredient is the different roles of various
Green’s functions. Causality is associated with a retarded
Green’s function, while quantum fluctuations or emission
of radiation are associated with the Keldysh one. Both of
them play similarly important roles in the analysis, as
seen in Eq. (29). Our result in Eq. (35) shows that an
expectation value hσxi ¼ RehΨ−jΨþiϕ;B, which repre-
sents decoherence of a coherently superposed state, is
given by two independent effects of particle emission
e−ΓA and measurement δϵðMÞ. Each of them is expressed
by GK and GR, respectively. The advanced Green’s
function also implicitly played an important role in the
calculation. The visibility v in Eq. (35) has a trade-off
relation (51) with the distinguishability of Bob DB. Thus,
in order for Bob to sufficiently distinguish Alice’s spin,
Alice must emit on-shell particles and the visibility must
be lost.
The same logic argued in the paper can be applied to any

relativistic quantum field theories, including gravity as far
as linearized approximation is valid. The only differences
are concrete forms of Green’s functions and couplings
between fields and matter.
In our calculation, decoherence is induced by two

effects e−ΓA and δϵðMÞ, one by Alice’s nonadiabaticity
and the other by Bob’s measurement, and the quantum
nature of fields is responsible for both effects.
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The emission of radiation occurs even classically but the
randomness of phase evolution is associated with the
quantum fluctuations of fields in the vacuum. Indeed, ΓA
is of order OðℏÞ compared to the classical action. On the
other hand, the decoherence caused by Bob δϵðMÞ reflects
the fact that the field itself is in an entangled state
correlated with spin and is essentially quantum. Thus,
if we can measure similar effects of decoherence in the
gravitational case, it is evidence of the quantum nature of
gravity.

ACKNOWLEDGMENTS

The work initiated from discussions at the QUP
meetings on quantum sensors and their particle physics
applications. We especially thank Masahiro Hotta, Sugumi
Kanno, Yasusada Nambu, Jiro Soda, Izumi Tsutsui, and
Kazuhiro Yamamoto for their indispensable information on
the subject and fruitful discussions. S. I. is supported in part
by the Grant-in-Aid for Scientific research, No. 18H03708
and No. 16H06490. Y. H. is supported in part by the Grant-
in-Aid for Scientific research, No. 21H01084.

APPENDIX A: PARTICLE PRODUCTION

We will show the number of created particles hni
produced by Alice’s protocol λAðtÞ is equal to ΓA=2 in
Eq. (8). In general, the number of created particles in the
presence of an external field J is given as [28,29]3

hni¼−
Z

d4x
Z

d4x0ZG12ðx;x0Þ
ð−∂2xþm2Þ

Z

ð−∂2x0 þm2Þ
Z

×

�
δiW

δJ1ðxÞ
δiW

δJ2ðx0Þþ
δiW

δJ1ðxÞδJ2ðx0Þ
�
J1¼J2¼J

; ðA1Þ

where Z represents the wave function renormalization
factor. The term following G12ðx; x0Þ is the probability
producing two particles at x and x0 due to the Lehmann-
Symanzik-Zimmermann formula. The integration with the
Wightman Green’s function G12 is nothing but the inte-
gration over all the final states with an appropriate
normalization of wave functions, as is clear in the momen-
tum space. For free theory, the formula is drastically
simplified. First, Z ¼ 1. When it is coupled with an
external field, noting from Eq. (27), we have

ð−∂2x þm2Þ δiW
δJiðxÞ

¼ −ð−∂2x þm2Þ
Z

d4xGijðx; yÞJjðyÞ ¼ iJiðxÞ; ðA2Þ

and

ð−∂2x þm2Þ δiW
δJ1ðxÞδJ2ðx0Þ ¼ −ð−∂2x þm2ÞG12ðx; x0Þ ¼ 0;

ðA3Þ

we obtain

hni ¼
Z

d4x
Z

d4x0JðxÞG12ðx; x0ÞJðx0Þ

¼
Z

d4x
Z

d4x0JðxÞGKðx; x0ÞJðx0Þ: ðA4Þ

In the second line, we symmetrized the propagator and
used the relation ðG12ðx; x0Þ þ G21ðx; x0ÞÞ=2 ¼ GKðx; x0Þ.
Therefore, setting JðxÞ ¼ λAðtÞδð3Þðx − xAÞ, we find
hni ¼ ΓA=2. We note that this relation is a special case
of no self-interaction of fields. If the interaction exists, the
factor of the decoherence and the number of created
particles will not be proportional.

APPENDIX B: EFFECT OF THE FIELD ON THE
DISTINGUISHABILITY

The inequality DB ≤ DB;ϕ is generated when the emis-
sion of radiation of the field ϕ makes Bob’s measurement
obscure. The density operators ρ�B;ϕ describe pure states
jΨ�i, respectively. Since they are not orthogonal, we can
write

jΨ−i ¼ eiφ cos θjΨþi þ sin θjΨ̃−i; ðB1Þ

where hΨþjΨ̃−i ¼ 0. Then

ρþB;ϕ − ρ−B;ϕ ¼ ðjΨþijΨ̃−iÞ

×

�
sin2θ −eiφ cos θ sin θ

−e−iφ cos θ sin θ −sin2θ

�

×

� hΨþj
hΨ̃−j

�
: ðB2Þ

Eigenvalues of the matrix are given by � sin θ. Thus,
DB;ϕ ¼ j sin θj. As visibility is given by v2 ¼ cos2 θ, we
have an equality v2 þD2

B;ϕ ¼ 1. Writing the eigenstates as
jαi and jβi, the distinguishability of Bob is given by taking
the partial trace over the field before taking the absolute
value as

DB ¼ j sin θj × 1

2
trBjðtrϕjαihαj − trϕjβihβjÞj ≤ j sin θj:

ðB3Þ

The equality holds only if trB½ðtrϕjαihαjÞðtrϕjβihβjÞ� ¼ 0.

3The expression might look slightly different from that in
Refs. [28,29]. There is (−) on the right-hand side of Eq. (A1),
which comes from our convention J2 ¼ −J2. Therefore, both
expressions are equivalent.
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