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We consider vortices in scalar electrodynamics and compute the leading quantum correction to their
energies for the BPS case of identical classical masses of the Higgs and gauge fields. In particular, we focus
on the winding number n dependence of these corrections, from which we can extract the binding energies
of configurations with larger n. For both dimensionalities,D ¼ 2þ 1 andD ¼ 3þ 1, we find that quantum
corrections are negative and scale approximately linearly with n, so that combined vortices are favored over
isolated ones.
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I. INTRODUCTION

The Abrikosov-Nielsen-Olesen (ANO) vortex [1–3]
provides the simplest example of a topological soliton
with integer winding number, relevant to applications in
condensed matter [4], particle physics [5] and cosmology
[6,7]. It arises as a classical solution to the field equations
in a theory of scalar electrodynamics with spontaneous
symmetry breaking, where the scalar can be the field of
Cooper pairs in a superconductor or a Higgs-like field in a
particle physics model or a domain wall binding a cosmic
string. After spontaneous symmetry breaking, both the
scalar and gauge fields have nonzero mass, and for string
configurations that are localized in a two-dimensional
transverse plane, the magnetic flux through the plane
corresponds to a conserved topological winding number.
In the Bogomolny-Prasad-Sommerfeld (BPS) [8,9] case of
equal classical masses, which we will focus on here, the
classical energy is directly proportional to this flux.
Given this classical field theory picture, it is natural to

ask how these results are modified by quantum corrections,
and whether the direct proportionality of energy to winding
is maintained. To one loop, these corrections consist of the
vacuum polarization energy (VPE), the renormalized sum
over the zero-point energies 1

2
ℏω for small oscillations

around the classical background. Formally, the VPE is
defined as

ΔE ¼ ℏ
2

X
k

h
ωk − ωð0Þ

k

i���
ren:

; ð1Þ

where ωk and ωð0Þ
k denote the spectra of the quantum

fluctuations with and without the vortex background,
respectively. The subscript indicates that this divergent
sum requires renormalization, which is the primary chal-
lenge for the calculation.
Let us briefly explain the renormalization procedure. In

the background of a static localized configuration we
express the renormalized VPE as the sum

ΔE ¼ Eb:s: þ
1

2

Z
∞

0

dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
ðΔρðkÞ

− Δρð1ÞðkÞ − Δρð2ÞðkÞ…Þ þ EFD þ ECT; ð2Þ

where we have chosen natural units with ℏ ¼ c ¼ 1. Here
Eb:s: is the contribution from the discrete bound states in the
potential induced by the background. The contribution from
the continuum scattering states is given by the momentum
integral, in which the effect of the background is to change
the density of states. We call this change ΔρðkÞ. It has a
Born expansion in the strength of the potential, and
subtracting sufficiently many leading orders of this expan-
sion renders the momentum integral finite. This convergent
integral can then be combined with Eb:s: and analytically
continued to the imaginary momentum axis. The subtracted
Born terms are added back in as Feynman diagrams, EFD,
which arise from an equivalent expansion of the effective
action. When combined with standard counterterms, ECT,
the sum EFD þ ECT is also finite.
We will use scattering theory to compute the change in

the density of states and its Born expansion in a partial
wave expansion [10,11]. Here an additional complication
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arises as a result of the gauge field winding: scattering
theory requires that the background fields vanish at spatial
infinity, but string configurations instead approach a non-
trivial pure gauge, reflecting the topological winding. To
remove this behavior, we use a gauge transformation that
makes the fields trivial at infinity, at the cost of introducing
a singularity in the gauge field at the origin. The associated
magnetic field is unchanged, and remains zero at infinity
and finite at the origin. This singularity does not contribute
to the final result since it is a gauge artifact, but careful
regularization is required to implement it consistently while
maintaining gauge symmetry [12].
The first complete treatment of this problem was given in

Ref. [13]. There, a more ad hoc scheme was used to subtract
and add back in terms corresponding to both the renorm-
alization counterterms and the gauge singularity. While in
principle the calculations should be equivalent, our
approach provides a more systematic separation of the
divergences, in the process demonstrating that, surprisingly,
a much larger number of partial waves are needed to obtain
the large k behavior of ΔρðkÞ that is consistent with that
obtained from analyzing Feynman diagrams. This effect
explains some of the discrepancies between our results and
previous calculations, some of which appeared to converge
without renormalization [14,15] when too few partial waves
are taken into account; including a larger number of partial
waves restores the expected divergence. Other discrepancies
arise from the peculiarities of the renormalization condi-
tions, which we choose to be on-shell.
In this paper we consider vortices in both D ¼ 2þ 1 and

D ¼ 3þ 1 spacetime dimensions. In the former case, the
lower dimension means fewer diagrams are divergent, as is
typical in quantum field theory. We nonetheless include
finite counterterms to implement the same on-shell renorm-
alization conditions as in 3þ 1 dimensions, in both cases
ensuring that the residues of the propagator poles for both
particles, corresponding to the normalization of single-
particle states, are left unchanged, as is the pole location
for the Higgs particle, corresponding to its mass. The mass
of the gauge particle is corrected by quantum effects, so in
the end the theory is specified by the two masses, or
equivalently by the Higgs mass and the gauge coupling
constant. However, while this mass splitting occurs at one-
loop order, its effects on the VPE enter at two loops and can
be ignored in our calculation. In the case of 3þ 1 dimen-
sions, the scattering density of states remains the same as in
D ¼ 2þ 1, but we must use analytic continuation to
consistently include the integral over the momentum in
the trivial direction [16].
Since the classical BPS vortex has energy proportional to

its winding number, the classical energy of a winding n
vortex is equal to the energy of n isolated vortices. In the
condensed matter system, it represents the boundary
between type I and type II superconductors. The quantum
correction will therefore either stabilize or destabilize the

higher winding configurations; by carrying out the calcu-
lation through n ¼ 4 we find that higher winding is
stabilized.
Throughout the paper we treat the D ¼ 2þ 1 and

D ¼ 3þ 1 cases in parallel without introducing separate
notations for the most part, and use the context to identify
the particular case. In Sec. II we introduce the classical
vortex configuration in singular gauge. The quantization of
the theory at one loop and the corresponding on-shell
renormalization procedure are described in Secs. III and IV,
respectively. In Sec. V we explain the computation of the
VPE using scattering data on the imaginary momentum
axis and show how we move the divergent contributions
from the momentum integral into Feynman diagrams,
which are then combined with the counterterms from
Sec. IV. Numerical results are presented and discussed
in Sec. VI, and we give a short summary and conclusion in
Sec. VII. In a short appendix we estimate the higher-order
effects of different masses for the VPE.

II. CLASSICAL SOLUTIONS

We start from the Lagrangian

L ¼ −
1

4
FμνFμν þ jDμΦj2 − λ

4
ðjΦj2 − v2Þ2; ð3Þ

where as usual Fμν¼ ∂μAμ−∂νAμ and DμΦ¼ð∂μ− ieAμÞΦ
for an Abelian gauge theory.
In singular gauge, the profiles associated with winding

number n are the functions gðρÞ and hðρÞwithin the ansätze

ΦS ¼ vhðρÞ and AS ¼ nvφ̂
gðρÞ
ρ

; ð4Þ

where ρ ¼ evr is dimensionless while r is the physical
radial coordinate. Here gðρÞ ranges from 0 to 1 and hðρÞ
ranges from 1 to 0 as ρ goes from 0 to ∞.
This field configuration leads to the energy functional

Ecl¼ 2πv2
Z

∞

0

ρdρ

�
n2

2

g02

ρ2
þh02þn2

h2

ρ2
g2þ λ

4e2
ðh2−1Þ2

�
;

ð5Þ

where primes denote derivatives with respect to ρ. In
D ¼ 2þ 1, where v2 has dimensions of mass, Ecl is the
vortex energy, while inD ¼ 3þ 1, where v has dimensions
of mass, it is the energy per unit length of the vortex.
Recalling the tree-level mass relations M2

H ¼ λv2 and
M2

A ¼ 2v2e2, the coefficient of the last terms becomes

λ

4e2
¼ M2

H

2M2
A
;
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so that when measured in units of 2πv2, the classical energy
only depends on the ratio of the two masses.
In the BPS case, which we assume henceforth, the

coupling constants are related by λ ¼ 2e2, i.e., MH¼
MA¼M. Then the energy functional can be written as sums
of non-negative quantities plus a surface contribution

Ecl ¼ 2πv2
Z

∞

0

ρdρ

�
1

2

�
n
ρ
g0 − ðh2 − 1Þ

�
2

þ
�
h0 −

n
ρ
gh

�
2
�
þ 2πnv2gðh2 − 1Þ

����
0

∞
: ð6Þ

Hence the minimal energy is fully determined by the
winding number, yielding Ecl ¼ 2πnv2 ¼ 2πnM2

λ , with
the corresponding profiles obeying the first-order differential
equations

g0 ¼ ρ

n
ðh2 − 1Þ and h0 ¼ n

ρ
gh; ð7Þ

with the boundary conditions

hð0Þ¼ 1−gð0Þ¼ 0 and lim
ρ→∞

hðρÞ¼ 1− lim
ρ→∞

gðρÞ¼1; ð8Þ

which correspond to field configurations that approach
constant vacuum values at spatial infinity. The topological
structure appears through a singularity in the gauge field at
the origin, while the magnetic field remains finite every-
where. We have solved the differential equations in (7)
numerically, but for later use in the scattering calculation an
approximate expression in terms of elementary functions is
very helpful. It turns out that for 1 ≤ n ≤ 4 the correlation
coefficients for the fit

hðρÞ ¼ α2 tanhnðα1ρÞ þ ½1 − α2� tanhnðα0ρÞ and

gðρÞ ¼ β1ρ
1 − tanh2ðβ2ρÞ

tanhðβ1ρÞ
ð9Þ

with the fit parameters αi and βi listed in Table I deviate from
unity by 10−4 or less from the numerical solutions to Eq. (7).
The quality of the parametrization is also reflected by the
smallness of the relative error δE ¼ Efit=ð2πnv2Þ − 1, which
is also presented in Table I. This accuracy test indicates that
the agreement is excellent for n ¼ 1 and n ¼ 2, but merely
good for n ¼ 3 and n ¼ 4. To show that the fit is
nevertheless also suitable in these cases, we display the
corresponding profiles in Fig. 1. A graphical comparison for
n ¼ 1 and n ¼ 2 does not provide visible differences and we
refrain from its presentation.

III. QUANTIZATION

In this section we quantize the theory, including the
relevant ghost fields required for gauge fixing, and derive
the equations of motion for the harmonic fluctuations.

FIG. 1. Comparison of exact and fitted profile functions [from Eq. (9) and Table I] for winding numbers n ¼ 3 and n ¼ 4.

TABLE I. Fit parameters for vortex profiles. The quality
of the fit is estimated by the accuracy of the energy:
δE ¼ Efit=ð2πnv2Þ − 1, where Efit is obtained by substituting
(9) into Eq. (5).

n α0 α1 α2 β1 β2 δE

1 0.8980 0.6621 0.1890 0.5361 0.7689 4.2 × 10−6

2 0.9072 0.8288 2.6479 1.0949 0.8042 1.9 × 10−5

3 0.8290 0.7882 5.1953 1.1328 0.7425 1.5 × 10−3

4 0.7755 0.7350 5.2009 1.1034 0.6853 5.6 × 10−3
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We will construct the renormalization counterterms in the
next section.

A. Lagrangian for fluctuations

We introduce time-dependent fluctuations about the
vortex via

Φ ¼ ΦS þ η and Aμ ¼ Aμ
S þ aμ ð10Þ

and extract the harmonic terms after several integrations by
parts as

Lð2Þ ¼−
1

2
ð∂μaνÞð∂μaνÞþ

1

2
ð∂μaμÞ2þjΦSj2aμaμ

þ jDμηj2− ðjΦSj2− 1Þjηj2− 1

2
ðΦSη

� þΦ�
SηÞ2

þ iðΦSη
�−Φ�

SηÞ∂μaμþ 2iaμðη�DμΦS− ηD�
μΦ�

SÞaμ;
ð11Þ

where Dμ is the covariant derivative with the vortex
configuration AS substituted, D0 ¼ ∂t and D ¼ ∇þ
inφ gðρÞ

ρ , and we have chosen units with ev ¼ 1 such that

both particles have classical mass
ffiffiffi
2

p
. The gauge is fixed

from the vortex background by adding an Rξ type
Lagrangian with ξ ¼ 1 to cancel the η∂μaμ term,

Lgf ¼ −
1

2
½∂μaμ þ iðΦSη

� −Φ�
SηÞ�2: ð12Þ

Collecting the harmonic terms yields

Lð2Þ þLgf ¼−
1

2
ð∂μaνÞð∂μaνÞþ jΦSj2aμaμþjDμηj2

− ð3jΦSj2− 1Þjηj2þ 2iaμðη�DμΦS − ηD�
μΦ�

SÞ:
ð13Þ

We still have to subtract the ghost contribution to the
VPE associated with the gauge fixing in Eq. (12), which we
write as Lgf ¼ − 1

2
G2. The infinitesimal gauge transforma-

tions reads

Aμ → Aμ þ ∂χ; Φ0 þ η → Φ0 þ ηþ iχðΦ0 þ ηÞ
so that η → ηþ iχðΦ0 þ ηÞ: ð14Þ

Then

∂G
∂χ

jχ¼0 ¼ ∂μ∂
μ þ ð2jΦ0j2 þΦ0η

� þΦ�
0ηÞ: ð15Þ

This induces the ghost Lagrangian (in agreement with
Refs. [17,18])

Lgh ¼ −∂μc̄∂μcþ 2jΦ0jc̄cþ nonharmonic terms: ð16Þ

Its VPE is (the negative of) that of a Klein Gordon field of
mass

ffiffiffi
2

p
in the background potential 2ðh2 − 1Þ, which can

be easily computed. Since it is a complex ghost field, it
must be subtracted with a factor of two from the above.
Note that from Eq. (13), the nontransverse components of
aμ couple to the same background potential.
InD ¼ 2þ 1 the spectrum consists of four real decoupled

fields with mass
ffiffiffi
2

p
: a1, a2, ReðηÞ and ImðηÞ. Three other

fields, also with mass
ffiffiffi
2

p
, are fully decoupled: a0 and the

two ghosts. The ghosts count negatively, and one of them
cancels against the temporal component of the gauge field
since they obey the same equation of motion. In total there
are then 5 − 2 ¼ 3 physical degrees of freedom. When
computing the VPE, we thus have to subtract a boson type
contribution from the background 2ðh2 − 1Þ. In D ¼ 3þ 1
the gauge field has an additional decoupled longitudinal
component, so the nontransverse and ghost contributions
cancel completely and we only need to consider a1 and a2
together with the complex Higgs field.

B. Wave equations for quantum fluctuations

To formulate the scattering problem, we employ a partial
wave decomposition using the complex combinations

ax þ iay ¼
ffiffiffi
2

p
ie−iωt

X
l

alðρÞeilφ and

η ¼ e−iωt
X
l

ηlðρÞeilφ: ð17Þ

We have an analogous expansion for ax − iay and η� and, in
general, a coupled system of four radial functions. In the
BPS case, fortunately, this system decouples into two sub-
blocks, with the one containing ax − iay and η� being
identical to the above. It will thus suffice to solve

1

ρ

∂

∂ρ
ρ
∂

∂ρ
ηlðρÞ ¼ −q2ηlðρÞ þ

�
l2 − 2nlgðρÞ þ n2g2ðρÞ

ρ2
þ 3ðh2ðρÞ − 1Þ

�
ηlðρÞ þ

ffiffiffi
2

p
dðρÞalþ1ðρÞ

1

ρ

∂

∂ρ
ρ
∂

∂ρ
alþ1ðρÞ ¼ −q2alþ1ðρÞ þ

�ðlþ 1Þ2
ρ2

þ 2ðh2ðρÞ − 1Þ
�
alþ1ðρÞ þ

ffiffiffi
2

p
dðρÞηlðρÞ ð18Þ
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with q2 ¼ ω2 − 2 and double its VPE. Here the off-
diagonal coupling is dðρÞ ¼ ∂hðρÞ

∂ρ þ n
ρ hðρÞgðρÞ.

Finally, the ghost field fully decouples and has a partial
wave expansion analogous to the Higgs field in Eq. (17),

1

ρ

∂

∂ρ
ρ
∂

∂ρ
ζlðρÞ ¼ −q2ζlðρÞ þ

�
l2

ρ2
þ 2ðh2ðρÞ − 1Þ

�
ζlðρÞ:

ð19Þ
IV. RENORMALIZATION

In this section we describe the renormalization of the
one-loop corrections arising from the fluctuations about the
vortex. We begin by analyzing the effective action.

A. Effective actions in D= 2 + 1 and D= 3 + 1

To identify the ultraviolet divergences in the form of
Feynman diagrams [19,20], we consider the Lagrangian

L ¼ 1

2
ð∂μϕÞð∂μϕtÞ − 1

2
ϕM2ϕt − ϕVϕt ð20Þ

with four real fields ϕ ¼ ðη1; η2; ax; ayÞ. The Cartesian
components of the gauge fields have been defined in
Eq. (17) above, while η ¼ ðη1 þ iη2Þ=

ffiffiffi
2

p
. We then

Taylor expand the effective action for these real scalar
fields as

Aeff ¼
i
2
TrLog½∂2 þM2 − i0þ þ 2V�

¼Að0Þ
eff þ iTr½ĜV�− iTr½ĜVĜV� þ 4i

3
Tr½ĜVĜVĜV�

− 2iTr½ĜVĜVĜVĜV� þ…; ð21Þ

where Ĝ ¼ ð∂2 þM2 − i0þÞ−1 times the 4 × 4 unit matrix.
The functional trace is over the space-time coordinates as
well as the elements of ϕ and the ellipsis in Eq. (21)
represents ultraviolet finite terms. The potential matrix is
given by V ¼ V0 þ V1 þ V2, with

V0 ¼ e2

0BBBBB@
3
2
ðΦ2

S − v2Þ 0
ffiffiffi
2

p
x̂ · ASΦS

ffiffiffi
2

p
ŷ · ASΦS

0 3
2
ðΦ2

S − v2Þ −ð ffiffiffi
2

p
=eÞx̂ · ∇ΦS −ð ffiffiffi

2
p

=eÞŷ · ∇ΦSffiffiffi
2

p
x̂ · ASΦS −ð ffiffiffi

2
p

=eÞx̂ · ∇ΦS ðΦ2
S − v2Þ 0ffiffiffi

2
p

ŷ · ASΦS −ð ffiffiffi
2

p
=eÞŷ · ∇ΦS 0 ðΦ2

S − v2Þ

1CCCCCA ð22Þ

and

V1 ¼ e

0BBBB@
0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

1CCCCAAS · ∇ and V2 ¼
e2

2

0BBBB@
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1CCCCAAS · AS: ð23Þ

Here we have separated out V1 and V2 because they relate to
the singular terms in the scattering problem, while V0 is the
4 × 4 representation of the nonsingular terms in Eq. (18).
The renormalization program via Feynman diagrams in
dimensional regularization is carried out with the full
potential matrix V, while the subtractions that we have
indicated in Eq. (2) should only involve V0 supplemented
by the wave-function renormalization of the gauge boson,
which is simplified by the fake boson trick described below.

B. On-shell renormalization counterterms

The counterterm Lagrangian has four terms,

LCT ¼ CgFμνFμν þ ChjDμΦj2 þ C0ðΦ2 − v2Þ
þ CVðΦ2 − v2Þ2: ð24Þ

The C0 counterterm arises from varying the vacuum
expectation value v in the original Lagrangian, Eq. (3).
The coefficient is chosen such that it exactly cancels
iTr½ĜV0� in Eq. (21), which is the no-tadpole condition.
The coefficients Cg and Ch are determined such that the
residues of the propagators at the respective masses have no
quantum correction, while CV is fixed such that the pole
location of the Higgs propagator (which determines its
mass) does not change at one-loop order. The pole location
of the gauge field propagator is then an output of the
calculation, which can be expressed in terms of the other
Lagrangian parameters.
In what follows, D will be the physical dimension while

Dϵ is its continuation in dimensional regularization. That is,
for D ¼ 3þ 1 we have Dϵ ¼ 4 − 2ϵ and ϵ↘0. We use
lowercase letters to denote finite counterterm coefficients;
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where counterterms diverge, we use the corresponding
uppercase letter to denote the coefficients including a
divergent part.
To determine the mass and wave-function renormaliza-

tion we need to expand the effective action to quadratic
order in the Higgs and gauge fields. Let us first discuss AA,
the contributions to the effective action that are quadratic in
the gauge field and superficially quadratically divergent,
before imposing gauge invariance of the regulator. These
contributions arise from the terms linear in V2 and quadratic
in V1,

AA ¼CG

Z
dDxFμνFμνþ iTr½ĜV2�− iTr½ĜV1ĜV1�; ð25Þ

which yields

AA ¼ CG

Z
dDxFμνFμν þ e2

μ3−Dϵ

ð4πÞDϵ=2
Γ
�
1 −

Dϵ

2

	
×
Z

dDk
ð2πÞD ÃμðkÞÃμð−kÞ

×
Z

1

0

dx
h
MDϵ−2 − ðM2 − xð1 − xÞk2ÞDϵ=2−1

i
; ð26Þ

where ÃμðkÞ denotes the Fourier transform of the
gauge field. We have repeatedly used pμÃ

μðkÞ ¼ 0, which

results from the vortex property ∂μAμðxÞ ¼ 0 and also
impliesZ

dDxFμνFμν ¼ 2

Z
dDk
ð2πÞD k2ÃμðkÞÃμð−kÞ: ð27Þ

We may also assume pμÃ
μðkÞ ¼ 0 generally when deter-

mining the wave-function renormalization Cg because it
still allows us to uniquely identify the field strength tensor
in the quadratic expansion of the effective action.1 The
residue of the D ¼ 2 pole is zero, so the quadratic
divergence disappears and we can continue to the dimen-
sion of interest. There are additional superficial divergen-
ces in D ¼ 3þ 1 when expanding the effective action,
Eq. (21). However, the logarithmic divergences from
V0 ⊗ V2 and V0 ⊗ V1 ⊗ V1 cancel, as do those from
V2 ⊗ V2, V2 ⊗ V1 ⊗ V1 and V1 ⊗ V1 ⊗ V1 ⊗ V1.
Hence the quadratic order in V is sufficient to implement
renormalization.
To collect all terms that are quadratic in the fields we

introduce ṽHðkÞ and ãðkÞ as the Fourier transforms of

vH¼Φ2
S−v2 and a¼

ffiffiffi
2

p
e

� bex ·ASΦS eŷ ·ASΦS

−x̂ ·∇ΦS −ŷ ·∇ΦS

	
; ð28Þ

respectively. For example, ṽHðkÞ ¼
R
d4x½Φ2

S − v2�eikμxμ .
In D ¼ 2þ 1 we then have

Að3Þ ¼
Z

d3x½cgFμνFμν þ chðDμΦÞ�ðDμΦÞ þ cvðΦΦ� − v2Þ2�

þ 1

8πM

Z
d3k
ð2πÞ3

�
11e4

2
ṽHðkÞṽHð−kÞ þ 2trðãðkÞãtð−kÞÞ

� Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xð1 − xÞk2=M2

p
−
e2M
4π

Z
d3k
ð2πÞ3 F̃μνðkÞF̃μνð−kÞ 1

k2

Z
1

0

dx

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xð1 − xÞk2=M2

q �
þ…; ð29Þ

where the ellipsis refer to terms of cubic and higher order. In D ¼ 3þ 1 these contributions have divergences, so we write

cg ¼ Cg −
e2

192π2
ðCϵ þ 1Þ; ch ¼ Ch −

e2

4π2
Cϵ; cv ¼ CV þ 13e4

32π2
Cϵ; ð30Þ

with Cϵ ¼ 1
ϵ − γ þ ln ð4π Λ2

M2Þ from dimensional regularization with scale Λ. The second-order effective action is then

Að4Þ ¼
Z

d4x½cgFμνFμν þ chðDμΦÞ�ðDμΦÞ þ cvðΦΦ� − v2Þ2�

−
1

8π2

Z
d4k
ð2πÞ4

�
13e4

4
ṽHðkÞṽHð−kÞ þ trðãðkÞãtð−kÞÞ

� Z
1

0

dx ln½1 − xð1 − xÞk2=M2�

−
1

2

�
eM
4π

	
2
Z

d4k
ð2πÞ4 F̃μνðkÞF̃μνð−kÞ 1

k2

Z
1

0

dx
h
1 − xð1 − xÞk2=M2

i
ln
h
1 − xð1 − xÞk2=M2

i
þ…: ð31Þ

1If there was parity violation, the dual field strength tensor would also contribute and the assumption would not be justified.
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Here all counterterm coefficients are finite and thus written in lowercase. Comparing theD ¼ 2þ 1 andD ¼ 3þ 1 cases, a
change in the relative coefficients between the ṽHðkÞṽHð−kÞ and ãðkÞãtð−kÞ is observed. This change results from the
ghost contribution in D ¼ 2þ 1.
Next, we write the part of the action which is quadratic in the fields (including the tree-level counterterms) as

AðDÞ ¼
Z

dDk
ð2πÞD

h
GðDÞ

H h̃ðkÞh̃ð−kÞ þ GðDÞ
A ÃμðkÞÃμð−kÞ

i
; ð32Þ

where h̃ðkÞ is the Fourier transform of hðxÞ ¼ ΦðxÞ − v. In general (but not for the vortex) there are also terms like
h̃ðkÞkμÃμð−kÞ, but they need not be considered for our renormalization conditions, because they would determine the

renormalized coupling. For the Higgs part we find, using M ¼ ffiffiffi
2

p
ev,

Gð3Þ
H ðk2Þ ¼

�
1

2
þ ch

	
k2 −

�
M2

2
− 4v2cv

	
þ e2

8πM
ð11M2 − 4k2Þ

Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xð1 − xÞk2=M2

p
Gð4Þ

H ðk2Þ ¼
�
1

2
þ ch

	
k2 −

�
M2

2
− 4v2cv

	
−

e2

16π2
ð13M2 − 4k2Þ

Z
1

0

dx ln ½1 − xð1 − xÞk2=M2�: ð33Þ

The gauge part is obtained from setting Φ ¼ v,

Gð3Þ
A ðk2Þ ¼ −

1

2
ð1 − 4cgÞk2 þ ð1þ chÞ

M2

2
−
e2M
4π

Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xð1 − xÞk2=M2

p −
e2M
2π

Z
1

0

dx

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xð1 − xÞk2=M2

q �
;

Gð4Þ
A ðk2Þ ¼ −

1

2
ð1 − 4cgÞk2 þ ð1þ chÞ

M2

2
þ 2

�
eM
4π

	
2
Z

1

0

dx ln ½1 − xð1 − xÞk2=M2�

−
�
eM
4π

	
2
Z

1

0

dx½1 − xð1 − xÞk2=M2� ln ½1 − xð1 − xÞk2=M2�: ð34Þ

The on-shell renormalization conditions for the Higgs
field are

GðDÞ
H ðM2Þ ¼ 0 and

∂GðDÞ
H ðk2Þ
∂k2

����
k2¼M2

¼ 1

2
; ð35Þ

from which we obtain for D ¼ 2þ 1

ch ¼
e2

48πM
½45 lnð3Þ − 28�

and cv ¼
e4

96πM
½28 − 87 lnð3Þ�; ð36Þ

and for D ¼ 3þ 1 we find

ch ¼
e2

16π2

�
17 −

10πffiffiffi
3

p
�

and cv ¼
e4

32π2

�
19

πffiffiffi
3

p − 35

�
:

ð37Þ

The gauge field renormalization conditions are

GðDÞ
A ðM2

AÞ ¼ 0 and
∂GðDÞ

A ðk2Þ
∂k2

jk2¼M2
A
¼ −

1

2
: ð38Þ

From this we determine the unknowns cg and MA, where
the latter is written in terms of the ratio μ ¼ MA

M . We obtain
for D ¼ 2þ 1

cgðμÞ ¼
e2

32πM

�
2

4 − μ2
þ 1

μ
atanh

�
μ

2

	�
ð39Þ

and for D ¼ 3þ 1

cgðμÞ ¼ −
e2

288π2
1

μ3

�
μðμ2 − 12Þμ

þ 3
μ4 − 2μ2 þ 16ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − μ2
p asin

�
μ

2

	�
: ð40Þ

Within the one-loop order ci ¼ OðℏÞ and μ2 − 1 ¼ OðℏÞ
so that cgðμÞ − cgð1Þ ¼ Oðℏ2Þ.
Finally, we combine these results to compute the mass

ratio μ in terms of the Lagrangian parameter e. We obtain
for D ¼ 2þ 1
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2πM
e2

ðμ2 − 1Þ ¼ 15

8
lnð3Þ − 7

6
þ μ2

2ð4 − μ2Þ

− 1 −
μ

4
atanh

�
μ

2

	
ð41Þ

and D ¼ 3þ 1

8π2

e2
ðμ2 − 1Þ ¼ 9

2
−

5πffiffiffi
3

p −
μ2

6
þ 16 − 2μ2

μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − μ2

p asin

�
μ

2

	
: ð42Þ

At one-loop order to the VPE it is fully consistent to use
μ ¼ 1 in the finite parts of the counterterm coefficients.
Nevertheless, in the Appendix we will briefly discuss
effects resulting from cgðμÞ − cgð1Þ ≠ 0.

C. Fake boson subtraction

As seen from Eq. (2), the computation of the VPE
requires us to move divergent terms from the nonperturba-
tive contribution (which is obtained from scattering data) to
Feynman diagrams. For the remaining logarithmic diver-
gence in Eq. (26) withD ¼ 3þ 1, this is not possible for the
vortex configuration since neither its Fourier transform nor
its Born approximation to the scattering data exist. We
instead introduce the fake boson technique, in which we
begin by considering bosonic fluctuations about the static
potential VðxÞ ¼ VfðrÞ. We take this boson field to be
complex because its scattering data will later be combined
with those from the complex vortex fluctuations in Eq. (18).
The second-order effective action for this boson field is

AðfbÞ ¼
1

2ð4πÞ2
�
1

ϵ
− γ þ ln

�
4πμ2

M2

	�Z
d4xV2

f

−
1

2ð4πÞ2
Z

d4k
ð2πÞ4 ṼfðkÞṼfð−kÞ

×
Z

1

0

dx ln

�
1 − xð1 − xÞ k2

M2

�
; ð43Þ

with the Fourier transform ṼðkÞ ¼ R dD xVðxÞeikνxν . We
define the normalization of VfðrÞ such that the 1=ϵ in
singularities in Eq. (43) match those of Cg. That is, for the
given potential Vf we scale all second-order contributions
by the factor cB, which is determined from

−6cB
e2

Z
d4x
TL

V2
f¼
Z

d4x
TL

FμνFμν¼4πv2
Z

∞

0

ρdρ

�
n2g02

ρ

	
2

;

ð44Þ

where TL is the volume of the subspace in which the vortex
is translationally invariant. Then we end up with the finite
expression

Cg

Z
d4x
TL

FμνFμνþ cBA
ðfbÞ
2

¼ M2

288π
½22− 5

ffiffiffi
3

p
π�
Z

∞

0

ρdρ

�
n
g0

ρ

	
2

þ cB
M2

16π

Z
∞

0

dqṽ2fðqÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

q2þ 8

q
asinh

�
qffiffiffi
8

p
	
−q

�
; ð45Þ

where ṽfðqÞ ¼
R∞
0 ρdρVfðrÞJ0ðqρÞ and J0 is a cylindrical

Bessel function.
Above we have outlined the fake boson approach for

D ¼ 3þ 1, where it is needed to remove an ultraviolet
divergence. Though it is not required in D ¼ 2þ 1, we
apply it there as well because the numerical evaluation of
the momentum space integrals in Sec. V is more stable with
the corresponding subtraction. The correspondingly renor-
malized part of the action is

Cg

Z
d3xFμνFμν þ cBA

ðfbÞ
2

¼ −
M
96

½4þ 3 lnð3Þ�
Z

∞

0

ρdρ

�
n
g0

ρ

	
2

− cB
M

4
ffiffiffi
2

p
Z

∞

0

dqṽ2fðqÞ arctan
�

qffiffiffi
8

p
	
: ð46Þ

V. VACUUM POLARIZATION ENERGY

With all the ingredients of the calculation determined, we
next show how to assemble them to determine the fully
renormalized VPE.

A. Relevance of scattering data

In this section we briefly review the spectral methods for
computing the VPE of static, extended field configurations
from Ref. [11].
The background field configuration induces a potential

for small amplitude fluctuations, which are treated by
standard techniques of scattering theory in quantum
mechanics. These calculations provide the bound state
energies, ωj, which directly enter the VPE, as well as
the phase shifts δðkÞ, or more generally the scattering
matrix, as functions of the wave-number k for single-
particle energies above the threshold given by the mass m
of the fluctuating field. Those phase shifts parametrize the
change in the density of continuum modes via the Friedel-
Krein formula [21],

Δρl ¼ 1

π

dδlðkÞ
dk

; ð47Þ

where l indexes the partial wave expansion in Eq. (17). As
shown in Eq. (2), that change determines the continuum
contribution to the VPE
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ΔE¼ 1

2

Xb:s:
j

ωjþ
Z

∞

0

dk
2π

X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p dδlðkÞ
dk

þECT: ð48Þ

Our scattering problem is in two space dimensions and all
angular momentum sums run over the integers from
negative to positive infinity.
Next we describe how the counterterms cancel the

divergences originating from the large k behavior of the
phase shift in the momentum integral. In the previous
section we have shown that the Feynman diagrams are
generated by expanding the effective action in powers of
the potential appearing in the scattering wave-equations.
The equivalent Born expansion for the phase shifts is most
efficiently performed within the variable phase approach
[22], which factors out the outgoing wave from the full
wave function. We will provide details of that approach for
the vortex problem in the next section and restrict ourselves
here to the description of the main concepts. The factor
function is called the Jost solution F lðr; kÞ, and the
differential equation for the Jost solution is (numerically)
solved with the boundary condition limr→∞F ðr; kÞ ¼ 1. In
a multichannel problem F lðrÞ is matrix valued. Regularity
of the scattering wave function then determines the
scattering matrix and subsequently the phase shift for a
particular partial wave

δlðkÞ ¼
1

2i
ln det lim

r→0
½F �

lðr; kÞF−1
l ðr; kÞ�:

Most importantly, the Jost solution has a perturbation

expansion in powers of the scattering potential: F lðr; kÞ ¼
1þ F ð1Þ

l ðr; kÞ þ F ð2Þ
l ðr; kÞ þ � � � with boundary condi-

tions limr→∞F ðnÞ
l ðr; kÞ ¼ 0. The individual contributions

can be straightforwardly obtained by iterating the wave
equation. This expansion in turn induces the Born series for
the phase shift,

δð1Þl ðkÞ ¼ 1

2i
lim
r→0

tr½F ð1Þ�
l ðr; kÞ − F ð1Þ

l ðr; kÞ�;

δð2Þl ðkÞ ¼ 1

2i
lim
r→0

tr

�
F ð2Þ�

l ðr; kÞ − F ð2Þ
l ðr; kÞ

−
1

2
½F ð1Þ

l ðr; kÞ�2 þ 1

2
½F ð1Þ�

l ðr; kÞ�2
�
; etc. : ð49Þ

Since the phase shift is dimensionless, the expansion in
powers of the potential is also an expansion in the inverse
momentum. Hence taking sufficiently many terms, N, from
the Born series and subtracting them from the phase shift
will render the momentum integral in Eq. (48) finite. We
then add these subtractions back via the equivalent
Feynman expansion up to order N that we developed in
the previous section,

ΔE ¼ 1

2

Xb:s:
j

ωj þ
Z

∞

0

dk
2π

X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p d
dk

×
h
δlðkÞ − δð1Þl ðkÞ − δð2Þl ðkÞ −… − δðNÞ

l ðkÞ
i

þ EðNÞ
FD þ ECT: ð50Þ

The sum EðNÞ
FD þ ECT combines to form an ultraviolet finite

expression as, for example, for the action in Eqs. (29) and
(31). We note that this process is exact within one loop and
does not rely on the accuracy of the Born approximation.
To further process the momentum integral we recall

that the Jost function2 F ðkÞ ¼ limr→0 F ðr; kÞ is analytic
for ImðkÞ ≥ 0 and that for real k its complex conjugate
is F �ðkÞ ¼ F ð−kÞ [23]. Thus we write δlðkÞ ¼
ð1=2iÞ½ln detF lð−kÞ − ln detF lðkÞ� and extend the inte-
gral over the full real axis. With the Born subtractions
made above, there will be no contribution to the integral
from a semicircle at infinitely large jkj for ImðkÞ ≥ 0, and
we may thus close the contour accordingly. However,
we have to circumvent the branch cut that emerges inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
for ImðkÞ > m. That will leave a contribution

along the imaginary k axis starting at im that picks up the
discontinuity of the square root. Finally, we collect the
residues that emerge from the zeros of the Jost function,
which create first-order poles in the logarithmic derivative.
These zeros are known to be single and located at the wave

numbers corresponding to the bound state energies: kj ¼
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

j

q
[23]. By virtue of Cauchy’s theorem, these

residues exactly cancel the discrete bound state contribu-
tion in the VPE [24]. Introducing t ¼ k=i and νlðtÞ ¼
ln det F lðitÞ and integrating by parts, we obtain the
compact expression

ΔE ¼
Z

∞

m

dt
2π

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 −m2

p
X
l

½νlðtÞ − νð1Þl ðtÞ − νð2Þl ðtÞ

−… − νðNÞ
l ðtÞ� þ EðNÞ

FD þ ECT; ð51Þ

where the νðnÞl ðtÞ arise from the Born series expansion
of F lðitÞ.
The situation inD ¼ 3þ 1 is slightly more complicated.

The vortex is translationally invariant along the symmetry
axis (which we choose to be in the z direction). The wave
function has a plane wave factor for the dependence of that
coordinate and we have to integrate over the corresponding
momentum. Since the phase shifts do not depend on that
momentum, there is no Born subtraction that removes the
ultraviolet divergence emerging from that integration. The
solution is the so-called interface formalism developed in

2The general definition of the Jost function is the Wronskian of
the Jost and regular solutions.
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Ref. [16], in which that integral is dimensionally regularized in d − 1 space dimensions, showing that the divergence is
proportional to

1

d − 1

�Z
∞

0

dk
π
k2

d
dk

X
l

h
δlðkÞ − δð1Þl ðkÞ − δð2Þl ðkÞ −… − δðNÞ

l ðkÞ
i
þ
Xb:s:
j

ω2
j −m2

�
:

The expression in curly brackets actually vanishes in all partial wave channels individually via one of the sum rules that
generalize Levinson’s theorem [25], which follow from analyticity of the Jost function for ImðkÞ ≥ 0. Thus the limit d → 1
can be taken, yielding

ΔE ¼ −1
8π

�Z
∞

0

dk
π

X
l

ω2ðkÞ lnω
2ðkÞ
Λ̄2

d
dk

½νlðtÞ − νð1Þl ðtÞ − νð2Þl ðtÞ −… − νðNÞ
l ðtÞ� þ

Xb:s:
j

ω2
j ln

ω2
j

Λ̄2

�
þ EðNÞ

FD þ ECT ð52Þ

as the VPE per unit length of the vortex. The arbitrary energy scale Λ̄ has been introduced for dimensional reasons. It
cancels in Eq. (52) by a generalization of Levinson’s theorem. Again, by closing the contour in the upper half k plane, we
can remove the explicit bound state contribution. This time we pick up the discontinuity from the logarithm,

ΔE ¼
Z

∞

m

dt
4π

t
X
l

h
νlðtÞ − νð1Þl ðtÞ − νð2Þl ðtÞ −… − νðNÞ

l ðtÞ
i
þ EðNÞ

FD þ ECT: ð53Þ

B. Jost function for scattering about the vortex

Because the singularity of the vortex field configuration at its center makes it impossible to straightforwardly apply the
standard form of the spectral methods described above. In this section we explain the required modifications. As described
above, the ultraviolet singularities that occur at third and higher order in the expansion of the effective action cancel (when
regularized in a gauge invariant scheme), so we may set N ¼ 2 hereafter.
We return to the dimensionless variables ρ ¼ evr and q ¼ k=ev that enter the wave equations (18). We define the Jost

solution by introducing Ψl ∼ ð ηl
alþ1

Þ in scattering channel l as a 2 × 2 matrix with the free solution factored out,

Ψl ¼ F l ·Hl where Hl ¼
 
Hð1Þ

l ðqρÞ 0

0 Hð1Þ
lþ1ðqρÞ

!
; ð54Þ

with boundary condition limρ→∞F l ¼ 1. Since the two columns ofHl represent free outgoing cylindrical waves for either
ηl or alþ1, the physical scattering solution is

Ψsc
l ¼ F �

l ·H
�
l − F l ·Hl · Sl;

where Sl is the scattering matrix, which can extracted using limρ→0Ψsc ¼ 0. Then F l ¼ F lðρ; qÞ is the Jost solution,
which leads to the Jost function F lðqÞ ¼ limρ→0 F lðρ; qÞ. In both cases,D ¼ 2þ 1 andD ¼ 3þ 1, a major ingredient for
the scattering piece of the VPE is the Jost function for imaginary momenta νlðtÞ ¼ ln det ½F lðitÞ�. In matrix form, the
scattering differential equations read

∂
2

∂ρ2
F l ¼ −

∂

∂ρ
F l − 2

�
∂

∂ρ
F l

	
· Zl þ

1

ρ2
½Ll;F l� þ Vl · F l: ð55Þ

The angular momenta enter via the derivative matrix for the analytically continued Bessel functions

Zl ¼

0B@ jlj
ρ − t

Kjljþ1ðtρÞ
KjljðtρÞ 0

0
jlþ1j
ρ − t

Kjlþ1jþ1ðtρÞ
Kjlþ1jðtρÞ

1CA and Ll ¼
�
l2 0

0 ðlþ 1Þ2
	
; ð56Þ
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and the potential matrix is

Vl ¼

0B@ 3ðh2ðρÞ − 1Þ þ 1
ρ2
ðn2g2ðρÞ − 2nlgðρÞÞ ffiffiffi

2
p

dðρÞffiffiffi
2

p
dðρÞ 2ðh2ðρÞ − 1Þ

1CA: ð57Þ

The standard procedure to determine the Born approxima-
tions, which are needed to regularize the ultraviolet
divergences, fails when gð0Þ ≠ 0 [26]. This can be seen
by noting that the integral

R∞
0 ρdρðgðρÞρ Þ2, which would

appear in the leading Born approximation for the gauge
field potential, is ill defined in the singular gauge. To
perform the Born subtractions without the singular terms,
we introduce

V̄ ¼
�
3ðh2ðρÞ − 1Þ ffiffiffi

2
p

dðρÞffiffiffi
2

p
dðρÞ 2ðh2ðρÞ − 1Þ

	
ð58Þ

and iterate the auxiliary differential equation

∂
2

∂ρ2
F̄ l ¼ −

∂

∂ρ
F̄ l − 2

�
∂

∂ρ
F̄ l

	
· Zl þ

1

ρ2
½Ll; F̄ l� þ V̄ · F̄ l ð59Þ

according to the expansion F̄ l ¼ 1þ F̄ ð1Þ
l þ F̄ ð2Þ

l þ � � �.
The relevant leading orders are

∂
2

∂ρ2
F̄ ð1Þ

l ¼ −
∂

∂ρ
F̄ ð1Þ

l − 2

�
∂

∂ρ
F̄ ð1Þ

l

	
· Zl þ

1

ρ2
½Ll; F̄

ð1Þ
l � þ V̄;

∂
2

∂ρ2
F̄ ð2Þ

l ¼ −
∂

∂ρ
F̄ ð2Þ

l − 2

�
∂

∂ρ
F̄ ð2Þ

l

	
· Zl þ

1

ρ2
½Ll; F̄

ð2Þ
l � þ V̄ · F̄ ð1Þ

l ; ð60Þ

and all F̄ ðmÞ
l vanish in the limit ρ → ∞. From the differ-

ential equations (55) and (60) we extract

νlðtÞ ¼ lim
ρ→ρmin

ln detF l; ν̄
ð1Þ
l ðtÞ ¼ lim

ρ→ρmin

trF̄ ð1Þ
l and

ν̄ð2Þl ðtÞ ¼ lim
ρ→ρmin

tr

�
F̄ ð2Þ

l −
1

2
ðF̄ ð1Þ

l Þ2
�

ð61Þ

where ρmin is a tiny but nonzero number. The above
expansion is the analog of Eq. (49) for the Jost function
of the vortex with imaginary momentum, but our Born
subtraction no longer includes the singular terms; we
describe how to handle them below.

The Jost functions for the ghost and fake boson are
analogous to the above, but much simpler. The Jost solution
is no longer a matrix, so the commutator term disappears.
Then one just replaces V and V̄ by 2v2½h2ðρÞ − 1� for the
ghost and by VfðρÞ for the fake boson. Furthermore, the
angular momentum sum is symmetric in l → −l, so it can
be simplified to run over non-negative values with a
degeneracy factor of two for l ≥ 1.
By subtracting just ν̄ð1Þl ðtÞ and ν̄ð2Þl ðtÞ from νlðtÞ we do

not include the subtractions for the singular terms that, in a
gauge-invariant formulation, induce a logarithmic ultra-
violet divergence forD ¼ 3þ 1. To investigate the relevant
diagrams we compare the dimensional and sharp cutoff
regularization schemes, leading to the identification (with
an arbitrary mass scale Λ),

1

ϵð4πÞ2 ¼ −i
Z

d4l
ð2πÞ4

1

ðl2 − Λ2 þ i0þÞ2
����
div:

¼ 1

8π2

Z
l2dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ Λ2
p

3

����
div:

: ð62Þ

We thus expect for ρmin → 0

½νðtÞ�V ≔ lim
L→∞

XL
l¼−L

½νlðtÞ− ν̄ð1Þl ðtÞ− ν̄ð2Þl ðtÞ�ρmin

−n2
Z

∞

ρmin

dρ
ρ
g2ðρÞ⟶t→∞ n2

12t2

Z
∞

0

dρ
ρ

�
dgðρÞ
dρ

	
2

: ð63Þ

Again, the superscripts denote the Born expansion order
with respect to V̄. As explained in Ref. [26], the integral
subtraction on the left-hand side relates to a quadratic
divergence in the VPE. By this subtraction we restore
gauge invariance, which is not manifest for the Jost
function. Note that we can write that integral as

n2
Z

∞

ρmin

dρ
ρ
g2ðρÞ ¼

X
l

Z
∞

ρmin

dρ
ρ
J2lðqrÞ½n2g2ðρÞ− 2nlgðρÞ�;

where the JlðzÞ are cylindrical Bessel functions. This
integral then replaces the leading Born approximation from
the singular terms in the wave equation. Its contribution to
νlðtÞ arises from an integration by parts of an expression
that contains its derivative with respect to t, cf. Eq. (48).
Hence subtracting a constant times this quantity has no
effect on the result, but renders the integral well defined on
the imaginary axis.
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InD ¼ 3þ 1, the right-hand side of Eq. (63) still contains
a logarithmic divergence, which we computed in dimen-
sional regularization. It actually arises from a combination of
two Feynman diagrams that individually are quadratically
divergent, cf. Eq. (25). The analogous Born expansions
would have to be performed individually. However, for the
singular vortex configuration, these integrals do not exist.
Hence we apply the fake boson formalism developed in
Ref. [27] as described above. As shown in Eq. (45), the
second-order term for a scalar field also yields a logarithmic
divergence. In principle, the strength of that divergence does
not depend on the mass of the boson. We take it to equal the
classical Higgs/gauge mass so that we can simply subtract
the associated Born term from νlðtÞ with a suitably adjusted
strength and add it back as a Feynman diagram. To be
precise, we consider scattering of a boson in the potential

VfðρÞ ¼ 3ðtanh2ðκρÞ − 1Þ, for which ν̄ð2Þl ðtÞ is the second-
order contribution to the Jost function on the imaginary
momentum axis. The partial wave expansion for this
scalar field is similar to that of ghost field in Eq. (19) with
2ðhðρÞ − 1Þ replaced by VfðρÞ. We take κ as an arbitrary
parameter to later test our numerical simulation, since the
final result for VPE should not depend on a particular choice
for Vf. This subtraction is calibrated by Eq. (44), which for
this particular scalar potential reads

cB ¼−
e2

6

R∞
0 rdrFμνFμνR

∞
0 rdrV2

f

¼−
n2

3

R
∞
0 ρdρðg0ðρÞρ Þ2R

∞
0 ρdρ½3ðtanh2ðκρÞ−1Þ�2 :

ð64Þ

C. VPE for D= 2 + 1 and D= 3 + 1

As mentioned above, our analysis proceeds with dimen-
sionless variables such that ev ¼ 1. We return to dimen-
sionful expressions by multiplying with appropriate powers
of Mffiffi

2
p where M is the Higgs mass, which does not acquire

quantum correction in our on-shell scheme.
For D ¼ 3þ 1, the ghost and nontransverse gauge field

contributions cancel. In that case, however, we still have to
integrate over the momentum conjugate to the symmetry
axis using the interface formalism of Eq. (53). For later
discussion we separate the scattering contribution (includ-
ing the factor of two for the complex fields) after the fake
boson subtraction,

ΔEscat: ¼
M2

2

Z
∞ffiffi
2

p
dt
2π

tf½νðtÞ�V − cBνBðtÞg: ð65Þ

Here νBðtÞ is the angular momentum sum of the second
Born contribution to the logarithm of the Jost function from
the fake boson potential.
To evaluate the renormalized Feynman diagram contri-

butions, we introduce Fourier transforms of the vortex
profiles

IAðqÞ ¼ n
Z

∞

0

dρ hðρÞgðρÞJ1ðqρÞ;

IHðqÞ ¼ q
Z

∞

0

ρdρ ½1 − hðρÞ� J0ðqρÞ;

ṽHðqÞ ¼
Z

∞

0

ρdρ ½h2ðρÞ − 1� J0ðqρÞ;

ṽfðqÞ ¼ 3

Z
∞

0

ρdρ ½tanh2ðκρÞ − 1� J0ðqρÞ; ð66Þ

where, again, the JlðzÞ are cylindrical Bessel functions.
InD ¼ 3þ 1 we have logarithmic divergences at second

order, and we therefore separate the finite counterterm

ECT¼
M2

16π

Z
∞

0

ρdρ

��
17−10

πffiffiffi
3

p
��

h02þn2
h2

ρ2
g2
�

þ1

2

�
35−19

πffiffiffi
3

p
�
½h2−1�2þcB

18
½22−5

ffiffiffi
3

p
π�
�
ng0

ρ

	
2
�
:

ð67Þ

and the finite Feynman diagram contributions

EFD ¼M2

2π

Z
∞

0

dq

�
I2AðqÞ þ I2HðqÞ þ

13

8
ṽ2HðqÞ þ

cB
8
ṽ2fðqÞ

�
×
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ 8

q
asinh

�
qffiffiffi
8

p
	
− q
�
: ð68Þ

Recall that ṽfðqÞ was defined after Eq. (45).
InD ¼ 2þ 1, the second-order contributions do not lead

to an ultraviolet divergence. Nevertheless it is convenient to
subtract them from the scattering data and add them back as
Feynman diagrams, because it allows us to use the same
½νðtÞ�V as above. We separate the scattering contribution in
Eq. (51) and augment it by the ghost piece

ΔEscat: ¼
Mffiffiffi
2

p
�Z

∞ffiffi
2

p
dt
π

tffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 2

p f½νðtÞ�V − cBνBðtÞg

−
Z

∞ffiffi
2

p
dt
2π

tffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 2

p νghðtÞ
�
; ð69Þ

where νghðtÞ is the angular momentum sum of the logarithm
of the Jost function with two Born subtractions for the single
channel potential Vgh ¼ 2ðΦ2

S − v2Þ ¼ 2v2ðh2ðρÞ − 1Þ. In
comparison with Eq. (51), a factor of two again appears in
the first integral because we are dealing with a complex
boson field. Note that this first integral in Eq. (69) would
also be finite without the fake boson subtraction. However,
its inclusion improves the large momentum convergence of
that integral and is thus advantageous in the numerical
simulation.
The final ingredient is the renormalized Feynman diagram

contribution in D ¼ 2þ 1,
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EFD ¼ −
ffiffiffi
2

p
M
Z

∞

0

dq

�
I2AðqÞ þ I2HðqÞ þ

11

8
ṽ2HðqÞ þ

cB
8
ṽ2fðqÞ

�
arctan

�
qffiffiffi
8

p
	
;

ECT ¼ M
48

Z
∞

0

ρdρ

�
½45 lnð3Þ − 28�

�
h02 þ n2

h2

ρ2
g2
�
þ 1

2
½87 lnð3Þ − 28�½h2 − 1�2 þ 1

2
½3 lnð3Þ þ 4�

�
ng0

ρ

	
2
�
: ð70Þ

As in Eq. (68), factors of 1=
ffiffiffi
2

p
emerged in the arguments

of the trigonometric and hyperbolic functions in the
counterterm contribution because M ¼ ffiffiffi

2
p

ev.

VI. NUMERICAL RESULTS FOR THE VPE

As a first step we substitute the profile functions with the
parametrization of Eq. (9) into V and V̄ in Eqs. (57) and
(59), respectively. For a given angular momentum channel,
we then integrate the differential equations (55) and (60)
with the appropriate boundary conditions from a large
ρmax ≈ 20 to a small ρmin near the center of the vortex. Once
ρmin is small enough, we compute

νLðtÞ¼
XL
l¼−L

½νlðtÞ− ν̄ð1Þl ðtÞ− ν̄ð2Þl ðtÞ�ρmin
−n2

Z
∞

ρmin

dρ
ρ
g2ðρÞ:

ð71Þ

We find that there are still small variations when decreasing
ρmin even further. These variations emerge from channels
that do not have an angular momentum barrier at the center
of the vortex. In those instances, the regular and irregular
solutions respectively approach a constant and logarithm,
which are difficult to disentangle numerically. According to
Eq. (18) these are the l ¼ −1 and l ¼ n channels. In those
channels we use several small values for ρmin and fit

ln detF l − F̄ ð1Þ
l − F̄ ð2Þ

l −
1

2
ðF̄ ð1Þ

l Þ2

¼ a0 þ
a1

lnðρminÞ
þ a2
ln2ðρminÞ

and replace the square bracket in Eq. (71) by a0 for these l
values. We note that this fit is also needed for regular gauge
profiles even though they have well-defined Born series,
because there one still has to disentangle constant and
logarithm behaviors [28]. We remark that the cancellations
of the ρmin singularities in Eq. (71) stems from the large L
terms in that sum.
It is essential to verify that ½νðtÞ�V exhibits the asymptotic

behavior predicted in Eq. (63) by the analysis of the two-
point function for the gauge field. It turns out that even
summing up to a large value like L ¼ 600 is insufficient to
compute the sum on the left-hand side. As explained in
Ref. [26], on top of computing the sum for such large values
of L, an extrapolation for L → ∞ is needed. This is done by
using different large values of L in Eq. (71) and extracting

½νðtÞ�V from a fit of the form νLðtÞ ≈ ½νðtÞ�V þ b1
L þ b2

L2. The
importance of this extrapolation is shown in the inserts of
Fig. 2. Though the numerical effect appears to be small,
we note that the integrand for D ¼ 3þ 1 in Eq. (65) has an
additional factor of t, which amplifies any inaccuracy at
large t. Also, without that extrapolation the integrand may
incorrectly appear to converge without subtractions already
at moderate t [26], which has led to incorrect conclusions in
the past [15].
As suggested by this discussion, the numerical simu-

lation is quite costly in computation time.3 We therefore
compute ½νðtÞ�V for about 200 different t values and
implement a Laguerre interpolation to obtain a smooth
function. This interpolation also allows for the substitution

to τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 2

p
, which avoids the integrable singularity in

Eq. (69). The final VPE is simply the sum

ΔE ¼ EFD þ ECT þ ΔEscat:: ð72Þ

In Table II we present our results for the VPE of the
vortex for D ¼ 2þ 1. We also list the Feynman diagram
and counterterm contributions from Eq. (70) as well as the
scattering piece from Eq. (69) with the extrapolations
described above. While the cancellations between the
Feynman diagram and counterterm pieces are expected,
the fact that their combination goes in the same direction as
the scattering piece is somewhat surprising. Overall, we
find that the total VPE is always negative.
Table III contains our results for the VPE per unit length

of the vortex inD ¼ 3þ 1. The ingredients for Eq. (72) are
taken from Eqs. (65), (67), and (68). Somewhat unexpect-
edly, the counterterm and Feynman diagram contributions
go in the same direction, presumably because ECT involves
timelike momenta while EFD is an integral over spacelike
momenta. On the other hand there is a substantial cancel-
lation between the scattering and Feynman diagram con-
tributions once they are combined with the counterterms
that implement the on-shell renormalization. In both D ¼
2þ 1 and D ¼ 3þ 1, ΔEscat. is sizable, which is a clear
indication that the VPE cannot be reliably computed from
only low order Feynman diagrams.

3For large angular momenta sufficient accuracy can only be
accomplished with long-double precision. This adds considerably
to the computation time.
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In D ¼ 3þ 1 the VPE is essentially linear in
the winding number n. We fit the data from Table III
as ΔE ¼ −0.0166 − 0.0869ðn − 1Þ. The quality of the fit
is measured as χ2 ¼ 4.4 × 10−6. To obtain a similarly

small χ2 ¼ 7.2 × 10−5 in D ¼ 2þ 1 we need to add a
quadratic contribution ΔE ¼ −0.3348 − 0.6314ðn − 1Þ−
0.0350ðn − 1Þ2, but the coefficient of that contribution is
quite small.

FIG. 2. Large angular momentum extrapolation from Eq. (71). The line labeled lim. fct. refers to the large t behavior in Eq. (63).

TABLE II. Various contributions to the VPE of BPS vortices
forD ¼ 2þ 1. ECT and EFD are the sums of all listed counterterm
contributions, including the fake boson. All data are in units of
M ¼ ffiffiffi

2
p

ev.

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

ECT 0.2671 0.4819 0.6786 0.8662
EFD −0.5156 −1.1365 −1.7588 −2.3877

−0.2484 −0.6546 −1.0801 −1.5215
ΔEscat −0.0882 −0.3408 −0.6631 −1.0205
ΔE −0.3367 −0.9955 −1.7432 −2.5420

TABLE III. Various contributions to the VPE of BPS vortices
for D ¼ 3þ 1. Scattering data as before, ECT and EFD are the
sums of all listed counterterm contributions, including the fake
boson. All data are in units of M2 ¼ 2ðevÞ2.

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

ECT −0.0134 −0.0212 −0.0272 −0.0325
EFD 0.0212 0.0157 0.0158 0.0167

0.0078 −0.0054 −0.0114 −0.0157
ΔEscat −0.0255 −0.0969 −0.1782 −0.2622
ΔE −0.0177 −0.1023 −0.1896 −0.2784
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We observe qualitatively similar winding number
dependences in D ¼ 2þ 1 and D ¼ 3þ 1. An analogous
similarity between these two cases was also found for the
fermion VPE of QED flux tubes once equivalent renorm-
alization conditions were implemented [29].
We have already performed a consistency test of our

results when comparing the large momentum behavior of
ν̄V in Fig. 2. We have also verified the independence with
respect to the fake boson potential VfðρÞ by using different
values for the mass parameter κ. We show an example in
Table IV with two κ values for n ¼ 4 for both D ¼ 2þ 1

and D ¼ 3þ 1. The entries for κ ¼ 0.7 are those from
Tables II and III. The variation with κ of the individual
components is small but significant, and when combined to
ΔE these variations indeed cancel.
Our results for the scattering data contributions ΔEscat.

generally agree with those of Ref. [14], in particular on the
sign and the tendency with increasing winding number n.
Those authors employed a truncated heat kernel expansion
with ζ-function regularization. This amounts to an MS
renormalization scheme and we have thus compared their
results to ΔEscat. We do not agree with the sign in the
prediction presented4 in Ref. [13] for n ¼ 1 andD ¼ 3þ 1.
As in that study we reproduce the significant cancellation
between scattering and Feynman diagram contributions.
Ref. [13] constructs a local density of states using the
Green’s function at coincident points, which in turn relies
on scattering data along the imaginary momentum axis; this
approach is essentially equivalent to ours, because the
integral over space of the Green’s function yields the Jost
function that we compute. Apart from the different sign we
also find that our results are smaller in magnitude. This may
be due to the angular momentum extrapolation, since as we
have seen the extrapolation from L ≈ 35 they use is likely
insufficient [26]. In addition, the Green’s function approach
requires an additional integral over the radial coordinate,

which may be a source of numerical inaccuracies. As a final
source of the disagreement, we note that Ref. [13] imposes
the MS renormalization scheme at the scale of the
unrenormalized gauge boson mass. In an earlier proof of
concept investigation of the D ¼ 3þ 1 case we used a
simplified on-shell scheme [10]. Comparison reveals that
different schemes can easily change the sign of the small
n ¼ 1 VPE. However, they do not alter the (almost) linear
dependence on the winding number.

VII. CONCLUSIONS

We have computed the one-loop quantum corrections to
the energy (per unit length) of ANO vortices in scalar
electrodynamics with spontaneous symmetry breaking, in
the BPS case where the classical masses of the scalar and
gauge fields are equal. These corrections arise from the
polarization of the spectrum of quantum fluctuations in the
classical vortex background. This vacuum polarization
energy is small because the small coupling approximation
applies to electrodynamics with e2 ¼ 4π=137 ≈ 0.09, but it
becomes decisive in the case of observables for which the
classical result vanishes, such as the binding energies of
vortices with higher winding numbers in the BPS case.
After clarifying a number of technical and numerical

subtleties, we found that the dominant contribution to
vacuum polarization energies of vortices stems from the
nonperturbative contribution, which cannot be computed
from the lowest order Feynman diagrams; these diagrams
represent an expansion in the background fields rather
than the coupling constant. Our numerical simulations for
vortices with winding number up to four suggest that the
quantum energy weakly binds higher winding number BPS
vortices. We have also seen that the vacuum polarization
energy for the unit winding number vortex is very small, so
that at first glance it appears to be compatible with zero up
to numerical errors. The potentially most important source
for such errors is the small radius behavior in channels that
contain zero angular momentum components. However,
our numerical analysis suggests that any improvement of
the data is small and likely to push that vacuum polarization
energy further away from zero.
To our knowledge these are the first studies of a static

soliton vacuum polarization energy that compare different
topological sectors in a renormalizable model. The vortex
model has two nontrivial space dimensions. Solitons in one
space dimension do either not have topologically distinct5

static solitons, such as the kink and sine-Gordon soliton
[30], or are destabilized by the quantum corrections, such
as the ϕ6 model soliton [31]. The Skyrme model [32] in

TABLE IV. Dependence of components of the VPE on the fake
boson parameter κ for n ¼ 4. Top panel: D ¼ 2þ 1: bottom
panel: D ¼ 3þ 1.

κ ¼ 0.7 κ ¼ 1.0

ΔEscat −1.02049 −1.01919
EFD þ ECT −1.52148 −1.52278
ΔE −2.54197 −2.54197

κ ¼ 0.7 κ ¼ 1.0

ΔEscat −0.26264 −0.26219
EFD þ ECT −0.01574 −0.01620
ΔE −0.27839 −0.27839

4The erratum to Ref. [13] has a sign change compared to the
original publication.

5There are different topological sectors in these models but the
corresponding solitons solutions are constructed from those with
the lowest nonzero winding number. For example, the n ¼ 2 sine-
Gordon solution is the superposition of two (infinitely) widely
separated n ¼ 1 solutions.
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three space dimensions indeed has static solitons with
different winding numbers, but unfortunately that model is
not renormalizable.
ForD ¼ 2þ 1 and D ¼ 3þ 1 the VPE (approximately)

decreases linearly with the winding number n with some
offset at n ¼ 0. For the binding energiesΔE − nΔEjn¼1 we
get −0.297ðn − 1Þ − 0.035ðn − 1Þ2 and −0.070ðn − 1Þ,
respectively. Since in the BPS case the classical binding
energy is strictly zero, this implies that it is energetically
favorable for vortices to coalesce rather than to appear
in isolation. This observation is characteristic of a
type I superconductor. We also observe that ΔEjn¼4 −
2ΔEjn¼2 < 0 and ΔEjn¼3 − ΔEjn¼2 − ΔEjn¼1 < 0, mak-
ing the existence of substructures unlikely.
Away from the BPS case, the classical binding energy

can quickly overwhelm the quantum correction since the
model is weakly coupled. Nevertheless, the computation of
vacuum polarization energies for unequal masses would be
desirable to complete this picture. Technically this calcu-
lation is more involved because it corresponds to a full
4 × 4 scattering problem, rather than a doubled 2 × 2

problem. Another interesting question is whether the
techniques to avoid divergences in the Fourier transform
of the vortices that was developed in Ref. [26] and
employed here will also be successful when coupling
fermions and thus avoid the necessity of a return flux
[29]. If this is the case, supersymmetric extensions [33] can
be investigated as well. We also conjecture that analogous
calculations are possible in the case of a ’t Hooft-Polyakov
monopole [34,35].
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APPENDIX: HIGHER-ORDER EFFECTS FROM
THE WAVE-FUNCTION RENORMALIZATION

OF THE GUAGE FIELD

In this appendix we briefly discuss the higher order
effects of μ ≠ 1. These arise via the wave-function

counterterm for the gauge field in Eq. (24). The changes
in the energies are

Eμ ¼ −
M
96

�
12

4 − μ2
þ 6

μ
atanh

�
μ

2

	
− 4 − 3 lnð3Þ

�
×
Z

∞

0

ρdρ

�
n
g0

ρ

	
2

;

Eμ ¼
M2

288π

�
24

μ2
ð1 − μ2Þ þ 5

ffiffiffi
3

p
π −

6

μ3
μ4 − 2μ2 þ 16ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − μ2
p

× asin

�
μ

2

	�Z
∞

0

ρdρ

�
n
g0

ρ

	
2

ðA1Þ

for D ¼ 2þ 1 and D ¼ 3þ 1, respectively. These changes
are the differences of the gauge field counterterm contri-
butions evaluated at μ and μ ¼ 1. Interestingly, we do not
need to explicitly solve Eqs. (41) and (42) to determine μ
for given values of e and M, as long as we measure the
energies in units of M and M2. However, before we
compute Eμ, we must identify the range of solutions to
these equations. We therefore write them as

0¼ 1−μ2þ ζ

�
15

8
lnð3Þ− 13

6
þ μ2

2ð4−μ2Þ−
μ

4
atanh

�
μ

2

	�
;

0¼ 1−μ2þ ζ

�
9

2
−
5πffiffiffi
3

p −
μ2

6
þ 16− 2μ2

μ
ffiffiffiffiffiffiffiffiffiffiffiffi
4−μ2

p asin

�
μ

2

	�
; ðA2Þ

with the dimensionless parameters ζ ¼ e2
2πM and ζ ¼ e2

8π2
for

D ¼ 2þ 1 and D ¼ 3þ 1, respectively. The singularity at
μ ¼ 2 emerges from virtual Higgs particles going on-shell
and allowing the gauge particle to decay into two Higgses.
Even if this singularity produces a zero crossing Eq. (A2),
we consider it unphysical because it does not smoothly
emerge from the tree-level result. Such a solution would
approach μ ¼ 2 as ζ → 0.
We display the right-hand sides of Eq. (A2) in Fig. 3. For

D ¼ 2þ 1, only a narrow window below μ ¼ 1 is acces-
sible even for unrealistically large values of ζ. On the other
hand, for D ¼ 3þ 1 it seems acceptable to have
μ ∈ ½0.8; 1�. In Tables V and VI we present the numerical
results for Eμ in the appropriate ranges of μ. Compared to
the data in Tables II and III, these contributions are tiny and
do not effect our conclusions on the VPE.
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TABLE V. Gauge mass variation of the VPE, Eμ, for D ¼
2þ 1 in units of M according to Eq. (A1).

μ n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

0.92 0.0017 0.0028 0.0048 0.0069
0.94 0.0008 0.0021 0.0036 0.0053
0.96 0.0006 0.0015 0.0025 0.0036
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TABLE VI. Gauge mass variation of the VPE, Eμ, for D ¼
3þ 1 in units of M2 according to Eq. (A1).

μ n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

0.80 0.0004 0.0011 0.0018 0.0027
0.85 0.0003 0.0009 0.0014 0.0021
0.90 0.0002 0.0006 0.0010 0.0015
0.95 0.0001 0.0003 0.0005 0.0008

FIG. 3. Right-hand sides for the implicit Eqs. (A2). Left panel: D ¼ 2þ 1; right panel: D ¼ 3þ 1.
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