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A technique of large-charge expansion provides a novel opportunity for calculation of critical

dimensions of operators ¢ with fixed charge Q. In the small-coupling regime the polynomial structure
of the anomalous dimensions can be fixed from a number of direct perturbative calculations for a fixed Q.

At the six-loop level, one needs to include new diagrams that correspond to operators with five or more
legs. The latter never appeared before in scalar-theory calculations. Here we show how to compute the

anomalous dimension of the operator ¢2= at the six-loop order. In combination with results for operators
with Q < 5, which are extracted from the six-loop beta functions for general scalar theory, and with
predictions from the large-charge expansion, our calculation allows us to derive the answer for general-Q
anomalous dimensions. At the critical point resummation in three dimensions enables us to compare the
critical exponents with results of Monte Carlo simulations and large-N predictions.

DOI: 10.1103/PhysRevD.106.076015

I. INTRODUCTION

The renormalization group (RG) method allows one to
systematically improve the accuracy of calculations in
perturbation theory. The key objects of the method are
the renormalization group functions, which specify the
response of various quantities to a scale variation.

Among many applications of the field-theoretical RG are
studies of universal critical behavior of different physical
systems near second-order phase transitions.

The well-known examples are three-dimensional O(N)
universality classes. The corresponding critical indices can
be derived by considering different operators within the ¢*
model in d =4 — 2¢ dimensions. In particular, the expo-
nents are computed from the RG functions evaluated at a
nontrivial Wilson-Fisher [1] (WF) fixed point, for which
the quartic coupling g = g* = O(¢). Recent six-loop [2]
and even seven-loop [3] results together with modern
resummation techniques (see [2] and references therein)
give very precise critical exponents, which can be com-
pared both to experimental measurements and to values
obtained by other methods.

While the expansion in small couplings seems natural
and convenient, there exist several nonperturbative
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approaches to the calculation of critical indices. For
example, in O(N) theory, one can consider the limit of
large-N and systematically obtain corrections for scaling
exponents as series in 1 /N [4,5]. The latter are valid for any
space dimensions and effectively resum an infinite number
of terms in the ¢ expansion. The case of ¢< operators with
total charge Q was considered in Ref. [6].

Recently, a different method was proposed [7,8] allowing
one to study the anomalous dimensions of operators <
semiclassically via operator-state correspondence.

In Ref. [7] the U(1) = O(2) model is considered and a
new 't Hooft-like coupling [9] is introduced ¢*Q. The
scaling dimension of ¢2-type operators is written as

Bo=3 (4Valr Q) =22

i=—1

+2(g°Q)+-- (1)

and the first two terms of the expansion in small g* for a
fixed g*Q are computed. The approach was generalized to
the case of the O(N) model [8] together with U(N) x
U(N) [10] and U(N) x U(M) [11] theories.

Expanding A_; and A in small ¢g*Q, one can predict
leading and subleading terms in large Q at an arbitrary high
loop. The latter can be compared with existing perturbative
calculations (see, e.g., Refs. [12,13]), which for the case of
the O(N) model are available (for arbitrary Q) up to five
loops from a recent paper [14].

In this work, we use the results of Ref. [8] as an input
together with explicit computations for Q =1...5, to
deduce the six-loop terms in A, for general Q in the
O(N) model. While the cases up to Q = 4 can easily be
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treated given our general formulas for beta functions valid
in arbitrary ¢* theory [15], the computation of the anoma-
lous dimension for Q = 5 constitutes the main technical
challenge of the current study.

The paper is organized as follows. In Sec. II we briefly
review the O(N) model and operators of our interest. In
Sec. III we discuss the details of calculation. Section IV is
devoted to our main results: six-loop expressions for the
anomalous and scaling dimension of ¢2-type operators in
the O(N) model. Discussion and the conclusion can be
found in Sec. V.

II. FIXED-CHARGE OPERATORS
IN THE O(N) MODEL

The Euclidean Lagrangian that describes the O(N)-

symmetric model is given by
g (= =\2
wa(#9). o

1/ - -
where qg ={¢,},a = 1...N is an N-component scalar field.
Following Ref. [8], we consider lowest-lying O(N)

operators of fixed total charge Q, which can be represented as

¢Q:

with dil__V,-Q

To compute the anomalous dimension y, of (3) pertur-
batively, one can consider the insertion of the ¢ operator
in the one-particle irreducible (1PI) Green function with Q
external legs (see., e.g., [13,14] for four- and five-loop
results). Using dimensional regularization [16] with d =
4 — 2¢ and modified minimal subtraction scheme (MS),
one extracts the renormalization constants Zyo, which

di, _iy®i, - by

being the symmetric traceless tensor.

relate bare fields ¢b5 to the renormalized operator [¢2]:

¢5 = Zyo[9°). (4)

The anomalous dimension can be cast in the following
general form:

-

l
=Y "> ownnl =0 (5)

r=0 s=0

‘

Here f3, is the 4d part of the well-known beta function of the
self-coupling g known up to six loops from Ref. [2].

In Eq. (5) we sum over /-loop contributions y(Ql). The latter
are polynomials in Q up to degree /, and for each monomial

Q" the coefficient is a polynomial in N up to degree [ — r.

The coefficients y(,lg are just numbers.

Let us mention here that the Q = 1 case corresponds to
the field anomalous dimension [2], while, due to tensor
nature of the operator, Q = 2 is related to the crossover
exponent [17].

Evaluating y, at the WF fixed point g = g* ~ N 5
compute the scaling dimensions of the operators in the
form of e expansion:

we

Ag =0Q(1 —¢) +7Q( ")

[*) [
:Q+QZZZ(2E)’

=1 r=0

For convenience, in Eq. (6) we introduce numerical coef-
ficients P% and make the dependence on € and N explicit.

The ultimate goal of this paper is to compute six-loop
contributions yﬁﬁ? and P£6,), to Egs. (5) and (6), respectively.
In what follows, we briefly review our approach to the
calculation.

III. CALCULATION DETAILS

According to Eq. (5), the six-loop contribution to the
anomalous dimension is a polynomial in Q:

6 6 6 6 6 6 6
76 =Q (oo + N7yt + N+ N 13+ N+ N 7)

+0' (N0 + N+ NG+ NG+ N G+ N )
50+ N+ Ny + N+ N5
% Ny§i+N2y§%+N3y§§>

6
+0%7, (7)

which has seven N-dependent coefficients. The latter can,
in principle, be determined from explicit perturbative
results for seven anomalous dimensions corresponding,
eg,to Q=1.."7.

In this paper, we compute the anomalous dimensions for
all operators up to Q =5, giving five independent con-
straints on (7). The remaining two constraints are derived
from the semiclassical result (1) of Ref. [8] expanded in
g*Q up to relevant order':

'We fix a small misprint 2/279 — 2/729 in the published
version of Ref. [8].
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FIG. 1.

Examples of nonfactorizable six-loop diagrams contributing to the 1PI five-point function with an operator insertion (denoted

by cross). Only integrals similar to the first one require special treatment. All the others are known from the ¢* renormalization [2].

572 2

six-loop: <—%Q +@[10191 —64N

—2¢5(13274160N) —2¢5(1441 +80N)

—70C7(46+N)—21C9(126+N)]>(Q*Q)6- (8)

As it was noted in Ref. [13], the contribution (8) to the
anomalous dimension y,(g*) derived initially under the
assumption g = g* is also valid away from the fixed point,

so we can immediately read off the coefficients yé%, yg%,

and 72?1) from Eq. (8).

It turns out that the calculation of the operators with
charge up to Q =4 is trivial. One can use our six-loop
result [15] for the RG functions in the most general
renormalizable ¢* theory. For example, to compute y,_4
we introduce a coupling /A, for the p2=* operator. To extract
the corresponding anomalous dimension from the beta
function f,;,.4 of general self-coupling 4,4, We substitute

9
labcd - 5 (éabécd + 5a05bd + 5ad6bc) + )“4dabcd (9)
and keep only terms that are linear in 14. The beta function
of 44 is related to yy—4 defined in (5) via
B1.(9) = Aayo-a(9)- (10)
The cases Q = 2 and Q = 3 are treated in a similar fashion,
i.e., we replace the mass parameter and the trilinear

coupling by traceless symmetric tensors with two and
three indices,

(11)

It is worth mentioning that we routinely utilize FORM
[18] to implement the traceless condition on d;, _; 0 (3) and

2
mab - )*2dabv hahc - /13dahc-

to contract dummy indices.

The case Q =5 deserves special attention. We use
DIANA [19] to generate five-point 1PI Green functions
with a ¢2=> insertion. The corresponding Feynman rule
again involves the traceless symmetric tensor d ;... After
carrying out O(N) algebra and factoring d_,,.4,., we are left
with scalar integrals multiplied by polynomials in N. It is

obvious that some of the indices entering d; ; can be
external (see, e.g., Fig. 1). In this case we effectively have a
1PI loop diagram with a reduced number of external legs.

To extract the renormalization constant Zs from the
ultraviolet (UV) divergences, we apply the JCR' operation
to each logarithmically divergent diagram G;:

7575 =1-> KR'G;, (12)

where Z is a field renormalization constant ¢pp = Zy¢h.
The ICR' operation can be written recursively as

KR'G=KG+Y K| [ (-KR7)*G/{r}|,
{rt Lnelr}

(13)

where G is the original diagram, and G extracts its
singular O(1/¢) part. The sum goes over all sets of disjoint
UV-divergent 1PI subgraphs {y} =U;y; (with G itself
excluded), and G/{y} is a cograph obtained from G after
shrinking all y; belonging to {y}. To implement (13) at the
six-loop order, one needs to compute all lower-loop
counterterms KR'y;,. Some of the diagrams contain cut
vertices (see, e.g., Fig. 2). In this case KR’ factorizes. In
spite of the fact that these diagrams do not contribute to the
anomalous dimension of the operator, we keep them for
further cross-checks (see below).

Drastic simplification comes from the application of the
infrared (IR) rearrangement trick [20] to the logarithmically
divergent diagrams. One can set all but one of the external
momenta to zero and reroute the momentum flow in a way
to avoid (as much as possible) the appearance of spurious

FIG. 2. Examples for which

of factorizable diagrams
KR'(G) = KR (r1) - KR ().
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IR divergences. The choice of the IR-safe routing together
with the UV-subgraph identification was automated by
means of the private computer code.

It turns out that all integrals but one entering G and
G/{y} can be calculated with IR-safe nonexceptional
external momentum routing in terms of graphical functions
3,21,22]] implemented in the HYPERLOGPROCEDURES
package.2

There remains a single diagram for which the IR-safe
routing leads to an integral not calculable with this
approach. Because of this, the external momentum routing
was changed at the price of introduction of IR divergent
subgraphs. The latter were treated manually via infrared

B alogZ5 ~ (2
~ dlogu

alog Zs

9—Py) (14)

Y0o=5
As usual only single poles in ¢ contribute to yo_s. However,
the crucial cross-check of the obtained expression is the
cancellations of & poles in the final formula for (14).

IV. RESULTS

Given large-charge prediction (1) and explicit results for

the anomalous dimensions of the first five operators ¢<, we

can fix all the coefficients in y(Q6):

K'R* operation [23-26]. Further details are provided in the 6 & rars (6 6
Appendix. Z Q'NYy )v 7/5)_% =0, (15)
Given Zs, the required anomalous dimension is =00
derived via as [27]
|
©) 572
_ 2= 1
760 = Tou3° (16)
6 640f; 320¢s 14047 14¢y 128 a7
’S1I= 77929 T 729 T 729 243 729
(6) _ 5308{3 5764(s 6440f; 196{, 6794 (18)
50~ ""729 729 729 27 243"
7083 46fs 14\ 100Ls  49¢ 7;:4 107° 78
1y =B (o ) - - At + ’ (19)
729 729 81 729 729 243 7290 T 137781 © 1968300
6 236 17683 g 1564 808¢s\ 4905 119350, 42412fy 932 18271’4+1007T6 4978 (20)
Ta1= T8 729 243 729 243 1458 6561 729 ' 10935 ' 45927 ' 196830°
6 23683 272043 39340  9208¢5 +26564§5+104514’7 814485, 102694  784x*
740 = 7729 729 729 729 729 729 6561 729 10935
17607°  868x°
T T ’ (21)
137781 ' 492075
6 _ 13¢5 1 20, 6583 596 25¢, 1 25q° 22)
7337 7\ 87480 " 4860) T 24372916 2916 2916 243 ' 1102248°
© _ 131¢g; 133 60743 843 2537 218{s\ 37¢s 20143¢; 1063(y {55 335
13277\ 43740 ~ 87480) " 1458 _ 81 2916 729 54 5832 729 3 729
1607° 541778
/a b2 ’ (23)
137781 ' 22044960
6 (2963 49 7884 12843 : 122965 35633\  512¢s  11¢, 5738y  2(7191¢s5 + 3275)
7317710935~ 729 729 81 3 729 1458 243 2 729 1215
8607°  1213171x%
T + T ’ (24)
137781 ' 275562000

*This is available for download from https://www.math.fau.de/person/oliver-schnetz/.
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368 7151 845802 515243 59144 44186 59306 12529 46256
y%_ﬁ( & )_ 3, C3+§3<_ Ls )_ (s _ 125294, | 46256,

3645 21870 729 729 729 243 729 486 6561
1076855 = 91750 2585ﬂ6+7278477r8 (25)
135 243 137781 ' 34445250°
(6) {3 C3 {s 1 x °
23 4 23 35 , 26
124 = 972+729 486+5832 174960+1102248 (26)
©_ af_ 33 1 753 e 5¢s 631\ 35¢s 7735 Cs3+1619+ 2637° N 206378 27)
723 43740 9720 3\720 5832) 1944 11664 45 ' 46656 ' 1102248 61236000’
A0 _ o 641 449¢5 _1635§+32C§_283CS+ 44875 3535 +553§7_22964§9+455,3+3541
22 43740 21870 729 729 162 243 972 5832 6561 45 ' 3888
2417° 2945378
, 28
137781 " 137781000 (28)
© _ 5599 1426¢; +12799(:§+2992§§ 43871§5+ 42052§5+14243 46361,  142852¢
72177\ 21870 ~ 10935 729 729 1458 S\ 729 486 972 6561
+14428§5’3 41047  185z° 1274101#% (29)
405 5832 ' 275562 137781000°
L0 _ 3449 3824¢; +38O672(§§+32¢§_50504“5+ 100720¢5+22307 32071947 596264,
2077 \3645 10935 729 729 81 S\ 243 81 1458 6561
+26944g5,3 3367853 8146x° 29953378 (30)
81 5832 137781 3444525 °
(6) &3 {s 1 mt 3
=- - - 1
Y15 11664 T 3888 ~ 23328 ~ 699840" (31)
@ _ 1695 & 13 299 37z af (32)
714729160~ 243 " 1458 103680 874800 367416
6 _ 4[1091¢; 493 659¢3 12001 5¢5\ | 3389¢s 163647 {55 10403
Y13 = %\ 437400 ~ 437400 1620 58320 243 14580 729 15 155520
1372° 206378
il ” (33)

T 122472 20412000°

7837 539 4834L2 13643 96511 340 48371 171947 45287 521
,6) = £ >_ C3+ $ ( Cs) n Cs+ C7+ C9+ 53

2= (218700_9720 3645 243 2P\29160 729 3645 5832 2187 225
10499  53213z° 769380778

- - - : 34
2160 2755620 2755620000 (34)
(0 _ o (81580 | 6853 1353043 edc} . ( 8956 256211\ 424234 141l1g 1597724,
ML= 54675~ 10935 3645 27 P\ 729 T 14580 3645 54 729
13942055 4451899 7749275 1640128178 (35)
675 116640 688905 1377810000
© _ o (34845 97517\ 300646603 464003 . ( 302656(5 1567481\  314518¢s 6962111,
710 =7\ 18225 ~ 54675 3645 729 " %? 729 7290 729 7290
41631887, 2904085, | 7820077 215048z°  24913489x" 36)
6561 675 19440 ~ 688905 = 344452500 °
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©) & Ss 1 *
= - , 37
705 = 75552 3888 | 248832 ' 466560 (37)
6) 89¢s 205 5¢s 733 897+ 7°
S o3 T3 , 38
Y04 12960 729 729 * 466560 * 1749600 * 551124 (38)
© 4 2207 31345 L 3401¢3 L 10¢s 1667 61¢s 18341¢; 2055 69623 9657°
703 =7\ 1749600 ~ 218700 14580 S\ 729 19440 270 11664 45 933120 1102248
206378
—_— 39
+ 30618000 (39)
© 4 197 6675 n 433443 3683 L 740¢5 2297 45195 16885{; 103330fy 466(s 5
702 ="\ 4374~ 36450 3645 729 ’ 729 9720 405 648 6561 225
100471 116172% 10696377 (40)
19440 ~ 688905 459270000’
6 438221 836(; 7804943 339283 112751 6664(; 3202245  614519¢; 1200664¢,
701 =7\ 87480 18225 3645 729 3\ 14580 243 3645 2916 6561
6344055 9046223 1461597° 189445378 (41)
2025 233280 1377810  114817500°
6) 4314803 242993 50441243 236843  232190(s 68848¢s 550921 1736897¢; 1161368¢,
700 =7\ 54675 T 218700 1215 243 729 I\ 729 7290 2430 2187
359144¢55 9723527 8608z° 11713x° (42)
2025 116640 = 32805 1417500°
|
Evalqating the anomalous dimens.ion at the ﬁxed point, Pz(fs) = 41282 — 17683 + 193085 — 2445 (3¢5 — 437)
we obtain the & expansion of the scaling dimension A, (6). . . o
We reproduce the five-loop results [14]. The new six-loop _9107¢; _ 424126y 147" 20m  I7°
. i -+ 1898 + + + )
coefficients are given by 2 9 15 27 50
(50)

6
PY) = 1716, (43)

PY) = ~38400, (44)

Py = —2(94; + 160205 + 26600, + 24784 — 16463),
(45)

PE) = —2(3204; + 1605 + 7087 + 21y + 64),  (46)

6
P = —529200, (47)

Pff; = —24(2212¢;5 + 350085 + 4725, — 27264),  (48)

P = 355202 — 131283 + 511245 — 4¢5(1422¢5 + 935)

257848,

+ 86975¢; + — 265526, (49)

P} = —708% — 10085 — 2¢35(23¢s + 63) — 49¢; + 42

7zt 102°  7x8

70 T 189 T 2700° (51)

P = —6048000, (52)

P;g = —5040(301¢5 + 2755 — 1602), (53)

PY) = —79776¢2 + £3(951996 — 95040¢5) + 1306920¢ s

+ 7040258, — 4540356, (54)
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P — —3387002 4 97603 — 4250105

| 1029567¢, 152896
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1
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1
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939 11575 541778
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2572°
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Py = —252(~114928¢; + 9072¢3 — 18200¢5 + 195133),

(61)
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1
P} = 7443603 — 218563 + g7:4(64853 —6619)

6

760
1 £5(447674 — 17640085) — "

+ 20912765
1646491, 923144¢,  235872(55
+ — 5
2 9 5
1508x°
-2 1 —
793137 - o (63)

2
P} = 2783103 + 248073 — Ezr“(297§3 — 844)

476097 361793
- TCS +4 <46708§5 + )
790853, | 2245728y 10911655 = 52581
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242057% 4067378
- 64
+ 378 9000 (64)

7
P} = —416283 + 3283 + o™ (26 +351) + 6263¢s
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+ o[ 1704¢5 - & gy
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2268055 14669 3857° 1170778
TSR sa " 2000 ()
1
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1, 1125 20637
-1 161) + — =%
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6) _ 3C3 , 3¢ 1 P 7°
P = — —_—— _——_—— _
2= ST Yyt s (7
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P\), = —27216000(18¢; — 41), (69)

P\) = —7560(=77856¢5 + 5184¢% + 16800¢5 + 71741),
(70)

P\%) = 126(324144£2 + 6108605 + 1250399 + 2707*)
— 126(30¢3(2016¢5 + 73393) + 66150¢,),  (71)

1296
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% 5 37, 3 53 §9+220104<j5,3
32994733 304457° 1336397° (84)
16 63 2100
1
P{) = 109509¢3 — 8000¢3 — 307 (6588 —48821)
608795\ 2210257
—655038¢5 4 (5 (5576C5— 5 ) . &
12807280, 612725, 892443 705575
9 5 32 378
269697
~ 31500 (85)
15819
Py = - 5 & — 62483 + — (24885 — 5521)
95231 80693\ 106765
LB (e _ 106765¢;
2 8 8
53846¢, 34005 449375
_ 22059 458 R
3 Es3+ 32 252
8161z°
2 86
5040 (86)
107322 7
Py} = : 3_ 40" 744405 — 73) = 9175
3807\ 19749, 16255
1085 — - - :
+C3( Cs 3 ) 16 5
1693 1732° 206378
b 87
32 T 168 42000 (87)
© 111 5¢s 343 59rt | S
PO — +2 22T T (88
02 16 205+ 2 5127280 756 (88)
© 24005 — 9605 + 15 + 87
Py = = . (89)

Provided results for coefficients ygl)‘ and P% in addition

to the Riemann zeta functions ¢, = > %, 1/i" contain
multiple zeta value {53 =%, >} 1/(i% /) 0.0377077.

076015-8



SIX-LOOP ANOMALOUS DIMENSION OF THE ¢€ ...

PHYS. REV. D 106, 076015 (2022)

TABLE 1. Scaling dimensions of ¢¢ (d = 3) obtained by resumming the six-loop result for N = 2, 4, 6, 8.
Q

N 1 2 3 4 5 6 7 8 9 10

2 0.5187(5) 1.2351(6) 2.1085(7) 3.112(2) 4.230(3) 5.45(1) 6.75(2) 8.15(2) 9.62(3) 11.17(3)

4 0.5181(5) 1.1885(3) 1.9856(14) 2.892(3) 3.896(7) 4.99(2) 6.16(3) 7.40(3) 8.72(4) 10.10(4)

6 0.5163(5) 1.1537(13) 1.895(3) 2.728(5) 3.643(11) 4.63(2) 5.70(3) 6.82(3) 8.01(4) 9.26(4)

8 0.5146(4) 1.127(2) 1.827(5) 2.604(8) 3.45(2) 436(2) 5.34(3) 6.37(3) 7.46(4) 8.60(4)

To verify our expressions we consider various limits
of Eq. (5). For example, defining J = Q/N we get an
expansion in J. Neglecting terms further suppressed by
large N, we obtain (for g = g*)

=1 k=1

) 1
1
=l—e+ (2) JkP“>+O<—> 90
Z} )Z; Kk N (90)
with
! !
Pki = 317/k,3—k' (91)

It turns out that the expansion of A, in small J for large N
can be found for a general dimension d [28]:

B0y @i P, (92)
0 2
where, e.g.,
d=3 J ¢in(Zd\(d=1
() = -2 L) 93)

mPTE+ 1)

We follow [28] to compute the e-expansion of &;(d), for
i =2...7, and find perfect agreement with our perturbative

result (90). In this way, we check 75,66)4 for r=1...6.
In addition, we also compare our result with the first
two nontrivial orders of large-N expansion [6], which

begins as

d
=1
2

AQ
0 N d

4+ 1@ <Q—2+i> +oe o (94)

At six loops only five coefficients of Eq. (5) contribute to

large-N expansion of our result (6) up to O(1/N?). Two of

them y(165) and ygﬂ also enter (92), while the comparison

with & expansion of (94) provides additional checks for yéa,
© and 4©

V14, aDA 7 s.

V. DISCUSSION AND CONCLUSION

In this paper we derived the six-loop anomalous dimen-
sion of the charged ¢¢ operator in the O(N) model. Our
computation was based on the combination of semiclassical
results and explicit diagram calculations. Our expression up
to five loops coincides with that obtained recently in
Refs. [14,29].

The utilized approach relies on diagram-by-diagram
computation of Feynman graphs with an ¢’ insertion,
and, thus, facilitates further six-loop studies of the charged
operators in models with other symmetries once semi-
classical results are available.

Given our result, one can apply various resummation
techniques to the & expansion of A, and obtain numerical
values of scaling dimension in a bunch of three-
dimensional O(N) models.

Based on the fact that we are working at the same order
of perturbation theory and in the same theory, we use in
straightforward manner the advanced technique of Ref. [2]
to compute numerical values and uncertainties of A, for
Q=1...10and N = 2, 4, 6, 8 (see Table I). The latter can
be compared to the Monte Carlo results [30-32].

It is interesting to study how our computation matches
the large Q expansion [33]

Ap =302+ ¢1 202 + o+ O(Q71?).  (95)

Here ¢35, ¢y, are N-dependent constants, while ¢, =
—0.0937254 originates from Casimir energy and is uni-
versal. In Ref. [34] the large-N limit was considered and the
following predictions were obtained:

TABLE II. Fit from resummation results using Q = 1...6 ex-
pressions with ¢y = —0.0937 fixed and an additional free param-

eter c_y 5 in the ¢_;,Q~"/? term appended to the ansatz (95).
C3/2 C1)2 C_12

2 0.3324(6) 0.271(3) 0.009(3)

4 0.2925(4) 0.3241(13) —0.0048(11)

6 0.2612(6) 0.371(3) ~0.022(2)

8 0.2371(9) 0.408(3) —0.036(3)
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FIG. 3.

Leading coefficients in large-charge expansion c3/, and ¢y, as functions of N. We also add results of Monte Carlo simulation

for N =2, 4, 6, 8 from Ref. [32] (MC-1), for N = 2 from Ref. [30] (MC-2) and for N = 4 from Ref. [31] (MC-3).

C3/2Z§N_1/2, cipp=-N'? (96)
which are valid for 1 < Q < N < Q2. We follow [30,32]
and fit our numerical data to (95). The extracted coef-
ficients for a fixed ¢, are given in Table II. One can
see satisfactory agreement between our values and
Monte Carlo results [30-32] (see Fig. 3). While our fits
for ¢z, are close to the Monte Carlo values and approaches
the large-N limit (96), we see rather big discrepancies in
c12- We expect that our error estimates according to
Ref. [2] may be too optimistic and require further studies.
Nevertheless, we see that according to Eq. (96) the
coefficient c3/, decreases with N, while c¢;/, increases.

We believe our result contributes important information
to conformal field theory data (see, e.g., [29] for review).
While we rely on nonperturbative large Q expressions to fix
part of the coefficients in the ansatz (7), it would be
interesting to reproduce them independently, e.g., by
considering Green functions with ¢2=° and ¢$¢=7 inser-
tions. We postpone this verification for the future.
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APPENDIX: DETAILS OF CALCULATION
WITH ICR* OPERATION

Here, we present the expression used for manual compu-
tation of a single diagram by means of JCR* operation. We
closely follow the notation of Refs. [25,26]. One can see that
there is only one nontrivial IR-divergent counterterm,

(i)

which cancels spurious IR divergences appearing in I'; =
G/y; for a UV subgraph y;. The graph I'; = C\yr is
obtained from I'; by deleting lines and internal vertices
(denoted by filled dots) of y1g. One can see that even if I'; can
be zero in dimensional regularization the corresponding
IR counterterm can give a nontrivial contribution to the
final result. All KR'(y;) are known from lower-loop
calculations, while G, G, I';, and 1~“,~ are calculated with
HYPERLOGPROCEDURES:

(A1)
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