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Spin evolution of massive fermion in QED plasma
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The dynamical evolution of spin of a massive probe fermion in a hot QED plasma at local equilibrium is
investigated through the quantum kinetic theory. We consider the massive probe fermion undergoing 2-by-2
Coulomb scattering with the massless fermions in the medium. The axial kinetic equation is derived
including the collision terms to the first order of gradients and leading logarithmic order of the coupling. The
collision terms are vanishing at global equilibrium, around which the relaxation time can be extracted as an
operator. We further decompose the axial kinetic equation into kinetic equations of axial-charge density as
well as the transverse magnetic dipole moment. The polarization rate and diffusion rate are estimated in
massless limit and nonrelativistic limit, between both limit, polarization and diffusion effects are illustrated

through preliminary numerical analysis.
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I. INTRODUCTION

Recent STAR and ALICE experiments [1-5] have shed
light on the spin polarization of hadrons in the rotating QCD
plasma produced in off-central relativistic heavy-ion colli-
sions. Such spin polarization of emitted hadrons [6-9] has
motivated researches concerning the dynamical evolution of
spin for particles in a finite temperature plasma. Part of the
large initial orbital angular momentum characterized by
the collective motion of the fluid is transferred to the spin of
the particles through collisions. Whether the polarization
survives after hadronization relies on the dynamics of spin in
QGP phase and hadronic phase. The particles experience
both polarization and relaxation processes that drive the spin
polarization to equilibrium. The global polarization of A
hyperons enslaved by the thermal vorticity [10] is a robust
phenomenon, where model calculations [11-16] are in
consistency with experiments. However, such satisfaction
has not been achieved in local spin polarization. The
measurement of azimuthal angle dependence of spin polari-
zation in experiments [2] has not been fully understood in
theoretical studies due to the opposite sign in the phenom-
enological studies assuming the global equilibrium of spin
[17,18]. Such inconsistency is also known as the spin sign
problem. Attempts to resolve this problem include modify-
ing the understanding of vorticity [19], feed-down effect
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[20,21] and hyperon decay [22]. It is realized later that the
inclusion of shear tensor in the polarization yields the
qualitatively correct sign [23-26], indicating off-equilibrium
effects of spin maybe essential in polarization phenomenon.
It is also found that the numerical results could be sensitive
to the parameters in numerical analysis [27-30]. This calls
for more thorough investigations of the nonequilibrium
effects and kinetic theory of spin.

Theoretical description of the dynamical evolution of
spin polarization is mainly based on quantum kinetic theory
[31-43] and spin hydrodynamics [44—53]. The chiral kinetic
theory [54—64] was developed to describe the spin related
anomalous transport phenomena, and has been applied to
chiral magnetic effect [65] in heavy ion collisions. It is then
extended to the quantum kinetic theory to describe the spin
transport of massive fermions [31-34]. In recent years, the
collision terms are also included to study the relaxation
process of spin [37-42]. The general framework of quantum
kinetic theory is based on the Wigner function and Keldysh
formalism, which is able to keep the full power of quantum
field theory in nonequilibrium system [66]. On the other
hand, spin hydrodynamics extends the standard conservation
laws to also include the conservation of angular momentum,
describes the macroscopic evolution of spin density.

The polarization of A hyperons is dominated by the
s-quark, which can not be approximated as massless
fermion. In order to investigate the spin dynamics of
s-quark in the quark gluon plasma, we in this work deal
with a simplified scenario as a first step to the full problem.
We consider the evolution of spin of a hard massive fermion
m > eT probing into a hot massless QED plasma at local
equilibrium. As the Compton scattering is suppressed in
case m > eT, and the evolution is dominated by Coulomb
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scattering. Two competing processes would contribute to
the spin evolution, the diffusion process coming from the
scattering with medium fermion drives the fluctuation of
spin back to equilibrium, while the collective motion of the
medium, characterized by the hydrodynamic gradients, acts
as a source to polarize the spin of massive fermion. So as to
self-consistently incorporate the two processes, we derive
the collision terms to O(d) with all the first order hydro-
dynamic gradients included. Spin evolution of massive
probe in similar physical system is also investigated in
Refs. [36,37,67], where the author consider homogeneous
QCD plasma and focus only on the diffusion term. In
Ref. [42], kinetic equation of massless probe fermion
traversing hot QED plasma is derived, the authors also
extract diffusion and polarization rates from the collision
terms. From the kinetic equations derived in this paper, the
first order gradients of the plasma act as a source to axial
charge and change the orientation of the probe spin. For
massless probe fermion, the ratio between polarization rate
and relaxation rate can be estimated to be f,|d|/p, this is in
general in consistency with Ref. [42]. In the nonrelativistic
limit, the diffusion process dominates the polarization for
axial charge, with the later suppressed by additional
(p/m)?; the changing in the orientation of spin get also
suppressed by (7//m)?. Between the both limit, we provide
some preliminary numerical analysis to illustrate the
polarization and diffusion process. For s-quark in the quark
gluon plasma which is roughly m ~ p ~ T, ratio between
polarization and diffusion rate is about |d|/7, indicating
nonequilibrium effects important in the spin polarization in
heavy ion collision.

This paper is organized as follows: in Sec. II, we briefly
review the Wigner function and Kadanoff-Baym equations,
as well as the power counting scheme. In Sec. III, we derive
the general expression for the collision term and discuss
contribution from the various part of the collision term. In
Sec. IV, the result of collision term after integral over phase
space momentum is presented, together with expression in
massless and nonrelativistic limit. The relaxation rate near
the global equilibrium is also extracted. In Sec. V, the axial
kinetic equation is further decomposed into kinetic equation
of axial-charge density and transverse dipole moment. A
preliminary numerical analysis decorating the diffusion and
polarization processes is presented. In Sec. VI, we provide
conclusion and outlook. Calculation details are presented in
Appendices A and B.

In this paper, we take the mostly negative convention
of matrix g,, = diag(1,—1,—1,~1) and take the Dirac

matrix in the Weyl basis with ys = iy%'y?y® and

€ = —€p123 = +1. We use a majuscule letter for four-
dimension covariant momentum such as P* and use a
minuscule letter for its component such as p® and its
module such as p = |p|. We use the projector A* =

g — utu” to project a vector onto direction perpendicular
to the fluid velocity u*, such as P{ = A*P, and define
P! = P! /p with p = (=P P,,,)'/?. The projector E* =
g — utu® + Is’if”i projects a vector onto direction
perpendicular to both u# and P'| . We also use the following
notations for the first order gradients: § = 0-u, D = u - 0,
the fluid vorticity defined as w* = Je***/u,0,u; and shear
tensor 6'%) defined as the symmetric and traceless part of
o =1(3%u’ + I u”) — L A?0. The symmetrization and
antisymmetrization of two symbols are defined through
X@Yp = Xo¥p + XpY, and XY = X, Y5 — XpY,.

II. SPIN TRANSPORT EQUATION

In this section, we review the basic steps of deriving the
axial kinetic equation with collision term. Starting from
the Wigner transformation applied to contour Green’s
function [66]

S (X, p) = / Frer sy, (1)

where X = (x 4+ y)/2 and Y = x — y are the center of mass
coordinate and relative coordinate. Here, S ;ﬂ(x, y) =

Wp(¥)wa(x)) and Sis(x,y) = (wo(x)@s(y)) are lessor
and greater propagators, respectively. After the Wigner
transformation, the lesser propagator obeys the Kadanoff-
Baym equations derived from the Schwinger-Dyson
equation,

i

(PP, — m)S< + %yﬂvﬂs< =S (E5S - 27as%). (2)

where £>(<) represents the lesser (greater) self-energy.
The scattering process involves only X<(>), thus we have
dropped the real parts of the retarded and advanced self-
energies and of the retarded propagators. The electromag-
netic fields decay quickly in the QGP, hence we neglect
the background electromagnetic fields in the medium.
The symbol  represents AxB = AB + £ [AB]p 5 + O(0%),
where the Poisson bracket is [AB|pp = (94A)(d,B)—
(0,A)(0yB). The commutators are defined as {F.G}=
FG+ GF, [F,G]=FG-GF, {F,G}, =FxG+ GxF
and [F, G|, = FxG — GxF with F and G being arbitrary
matrix-valued functions. By using the complete basis for
the Clifford algebra, the Wigner function is decomposed
into S<=S+iPy + V' + Ay +1S,,0" and
§> =S+ iPy + l_)ﬂy” + .Zlﬂysy" + %Sﬂyaf"“. Similarly, it
is also useful to carry out the same spinor-basis decom-
position for the self-energies, giving 2= = X¢ + iXpy’ +
Syt + Zarrt +52,0"  and BT =S¢+ iZpp+
Syt + Za " +5E5,0". V and A give rise to the
vector-charge and axial-charge currents through J4, =
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J, V' and J§ =
regarded as a spin current of fermion. Taking V and A as
independent degrees of freedom, the scalar component S,
pseudoscalar component P and tensor component S, can
be expressed in terms of V and A.

We are going to investigate the relaxation of spin of a
massive probe fermion traversing a hot massless QED
plasma in local equilibrium. Before moving on to calculate
the collision term, we first introduce the counting in
gradients. In the heavy ion collision, the axial-vector
currents are mostly induced by the electromagnetic field
or the gradients of the fluid velocity. This motivates the
counting of A, ~ O(d). On the other hand, the vector charge
current can be safely kept only to O(d°), as it is dominated
by classical process. The power counting of A, and V), also
leads to counting of the other components S ~ O(d°), S, ~
0(0") and P ~ O(0%), as well as the components of the
self-energy. In the Coulomb scattering we are going to
investigate, the above counting leads to counting for the
self-energy  components, X5~ O(d°), Zy, ~O(d),
Ty~ O(0Y), g, ~ O(0") and Zp ~ O(0?). The thermal-
ization of the vector charge is dominated by the classical
process, thus it is enough to keep only O(d°) terms in the
collision term. The thermalization of spin involves diffusion
of the initial spin of the probe as well as polarization induced
by gradients such as the vorticity and shear, it is required to
evaluate the collision terms up to O(d). Then the collision
terms for vector and axial-vector components can be
obtained though comparing the Dirac structures on both
sides of Kadanoff-Baym equation, giving the vector kinetic
equation

/. ;. The axial-charge currents can be

P — —
OV =~ EE V-5,V 4+ 0(d). (3)

where XY = XY — XY. And the axial kinetic equation

mn

2
1 /\

+ P,V + Eeﬂwm(a"Zﬁ,)V” +0(0%). (4)

P-0A, = —mEgA, — P'Sy, A, — PUSy YV, — = o S0V

The power counting A, ~ O(d) guarantees the mass-shell
condition of Aﬂ [39], see also [37] for details of derivation.
With the relations between various components of the
Wigner function, the parametrization of the various com-
ponents can be taken as
= 2ne(P - u) )
V, = 2re(P - u) )
= 2ze(P - u)5(P? — m*)n
= 2ne(P - u)§(P* — m?)S,,. (5)

We do not take any decomposition of n,, at the moment, for
now it is only constrained by P'n, =0 coming directly
from P*A, =0. With the relation S, =50V, —
Lo P’ A% + O(0%) between the tensor and ax1a1 vector
component [39], S, is expressed as

1 1
S;w(P) = _%Pwav]fV(P) m Ml/ptfP/) (P) (6)

For the greater components, one can just substitute [, with
fv=1—fy and substitute n, with i1, = —n,. Besides,
within such power counting, one would have P ~ O(d?%),
and p ~ O(%), they are thus excluded from the current
problem. For later convenience, the zeroth order and first
order Wigner functions of massive fermion are given by

S0 = 2ze(P - u)8(P* — m*)(m + y"P,) fy(P).
n
<) = 27e(P - u)8(P* — m?) <757"nﬂ(P) + 07 Sy (P >> -

For massless fermion S<(%) = 2z¢(P - u)8(P?)y*P, fv(P)
and S = 27¢(P - u)8(P*)y’y*n,(P). In the following,
we use the variable n, instead of A,, for the axial-vector

component to avoid the coefficient 2ze(P - u)5(P? — m?)
on both sides of the transport equation.

III. COULOMB SCATTERING

In this section, we consider the scenario where the
massive hard fermion probes into a hot QED plasma and
undergoes a 2-by-2 scattering with hot medium at local
equilibrium. The light fermions in the medium can be well
approximated as massless. The mass of the probe fermion is
assumed to be much greater than the thermal mass m > eT,
in this case the Compton scattering does not contribute at
the leading logarithmic order, thus only the Coulomb
scattering is considered. This approximation can be under-
stood as a toy model for the spin evolution of the s-quark in
the quark gluon plasma. The collision terms will be grouped
into two types. The diffusion terms are those terms linear in
A, of the probe fermion, such terms are dominated by
classical dynamics of the interaction. The polarization terms
are those terms containing first order gradients of the fluid,
such terms delineate how the collective motion of the fluid
acts as a source to polarize the spin of the probe fermion.
Since the axial-vector component is counted as A, ~ O(d),
both the spin diffusion and the first order gradients of the
medium contribute at the same order and should be treated
on the same basis. We calculate the collision term of axial
kinetic equation keeping all the contributions of the first
order gradient and work out the leading logarithmic order
collision terms. The following Feynman diagram Fig. 1
describes the Coulomb scattering of the massive probe
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FIG. 1. Two-loop diagram for fermion self-energy containing
propagator corrections [41]. The 12 labels are uniquely deter-
mined by the requirement that three propagators attached to a
vertex cannot be simultaneously on shell.

fermion (P and K) with the massless medium fermion
(P" and K’). The greater fermion self-energy is defined as

> (P) = ¢ /Q S EPGHQ.

where [, = [d'Ka*Q(2x)Be(K - u)6(K* — m*)(27)*5
(P—K—Q). G;,(Q) is the photon propagator containing
one fermion loop correction,

Giw=(Q) = -DZ(Q)DL(Q)NOV=#(Q).  (9)

For simplicity, we will choose Feynman gauge for D}7 and

Dy, namely D35 = g—"z” and D)} = "Qi;' As processes with
the on-shell photon such as Compton scattering are sup-
pressed, the collision term is gauge invariant. A short proof
of gauge invariance is presented in the Appendix B. The
photon self-energy get gradient correction from the fermion
loop. It is also counted in d with the leading order and first

order photon self-energy are

MOh(0) =~ [ Ty sO=(P)yAS O (K1),

H(l)<aﬂ(Q) — —62/ Tr[},aS(l)<(P/)},/}S(O)>(K/)

K'.P'
+yeSO=(P)y s> (K], (10)

where [, = [d*K'd*P'(2z) Pe(P" - u)e(K' - u)5(P")
5(K”?)(27)*$(Q + P’ — K'). Fermions with momentum
P and K are the massive probe fermion, while those
with momentum P’ and K’ are the massless medium
fermions. Substituting the Wigner function of the loop
fermions, the photon propagator at zeroth order and first
order are given by

1

67 (0) =42 [ s (PK)y = 0P )
x fy(P)fv(K').
GL)<(0) = 4¢(2n) / e (Km0 (P
! o o (Q2)2 1o
x fv(K') = P’ (K') fv (P)). (11)

G,(f,),)< is symmetric in indices, while G,(,lb)< is antisym-

metric. Instead of using the hard thermal loop (HTL)
photon propagator and calculate the one loop fermion self-
energy [36,37], here we use the loop-corrected photon
propagator. The former captures the classical effects in the
evolution of probe fermion, while quantum effects such as
contributions from the gradients of the medium are not
included. One loop fermion self-energy using the HTL
photon propagator also assumes that the medium fermions
are at equilibrium, and nonequilibrium effects are
excluded. In comparison, the zeroth order G,(g)(Q)
includes classical effects same as described by HTL
photon propagator, and through the first order propagator

G,(,ly)(Q), spin of the massless medium fermion could
contribute to the spin evolution of the probe fermion.
Besides, by calculating the two loop fermion self-energy,
one can also investigate the evolution of probe fermion in
a nonequilibrium medium. However, in this paper, as a
first step, we restrict ourself to the scenario where the
massless medium fermion is at local equilibrium.

Contracting y~#* = y#*S~y" with the photon propagator,
the fermion self-energy can be decomposed to various
Dirac components [37],

_ _ _ _ pvaf _ _ _
G, = (8Ghg" +i8G5,) + iy <—7>G,f” —i8,4G;, GT) + 7" (WGE,) = V,Gi" = €0y ATGH)

HUpC

+ 77 (-AGE, + A,Git 4 i€,,,)V°GH) + Eaﬂa(zsgca ot S,,Gi" = 2i8G5, — iPe,,,G*).  (12)

For the purpose of obtaining the collision terms to ((0), only terms linear in axial-vector component A* appear while
higher order of A are at least O(0%) and are neglected. The self-energy components appearing in the transport equation (4)
are Xg, Xy, X, and Xp,,; the greater components are expressed as
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“(Q)g™.

50, (P) = & /Q 2R(KIGI(Q) + AKIGE Q)" + e T (K)G(Q),

%1,(P) = €2 /Q 28,(K)G, (0 + S (K)GY)“ ()¢ - 2i8(K)Gy~(0). (13)

The lessor components of the self-energy can be obtained through replacing S~ with S<, and G* with G~.

As a first step, we consider the case where the massive probe fermion has local equilibrium number distribution, so that
we can use the local equilibrium of number distribution fx fx fpfp — fx fxfpfp = 0 in the derivation. For abbreviation,
we denote fy(P) as a general nonequilibrium number distribution, and denote fp = l‘iq(P) = np(P) as the local
equilibrium number distribution. Using local equilibrium of number distribution, one can convert 0*(f k' fx fp') into o f p.
This simplifies the last term 0°Z%,(P) in (4), with Z¥,(P) defined in (13). After straightforward but tedious algebra, the

collision terms of axial kinetic equation can be casted into P -odn, = C,,

C, = —4¢*(2n) /QK//P/{MM Tefofi + fxfefi)n'(P)+ M (fofpfx + fofpfx)n(K)

+ MA3(foK’fP’ + fxfrfp)fp+ MA4(fPfP’]_CK’ + fofrfi)¥fk
+ M (Frofofx + frfpfinig(P) + M (fofrfx+ Frfofe)ng (K} (14)

where fQ’K Jer=1[ (2r) 1%d*Qd*Kd*K'd*P'(2x)36(P — K — Q)8(Q + P’ —

Ke(K - u)e(P' - u)e(K' - u)d(K* — m?)

5(P?)8(K"™?). The various effective scattering amplitudes in (14) are given by

1
Ml = e (=m*P' K14+ 2P - PK-K') + {P' > K'},
1
My = omy (K - PP'-K'=2K - K'P-P') ~K'-PK,P, ~2P - P'Q,K, + 2P QP,K, + 2K -K'P,P,) + {P' > K.
1
M2} = — €K - K'PPP* + {P' <K'},
H (Qz)z uvap
1 1
M = —— ( euap| 5 P - K'PPK® + P-PKPK'™ ) + €3,05K, P°KPP | + {P' < K'},
(0%) 2
M = 2 (120 K'g ~ mPKLQ, + K - K'P,P, — P-K'P,K,)
HY (Q2)2 HY ux=v utv ulhu)s
2
MA6 (QZ) ( 2Q Plgyu_mzplQu+K P/PP —P-PP K) (15)

where {P’ <> K’} denotes exchanging the two momentum
in the terms before, namely g(P’, K') + {P’ <> K’} means
g(P',K') 4+ g(K', P'), and g is an arbitrary function.

The first line in collision term (14) corresponds to
the spin diffusion of the probe fermion, which are similar
to classical spin relaxation processes considered in
Refs. [36,37]. The last two lines are polarization of probe
fermion resulting from the collection motion of the
medium as well as spin of the medium fermion. The

second line in (14) describes the polarization effect due to
spacetime gradient of fy of the probe fermion. The
last line is the contribution from spin of the medium
fermion. As A, is O(d) in the power counting, in order
to investigate its evolution, it is of key necessity to
evaluate all the first order gradient in the collision term.
Before going on to present the collision term after
momentum integral, we first discuss each part of the
collision terms.
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A. Diffusion

Terms with M4} and M4} are the spin diffusion terms,
these two terms have the same physical meaning as
discussed in [36,37], describing the relaxation of probe
spin by the QED dynamics. After simplifying the integral
measure, the diffusion term can be recasted into

Clf =—de* [ (MU G+ Fi v (P)
4909+
MAZ(fPfP’fK’ + fefefr)n’(K)}, (16)

: e 1 313
where f doqk 1S the abbreviation for By f dqyd’qd’ K

W&(po — ko — q0)8(py, — ki + qo)- Instead of photon
propagator in the HTL approximation, we use the photon
propagator with one-loop correction (11). This leads to the
same structure of the collision term as [37], while the
coefficients will be different by a constant factor coming
SU(N) of the symmetry of color field in [37]. In the HTL
approximation, the probe fermion and medium fermion are
hard fermions p, k, p’, k' ~ T, while the momentum transfer
issofteT < ¢y, g < T.In order to complete the momentum
integral and keep the result to leading logarithmic order, the
axial-vector components of the outgoing probe fermion is
expanded in terms of soft momentum Q as

n}l( ) ) nu(P) - QDaP”nu(P)

n, (P
1
+5000pQ"0pem, (P) + O(QY). (17)
And likewise in the expansion of fr and fp by soft
momentum Q. The basic strategy is to expand the integrand
to O(Q7?), together with the integral measure which is
O(Q?), then the momentum integral gives leading loga-

rithmic result. Further details of momentum integral are
presented in Appendix A 2.

B. Polarization

The second and third lines in (14) contain first
order gradients through derivatives of number distribu-
tion of the probe ¢“fp,d" fx as well as the axial-vector
component of the medium fermion nj,,(P') and nf, (K').
For fp and fy at local equilibrium, 0”fp, d"fx can be
decomposed in terms of gradients of the fluid. Similar to
[62], derivative of the fluid velocity u can be decomposed
into antisymmetric and symmetric part ou” = o' + o,
where @ = (*u* — &u#)/2 and o** = (u” + u")/2.
With the vorticity defined as w* = 3e"u,(d,up), the
symmetric part is casted Into wys = —€4p, @' U” + Kop,
with k.5 = % (ugDug — ugDu,).  Defining E°(P) =
Py(u*0°T —6°* — k), we arrive at the following
decomposition,

Ffp=—(e""P,wouy + E(P)) [, (18)

where f, = 0,pfp = (—1)fpfp. E°(P) can be further
casted in combination of shear tensor, acceleration and
gradient of temperature

y 1
E°(P) =-P, (0<"u’1> +3 A0 + u"Du’1> +P-u[o”InT).

(19)

The spin evolution of the massive probe fermion in a
massless QED at local equilibrium also involves the
exchanging of spin with the massless medium fermion,
which are at local equilibrium. For the medium fermion,
we take the local equilibrium distribution of spin [62],
namely

Aleq( P) = 22e(P - u)3(P) (P cou,  P-uw,
2 2
- SEP)EP) ) 11(P) 20)
where
(1) o GMUaﬂPaMﬂ
S (P) T 2P-u (21)

The polarization effect contains contribution from vor-
ticity, shear tensor, acceleration and the gradient of
temperature. With the decomposition (Sec. IV C) and
(20), the vorticity related terms in the collision term can
be collected into,

vor __
Au —

—4et / C (=P fxfrfrfr  (22)
0.9k

with B(x) = T(x)~!, and

C/\;or — ( M’/}S P/, + MA4 K ) vpaf wa”[)’

1
+ 3 (M2 P, + MASK) ) wlPut). (23)

The effective amplitudes M4 are defined in (15).
Equation (22) characterizes the polarization effect due
the vorticity in the medium. Using the decomposition
(Sec. IV C) and (20), the shear tensor related terms in the
collision term can be casted into
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Ci‘t;ear = —4¢* / ) C;}(;eﬁar6<aﬂ> (_ﬂ)]_cKJ_CK’fP’fﬁ (24)
q0-9-

with C;t‘;fr defined through

Chap" = MyaPy + MyaKyy +
1

2K -u

o (PP,

+ (M) e, q, AK’/’u’lK’ﬂ. (25)
The shear tensor ') is the symmetric and traceless part
of 0 =1 (3% u’ + 9 u”) — L A%0. In the local rest frame
of the fluid, the shear tensor only spatial components
i =3 (0u; + oju;) — %51-1-5- u. The efficient amplitudes
are presented in (15). The remaining first order gradients
are the temperature gradient and acceleration, the corre-
sponding collision term is collected into

Ter: Tar:
Cp ¢ = —4e? /q qk/(c,j “0'InT + C3Dut)
0:9
X (—ﬂ)fka’fP’fPa (26)

with coefficients CZfra and Ci¢ defined as

1
o™ = =MSP 1= MUK -1 =5 (M) jup Pt

HA
1 A6 \v la,,p
_E(M )ﬂeulaﬂK u,
Ci¢ = M u P, + My u'K). (27)

The final result of the collision term will be the sum of the all
the parts above, namely Cy, = Cyl' + Cyy + C&"+

Tgra+acc
Cay, .

IV. RESULT

In this section, we explicitly present the result of the
collision term. The leading logarithmic contribution comes
from the soft eT < g, g < T regime, the basic strategy to
obtain the leading logarithmic contribution is to collect all
the terms up to O(Q~2) in the integrand. Combined with
the measure which is O(Q?), both combined will give the
leading logarithmic results. With the assumption that mass
of the probe fermion is much larger than thermal mass
m > mp ~ eT, Compton scattering is subleading and only
Coulomb scattering is considered. In the calculation, there
is no more restriction for the mass of the probe fermion. In
the following, we present the collision term after the
momentum integral for arbitrary mass of the probe fermion,
and also take massless and nonrelativistic limit for a
comparison.

A. Collision terms

1. Arbitrary mass

For arbitrary nonzero mass of the probe fermion,
the kinetic equation of the axial-vector component
becomes

T . . .
P-on*(P) = -k, — {C“)n"(P) + COut + COP + CWP 0p 1, (P) + CO P 0p n(P)

+ CO¢0p, dpo n(P) + CT PP 0y Opy ' (P) + C®) (o + P/ P ,)

1 P AR . .
+C® 3 (eru, PP\ + ey, P 1y P)o o + C1Oe Py P yDu, + C1Vem Py, P 40, In T}, (28)

note that both sides of the kinetic equation are on the mass shell §(P? — m?). k;; is the leading logarithmic coefficient

given by

1

KrL :§e4ln7. (29)

e

Similar to [37], we also introduce the four velocity v* = P*/m for simplicity. Which has the normalization v#v, = 1, and
vy = po/m with v = |p|/m. The rapidity is 7, = arctanh(p/py) = 27" In[(po + p)/(po — p)]. The shorthand notation
0, = v —wvgn, is defined for simplicity. The coefficients in (28) are
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2 3
W v _mloy _mv L,
3vg 372 (=1 3Tv} ( fr),
L 0, mud_, ) m(2v® — v30_,) ) m(2v® —=3v30_)) +, &,
) = <3 30 67w (L=2f,) | PLn,(P) +T200131” (P) + P =P P 0po n, (P),
(v 0 mo, o muvy0_, ) m(2v> =3v30_1) o, »,
C( ) = (3—U(3) 3_1)0 6T (1 — pr)> J_I/ly(P) — apii’l (P) + 62}1}0 PJ_PJ_aP/inL/(P)’
c mv?
31)0 ’
2,2
0
o) =M MY, ,
3vg 6Tv ( fr)
co_M 2(3v3vy — v30_3)
1207 '
o) — m200(291 + 0_,)
mo mvoﬁl (I=f)fp
= 1=2 A 2
( -t o) ) e
~(m(® +3v(2)9 m*vy(20° = (v + 30v3)0_)) (1-2f)) (I=fu)fp
N 300} 6Tv? P 2T
mugd_y 2(203 - 30_,12) (1=fo)fp
1-2 —_—
< 127 (1=2f}) ) =7
20-3030_;) m*(3v° +50,) (1=1,)f
can — (™ o1 Y -2f,) | —=222, 30
< 6wy, 12Tv ( /r) 2T (30)

Jf p 1s the local equilibrium number distribution of the probe,
which is the Fermi Dirac distribution f, = 1/ (eBr/T 4-1),
and E, = V p*+m?.

The first two lines on the rhs of (28) are dubbed as the
spin-diffusion terms, since these terms are linear in n,(P)
which is related to spin of the probe fermion. If the probe
fermion is unpolarized in the initial state, the spin-diffusion
term would be vanishing at the initial time. These terms
have same structure as Refs. [36,37]. The last two lines on
the rhs of (28) delineate the spin polarization effects
induced by the first order hydrodynamic gradients of the
medium including vorticity, shear tensor, acceleration and
gradient of temperature. In previous works about the
dynamical processes of spin evolution of massive fermion
in QED and QCD plasma [36,67], the polarization effects
are not included. For simplicity, only the spin diffusion is
investigated. In Ref. [37], the polarization effect is dis-
cussed for a general collision term but not explicitly for a
system with given interaction. In a recent paper [42],
polarization effects are considered for a massless probe
fermion. In this paper, the polarization effect in considered
for the first time in the view of kinetic theory for massive
spin carrier in gauge plasma. When traversing the QED
plasma, the probe fermion experiences competing proc-
esses from diffusion and polarization, until the both balance

[

each other, then the spin of the probe fermion achieves local
equilibrium. It is worth emphasizing that we have taken the
assumption that the vector distribution f} of the probe
fermion has achieved local equilibrium with the medium. In
general, the relaxation of f of the probe is coupled with
the relaxation of spin n* and should also be incorporated.
These will be presented in further studies. With the
collision terms (28) and the coefficients (30), the diffusion
rate and polarization rate can be estimated. However, since
n, still contains three degrees of freedom, the analysis of
diffusion rate and polarization rate will be postponed until
n, is decomposed in Sec. IV C. As a cross-check and for
later convenience, we present first the massless limit and
nonrelativistic limit of collision terms (28), (30).

2. Massless limit

The collision terms (28) arise from soft t-channel photon
exchange of momentum Q in the scattering with back-
ground hard thermal fermions. If the probe fermion is light,
the soft 7-channel fermion exchange contribution is no
more suppressed and contributes also at leading logarithmic
order. This scattering process, also known as Compton
scattering, allows for conversion of fermion to a photon.
The discussion of Compton scattering to first order of
gradients also requires inclusion of polarized photon which

076011-8



SPIN EVOLUTION OF MASSIVE FERMION IN QED PLASMA PHYS. REV. D 106, 076011 (2022)

is beyond the scope of this paper. The massless limit is considered here to compare with other researches, and for the
convenience of deriving the collision terms after decomposition Sec. IV C. In the massless limit, the structure of the

collision term is unchanged, the only difference lies in the replacement in the coefficients, with C(¥) replaced by Cgl)i. With

Cglz = 0, the nonvanishing coefficients are

=t - - L -2p,).

¢ = (5= 1=20,) ) Puns(P) 4 Lo ()= 22 P 0, (),

¢l = (5= L1-21,) )P (p) = Lo (P = £ P nP),

=L --La-a) =L

c® — _ (1 6;2fp)fp(12;fﬁ), ) = <_§+§7_;(1 —2f,,)> fﬂ(]z;fp)’

o _ <127_P2(11;T2fp)> fp(g;fp)’ i _ _12?+P2(14—T2fp)) fp(lz;fp)‘ 31)

With the above coefficients, one can derive the transport equation of f, in the massless limit (48). As a consistency check,
the diffusion terms in (48) agree with (4.28) in [37] and (4.7) in [36].

3. Nonrelativistic limit
To investigate the spin evolution of heavy quarks in the quark gluon plasma, the nonrelativistic limit of the kinetic

equation is analyzed. In the nonrelativistic limit, it is assumed that m > p ~ T. We keep the collision term to O(m~2) for
later convenience when checking the eliminating of the collision term in the global equilibrium.

1 A A A
(04 P10, ) (P) = s cltr(P) + il + P+ cgtzpiam (P)+ CEMP 0 1#(P)
+ Chong? 0p: O n(P) + Chon(@* + P4 P1 ,) + co ! 5 (e, Py P by P P Yo

+ Chon e Pu,P | yDu, + Chon e Pu, P 40, In T}, (32)

with the coefficients as

1 1 T 2p2 2) T p 2T v
Cnon_ﬁ<§_—9T fp(l=1p) ) Chon = 3mp  Om? — (1 pr) (P)+9—maP1n (P),
) _ T 4 Tp ., @ _Tp
Chon = 3m2 Py D(P) - o2 aPin (P)a Chon = 3’
s) T p pT 6 T pT
Cnon ———(1-2 R Cnon:__ s
3p 9m( fr) 6m? 9 12m?
C(S) _ _l_ P2 fp(l_fp) C(9) _ _l_4p2(1_2fp) fp(l_fp)
e 3m 9m? 2T non 3m 9m2 2T
(10) Tfp(l ) (11) T P(1—2fp) fp(l_fp)
Cion = — Cion = [—+—F— 33
T 3m 2T ¢ 3p T om 2m 2T (33)

Both diffusion and polarization get suppressed, guaranteeing that, in the heavy quark limit m — oo, the orientation of spin is
fixed while the spin density still experience the diffusion process. The different behavior in spin orientation and spin density
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can be observed more clearly when further decomposing
kinetic equation of n* to its three degrees of freedom, as
presented in Sec. IV C.

the above calculation, and also as a prerequisite for
extracting the relaxation rate. In global equilibrium,
n,(P) in a purely rotating fluid could be defined frame

independently [39,62] as
B. Relaxation near global equilibrium

term in global equilibrium for massive fermion has been n/%eq(P ) =
proved in Refs. [38,39]. The collision terms in chiral kinetic
theory is also shown to be vanishing in local equilibrium in
Refs. [42,62]. We here check the vanishing of collision
term in global equilibrium as a guarantee of the correctness

|

For quantum kinetic theory, the elimination of collision < P-ou
2 2

P ”“’”)f;. (34)

Using the following derivatives of the equilibrium number
distribution function, f, = ng(E p),

P,
aP‘ifp :fp(l _fp)ﬁ’

PJ_/,tPJ_I/
5

PJ_ﬂPJ_v
pyT*

OO £ = £, (1= £,)(1 =2f,) Ty —f,»miT( —|—Aw>, (35)

the momentum derivative of n5; *(P) in the collision terms can be explicitly obtaining with the help of the following tensors:

(Plowsu, — pow,),

W (P) = At (a)vuﬂ + P wﬂ) LU= f)0=2f)) Py,

Op
Py 2T o 2T ol

e f(]_f)l PLDPL)
5P10Pi”§q(P)=—%% A, + 2 =)oy
fp(I=f)(1=2f,) 1 PP, . 2P, P,
—=r ;T d ﬁ A, + 2 & (Pl w,u, — pow,) + Pupa)y)uMJera)y
Fo(L=f (M =2f,)2 =2f,(1 = f,)) PP,
= £ 27[: £ £ p(z)sz(PJ_wﬂuu_pOwﬂ)' (36)

Substituting these derivatives back into the diffusion part, one can explicitly find that the diffusion part balances the vorticity
part, and thus the collision terms are eliminated in global equilibrium. The vanishing of collision terms is also be proved for
the massless limit and nonrelativistic limit when inserting the derivatives in corresponding limits.

Near the global equilibrium, the relaxation of the spin is dominated by the diffusion terms, leading to the relaxation rate
near global equilibrium

P-on#(P) = (+~'ywsn,(P), (37)

where the relaxation time is now an operator,

= s (= (= 1) = ey (1200 + (= 1 -2, ) P
m2(3p3f§v—2 v30-3) gaﬂaP‘jap/i B m2vo(?§;2+ 0_1) Piﬁ/iaP‘iapﬁ> n ’;77”:@16&”

The assumption that the number distribution of the probe fermion has reached local equilibrium with the medium leads to
the disappearance of gradient terms in the relaxation time. Otherwise, the kinetic equation of both spin and number
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distribution will couple with each other, the relaxation of the charge also contributes to spin evolution [40,42]. The full set of
kinetic equation of both spin and charge to the first order of gradient will be included in an upcoming paper.

C. Diffusion and polarization rate

So far, the decomposition of A, was not considered for the simplicity when deriving the transport equation. For massive
fermion, the axial-vector component A, has three degrees of freedom, constrained by the perpendicular relation P#A, = 0.
The further decomposition is necessary to obtain components with definite physical meanings, and to recover a smooth
connection with the chiral limit. To get the transport equation for each of the three degrees of freedom of A, and meanwhile

keep the correct massless limit, we adopt the following decomposition of A, = 2ze(P - u)5(P? — m*)n, [68],

p
P P2y € P i

u u
(u.P)Z_PZPJ_fA_I_ M

H(P) = PH
n(P) = P'fa+ Pt o

yfV (39)

fa =u-n/u-P is identified as the axial-charge density, M is the transverse magnetic dipole-moment M/ = E* M,,
where MH = —%e’””’/" u,Sqp and S,4 is the dipole moment tensor defined in last equation in (5). In the massless limit,
restricted by on-shell condition §(P?), the second and third term in (39) disappear. With such decomposition, the various
components of n* have clear physical meanings and a smooth massless limit. See [68,69] for more details of the
decomposition.

Consider that the charge distribution has achieved local equilibrium, the general fy in (39) is replaced by the local
equilibrium distribution function f,. For convenience, we consider the scenario that the medium is in the global
equilibrium, namely we keep only the vorticity and neglect all other first order gradients. The transport equations of the
axial-charge density f,(P) and transverse magnetic dipole-moment M/| (P) become

T 1 2) 3 3) 4 5 5 B 6) 3y
P-ofy = _KLLm_U{CEl fat CE« )PJ_aPlfA + C,(q g P0p Ops fa + CE« )PJ_Plian_aP’ifA + C,(q )aPlMi + C54> Lo},

T 2
P-oM! = —KLL—{CM M+ C P op MY+ C (yﬂapuaPpML——PlanMJ

+ Chy PP 0p 0o M+ C) 2 0p f 1 + CZ(S)E”’“@,,}, (40)
both equations are coupled, with the coefficient CX) defined as
2 5 34 22(02
(1) m=v0_ m(2v° — v50_;) v> + vg(vg + 1)6,
o) =0y, - (1-2f,) - ,
A 377 prrp 6T v v P 3vtod
C(z) . (2f - l)g_lmZU(Z) n m<91 + 2113)
A 6v 30,
C1(45) _ m(21}3 _2 1)2(2)9_1) ’ CI(46) _ (21;3 _ U§9_1) (1 - fp)fp ’ (41)
6v°v; 6vvj T

with Cﬁi;w = C©), and Cf:;w = ), with C(®7) defined in (30). And the coefficients C\) have the following expression,

) m2vy0_, m(2v® — v30_;) 0,
cly = - 1- A T (g y = L
M 3T2 ( fp)fp 6T’U(2) ( fp) 37}(3)
2,2 2
2) m*v§0_, m(vg0_; + v)
G == 6Tv (1=2f,) + 3vw, ’
20,3 5 2y,2
5)  mvg(v’ —6;) ©) mo_, 2004+ 0_(1=v*) v\ A =f,)f
Cy/ =———=, C, = 1-2 - . 42
M 6v* M 6T ( f») 2070 2T (42)

When the spin of the probe reaches global equilibrium, n* takes the solution (34). The global equilibrium expression for f,
and M/ can be solved accordingly, giving f59=—Piw,(p/po)f,(1—f,)/2T) and Mg} == w,f,
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(1=f,)/(2T). Inserting back into the collision terms in
(40), one will also find the elimination of collision term at
global equilibrium.

The first four terms in both collision terms are the
diffusion terms, the last terms characterize the polarization
effect induced by the vorticity of the QED plasma. The
projection of vorticity to direction of momentum | =
P " w, acts as a source of axial charge, with the polarization
rate estimated by ['ypq = dofa

et ln(l/e) T3 (6)
[ppg =——————C , 43
Apol ’r Dop A 0)” ( )
where Cf) is a function of mass, momentum and
temperature. On the other hand, the diffusion rate can be
estimated as

e 1n(1/e)T3 (1)

Tagic = cl. 44
Adif 8717]90]7 A ( )

The ratio of both rates serves as an estimation of whether
the polarization effect is important during the thermal-
ization,

Cap  Cy' Ty

[ pgitr B Cf;) T

(45)

The dependence of Cff) T/ C/&l) on momentum and mass is
presented in left panel of Fig. 2. The ratio is obviously
suppressed for large mass. For small momentum, the ratio
approaches zero, indicating the polarization is suppressed
in the nonrelativistic limit. For the large momentum side,
the ratio is also suppressed, this is due to thermodynamical
suppression coming from f, in Cﬁf). Consider s-quark in
the quark gluon plasma, which is roughly m ~ p ~ T, the
ratio is roughly T'spe1/Tagiere ~ @ /T. M| delineates the
spin polarization in the plane transverse to momentum p. It

can be further decomposed into direction along o/, =
E*w, denoted by M |, and component perpendicular to
this direction M |,. We assume that M’ has smooth
dependence on momentum and that derivative terms can be
discarded. The diffusion and polarization rates are esti-
mated as

e*ln(1/e) T°

(1)
I'vair = Cy/,
Mdif ] PoD M
e*In(l/e) T
Ihpol = T8 pop ng)wb (46)

where w, = |E*w,|. The ratio between the both is

Dvaite C,(vl,> T

I—‘Mpol

(47)

The coefficient C,(f,) T/ Cﬁ,l,) at different momentum and
mass is presented in the right panel in Fig. 2. The ratio is
again suppressed when mass and momentum increase.
Considering when m~p~T, the ratio is about
T apol /T aditt ~ @ /T. Thus for the s-quark in a quark gluon
plasma, the ratio between polarization rate and diffusion
rate is about |w|/T, which means that, compared to
thermalization, it takes longer time for the spin to reach
equilibrium, making the nonequilibrium effect important
for the spin evolution.

The massless limit and nonrelativistic limit of the
transport equations Eq. (40) are also considered, so as to
have a better understanding of the momentum and mass
dependence of the diffusion rate and polarization rate, and
to compare with the previous works [42] for the massless
case and [67] for the heavy quarks.

1. Massless limit

Limit restricted by 5(P?) in the massless, the second and
third term in (39) naturally returns to zero. f, becomes the
only degree of freedom, and its transport equation becomes

Aoy

FIG. 2. Left: the coefficient Cf) T/ CS) in the ratio between polarization and diffusion of f,. Right: the coefficient CS\,‘})T/ C,%) in the

ratio between polarization and diffusion of M.
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P_afA:%Kp(l—Tf,,)pr_zfp)fA

p(1=2f,) &, rT
+fp J_aP’lfA_Tg/aPiaP‘ifA
Fo(L=1p) 5,

P > 2)pr g |,

(48)

which is consistent with [37], up to the overall constant
SU(N) coefficient. The first three terms delineate the
diffusion of axial charge. Supposing that f, has smooth
dependence of momentum, the diffusion rate can be
estimated to be

e*In(1/e)T?

24zp (49)

FCAhc}iff ~
It agrees with that in [42]. On the other hand, the last term
in (48) is the polarization effect. If no axial charge exists in
the initial time, then there will be axial charge generated by
the vorticity. The polarization rate is estimated through
|

turning off the diffusion terms on the rhs and using
1—‘Apol = 0ofa

e*In(1/e)T?

y
P800l ™ ™ 4ap

%f,,. (50)

The polarization rate is further suppressed thermodynami-
cally by the distribution function. The ratio of the both tells
which effect dominates,

chi
1—‘Apol ﬂ

chi
e P

o (51)

This agrees with [0|/p observed in Ref. [42]. It is also
suppressed thermodynamically for low temperature or
particles with large momentum.

2. Nonrelativistic limit

In the nonrelativistic limit m > p ~ T, keeping leading
order of each term, both transport equations become

1 K T 5T . 2T 2p(L=fp)f &,
<0r +ZPliav)fA = %{?ﬂx —FPiapifA —Tg"0p. Ops fa _ZaPiMli —ﬁpﬂﬂy :

L, KLL 2p*f (1-1p) 3T, 2 4 v
(a, + ZPﬂh) M| = o {# M+ ?PLapiM’i +T{ g70p dpo M| — m—vP’iapiMl
ZT.—.D (1_fp)fp,—.,,
+;.:.M aprifA—T:” w, . (52)

The spin density characterized by f, undergoes a diffusive
process which is not suppressed, with a diffusion rate of
about

e*In(1/e)T?
2rp*

non
Adift

(53)
For the hard fermions p ~ T, it is about the same order as in
the massless limit. On the other hand, the polarization
process for f, is strongly suppressed:

4 2

won € In(1/e)T* pay (54)
Apol 3677:7113 I

Compared to the polarization rate in the massless limit,
I'Xpoi is further suppressed by (p/m)3. From the ratio
between the both rates

et
R (55)

non 3
Ui m°T p

one can tell that the diffusion process dominates in the
nonrelativistic limit. As f4 dies off quickly, the orientation

|

of the spin is mainly captured by the transverse dipole
moment M’ . Both M j,, and M, |, have a diffusion
rate

e*In(1/e)Tp?
36mm?

it ~ I (56)
Compared to f,, diffusion of transverse dipole moment
M| is suppressed by (p/m)> This diffusion rate can be
compared with I’y in Ref. [67], considering p ~ T one can
recover ¢*In(1/g)T(T/M)? in Ref. [67]. The transverse
dipole moment also experiences polarization in the direc-
tion along «/|, and the polarization rate is also suppressed

by (p/m)?

o et ln(l/e)Tza)lf . (57)
1447zm? b

Both the diffusion rate and polarization rate of transverse

dipole moment are suppressed by (7//m)?, explaining the

lock of spin orientation in the nonrelativistic limit. The ratio

between the both is
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non

I Mpol TO)J_
non 2

Mdiff P

(58)
For hard fermion with p ~ T, although both rates are
suppressed in the nonrelativistic limit, their ratio is still
about w | /T.

V. NUMERICAL ANALYSIS

In this section, we present preliminary numerical analy-
sis to compare the evolution with and without polarization
effect, and to show the suppression of diffusion and
polarization by mass and momentum. In order to carry
out numerical analysis, we assume for convenience that f4
and M’i are isotropic in momentum, then both transport
equations in (40) decouple and can be further simplified.
Besides, we ignore the spatial dependence and focus only
on the time evolution. We here focus on the evolution of the
transverse magnetic dipole moment M/, through some
simple numerical process, its diffusion and polarization can
be visualized. As in the last section, we define M |, to be
the component parallel to /| as M |, the perpendicular
component. M |, undergoes a purely diffusion process
while M |, is affected by both diffusion and polarization
processes.

We first compare the evolution for difference masses and
momentum. Taking the Gaussian 1initial condition
Mot =0,v) = 0.01¢7"/1% and the same for M, |,
with transverse component of vorticity |o/|| = 0.27, we
compare two different mass of the probe m = 0.17 and
m = T. To guarantee the stability of the evolution, we solve
the transport equation from t =0 to ¢t = 10z, with 7,
characterizing the relaxation timescale 7,, = e*In(1/e)
T3 /(8x*m?), which depends on mass of the probe. The
evolution of transverse dipole moment with m = 0.17 is
presented in the left panel of Fig. 3, with solid lines denoting
M ||, and dashed lines for M ,,. The red line is the

initial condition, from red to purple are early to later time in
the evolution. One can directly observe that M |, gets
polarized by o/, while M |, experiences only diffusion
process. Evolution of the large momentum modes are
suppressed compared to low momentum modes. This is
consistent with the analysis in the last section, that both the
polarization and diffusion are thermally suppressed by
distribution function f .

The evolution trajectories of M |, with different masses
are presented in the middle panel of Fig. 3. The black solid
dots are initial condition. The blue circles are M, with
mass m = 0.17T at t = 10z, 17, while the blue triangles
are M, with mass m = T at t = 10z,,_. Dots connected
with red trajectories are modes with low momentum » = 1,
the trajectories are rainbow colored, with purple lines for
modes with large momentum » = 7. The solid trajectories
are for m = 0.17 and dashed trajectories are for m = T.
Comparing the final state for different mass, the trajectories
for small masses rotate by a larger angle. This is in
consistency with the analysis in (57) where the polarization
effect is at least suppressed by (1/m)> when mass
increases. The evolution trajectories are also suppressed
for those modes with large momentum, in consistency with
thermal suppression found in last section.

The middle panel shows the spin evolution driven by
both diffusion and polarization effect, as a comparison,
polarization effect is turned off in the right panel. In other
word, in the right panel, only the diffusion process is
included as was discussed in previous works [36,37,67].
With only the diffusion process, the transverse dipole
moment would not rotate in the transverse plane, only
shrink in its magnitude instead.

The diffusion and polarization effect can be obviously
observed through the above simple numerical analysis. As
is estimated in last section, both polarization and diffusion
are strongly suppressed for modes with large momentum or
large mass. When focusing on spin polarization of s-quark

T T T T T T 1.0F T T T H 1.0F | T T T e | T T T |
lwt =0.2T ‘
0.03 m=041T | 08~ B 08
3
— t/Teng=0 o —
— d
3 0.25 ‘© osf- 4 S o6
X o002~ 0.50 X X
N Lilw —0.75 3 =
3 —10 L 104
: - °>e g
< oo 2 02 gF w0 . 0.2
om=0.1T, t:10T0_1 T
0.0 : am=T, t=1017 0.0
0.00f; 1 1 l l ] i
l l l l l i 1 1 1 i 1 1 1
1 2 3 4 5 6 0 1 2 3 4 0.0 05 1.0 1.5 0.0 0.5 1.0 15
2
v ML (x10%) M j(x10%)

FIG. 3. Evolution of transverse dipole moment with initial condition 0.01¢""/19, transverse vorticity is |’ | = 0.2T. Left: evolution
of M, with m = 0.1T. Middle: compare the evolution of M, with difference mass m = 0.17 and m = T Right: evolution of M |,

with polarization effect turned off.
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in heavy ion collision, where m ~ p ~ T, the ratio of
polarization and diffusion can be roughly estimated by
|0/ T, which means it takes a longer time for the spin to get
polarized compared to thermalization, hence the nonequi-
librium effect is important for spin polarization. In this
sense, the full kinetic equation to first order of gradient
serves as a necessary starting point for studying the
nonequilibrium effect in the local spin polarization and
also the starting point for deriving the spin hydrodynamics.

VI. CONCLUSION AND OUTLOOK

In this paper, we investigate the spin evolution of a hard
massive probe fermion traversing in a massless hot QED
plasma at local equilibrium in the framework of quantum
kinetic equation. Mass of probe fermion is assumed to be
m > mp ~ eT to exclude Compton from our discussion. As
the first step, f of the probe fermion is assumed to be in
local equilibrium. Under such assumptions, we derive the
collision term of axial-kinetic equation to the leading
logarithmic order with all the first order gradients included.
The diffusion and polarization effects coexist in the collision
term, where the former drives the spin fluctuation to damp
out, and the later characterizes the spin getting polarized by
the vorticity, shear tensor, acceleration and temperature
gradients of the fluid. The effect of diffusion and polari-
zation balance with each other, leading to the elimination of
collision terms in the global equilibrium. Near the global
equilibrium, the relaxation rate for the fluctuation is
extracted. So as to illustrate the difference among the three
degrees of freedom of A,, the axial kinetic equation is
further decomposed into transport equation of axial charge
and transverse magnetic dipole moment considering the
purely rotational medium. The diffusion and polarization
rates are extracted from the collision terms. The momentum
and mass dependence of ratio between the both effects is
analyzed. It is showed that, the ratio between polarization
|

, [ d*Kd*Qd*P'd*K’
e [ S G

1 1
= W/ dQOd3qd3k/m5(Po — ko — %)5(176 - k6 + CZO)-

The momentum integral is left with integral over Q and K.
It is useful to decompose momentum g and &’ into

k =Kk cos@,p + k' sin@ cos g X + k' sin 6, sin ¢, 3,
gcos@,p + gsinb, cosp X + gsiné,sing,y, (A2)

where we have denoted p as Z for now. And introduce
Q as the angle between k' and g, namely cos Q = cos 6,

and diffusion is suppressed for large mass and momentum.
When considering spin of s-quark in the quark gluon
plasma, the ratio between polarization and diffusion can
be estimated to be ||/ T. This indicates that compared with
thermalization, spin take longer time to get polarized,
indicating nonequilibrium effects important in spin polari-
zation. Preliminary numerical analysis is carried out, show-
ing that modes with small momentum and small mass get
polarized easier, in consistency with the result of non-
relativistic limit.

The physical settings in this paper can be viewed as a toy
model for the evolution of spin of the s-quark in the quark
gluon plasma. In a more self-consistent scenario, we will
consider the scattering of massive quark with a QCD
plasma, without assuming the local equilibrium of number
distribution for the probe quark, the full set of vector kinetic
equation and axial kinetic equation will be derived. The
elimination of collision term of axial kinetic equation in
global equation is considered in this paper, and local
equilibrium for the massive fermion is still under discussion.
These will be included in a future research.
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APPENDIX A: PHASE SPACE INTEGRAL

1. Simplification of integral measure

Assuming that the medium fermion and probe fermion
are hard fermions with momentum comparable with tem-
perature p,k,p', k' ~T, while the momentum transfer is
soft ¢y, ¢ < T, the phase space integral can be simplified
using the small momentum transfer as well as the momen-
tum conservation and on-shell condition

(27)88(P — K — Q)8(Q + P' = K')e(K - u)e(P' - u)e(K' - u)5(K* — m?)5(P?)5(K™)

(A1)

I
cosf, —sin@; sin@, cos Ap, with Ap = ¢, —¢@;. The
measure can be parametrized as

/d3qd3k’—/qqudcosqu(qu/zdk’dcosédego. (A3)

Considering that loop fermion are light fermions, which
can be treated as massless. Using p' = K - g and

k= P —¢g, we can use the on-shell condition to cast
the &-function into
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22 2
p (p~sin 0, + m*)
5(po—ko—qo)25(q—0089q—q2 : ,
Do 2py

sin® Q
30~k +a0) =3 geos = 2 57 - g0 ). (a4)
with py = (p* 4+ m?)"/2. The angular integral over ¢, and ¢, can be performed to obtain

1
q(1 +%) [sin? 0, sin? O, — (cos Q — cos @, cos 6;)?]1/2

/ dodpd(py — ko + qo) = 4n (AS)

Note that the above o-function constrain the unique solution of cosAg, yet sinAg can take both solutions
+(1 — cos? A@)'/2. Thus integrals containing odd number of sin Ag will be vanishing under the angular integral.
The square root constrains the domain of cos 6 as cos(6, — Q) < cos; < cos(6, + Q). The other 5-function gives

1
/dCOS gqé(po - ko - qO) ~ m . (A6)
Po Po

From the &-function, one can solve

2\ 1/2
. q 90
cosQN——l—ﬁ( —q—)—l—(?(q) st:( _q_(2)> (1_ﬁ)’

2 2 0N 1/2 2_ 2

Podo q 90 2 . Po 90 q qy 4do0Po

cos 6 z—+—(1——>+0(q ) sin 6 z( ———) (1—7—) (A7)
" pqg 2p ¢ 1 P’ p*— piag 2

in obtaining the leading-log order result, it is enough to keep the above solution to the first order of g. Note that
—1 <cosQ,cosf, <1 also set a limit to x = ¢y/¢ that — ” < qqo 5[’,’ So that [dxdk’ has the integration domain

Jdxdk' - [ dk' [~ +pp/lf’ * dx. With the above approximation of small momentum transfer, the collision term at leading

logarithmic order can be explicitly calculated. The basic process is to collect all terms of integrad to Q~2, after
combining the measure, and integrate ¢ ranges from ¢7 < ¢ < T, the log thus arises from [7.dq/q =1n(1/e).
To finish the remaining integral over k’, the following expression are often utilized:

Am Ak np(K)(=1 + np(K)) = —T*In2,

/0 Y K (K) (=1 + np(K)) = — éﬂ2T3,

A AR (K) (=1 + np(K)) = —éﬂw 4732, (A8)
where np(kK') = 1/(eX/T + 1).

2. Diffusion

In this subsection, we show some details of calculation of diffusion term (16). The spin diffusion part defined in (16) is
evaluated by first expanding the integrand in terms of Q. For this purpose, we use the following expansions

MYin,(P) = +—=—= T4 n*(P),

2
(QZ)

Mo, (K) = 5 (Taan"(P) + Thy 10p 0 (P) + Ty 1 0ps Ops 0 (P) + T)s 51, (P) + T3 ,0p 1, (P)),  (A9)

(Qz)

where the coefficients 7 in the above expressions are kept to O(Q?), giving
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Ty =2(P-K')?+m?Q-K' =20 -K'P-K' -=2P-QP-K'+ Q-K'P-Q+ Q*P-K' + O(Q%),
Tpo=2(P-K')?+m?Q-K' =20 -K'P-K'—=2P-QP-K'+ Q°P-K' + O(Q%),
T4, =—0"Q(P-K')?*+m*Q-K' —20-K'P-K'—2P- QP -K') + O(Q?),
Tihy =00 (P-K')> +0(Q°),
T, = —2K'"K'’P - Q + 20"K""P - K' = P*Q’K' - Q + 2K Q(=P - K' + P- Q + Q- K') + O(0?),
T, = 2P K'(K"Qr Q¥ — Q"K' Q") + O(Q?). (A10)
In obtaining the above expressions, we have used P#n,(P) =0 to simplify the derivatives, thus P*Q*0p,n,(P) =

—0"n,(P) and P*QP0p,Q0"0p,n,(P) = =20"Q"dp,n,(P). The leading logarithmic order requires keeping the integrand to
O(Q7?), thus it is sufficient to expand the distributions to O(Q), giving

qcosQ

fefefe +fxfofe =Ffefe = (fp—Fo)fefxv——=+ O(4?).

qcosQ

fefefe +fefefe=fefe— (e —fe)fxfr +0(q*). (A1)
Taking T% et zdpu n,(P) for instance to illustrate the integral over such tensor structures. The basic strategy is to convert the
integral over the tensor to scalars. After integral, 7%;", will be function of momentum p. Besides, as one can obverse, 7%5",
is antisymmetric in exchanging up, thus can be decomposed into

= u + v+ u’'u’ + u ,
T’szvz A22 kgl T Pk ngzp[ﬂ /) T< 22 [”P/)]Py Al2

with other projectors vanishing in momentum integral. Using the relations between various projectors,

(1) 4) p 2 G p 2) 3) B
”wgp]le:xpzljz =61y, = 2T 55, PL[ugp]uT%,/z = =675, = 2T 55, P1juy) ”uT%l./z = 2T 45, = 2T, ”wpip]PiuTﬁpzljz =
—2T§412)72 + 2Tg42)72, then each coefficients can be obtained as combinations. The momentum integral of the various scalar
functions then follows the processes described in Appendix A 1. Giving

2
(1) T m(2v® — v30_)

T\, = e
A22 = Kpp — mo 602
2 3 T m(2v® = 3v30_,)

Tixz),z = T/(42> 2 =KL 602 e,
(4) T mvoﬁ ]

T = — —_— Al3
A22 = —KLL mo 60 ( )

With the coefficients, the original term becomes

T4 20 1y (P) = Ty, (P) + T ou + T, P+ TP op, i, (P), (A14)
where
n 1 1
T£12>,2 = Tiu),z’

P 1) 2 1 4) pp A
T\, = o T\, P, (P) + T43 0 0 (P) + T4, P P 0pe n, (P).

(
()

p
2 2
P 0 m= (4 2 2 P (4 305
10 = (Lt + 2, Py (P) 4 10 (P) + L1, PP 0 (P,
Po Py Do
P 2
TA2,2:; 22) _Tﬁu),z- (A15)
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Other scalar function or tensors in (A10) are integrated in a a. Vorticity
similar way. After finishing the detailed calculation, one can
arrive at the first two lines in (28) and coefficients C(V) to
7 in (30).

C,°" in the integrand of (22) can be further decomposed
into

3. First order gradients o vor -] o
To calculate the collision terms related to first order G = L0 & Tvor oty (A16)
gradients including Clor, Ciear, C{8* defined in (22),
(24) and (26). The basic strategy is to converting the
momentum integral over tensors into scalars, expanding
the integrand to O(Q~2) and taking the momentum integral
the same way as in Appendix A 1.

The momentum integral over the vorticity part also begins
with expansion of the integrand over Q, the tensors above
are expanded to O(Q~?) giving

Ty = @(2@(1) "K'+ (m?-2P-K')Q-K'Q,+P-Q(Q-K'P,—2P-K'Q,) + O(Q%),

Tor =
Q%)
+Q-K'PPQPPY —2P - K' QMK (P — Q)" + O(0%)), (A7)

(2K"(P- QK"(P = Q) + (P-K' = P-Q = K'- Q)Q"P")

since the above two tensors are at least O(Q~?), it is enough to keep O(Q) order of the distribution functions in order to get
the leading logarithmic result,

g cos Q pqcost,
T P peT

fxfefrfer= fK’fK’fPfP(l + fx ) + O(q?). (A18)

The momentum integral over tensors T}°" and T%5; are carried out after transforming the tensors to a series of scalar

functions. Since after momentum integral, the vector 7;°" will only be function of momentum P, it can be decomposed by
vor (1,1) D (1,2)
T = u,Tvor” + P Tvor, (Al9)

with Tslo}l) = u*T;*" and T&L}z) = —13’1TZ‘“. The scalar coefficients can be integrated according to the process in

Appendix A 1. Then this part becomes T)”w/Hu*! = T&L}]) ' — T&L’rz)ﬁ ,@’u*. In the other term T’Jgf'w[pu,,], W)ty
projects out the antisymmetric part of T%5;, thus The; can be decomposed similar to (A12),

70t = &0yl gl 4 TP PY o+ T2 PY el 4 T2 b prlpr (A20)

. . . 2,i
the momentum integral over the various scalar functions Tsorl)

obtaining the coefficients, this part will be

can be carried out according to Appendix A 1. After

Tl )yt = 215Nk — 2(TE,%,}2) + T\(,%)f))i’lya)”u” + 2T\(,%f)ﬁlyw”13’i. (A21)

Together the above two parts, the vorticity term will be the C ) term in (28), with C®) defined in (30).

b. Shear

After momentum integral, the collision term Cj}}far (24) will only be function of P, thus can in general be expressed in
terms of a series of symmetric and traceless projectors as

, A 1 - 2 5 3 - 4 .
Cil;lear = (ull Qaﬁ Cghiar +P Lu Qaﬁ Cghiar +1 pap Cghiar + Tlmﬂ Cihiar)(;( #) ’ (A22)

where the projectors are defined through
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be obtained by first projecting (24) onto the corresponding

1
38w projectors and then taking the momentum integral. One will

Qa[)’ = plaplli + 3

5 2 A 24 find that only C W in nonvanishing. Hence after momen-
Ly = Pl A P gA,—=P A, shear " ..
Hap taBup T L 1pBya 3" b tum integral, the shear tensor term in the collision term
A 1 Ap appears as
Tﬂaﬁ = 5( ’wpal/l P PJ_ﬂ + € Dpﬂl/ll/P'liPJ_a>, <A23)
A 4 1
which are symmetric and traceless in the indices af. In the C;x}far = Tuaﬁcghiaro' @b, (A24)

local rest frame of the fluid, the above projectors are

o= H.pH. =15, = DS, 5850 —295.85.. . . A A .
Qs IZ iPj A3f$’l’ Ikil A P ik .Jr pidj =3P kéll. and Using the relation 7#%7T,,; = —1, the evaluating of the
Tyij =5 (€xiP1Pj + €xjPiPi), which are symmetric and contribution from the shear tensor is converted to calculat-

ih)w can ing the scalar function
|

4) 1 1 aff shear r 7
Copear = —4e* (27[)5 / dCIOdSCICPk/m(S(Po — ko = q0)d(py — ko + %)Tﬂ ﬁcﬂtll/? (=B)fxfrfrfp (A25)

traceless in ij. Each of the four coefficients C

and C;};eﬂ‘“ is defined in (25), which can be simplified into

P K m?*Q - K'
Conet™ = +€00 (— 5 K°P'Ky+ K -K'P°P*P; — P-P'K'"K*Kj; + 7pr. p P’%MP;>

2
— €ta (PﬂKﬂp/é’Kﬁ + —Pr,"' - Q‘fP"’u’lP;}) K, +{P <K'}, (A26)

where {P’ <> K’} part is to taking conversion accordingly in the above all terms. Using

7€,05 = =285 = —2(8adf; — 555)).
7€y = —0Lb = —[84(508] — 553)) — 848187 — 62F)) + 848,55 — 8700, (A27)

to finish the contractions in 7#%C Lap- SINCE TP C Lap 18 at least O(Q), it is enough to expand the distribution functions to

O(Q) (A18). After taking the momentum integral according to Appendix A 1, one will obtain the C ©) term in (28), with
9 in (30).

c. Temperature gradients and acceleration

Both of the tensors ijm and Cj;° defined in (27) can be expanded in a general structure, namely
T/M(P> = T]gﬂ,l + TQMMM;b + T3PL/4F)L)» + T4Mﬂpl,1 + Tﬁﬁlyul + T6€W1aﬁblai)/j_, (A28)

where one can find only projector eﬂﬂaﬁu"’f’/i have nonvanishing coefficient under the momentum integral. Using the

relation e"’l/’"upf’ Meﬂmﬂu"f’/i =2, (26) can be casted into

Coi™ = Cryn€puapu™ P In T + Coeetypu® P DI, (A29)
with
— 3,737 / / 1 HApc Tgra
Crora = — dqod’qd’ K ~———~— 2Pk 2k, a7 0(Po — ko — q0)d(py — ko + qo) S u Pm (=B)fxfxfrfe
1 1 . -
dCC = dqodSngk/ 2 2]{/ Zko ( kO %) <p6 - k6 + QO) 5eﬂipguppj_oczf{c(_ﬂ)foK’fP’fP' (A30)
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Using (A27) to complete the contraction, and carrying out the momentum integral according to Appendix A 1, one will
obtain the C(19 and C("Y) term in (28), with C19 and €'V in (30).

APPENDIX B: GAUGE ISSUE

One can explicitly check that the collision term is gauge independent. In this section, we show for example that terms
related to vorticity is gauge independent. Photon propagator in temporal axial gauge, Coulomb gauge and covariant gauge
are given by

_1 2 2 2
temporal axial gauge: G,, = — Pl 4+ — 0’ <Q2 U, iy, — Q—zu(ﬂQy) qg 2 QﬂQU)

[ 909
-1 -10?
Coulomb gauge: G, = QZ P,{,, + @% u,u,,
-1 -1/ 40 s
covariant gauge: G, Pl +— <—u u, —>u,0,)+—-—0,0, | (B1)
Qz wror \ g e (u¥v) q(z)Qz H

The above covariant gauge corresponds to the Landau gauge £ =0

1 Y
G/u/ = @ (g/w - (1 - 5) Qég )7 (BQ’)

while in the calculation we have adopted Feynman gauge & = 1. The point is to work out the one-loop corrected photon

propagator Gfg’l) in various gauges and to check whether the different terms among various gauges are vanishing under

momentum integral. The expression of G,(g’l) in Landau gauge is given by (11). Feynman gauge and Landau gauge differs
only in tensor structure of 0, 0,. While the three gauges in (B1) differs by 0, 0,, u(, 0, and crossing terms with PZ,, when

multiplying two photon propagators.
To check the gauge invariance of zeroth order photon propagator G\~ (Q) = D2(Q) Dy (Q)V=%(Q), one can find

that contracting 1<% with Q,, 050,0, and 9,040, + 9,50, 0, will both leads to vanishing results under the 6-function.

Thus Feynman gauge and Landau gauge give the same G;y(o). Temporal axial gauge and Coulomb gauge can be shown to

give also the same G,w 9,

We then check the vorticity terms in first order photon propagator G~ (Q) = D23(Q) D¢, (Q)IIIV=#(Q). The vorticity
related terms in TI(V<%#(Q) is

Q) = <2ic [ KPP )Ty = PYK -ty = Ko, e f (B3)

As only self-energy components X4, and X, contains the first order photon propagator. The collision term involving

G,(AL)<(Q) in (4) can be extracted out using the expression of the components of self-energy (13), giving
/](Qi((m2 = P K)€upo Q" = Puesps QPG V(Q) fpf x = GU*(Q) f pf k)
= [(Q l((mz —-P- K)e;wpaQ - P eiupﬂQyPA)GﬂaGDﬁ( a/} (Q)fPfK a/i (Q)fPfK) (B4)

Although the expression of G,(,lp><(Q) depends on gauge choice, one can explicitly show that the collision term involving

G,(AL)<(Q) (B4) is not gauge depending. This can be proved by contracting

<q 7 >ap 7 1 afpc T 7
0, fpfx =T Fof ik o e(Q - 0Ky = K' - 0Qyuy + K' - uQy, = Q - uKjw,)f xf xfpfe (BS)
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with QaQﬂQﬂQw gﬂaQﬂQv + gl/ﬂQ/lQa’ u(aQﬂ)u(ﬂQv) and
crossing terms, respectively, then further projecting to
((m?* = P - K)€,up00" — P,€1,,,0"P*). One will find that
it will either be directly vanishing by symmetry, or be

proportional to g X K- @, which is vanishing under momen-
tum integral. In this way, the vorticity related term is also
gauge independent. Other terms related to first order gradient
are also proved to be gauge independent in a similar way.
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