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One-loop explicit expressions are derived for the gluon Nielsen identity in the formalism of the screened
massive expansion for Yang-Mills theory. The gauge-parameter-independence of the poles and residues is
discussed in a strict perturbative context and, more generally, in extended resummation schemes. No exact
formal proof was reached by the approximate resummation schemes, but some evidence is gathered in
favor of an exact invariance of the phase, consistently with previous numerical studies.
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I. INTRODUCTION

Confinement and dynamical mass generation are among
the most important open problems of contemporary phys-
ics. The quantum field theories which describe the inter-
actions of quarks and gluons, QCD and pure Yang-Mills
theory, are believed to be fully consistent theories, at all
scales, containing a dynamical cutoff in the IR. But
unfortunately, we are still far from a full understanding
of the confinement mechanism which seems to be some-
how related to the dynamical generation of almost all the
mass which is observed in the universe. Lattice and
continuous studies [1–47] have ruled out the existence
of a Landau pole and supported the existence of a finite
coupling, which is not too large even deep in the IR. On the
other hand, the important role of the analytic properties of
the Green functions, and their relation with the dynamics, is
still largely unexplored because of the breakdown of
ordinary perturbation theory and of the lack of alternative
analytical tools in the continuous.
Quite recently, by a change of the expansion point, a new

perturbative approach has been developed [48–58], a
screened massive expansion which is perfectly sound in
the IR and has the usual merits of ordinary perturbation
theory: calculability, analytical outputs and a manifest
description of the analytic properties in the complex plane.
The method gives direct and quantitative predictions for the

poles of the gluon propagator which appear as complex
conjugated polar singularities [50,56,57].
The existence of complex conjugated poles was pre-

dicted by several models, like the refined Gribov-
Zwanziger model [59–63], and their deep effects on the
dynamical properties of the gluon and on the confinement
of color have been discussed by many authors [64–67].
Moreover, a pair of complex conjugated poles invalidates
the existence of the Källen-Lehmann representation [68],
raises important questions on the correct analytic continu-
ation of the gluon propagator and jeopardizes the analytic
properties of Dyson-Schwinger equations, unless some
compensation arises from the unknown structure of the
exact vertices [69].
On the physical meaning of the complex poles there are

different, contrasting, opinions. A recent formal approach
[67] has embraced the view that the complex poles would
emerge from unphysical zero-norm states which should be
removed from the Hilbert space, giving rise to a confine-
ment mechanism. However, the formal removal of quarks
and gluons from the physical states does not seem a
satisfying solution for the problem of confinement, which
would miss a more physical and dynamical explanation.
Moreover, according to that formal approach, the analytic
continuation of the gluon propagator does not exist [67],
raising serious issues on the physical content of the theory.
A more physical approach [56,65] relies on the idea that

quarks and gluons do exist, as internal degrees of freedom
of the theory, but their phenomenological appearance is
damped by a very short lifetime which confines them. In
that view, the complex poles would play a physical
dynamical role in confinement, besides having to do with
the dynamical mass which is observed in the IR. That
approach is corroborated by the discovery that, not only the
poles, but even the phases of the complex residues appear
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to be gauge-parameter-independent. The whole principal
part of the gluon propagator seems to be gauge invariant:
the phase of the residue is found to change less than
3 × 10−3 when the gauge parameter goes from ξ ¼ 0 to
ξ ¼ 1.2 [52]. On the other hand, in a modified Källen-
Lehmann representation, in presence of zero-norm states,
the phase of the residues could be the direct consequence of
a complex spectrum, and the invariance of the phase could
be itself related to the gauge invariance of the spectrum.1

The same principal part seems to give the main contribution
to a dimension-two condensate [70] and to the short-range
linear raising potential which emerges from the Fourier
transform of the propagator at the leading order. Thus,
many arguments would favor the gauge invariance of the
phase of the residues if the gluons are believed to be
confined but still physical degrees of freedom. Here, by
“physical” we mean that the zero-norm states and their
complex energies might play a role as intermediate steps in
the building of physical excitations, like in the i-particle
scenario of Ref. [71].
From a formal point of view, a proof of gauge invariance

would require the study of the Nielsen identities [72–74],
exact identities which determine the gauge dependence of
the propagator in a covariant gauge. The identities are a
direct consequence of the Becchi-Rouet-Stora-Tyutin
(BRST) symmetry which is displayed by the Faddeev-
Popov Lagrangian of QCD and Yang-Mills theories. There
is a growing interest in the role of the Nielsen identities for
determining the properties of the propagators in a generic
covariant gauge [75] and for their explicit numerical
evaluation [76].
In this paper, the Nielsen identity for the gluon propa-

gator is evaluated by an explicit one-loop calculation in the
framework of a screened perturbative expansion. Here, our
primary interest is in the screened massive expansion, but
the explicit one-loop expressions might be useful for other
screened theories, like the Curci-Ferrari model [77–83].
Moreover, the result can be pushed beyond a strict one-loop
expansion by some resummation of infinite classes of
graphs.
Because of the soft breaking of BRST which occurs in

the screened expansion at any fixed order, the Nielsen
identities are not expected to be fulfilled at one loop in our
framework. Nonetheless, it is instructive to explore how the
results change when going from the strictly perturbative
expressions to those obtained by an approximate resum-
mation of the internal gluon lines. The detailed study of the
analytic properties of the latter seems to suggest that the
phase might be exactly invariant, as expected both numeri-
cally [52] and by physical arguments—if the gluon

principal part is to play a genuine physical role on the
dynamics of the strong interactions. Thus, enforcing the
pole and phase invariance turns out to be a consistent
criterion for the optimization of the screened expansion
from first principles, as was done in [52] with remarkably
good results.
Besides the perturbative, partially resummed, context,

we are still not able to provide an exact formal proof for the
invariance of the phases of the residues.
This paper is organized as follows: the massive screened

expansion is briefly reviewed in Sec. II, in order to fix the
notation; in Sec. III the Nielsen identity for the gluon
propagator is derived and its relation with the polarization
function is discussed; in Sec. IV the explicit one-loop
expression of the identity is derived by the screened
expansion; in Sec. V the one-loop result is discussed both
in the perturbative context and by using different resum-
mation schemes. A detailed account of the explicit steps
leading to the evaluation of the one-loop graphs is reported
in the Appendix.

II. THE SCREENED EXPANSION

The massive, screened expansion was first developed in
Refs. [48,49] and related to the Gaussian effective potential
in Refs. [41,42]. It is based on a change of the expansion
point of ordinary perturbation theory.
In the pure gauge sector, the gauge-fixed Lagrangian can

be written as

L ¼ LYM þ Lfix þ LFP; ð1Þ

where LYM is the Yang-Mills term

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ; ð2Þ

LFP is the ghost term arising from the Faddeev-Popov
determinant and Lfix is a covariant gauge-fixing term,

Lfix ¼ −
1

ξ
Tr½ð∂μÂμÞð∂νÂνÞ�: ð3Þ

Usually, the total action is split as Stot ¼ S0 þ SI where
the quadratic part can be written as

S0 ¼
1

2

Z
AaμðxÞδabΔ−1

0
μνðx; yÞAbνðyÞd4xd4y

þ
Z

c̄aðxÞδabG−1
0 ðx; yÞcbðyÞd4xd4y; ð4Þ

while the interaction contains the three terms

SI ¼
Z

ddx½Lgh þ L3 þ L4�; ð5Þ

1As discussed in Ref. [67], the existence of zero-norm states
gives rise to complex conjugated eigenvalues if the Hamiltonian
is Hermitian. Complex residues follow from the existence of a
complex spectrum even if we assume that the Hamiltonian is
Hermitian.
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which read

L3 ¼ −gfabcð∂μAaνÞAμ
bA

ν
c;

L4 ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e;

Lgh ¼ −gfabcð∂μc̄aÞcbAμ
c: ð6Þ

In Eq. (4), Δ0 and G0 are the standard free-particle
propagators for gluons and ghosts, respectively, and their
Fourier transforms are

Δ0
μνðpÞ ¼ Δ0ðpÞ½tμνðpÞ þ ξlμνðpÞ�;

Δ0ðpÞ ¼
1

−p2
; G0ðpÞ ¼

1

p2
; ð7Þ

having used the transverse and longitudinal projectors

tμνðpÞ ¼ gμν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
: ð8Þ

The screened massive expansion is obtained by a change
of the quadratic expansion point, adding a transverse mass
term to the quadratic part of the action and subtracting it
again from the interaction, thus leaving the total action
unchanged.2 We add and subtract the action term

δS ¼ 1

2

Z
AaμðxÞ δab δΓμνðx; yÞAbνðyÞd4 xd4y; ð9Þ

where the vertex function δΓ is a shift of the inverse
propagator,

δΓμνðx; yÞ ¼ ½Δ−1
m

μνðx; yÞ − Δ−1
0

μνðx; yÞ�; ð10Þ

and Δm
μν is a new massive free-particle propagator,

Δm
μνðpÞ ¼ ΔmðpÞtμνðpÞ þ

ξ

−p2
lμνðpÞ; ð11Þ

with a massive transverse component

ΔmðpÞ ¼
1

−p2 þm2
: ð12Þ

Adding that action term is equivalent to substituting the
new massive propagatorΔm

μν for the old massless oneΔ0
μν

in the quadratic part.
Of course, in order to leave the total action unaffected by

the change, we must include the new interaction vertex, δΓ,
among the standard interaction terms. Dropping all color
indices in the diagonal matrices and inserting Eqs. (7) and
(11) into Eq. (10), the vertex is just the transverse mass shift
of the quadratic part,

δΓμνðpÞ ¼ m2tμνðpÞ: ð13Þ

The proper gluon polarization Π and ghost self-energy Σ
can then be evaluated, order by order, by perturbation
theory. In all Feynman graphs the internal gluon lines are
replaced by the massive free-particle propagator Δm

μν

while the new two-point vertex can be regarded as a
new (transverse) mass counterterm, δΓμν, to be inserted
in order to compensate the shift of the quadratic term in the
action. The new two-point vertex is usually represented by
a cross, like other counterterms, and we will refer to the
graphs with one ore more crosses as crossed graphs.
Since the total gauge-fixed FP Lagrangian is not modi-

fied and because of gauge invariance, the longitudinal
polarization is known exactly and is zero, so that the total
polarization is transverse,

ΠμνðpÞ ¼ ΠðpÞtμνðpÞ; ð14Þ

and the (exact) dressed propagators read

ΔμνðpÞ ¼ ΔðpÞtμνðpÞ þ ΔLðpÞlμνðpÞ;
G−1ðpÞ ¼ p2 − ΣðpÞ; ð15Þ

where the transverse and longitudinal parts are given by

Δ−1ðpÞ ¼ −p2 þm2 − ΠðpÞ;

ΔLðpÞ ¼ ξ

−p2
: ð16Þ

At tree level, the polarization is given by the counterterm
δΓ of Eq. (13), so that the tree-term Πtree ¼ m2 just cancels
the mass in the dressed propagator Δ of Eq. (16), giving
back the standard free-particle propagator of Eq. (7).
Summing up the loops, the transverse dressed propagator

can be written as

ΔðpÞ ¼ ½−p2 − ΠloopðpÞ�−1; ð17Þ

where ΠloopðpÞ ¼ ΠðpÞ −m2 is the sum of the transverse
part of all the polarization graphs containing loops (that is,
excluding the tree-level term).
The diverging integrals are made finite by dimensional

regularization and can be evaluated in the Euclidean
space, by setting d ¼ 4 − 2ϵ. An important feature of
the massive expansion is that the crossed graphs cancel
all the spurious diverging mass terms exactly, so that no
mass renormalization is required. At one-loop, as shown in
Refs. [48,49,52], in the MS scheme, the diverging part of
the proper transverse polarization can be written as

Πϵ
loopðpÞ ¼ −p2

Ng2

ð4πÞ2
1

ϵ

�
13

6
−
ξ

2

�
; ð18Þ2This is actually done after renormalizing the Lagrangian. The

details can be found e.g., in [53].
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which is the same identical result of standard perturbation
theory [84].
As usual, the diverging part can be canceled by wave

function renormalization, by subtraction at an arbitrary
point. Of course, a finite term ∼const: × p2 arises from the
subtraction and cannot be determined in any way: it
depends on the regularization scheme and on the arbitrary
renormalization scale μ, so that its actual value remains
somehow arbitrary. When the coupling is absorbed into an
overall finite multiplicative renormalization constant for the
propagator and the gluon mass m is used to fix the energy
scale of the theory (see [49] for details), such a term is left
as the only spurious free parameter of the approximation.
The fixed-scale approach, as opposed to its RG-

improved counterpart [53], has the advantage of providing
analytical expressions which are in excellent agreement
with the lattice data below 2 GeV—see Fig. 1 (solid black
curve)—and can be easily continued to the whole complex
plane [50,52,55,56]. The success of the method would
suggest that, in the infrared, a mere constant, inserted in the
factor of p2 in Eq. (18), can mimic the effects of higher-
order terms.
The agreement can be achieved from first principles by

using a sort of optimization by variation of the renormal-
ization scheme, a method that was proven to be very
effective for the convergence of the expansion [85,86]. In
this framework, the const: × p2 term—or, equivalently in
MOM-like schemes, the dimensionless subtraction scale
μ=m–, is fixed by requiring that some properties related to
gauge invariance, and more precisely the gauge invariance
of the poles and phases of the residues, are satisfied by the
approximate one-loop expression of the gluon propagator
[52,54]. When such properties are enforced [52], the
optimized one-loop analytical expression again provides

an excellent agreement with the lattice, as shown in Fig. 1
(dashed green curve).
The gauge invariance of the gluon poles [73] is an exact

property which easily follows from the BRST invariance of
the Yang-Mills Lagrangian. Using the BRST symmetry, a
Nielsen identity [72]

∂

∂ξ

1

ΔðpÞ ¼ 2F ðpÞ
�

1

ΔðpÞ
�
2

; ð19Þ

where F ðpÞ is the transverse component of another Green
function (more on this in the next section), can be derived
[74]. Since the Yang-Mills Lagrangian is not modified as a
whole by our shift of the expansion point, we know that,
provided that the BRST symmetry is not broken non-
perturbatively, a sufficiently accurate approximation of the
gluon propagator must have gauge-invariant poles.
Nonetheless, due to the soft breaking of BRST symmetry

caused by the introduction of a mass term in the kinetic and
interaction terms of the Lagrangian, the gluon propagator
computed in the screened expansion does not automatically
fulfill such a constraint, for general values of the free
parameters. The poles of the gluon propagator were found
to be complex [49], coming in a complex-conjugate pair at
p2 ¼ p2

0; ðp2
0Þ⋆, with Imðp2

0Þ ≠ 0. While the poles, being
the solution of the ξ-dependent equation Δ−1ðp; ξÞ ¼ 0,
can in general depend on the gauge parameter ξ, the free
parameters of the expansion—that is, the constant in the
const: × p2 term and the gluon mass parameter m2 itself—
can be tuned with the gauge so as to make the poles
ξ-independent [52], thus complying with the Nielsen
identities. The additional requirement that the phase of
the residues be gauge-invariant was found to be sufficient to
fix the value of the spurious free constant in the Landau
gauge [52] and yielded a gluon propagator which is
remarkably close to the free fit obtained from the lattice
data, and to the lattice results themselves.
While the gauge invariance of the poles is a trivial

consequence of the Nielsen identities, and must hold even
when the poles are complex, the gauge invariance of the
phase of the residues is less obvious. As discussed in
Ref. [52], because of the square on the right-hand side of
Eq. (19), the phase of the complex residues is invariant if
the Green function F does not have a pole at the same
position as the gluon propagator ΔðpÞ.
Thus, the discovery of Ref. [52], that the gauge invari-

ance of the phase of residues (in the complex plane)
provides an optimal agreement with the lattice data (in
the Euclidean space), might lead to two different inter-
pretations: either the function F has no poles at the same
position as the gluon propagator, and the gauge invariance
of the phase of the gluon residues is an exact property, or
the change of the phase with the gauge is an accidentally
small higher-order effect which is not seen at one-loop.
Actually, due to the arbitrariness in the renormalization of

 0
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Duarte et al., SU(3)
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FIG. 1. The one-loop gluon propagator computed in the Landau
gauge (ξ ¼ 0) within the framework of the fixed-scale screened
massive expansion, together with the lattice data of Ref. [18].
Free fit (solid black curve) and optimized calculation (green
dashed curve). The energy scale is set by taking m ≈ 0.65 GeV.
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the gluon residue, there is also a third possibility, which will
be discussed in the next section.
A more detailed analysis of the point motivates the

explicit derivation of the Nielsen identity, Eq. (19), in
the special context of the screened expansion. This will be
the content of the next two sections.

III. THE NIELSEN IDENTITIES

The Nielsen identities [72] are a set of equations which
determine the gauge dependence of the exact Green
functions of a gauge theory. They can be derived using
BRST symmetry, under the hypothesis that the latter is not
broken in the vacuum. For the propagators of QCD, the
identities were fully discussed and derived by a functional
method in Ref. [74]. In that work, a detailed calculation was
reported for the explicit one-loop identities, in the frame-
work of standard perturbation theory.
In this section, we give a quite straightforward derivation

of the identities and discuss their relation with the polari-
zation function. A detailed derivation of the explicit one-
loop expressions, in the framework of the screened massive
expansion, will be discussed in the next section.
We start by reintroducing the Nakanishi-Lautrup aux-

iliary field Ba in the Yang-Mills action and writing the
gauge-fixing term in Eq. (3) as

Lfix ¼
ξ

2
BaBa þ Bað∂ · AaÞ: ð20Þ

Integrating out the Nakanishi-Lautrup field is equivalent to
solving the equation of motion Ba ¼ −ð∂ · AaÞ=ξ.
When expressed in terms of the B-field, the total Yang-

Mills Lagrangian satisfies the usual BRST invariance
property

δθL ¼ 0; ð21Þ

where

δθA
μ
a ¼ θDμca;

δθc̄a ¼ θBa;

δθca ¼ −
g
2
fabcθcbcc;

δθBa ¼ 0; ð22Þ

and θ is a Grassmann parameter.
The field B also determines the gauge-parameter depend-

ence of the total Lagrangian, since the derivative of the
latter with respect to ξ is given by

∂L
∂ξ

¼ 1

2
BaBa: ð23Þ

Using Eq. (23), the average hOi of any operator O,

hOi ¼
R
O exp ði R LÞR
exp ði R LÞ ; ð24Þ

is easily seen to satisfy

∂

∂ξ
hOi ¼

�
O
�
i
Z

∂L
∂ξ

��
− hOi

��
i
Z

∂L
∂ξ

��

¼ i
2

�
O
Z

BaBa

�
: ð25Þ

The last equality follows from Eq. (23) and from the
Slavnov-Taylor identity

0 ¼ hδθðc̄aBaÞi ¼ hδθc̄aBai ¼ hBaBai; ð26Þ

which holds provided that the vacuum is BRST-invariant,
so that

hδθO0i ¼ 0 ð27Þ

for any operator O0.
For the case of the exact gluon propagator

Δμν
abðx; yÞ ¼ −ihAμ

aðxÞAν
bðyÞi; ð28Þ

we can denote by 2F the Green function

2F μν
abðx; yÞ ¼

∂

∂ξ
Δμν

abðx; yÞ

¼ 1

2

Z
d4zhAμ

aðxÞAν
bðyÞBcðzÞBcðzÞi; ð29Þ

or in a more compact notation

∂Δ
∂ξ

¼ 1

2

�
AA

Z
B2

�
¼ 2F : ð30Þ

Denoting by Γ ¼ −Δ−1 the two-point vertex function, the
Nielsen identity for Γ reads

∂Γ
∂ξ

¼ Δ−1 ·
∂Δ
∂ξ

· Δ−1 ¼ Γ · ð2F Þ · Γ; ð31Þ

where the dot products are functional productswhich become
ordinary products when the Fourier transform is taken.
Strictly speaking, Eq. (31) becomes the Nielsen identity

only when an independent and direct evaluation of the
Green function F is provided by the Slavnov-Taylor
identities, as shown below. While the Green function F
seems to have two gluon legs (hence a double gluon pole in
the Fourier transform) in Eq. (29), one of the legs is eaten
up as a result of BRST symmetry, so that according to
Eq. (31) the Fourier transform of the function F has a
single pole at most. This follows from the Slavnov-Taylor
identity
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0 ¼ hδθðAAc̄BÞi ¼ hðDcÞAc̄Bi þ hAðDcÞc̄Bi þ hAABBi;
ð32Þ

which yields

2F μν
abðx; yÞ ¼ −

1

2

�Z
d4zhDμcaðxÞAν

bðyÞc̄cðzÞBcðzÞi

þ ðx ↔ y; a ↔ bÞ
�
: ð33Þ

The equivalence of the function F in Eq. (33) and in
Eq. (29) is the core of the Nielsen identity for the gluon
propagator.
The presence of a single gluon leg in Eq. (33) ensures

that at least one of the two Γ factors survives on the right-
hand side of Eq. (31) and that a zero occurs at the pole
position p ¼ p0 in the derivative of the Fourier transforms:

�
∂Γ
∂ξ

�
p¼p0

¼
�
∂Π
∂ξ

�
p¼p0

¼ 0 if Γðp0Þ ¼ 0: ð34Þ

As a consequence, the position of the pole is gauge-
parameter-independent in the exact gluon propagator, as
can be explicitly seen from the equations

0 ¼ d
dξ

Γðp2
0ðξÞ; ξÞ

¼ ∂Γ
∂ξ

ðp2
0ðξÞ; ξÞ þ

∂Γ
∂p2

ðp2
0ðξÞ; ξÞ

dp2
0

dξ
ðξÞ

¼ ∂Γ
∂p2

ðp2
0ðξÞ; ξÞ

dp2
0

dξ
ðξÞ ⇒ dp2

0

dξ
¼ 0; ð35Þ

given that in order for Γ to have a zero at p2
0, ð∂Γ=∂p2Þp0

must be finite. Here, a transverse projection is understood
for all the functions, since the longitudinal parts are known
exactly and, in that case, the invariance of the pole is trivial,
being the longitudinal pole unshifted from p ¼ 0 in
any gauge.
The discovery that the phase of the complex residue may

be gauge-invariant [52] has led to the claim that the Green
function F might have no pole at all in p ¼ p0. Then, the
double zero on the right-hand side of Eq. (31) due to the Γ’s
would be enough for ensuring that

∂

∂ξ

�
∂Γ
∂p2

�
p¼p0

¼ 0; ð36Þ

yielding a proof of gauge invariance for the residue [52],
see ahead. Going back to Eq. (31), the claim is equivalent to
assuming that the derivatives ∂Γ=∂ξ and ∂Π=∂ξ have a
double zero at the pole position.
Actually, the invariance of the modulus of the residue

would not make much physical sense, since the modulus is

defined up to an arbitrary—potentially gauge-dependent—
real renormalization factor. What emerged in Ref. [52]
was the invariance of the phase of the residue, which
would be enforced by a weaker condition: denoting by
R ¼ jRj expðiθÞ the complex residue at the pole p2 ¼ p2

0,
the transverse projection of the two-point function reads

Γðp2Þ ¼ ðp2 − p2
0Þ
e−iθ

jRj þ…; ð37Þ

and because of the gauge invariance of the pole p0, the
logarithmic derivative gives

∂θ

∂ξ
¼ −Im

�
1

Γ
∂Γ
∂ξ

�
p¼p0

¼ −Im½ð2F ÞΓ�p¼p0
; ð38Þ

where the second equality follows from Eq. (31) and a
transverse projection is understood in all the functions on
the right hand side. Thus, the vanishing of the imaginary
part, on the right-hand side, would be enough for ensuring
that the phase is invariant.
While the invariance of the modulus of the residue seems

to be unnecessary in view of renormalization, the invari-
ance of the phase makes sense in presence of complex
poles: the phase determines the shape of the principal part
of the propagator—which, as shown in [52], makes up for
the largest contribution to ΔðpÞ—and has an effect on all
related observable objects, like the Fourier transform of the
propagator which at large momenta could be seen as a
short-distance approximation for the quark-quark potential.
On the other hand, the invariance of the phase has always
been expected whenever the pole and residue were real,
since then, trivially, θ ¼ 0 for any ξ.
It is instructive to explore the content of Eq. (29) in terms

of diagrams of the screened expansion and, more generally,
of perturbation theory. We will be interested in the Fourier
transform

2δabF μνðpÞ≡ 2F μν
abðp;−pÞ; ð39Þ

where

2F μν
abðp; qÞð2πÞ4δð4Þðpþ qÞ

¼ 2

Z
d4xd4yF μν

abðx; yÞeip·xþiq·y: ð40Þ

We first recover, by the equations of motion,

hBaA
μ
bi ¼ −

1

ξ
hð∂ · AaÞAμ

bi; ð41Þ

yielding the exact result

Z
d4xeip·xhBað0ÞAμ

bðxÞi ¼
−ipν

ξ
iΔνμ

abðpÞ ¼
δabpμ

−p2
; ð42Þ
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which is valid to all orders [74] because of Eq. (16). All
graphs contributing to the right hand side of Eq. (29) can be
obtained by the insertion of the two-point local vertex B2

a in
the graphs of the gluon propagator. At tree level, there is
only one term given by the product hABihBAi with a
symmetry factor of 2, yielding

2F μνðpÞ ¼
�
pμ

−p2

��
−pν

−p2

�
¼ −

pμpν

p4
: ð43Þ

Inserting this longitudinal term in Eq. (31), together with
the exact longitudinal part Γμν ¼ lμνp2=ξ, the identity is
easily seen to be satisfied exactly. Thus, we predict that all
loop contributions toF must be transverse [74]. In fact, this
is the case, since they can all be derived by insertion of a
vertex

R
B2 in all graphs for the gluon polarization, which is

transverse.
In more detail, denoting by πðnÞ a polarization graph with

n internal gluon lines, all the corresponding graphs for the
function F , in Eq. (29), are obtained by substituting the
longitudinal term hABihBAi for one of the n internal gluon
lines and restoring the external gluon legs. The inserted
longitudinal term is just the tree-level graph for 2F and is
equal to ΔLlμν=ξ ¼ ∂Δμν

m =∂ξ according to Eqs. (11), (16)
and (43). Thus, we are just replacing a gluon line by its
longitudinal part, divided by ξ. Now, this is precisely what
we get by taking the derivative ∂πðnÞ=∂ξ. Summing over n,
we get a direct proof of Eq. (29), since the dependence on ξ
is in the internal lines, while the external legs are projected
on the transverse polarization and do not depend on ξ. This
argument holds both for the screened expansion (m ≠ 0)
and for standard perturbation theory (m ¼ 0), since it
only depends on the transversality of the exact gluon
polarization.
While the content of Eq. (29) is trivial in terms of

diagrams, its equivalence to Eq. (33) is not immediate and
there is no one-to-one correspondence of diagrams.
Eq. (33) follows from the overall BRST symmetry of
the Lagrangian and the equivalence to Eq. (29) holds for the
exact functions. As shown in Ref. [74], in ordinary
perturbation theory, if both functions are correctly
expanded in powers of the coupling, they must agree at
any finite order. On the other hand, the addition and
subtraction of a gluon mass term that defines the screened
massive expansion causes the soft breaking of BRST
invariance at any finite order. Thus, we expect the
Nielsen identities not to hold perturbatively in the screened
expansion. This does not imply, however, that the screened
expansion’s gluon poles are not gauge-invariant. As dis-
cussed in the last section, the freedom in the choice of the
spurious free parameters is still enough to enforce their
invariance, once an explicit expression for the gluon
propagator has been obtained at finite order.
At any finite order, deviations from the exact BRST

symmetry are a measure of the accuracy of the truncated

expansion [52,54,55]. Thus, it is not a case that the screened
expansion gives an excellent agreement with the lattice data
when optimized by the constraints of pole (and phase)
invariance, since these are the conditions which minimize
the deviations between one-loop and exact results.
On the other hand, we might wonder if the gauge-

invariance of the phase of the residue is an exact property of
Yang-Mills theory. To date, we have not been able to reach
a formal proof. For what concerns the screened expansion,
due to the previously discussed soft breaking of BRST
invariance, the perturbative expression for ∂θ=∂ξ cannot be
trusted as is at any finite order. Nonetheless, a nonpertur-
bative resummation of the gluon graphs in the Nielsen
identity might give us hints as to whether the phase is really
invariant. This will be discussed in Sec. V.

IV. ONE LOOP EXPLICIT CALCULATION

The Green function F , in Eq. (33), can be directly
evaluated in the framework of the screened massive
expansion, order by order. Here, we give the explicit result
up to one-loop.
At tree level, there is only one graph contributing to

Eq. (33) which factors as hð∂μcÞc̄ihBAνi yielding

2F μνðpÞ ¼ −ð−ipμÞ
�

i
p2

��
−pν

−p2

�
¼ −

pμpν

p4
ð44Þ

in agreement with the exact result in Eq. (43). There are no
crossed graphs at tree level because any insertion of the
transverse mass vanishes in the longitudinal tree term. As
discussed above, since Eq. (44) gives the whole longi-
tudinal contribution, the sum of all higher order terms must
be transverse. In fact, the uncrossed one-loop graphs which
contribute to Eq. (33) are the first three pairs reported in
Fig. 2, and each pair gives a pure transversal term. More
generally, all loop graphs occur in pairs, with the structure
displayed in Fig. 3, arising from the splitting of the
covariant derivative in two terms,

Dμca ¼ δab∂
μcb þ gfabcA

μ
bcc; ð45Þ

and from the insertion of a ghost-gluon vertex ðc̄AcÞ in the
first of these. The expressions of the graphs of type (1) and
(2) have the following general form, respectively,

2F μν
abð1ÞðpÞ ¼ −ihð∂μcaÞðgfdef∂αc̄dAα

ecfÞ � � �i

¼ ð−ipμÞ
�
1

p2

�
ðipαÞgfaef

Z
Δm

αβ
eg � � � ;

2F μν
abð2ÞðpÞ ¼ −hðgfaefAμ

ecfÞ � � �i

¼ −gfaef
Z

Δm
μβ
eg � � � ; ð46Þ

and their sum is a manifestly transverse contribution
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2F μν
abð1þ2ÞðpÞ ¼

�
gμα −

pμpα

p2

�
gfeaf

Z
Δm

αβ
eg � � � : ð47Þ

As we said, these three pairs give the transverse one-loop
contribution for any expansion with a mass in the free
propagator, Δm. While our main interest is on the screened
massive expansion of Sec. II, their explicit expressions
might be of some interest for other theories, like Curci-
Ferrari model in the Landau gauge. We must mention that,
in massive theories, there is a class of anomalous graphs,
not shown in Fig. 2, contributing to the longitudinal part of
F . These arise from polarization insertions in the external
gluon leg of the longitudinal tree-level graph. While
individual polarization terms might have a nonvanishing
longitudinal part in massive theories, their exact resumma-
tion is zero in the screened massive expansion, ensuring
that the tree-level term still provides the total longitudinal
contribution, as required by the BRST symmetry. Thus, we
might neglect the anomalous terms entirely.
The third pair of graphs in Fig. 2, (c1) and (c2), have a

longitudinal leg on the right side. Then, their sum is zero
according to Eq. (47), because of the transverse projector

coming from the loops on the left. The second pair, graphs
(b1) and (b2), are basically the same as in the standard
perturbation theory, since no massive propagator occurs in
the loop. The only difference arises from the bare gluon leg
on the right side, which must be replaced by the massive
free propagator Δm in the screened expansion. The first
pair, graphs (a1) and (a2), differs from the standard result
because of the internal massive gluon line. The explicit
calculation is straightforward and the detailed steps are
reported in the appendix. The sum of all the uncrossed one-
loop graphs can be written as

2F μνðpÞ ¼ g2N
64π2

tμνðpÞ
p2 −m2

Fð−p2=m2Þ; ð48Þ

where the diverging function FðsÞ, with s ¼ −p2=m2, is
regularized by setting d ¼ 4 − 2ϵ and reads

FðsÞ ¼ 2

ϵ
− 3LðsÞ þ logðsÞ − 2ξþ const:; ð49Þ

while the logarithmic function LðsÞ, which is derived in
Eq. (A34), can be recast as

LðsÞ ¼ −
1

3s
þ
�
1 −

1

s
þ 1

3s2

�
log s

þ
��

sþ 1 −
1

s
þ 1

3s2

�
log

�
1þ 1

s

�
− 1

�
ð50Þ

and shows the leading behavior LðsÞ ∼ log s in the limit
s → ∞, which occurs when the mass is set to zero in order
to recover the result of standard perturbation theory.
Actually, as shown in the appendix, graphs (a) and (b) agree
with the known results in that limit [74]. Moreover, in the
same limit, the diverging part can be checked by a direct
comparison with the explicit one-loop diverging term of the
polarization, which is well known and is reported in
Eq. (18). By a direct calculation of the derivative and by
inserting it in Eq. (31), with the tree-level two-point
function, ΓðpÞ ¼ p2, the diverging part of the transverse
one-loop function F reads

2F ¼ 1

Γ2

∂Γ
∂ξ

¼ 1

Γ2

∂Π
∂ξ

∼
�
1

p2

�
2
�
−p2

Ng2

ð4πÞ2
�
−1
2ϵ

��

¼ g2N
64π2

1

p2

�
2

ϵ

�
; ð51Þ

in perfect agreement with Eqs. (48) and (49). That is
important for the renormalization of the function F , since
all the divergences must be absorbed by the wave function
renormalization of the gluon propagator in order to make

(1)

(2)

FIG. 3. General structure of each pair of graphs contributing to
the function F in Eq. (33). For each pair, the sum of graph (1) and
graph (2) gives a transversal term, as shown in Eqs. (46) and (47).

(b1)(a1)

(a2) (b2)

(c1)

(c2)

(d1)

(d2)

FIG. 2. One-loop graphs contributing to the function F , as
defined in Eq. (33), in the screened expansion. The mixed line is
the longitudinal function hBAi, while the solid cross is the
transverse mass counterterm.
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sense of the Nielsen identity, Eq. (31), when the finite,
renormalized propagator is considered.
It is instructive to see how the divergence cancels in the

renormalized functions. In the MS scheme, the wave
function renormalization constant ZA follows from the
divergence of the polarization in Eq. (18) and reads

ZA ¼ 1þ g2N
ð4πÞ2

�
1

ϵ

��
13

6
−
ξ

2

�
; ð52Þ

while the logarithmic derivative of the renormalized (trans-
verse) vertex function, ΓR ¼ ZAΓ, can be written as

1

ΓR

∂ΓR

∂ξ
¼ 1

ZA

�
∂ZA

∂ξ

�
þ 1

Γ
∂Γ
∂ξ

¼ −
g2N

2ð4πÞ2
�
1

ϵ

�
þ g2N
64π2

FðsÞ

¼ g2N
64π2

�
FðsÞ − 2

ϵ

�
; ð53Þ

where the second term in the second line arises from the
Nielsen identity, Eq. (31), and from the insertion of the one-
loop result, Eq. (48), neglecting higher order terms.
According to Eqs. (37) and (38), the real and imaginary
part of the logarithmic derivative are the gauge-parameter
derivative of the modulus and phase, respectively, of the
residue. They are made finite by the subtraction of
the diverging term which occurred in Eq. (49). But, while
the modulus still depends on an arbitrary (real) constant
which arises from the subtraction and regularization
schemes, as it should, the phase of the residue is finite
anyway and does not depend on the renormalization up to
higher order corrections. In fact, we can write

∂θ

∂ξ
¼ −Im

�
1

Γ
∂Γ
∂ξ

�
p0

¼
�
g2N
64π2

�
Im½FΓΔm�p0

; ð54Þ

where p0 is the pole position and, neglecting higher order
corrections, Γ can be taken at tree level, so that ΓΔm ≈ −1,
which is real. Thus, when computing the derivative of the
phase, we can drop all constants and real additive terms in
the one-loop function F, which simplifies as

FðsÞ → logðsÞ − 3LðsÞ: ð55Þ

At one loop, in principle, there are other graphs con-
tributing to F in the screened expansion: the crossed graphs
which contain one or more insertions of the transverse mass
counterterm, such as diagrams (d1) and (d2) in Fig. 2.
These are higher order graphs by vertex counting, but still
one-loop if the powers of g2 are considered. Thus, their
inclusion must be discussed in the framework of the
detailed approximation scheme which is used. For instance,
the inclusion of an infinite set of graphs with any number of

mass counterterms is equivalent to a Dyson resummation of
the constant polarization term Π ¼ m2. The effect is that, in
any gluon line, the massive gluon propagator is replaced by
the bare massless one, restoring the ordinary standard
perturbation theory. That is not what we would aim to,
of course. The inclusion of a finite number of mass
counterterms, up to a given order, turned out to be the
best choice for canceling the spurious divergences without
falling into a trivial resummation [49]. Here, no spurious
divergence is found and the inclusion of a finite number of
crossed graphs will be discussed case by case.
The crossed graphs can be easily evaluated by deriva-

tives of the standard one-loop graphs [48–50]. For instance,
the fourth pair of graphs in Fig. 2, graphs (d1) and (d2),
contain one insertion of the transverse mass counterterm in
the internal gluon line which is replaced by the transverse
chain Δm ·m2 · Δm

1

−p2 þm2
→

1

−p2 þm2
m2

1

−p2 þm2

¼ −m2
∂

∂m2

�
1

−p2 þm2

�
: ð56Þ

Thus, after amputating the external leg, the inclusion of the
crossed graphs (d1) and (d2) follows from the correspond-
ing uncrossed graphs, (a1) and (a2), as

ΓmF ðaÞ þ ΓmF ðdÞ ¼
�
1 −m2

∂

∂m2

�
½ΓmF ðaÞ�: ð57Þ

That is equivalent to replacing the logarithmic function
LðsÞ with a new function LCðsÞ in Eqs. (49) and (55),
defined as

LCðsÞ ¼
�
1þ s

∂

∂s

�
LðsÞ − 1; ð58Þ

where the added constant, −1, arises from the derivative of
1=ϵ̂ according to Eq. (A16). The explicit calculation yields

LCðsÞ ¼ 1

3s
−

4

3ð1þ sÞ þ
�
1 −

1

3s2

�
log s

þ
��

2sþ 1 −
1

3s2

�
log

�
1þ 1

s

�
− 2

�
: ð59Þ

The manifest leading behavior LCðsÞ ∼ LðsÞ ∼ log s, in the
limit s → ∞, confirms that the contribution of the crossed
graphs is zero in the limit m → 0.

V. DISCUSSION

We would like to discuss the invariance properties of the
principal part of the gluon propagator. Our starting point is
Eq. (54), which gives the explicit one-loop gauge depend-
ence for the phase of the residue at the pole of the gluon
propagator, as computed in the screened expansion by the
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Nielsen identities. WithΔmΓ ¼ −1 at tree level, the identity
simplifies as

∂θ

∂ξ
¼ −Im

�
1

Γ
∂Γ
∂ξ

�
p0

¼ −
�
g2N
64π2

�
Im½F�p0

: ð60Þ

As previously discussed, since BRST invariance is
broken in the screened expansion at any finite order, we
may expect Im½F�p0

to be different from zero even if the
phase were exactly gauge-invariant. This is indeed the case,
as we show in Fig. 4 by plotting the ImfFð−p2=m2Þg ¼ 0
contour in the complex p-plane. We find a continuous line
of zeros for the imaginary part, but quite far away from the
pole position (asterisk-shaped point in the figure), which
was found at p0=m ¼ 0.8857þ 0.5718i in Ref. [52] by the
optimized one-loop expansion. The line does not cross the
pole, but we would not expect that to happen at one-loop.
Inserting a finite number of mass counterterms in the

internal gluon lines would not change the result too much.
For instance, by including the crossed graphs (d1) and (d2)
we obtain, by Eq. (59), the contour plot shown in Fig. 5.
Again, we find a line of zeros, but the distance from the
pole is even larger.
A more accurate approximation of the exact result would

consist in the resummation of all the one-loop polarization
insertions in the internal gluon line. This would be
equivalent to replacing the bare gluon propagator Δm with
the one-loop function −ΓðpÞ−1 inside the integrals in
graphs (a1) and (a2), so that, in addition, the diagrams
themselves would contain information on the position of
the poles. The one-loop function Γðp2Þ is known analyti-
cally, but the integrals would be prohibitive. On the other
hand, they can be easily evaluated if the propagator is

approximated by its principal part,

ΔPðpÞ ¼ −
R

p2 − p2
0

−
R⋆

p2 − ðp2
0Þ⋆

; ð61Þ

as was done in Ref. [58] to study the infrared behavior of
the quark propagator. The principal part ΔPðpÞ is the
largest contribution to the one-loop gluon propagator of
Fig. 1, and by a slight renormalization it provides a very
good approximation of the exact propagator in the IR [52].
It is also equivalent to the leading order propagator of the
refined Gribov-Zwanziger effective theory [59–63].
In graphs (a1) and (a2), an approximate resummation of

all the polarization insertions in the internal gluon line can
be achieved very easily, without having to evaluate new
integrals, by replacing Δm → ΔP under the sign of integral
and using a trick which was discussed in Ref. [58]. Using
the linearity of the one-loop graphs, the result follows by
analytic continuation of the mass parameter m in the
complex plane. If we denote by Δp0

a bare propagator
Δm with the mass m replaced by p0, then the principal part
can be written as

ΔP ¼ 1þ i tan θ
2

Δp0
þ 1 − i tan θ

2
Δp⋆

0
; ð62Þ

where as before θ is the phase of the residue and the overall
normalization of ΔP is fixed so that ΔPðpÞ ∼ ΔmðpÞ in the
UV, thus ensuring that the divergent part of the integral
does not change. Denoting by s0 ¼ p2

0=m
2 the adimen-

sional pole position, we can then define a modified
resummed logarithmic function LR as

LRðsÞ ¼ 1þ i tan θ
2

Lðs=s0Þ þ
1 − i tan θ

2
Lðs=s⋆0Þ; ð63Þ

to replace the function LðsÞ in Eq. (55). A rigorous proof of
the procedure is given in Ref. [58].

∗

−

+

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
Re[p/m]

 0

 0.2

 0.4

 0.6

 0.8

 1

Im
[p

/m
]

FIG. 4. Contour plot of the equation ImfFð−p2=m2Þg ¼ 0 in
the complex plane of p, in units of m. The asterisk is the gluon
pole p0, Re½p0=m� ¼ 0.8857, Im½p0=m� ¼ 0.5718, as found in
Ref. [52]. A continuous line of zeros is found for the imaginary
part of F. Because of the symmetry Fð−p2⋆=m2xÞ ¼
Fð−p2=m2Þ⋆, only the first quadrant is shown. The plain
Eq. (55) is used for the calculation, without any insertion of
crossed graphs or resummations.
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4

Re[p/m]
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 0.2

 0.4

 0.6

 0.8

 1

Im
[p

/m
]

FIG. 5. Same as Fig. 4, but with the inclusion of the crossed
graphs (d1) and (d2). Equation (59) is used for the calculation
instead of Eq. (50).
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The analytic properties of the function F change dra-
matically when the internal gluon line is replaced by the
principal part, with complex poles, using Eq. (63) instead
of Eq. (50) in Eq. (55). As shown in Fig. 6, the line of zeros
of the imaginary part is strongly modified and reaches a
point very close to the pole. In more detail, the line of zeros
merges with a branch cut which—albeit not clearly visible
in the plot—originates at the pole itself. In the figure, the
branch cut is depicted as a wavy line, along which the
function changes sign without going to zero.3

The branch cut is explained by the existence of a
logarithmic divergence at the pole. In Fig. 7, this logarithmic
divergence is displayed by plotting the function Im½F� with
the real part Re½p=m� kept fixed at the pole value,
Re½p0=m� ¼ 0.8857, while changing the imaginary part,
Im½p=m�, across the pole, which occurs at Im½p0=m� ¼
0.5718. The logarithmic divergence arises from the diver-
gence of LðsÞ at s ¼ −1 in Eq. (50); it follows the pole and
moves to s ¼ −s0 in Eq. (63), as L gets replaced by LR.
The divergence does not spoil the invariance of the pole,

since it is anyways canceled by the zero of Γ in Eq. (31). On
the other hand, at the level of the derivative ∂θ=∂ξ, the
phase of the residue would receive an unphysical diverging
term if the logarithm were not compensated by an extra
zero at the pole. In other words, if the branch cut is a true
feature of the exact result, then the Nielsen identity for the
phase is well-defined only if the exact line of zeros reaches
the pole. We may then expect that vertex and higher order
corrections, when included, would drive the imaginary part
of F toward an exact zero at p0, in order to reconcile the
identity with the expectation of a finite phase change for the
residue. The vanishing of the derivative of the phase would
then follow.

More generally, if the logarithmic divergence were
genuine—with no zero to tame it in F—the diverging
phase would be the sign of a branch point at the zero of Γ.
p0 would not then be a true pole of the propagator, and the
steps which led to Eqs. (38) and (54) would be invalidated.
The Nielsen identity would still hold, but its relation to the
phase would be lost, because there would not be a well-
defined residue in the first place. Of course, in this scenario,
the gluon propagator would have no principal part at all,
which is in contrast with what was found by the screened
expansion at one loop. This is quite unlikely, if we look at
the excellent agreement which is found with the lattice data
in Fig. 1.
At the same time, it has been recently shown that without

a knowledge of the exact vertex structure, nothing can
prevent a wild proliferation of unphysical branch cuts,
order by order, when complex-conjugated poles are present
in the propagator [69]. Thus, the logarithmic divergence
and associated branch cut might just be a consequence of
the missing resummation of vertex corrections. In the
complete absence of a logarithmic divergence at p0,
Im½F�p0

would be finite with a line of zeros passing
remarkably close to it. Thus, again, our resummed results
point to either the derivative ∂θ=∂ξ being exactly zero, or at
least to it being very small.
We are far from having reached a formal proof of the

vanishing of the gauge-derivative of the phase, of course.
Nonetheless, we argue that the exact gauge-parameter-inde-
pendence of the phase θ is the only reasonable assumption
which could avoid any conflict between the exact Nielsen
identity and the results of the screened expansion. Were the
conflict an artifact of the expansion itself, we argue that there
are good indications from our results that the derivative of the
phase is at least very small, if not exactly zero.
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[p

/m
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FIG. 6. Same as Fig. 4, but with a full resummation of the
internal gluon line by the principal part, according to Eq. (63),
which is used for the calculation instead of Eq. (50). The wavy
line is a branch cut where the function changes sign without
crossing the zero.
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FIG. 7. Logarithmic divergence of the function F at the pole,
according to the resummation scheme of Eq. (63). The imaginary
part, ImfFð−p2=m2Þg is evaluated by Eq. (63) as a function of
Imðp=mÞ across the pole, with Rep=m kept fixed at the pole
value, Rep=m ¼ 0.8857.

3As such, the branch cut should not be viewed as being part of
the contour ImfFð−p2=m2Þg ¼ 0, of course.

NIELSEN IDENTITIES IN SCREENED THEORIES PHYS. REV. D 106, 076014 (2022)

076014-11



ACKNOWLEDGMENTS

This research was supported in part by the Istituto
Nazionale di Fisica Nucleare (INFN), SIM national project,
andby the “Lineadi intervento2”of theUniversity ofCatania,
Department of Physics and Astronomy, project HQCDyn.

APPENDIX: ONE-LOOP GRAPHS

1. Graphs (a1) and (a2)

The first graph, (a1) in Fig. 2, reads

2F μν
abðpÞ ¼ −ð−ipμÞ

�
i
p2

�
pαgfdac

Z
d4k
ð2πÞ4 iΔ

αβ
m ðkÞ½gfdcbVβσλðp; kÞ�

�
i

ðk − pÞ2
��ðp − kÞσ

ðp − kÞ2
�
iΔλν

m ðpÞ; ðA1Þ

where the three-gluon vertex structure is

Vβσλðp; kÞ ¼ gβσðp − 2kÞλ þ gσλðk − 2pÞβ þ gλβðkþ pÞσ; ðA2Þ

while the ghost and mixed propagators are hcc̄i ¼ i=p2 and hBAμi ¼ pμ=p2, respectively, according to Eqs. (7) and (42).
The massive gluon propagator Δm was defined in Eq. (11). As a countercheck of sign consistence we can use the Slavnov-
Taylor identity 0 ¼ hδθðAμc̄Þi ¼ hðDμcÞc̄i þ hAμBi leading to hAμBi ¼ −hð∂μcÞc̄i ¼ −ð−ipμÞði=p2Þ ¼ −pμ=p2 as
g → 0. The sum over color indices gives fdacfdcb ¼ −Nδab and dropping the delta

2F μνðpÞ ¼ −ig2N
pμpα

p2

Z
d4k
ð2πÞ4Δ

αβ
m ðkÞVβσλðp; kÞ

ðp − kÞσ
ðp − kÞ4 Δ

λν
m ðpÞ: ðA3Þ

According to Eq. (47), the sum of the first pair of graphs, (a1) and (a2) in Fig. 2, can be written as

2F μν
ða1þa2ÞðpÞ ¼ ig2NtμαðpÞΔλν

m ðpÞ
Z

d4k
ð2πÞ4Δ

αβ
m ðkÞVβσλðp; kÞ

ðp − kÞσ
ðp − kÞ4 ; ðA4Þ

and by a bit of algebra

2F μν
ða1þa2ÞðpÞ ¼ −g2NtμαðpÞIαλðpÞΔλν

m ðpÞ; ðA5Þ

where the integral IαλðpÞ is

IαλðpÞ ¼ i
Z

d4k
ð2πÞ4

Δαβ
m ðkÞ

ðp − kÞ4 ½k
2tβλðkÞ − p2tβλðpÞ�: ðA6Þ

We need the transverse part of the integral to be inserted in
Eq. (A5). Thus, replacing tβλðpÞ by gβλ and using the
identity

1

k2ðk2 −m2Þ ¼
1

m2

�
1

k2 −m2
−

1

k2

�
; ðA7Þ

the integral reads

IαλðpÞ ¼
m2 − p2

m2
Jαλðp;mÞ þ p2

m2
Jαλðp; 0Þ þ ξp2KαλðpÞ;

ðA8Þ

where

Jαλðp;mÞ ¼ −i
Z

d4k
ð2πÞ4

k2gαλ − kαkλ
½ðk − pÞ2�2ðk2 −m2Þ ;

KαλðpÞ ¼ i
Z

d4k
ð2πÞ4

kαkλ
½ðk − pÞ2k2�2 : ðA9Þ

By Feynman parametrization and neglecting odd terms in
the numerator, the first integral splits as

Jαλðp;mÞ ¼ J̃αλðp;mÞ þ p2tαλðpÞJðp;mÞ; ðA10Þ

where

J̃αλðp;mÞ ¼ 2

Z
1

0

xdx
Z

d4Eq
ð2πÞ4

ðq2δαλ − qαqλÞ
ðq2 þM2

x;mÞ3
;

Jðp;mÞ ¼ −2
Z

1

0

x3dx
Z

d4Eq
ð2πÞ4

1

ðq2 þM2
x;mÞ3

; ðA11Þ

and the integrals are in the Euclidan space where qα is
defined, while the mass function M2

x;m is
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M2
x;m ¼ ð1 − xÞ½m2 − xp2�: ðA12Þ

By the same notation, dropping a longitudinal term, the
integral Kαλ reads

Kα
λðpÞ ¼ ð3!Þ

Z
1

0

xð1 − xÞdx
Z

d4Eq
ð2πÞ4

qαqλ
ðq2 þM2

x;0Þ4
:

ðA13Þ

The integral J̃ is evaluated by dimensional regularization
with d ¼ 4 − 2ϵ and an arbitrary scale factor μ2ϵ

J̃αλðp;mÞ¼2δαλ

�
d−1

d

�Z
1

0

xdx
μ2ϵ

2d−1πd=2Γðd=2ÞðMx;mÞd−4

×
Γðd=2þ1ÞΓð2−d=2Þ

2Γð3Þ ; ðA14Þ

yielding

J̃αλðp;mÞ ¼ 3δαλ
32π2

Z
1

0

xdx

�
1

ϵ̂
−
2

3
− log

M2
x;m

m2

�
; ðA15Þ

where the diverging part is

1

ϵ̂
¼ 1

ϵ
− γ þ log

4πμ2

m2
; ðA16Þ

while Jðp;mÞ and Kα
λðpÞ are finite in the UV,

Jðp;mÞ ¼ −2
Z

1

0

x3dx

�
1

32π2
1

M2
x;m

�
;

Kα
λðpÞ ¼

ð3!Þδαλ
4

Z
1

0

xð1 − xÞdx
�

1

ð3!Þ8π2
1

M2
x;0

�
: ðA17Þ

The remaining integrals are elementary:

Z
1

0

xdx ¼ 1

2Z
1

0

x logð1 − xÞdx ¼ −
3

4Z
1

0

x logð1þ sxÞdx ¼ 1

2

�
L1ðsÞ −

1

2

�
Z

1

0

sx3

ð1 − xÞð1þ sxÞ dx ¼ s
1þ s

�
lim
η→0

Z
1−η

0

x2

ð1 − xÞ dx −
Z

1

0

x2

ð1þ sxÞ dx
�

¼ s
1þ s

�
L2ðsÞ −

3

2
− log ηþOðηÞ

�
; ðA18Þ

where the limit η → 0 must be taken at the end of the
calculation in order to deal with the spurious IR divergence
which arises in the first integral of the last line. The
logarithmic functions L1, L2 are defined as

L1ðsÞ ¼
1

s
þ s2 − 1

s2
logð1þ sÞ;

L2ðsÞ ¼
1

s2
−

1

2s
−

1

s3
logð1þ sÞ; ðA19Þ

where the variable s is the Euclidean squared momentum
s ¼ −p2=m2 in units of the mass parameter m. Inserting
these explicit expressions, the integrals J̃, J and K read

J̃αλðp;mÞ ¼ 3δαλ
64π2

�
1

ϵ̂
þ 4

3
− L1ðsÞ

�

p2Jðp;mÞ ¼ 2

32π2

�
s

1þ s

��
L2ðsÞ −

3

2
− log η

�

p2Kα
λðpÞ ¼ −

δαλ
32π2

: ðA20Þ
We observe that, in the limit s → ∞, which is equivalent to
m → 0, the logarithmic functions L1ðsÞ, L2ðsÞ have the
asymptotic behavior

L1ðsÞ ¼ logðsÞ þ 2

s
þOðs−2Þ;

L2ðsÞ ¼ −
1

2s
þOðs−2Þ → 0: ðA21Þ

Then, we can write
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ð1þ sÞJ̃αλðp;mÞ − sJ̃αλðp; 0Þ ¼ δαλ
3

64π2

�
1

ϵ̂
þ 4

3
− ð1þ sÞL1ðsÞ þ s log s

�
;

ð1þ sÞp2Jðp;mÞ − sp2Jðp; 0Þ ¼ 4

64π2
½sL2ðsÞ�: ðA22Þ

Because of the transverse projector in Eq. (A5), we can
replace tαλðpÞ by δαλ in Eq. (A10) and insert it in Eq. (A8)
which reads

IαλðpÞ ¼
δαλ

64π2

�
3

ϵ̂
− 3ð1þ sÞL1ðsÞ þ 3s log s

þ 4sL2ðsÞ − 2ξþ 4

�
: ðA23Þ

Finally, the first pair of graphs, (a1) and (a2) in Fig. 2, give
the pure transverse sum

2F μν
ða1þa2ÞðpÞ ¼

g2N
64π2

tμνðpÞ
p2 −m2

�
3

ϵ̂
− 3ð1þ sÞL1ðsÞ

þ 3s log sþ 4sL2ðsÞ − 2ξþ 4

�
: ðA24Þ

We notice the presence of the transverse part of the bare
massive propagator ΔmðpÞ, as a factor which arises from
the external gluon leg. As a check, in the limit m → 0,
which is equivalent to s → ∞, we recover the same result—
modulo irrelevant constants—that was found in Ref. [74]
by standard perturbation theory, namely

½2F μν
ða1þa2ÞðpÞ�m¼0

¼ g2N
64π2

tμνðpÞ
p2

×

�
3

ϵ̂
− 3 logð−p2=m2Þ − 2ξ − 4

�
:

ðA25Þ

2. Graphs (b1) and (b2)

The second pair of graphs, (b1) and (b2) in Fig. 2, have no
internal gluon lines and there are no masses in the internal
propagators. Thus, the result is the same as for standard
perturbation theory, apart from the external bare gluon line.
As a check of consistence, herewe recover the explicit result
of Ref. [74] by our notation. The graph (b1) gives

2F μν
abðpÞ ¼ −ð−ipμÞ

�
i
p2

�
pαgfdac

Z
d4k
ð2πÞ4

�
−
ðp − kÞα
ðp − kÞ2

�

×

�
i
k2

��
i

ðp − kÞ2
�
½kλgfbcd�iΔλν

m ðpÞ; ðA26Þ

and dropping the δab which arises from the sum over color
indices

2F μνðpÞ¼−ig2N
pμpα

p2

Z
d4k
ð2πÞ4

ðp−kÞαkλ
ðp−kÞ4k2Δ

λν
m ðpÞ: ðA27Þ

According to Eq. (47), the sum of the second pair of graphs,
(b1) and (b2) in Fig. 2, can be written as

2F μν
ðb1þb2ÞðpÞ ¼ ig2NtμαðpÞΔλν

m ðpÞ
Z

d4k
ð2πÞ4

ðp − kÞαkλ
ðp − kÞ4k2

¼ g2NtμαðpÞTα
λðpÞΔλν

m ðpÞ; ðA28Þ

where, dropping a longitudinal term, the integral Tα
λðpÞ is

Tα
λðpÞ ¼ −i

Z
d4k
ð2πÞ4

kαkλ
ðp − kÞ4k2 : ðA29Þ

ByFeynman parametrization and, again, neglecting odd and
longitudinal terms, the integral can be evaluated in the
Euclidean space and reads

Tα
λðpÞ ¼ 2

Z
1

0

xdx
Z

d4Eq
ð2πÞ4

qαqλ
ðq2 þM2

x;0Þ3

¼
�

1

d − 1

�
J̃αλðp; 0Þ: ðA30Þ

Bydimensional regularization, adding the factor ðd − 1Þ−1≈
ð1=3Þð1þ 2ϵ=3Þ and using the asymptotic behavior of
L1ðsÞ, Eq. (A21), the integral follows from the first line
of Eq. (A20),

Tα
λðpÞ ¼

δαλ
64π2

�
1

ϵ̂
þ 2 − logðsÞ

�
; ðA31Þ

and by insertion in Eq. (A28) we obtain the final result

2F μν
ðb1þb2ÞðpÞ ¼ −

g2N
64π2

tμνðpÞ
p2 −m2

�
1

ϵ̂
− logð−p2=m2Þ þ 2

�
;

ðA32Þ

which agrees with Ref. [74], apart from the denominator,
p2 −m2, which arises from the external gluon leg and is
replaced by the bare denominator, p2, in the standard
perturbation theory.
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3. Total one-loop contribution

The sum of all the uncrossed one-loop graphs in Fig. 2 gives

2F μνðpÞ ¼ g2N
64π2

tμνðpÞ
p2 −m2

�
2

ϵ̂
− 3Lð−p2=m2Þ þ logð−p2=m2Þ − 2ξ − 6

�
; ðA33Þ

where the logarithmic function LðsÞ is defined as

LðsÞ ¼ ð1þ sÞL1ðsÞ − s log s − 2 −
�
4s
3
L2ðsÞ þ

2

3

�

¼ 1þ s
s

þ ð1þ sÞðs2 − 1Þ
s2

logð1þ sÞ − 2 − s log s −
4

3

�
1

s
−

1

s2
logð1þ sÞ

�
ðA34Þ

and has the leading behavior LðsÞ ∼ log s in the limit s → ∞ or m → 0.
In the limit m → 0, modulo an irrelevant constant, we recover the result of standard perturbation theory [74]

½2F μνðpÞ�m¼0 ¼
g2N
64π2

tμνðpÞ
p2

�
2

ϵ̂
− 2 logð−p2=m2Þ − 2ξ − 6

�
: ðA35Þ
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