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The dynamical evolution of spin of a massive probe fermion in a hot QED plasma at local equilibrium is
investigated through the quantum kinetic theory. We consider the massive probe fermion undergoing 2-by-2
Coulomb scattering with the massless fermions in the medium. The axial kinetic equation is derived
including the collision terms to the first order of gradients and leading logarithmic order of the coupling. The
collision terms are vanishing at global equilibrium, around which the relaxation time can be extracted as an
operator. We further decompose the axial kinetic equation into kinetic equations of axial-charge density as
well as the transverse magnetic dipole moment. The polarization rate and diffusion rate are estimated in
massless limit and nonrelativistic limit, between both limit, polarization and diffusion effects are illustrated
through preliminary numerical analysis.
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I. INTRODUCTION

Recent STAR and ALICE experiments [1–5] have shed
light on the spin polarization of hadrons in the rotating QCD
plasma produced in off-central relativistic heavy-ion colli-
sions. Such spin polarization of emitted hadrons [6–9] has
motivated researches concerning the dynamical evolution of
spin for particles in a finite temperature plasma. Part of the
large initial orbital angular momentum characterized by
the collective motion of the fluid is transferred to the spin of
the particles through collisions. Whether the polarization
survives after hadronization relies on the dynamics of spin in
QGP phase and hadronic phase. The particles experience
both polarization and relaxation processes that drive the spin
polarization to equilibrium. The global polarization of Λ
hyperons enslaved by the thermal vorticity [10] is a robust
phenomenon, where model calculations [11–16] are in
consistency with experiments. However, such satisfaction
has not been achieved in local spin polarization. The
measurement of azimuthal angle dependence of spin polari-
zation in experiments [2] has not been fully understood in
theoretical studies due to the opposite sign in the phenom-
enological studies assuming the global equilibrium of spin
[17,18]. Such inconsistency is also known as the spin sign
problem. Attempts to resolve this problem include modify-
ing the understanding of vorticity [19], feed-down effect

[20,21] and hyperon decay [22]. It is realized later that the
inclusion of shear tensor in the polarization yields the
qualitatively correct sign [23–26], indicating off-equilibrium
effects of spin maybe essential in polarization phenomenon.
It is also found that the numerical results could be sensitive
to the parameters in numerical analysis [27–30]. This calls
for more thorough investigations of the nonequilibrium
effects and kinetic theory of spin.
Theoretical description of the dynamical evolution of

spin polarization is mainly based on quantum kinetic theory
[31–43] and spin hydrodynamics [44–53]. The chiral kinetic
theory [54–64] was developed to describe the spin related
anomalous transport phenomena, and has been applied to
chiral magnetic effect [65] in heavy ion collisions. It is then
extended to the quantum kinetic theory to describe the spin
transport of massive fermions [31–34]. In recent years, the
collision terms are also included to study the relaxation
process of spin [37–42]. The general framework of quantum
kinetic theory is based on the Wigner function and Keldysh
formalism, which is able to keep the full power of quantum
field theory in nonequilibrium system [66]. On the other
hand, spin hydrodynamics extends the standard conservation
laws to also include the conservation of angular momentum,
describes the macroscopic evolution of spin density.
The polarization of Λ hyperons is dominated by the

s-quark, which can not be approximated as massless
fermion. In order to investigate the spin dynamics of
s-quark in the quark gluon plasma, we in this work deal
with a simplified scenario as a first step to the full problem.
We consider the evolution of spin of a hard massive fermion
m ≫ eT probing into a hot massless QED plasma at local
equilibrium. As the Compton scattering is suppressed in
case m ≫ eT, and the evolution is dominated by Coulomb
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scattering. Two competing processes would contribute to
the spin evolution, the diffusion process coming from the
scattering with medium fermion drives the fluctuation of
spin back to equilibrium, while the collective motion of the
medium, characterized by the hydrodynamic gradients, acts
as a source to polarize the spin of massive fermion. So as to
self-consistently incorporate the two processes, we derive
the collision terms to Oð∂Þ with all the first order hydro-
dynamic gradients included. Spin evolution of massive
probe in similar physical system is also investigated in
Refs. [36,37,67], where the author consider homogeneous
QCD plasma and focus only on the diffusion term. In
Ref. [42], kinetic equation of massless probe fermion
traversing hot QED plasma is derived, the authors also
extract diffusion and polarization rates from the collision
terms. From the kinetic equations derived in this paper, the
first order gradients of the plasma act as a source to axial
charge and change the orientation of the probe spin. For
massless probe fermion, the ratio between polarization rate
and relaxation rate can be estimated to be fpj∂j=p, this is in
general in consistency with Ref. [42]. In the nonrelativistic
limit, the diffusion process dominates the polarization for
axial charge, with the later suppressed by additional
ðp=mÞ3; the changing in the orientation of spin get also
suppressed by ðT=mÞ2. Between the both limit, we provide
some preliminary numerical analysis to illustrate the
polarization and diffusion process. For s-quark in the quark
gluon plasma which is roughly m ∼ p ∼ T, ratio between
polarization and diffusion rate is about j∂j=T, indicating
nonequilibrium effects important in the spin polarization in
heavy ion collision.
This paper is organized as follows: in Sec. II, we briefly

review the Wigner function and Kadanoff-Baym equations,
as well as the power counting scheme. In Sec. III, we derive
the general expression for the collision term and discuss
contribution from the various part of the collision term. In
Sec. IV, the result of collision term after integral over phase
space momentum is presented, together with expression in
massless and nonrelativistic limit. The relaxation rate near
the global equilibrium is also extracted. In Sec. V, the axial
kinetic equation is further decomposed into kinetic equation
of axial-charge density and transverse dipole moment. A
preliminary numerical analysis decorating the diffusion and
polarization processes is presented. In Sec. VI, we provide
conclusion and outlook. Calculation details are presented in
Appendices A and B.
In this paper, we take the mostly negative convention

of matrix gμν ¼ diagð1;−1;−1;−1Þ and take the Dirac
matrix in the Weyl basis with γ5 ¼ iγ0γ1γ2γ3 and
σμν ¼ i½γμ; γν�=2. The Levi-Civita symbol is chosen as
ϵ0123 ¼ −ϵ0123 ¼ þ1. We use a majuscule letter for four-
dimension covariant momentum such as Pμ and use a
minuscule letter for its component such as p0 and its
module such as p ¼ jp⃗j. We use the projector Δμν ¼

gμν − uμuν to project a vector onto direction perpendicular
to the fluid velocity uμ, such as Pμ

⊥ ¼ ΔμνPν and define
P̂μ
⊥ ¼ Pμ

⊥=p with p ¼ ð−Pμ
⊥P⊥μÞ1=2. The projector Ξμν ¼

gμν − uμuν þ P̂μ
⊥P̂ν⊥ projects a vector onto direction

perpendicular to both uμ and Pμ
⊥. We also use the following

notations for the first order gradients: θ ¼ ∂ · u, D ¼ u · ∂,
the fluid vorticity defined as ωμ ≡ 1

2
ϵμναβuν∂αuβ and shear

tensor σhαβi defined as the symmetric and traceless part of
σαβ ¼ 1

2
ð∂α⊥uβ þ ∂

β
⊥uαÞ − 1

3
Δαβθ. The symmetrization and

antisymmetrization of two symbols are defined through
XðαYβÞ ¼ XαYβ þ XβYα and X½αYβ� ¼ XαYβ − XβYα.

II. SPIN TRANSPORT EQUATION

In this section, we review the basic steps of deriving the
axial kinetic equation with collision term. Starting from
the Wigner transformation applied to contour Green’s
function [66]

S<ð>Þαβ ðX;pÞ ¼
Z

d4Yeip·YS̃<ð>Þαβ ðx; yÞ; ð1Þ

where X ¼ ðxþ yÞ=2 and Y ¼ x − y are the center of mass
coordinate and relative coordinate. Here, S̃<αβðx; yÞ ¼
hψ̄βðyÞψαðxÞi and S̃>αβðx; yÞ ¼ hψαðxÞψ̄βðyÞi are lessor
and greater propagators, respectively. After the Wigner
transformation, the lesser propagator obeys the Kadanoff-
Baym equations derived from the Schwinger-Dyson
equation,

ðγμPμ −mÞS< þ i
2
γμ∇μS< ¼ i

2
ðΣ<⋆S> − Σ>⋆S<Þ; ð2Þ

where Σ>ð<Þ represents the lesser (greater) self-energy.
The scattering process involves only Σ<ð>Þ, thus we have
dropped the real parts of the retarded and advanced self-
energies and of the retarded propagators. The electromag-
netic fields decay quickly in the QGP, hence we neglect
the background electromagnetic fields in the medium.
The symbol ⋆ represents A⋆B ¼ ABþ i

2
½AB�P:B: þOð∂2Þ,

where the Poisson bracket is ½AB�P:B: ≡ ð∂μqAÞð∂μBÞ−
ð∂μAÞð∂μqBÞ. The commutators are defined as fF;Gg≡
FGþGF, ½F;G�≡ FG −GF, fF;Gg⋆ ≡ F⋆Gþ G⋆F
and ½F;G�⋆ ≡ F⋆G −G⋆F with F and G being arbitrary
matrix-valued functions. By using the complete basis for
the Clifford algebra, the Wigner function is decomposed
into S< ¼ S þ iPγ5 þ Vμγ

μ þAμγ
5γμ þ 1

2
Sμνσ

μν and
S> ¼ S̄ þ iP̄γ5 þ V̄μγ

μ þ Āμγ
5γμ þ 1

2
S̄μνσ

μν. Similarly, it
is also useful to carry out the same spinor-basis decom-
position for the self-energies, giving Σ< ¼ ΣS þ iΣPγ

5 þ
ΣVμγ

μ þ ΣAμγ
5γμ þ 1

2
ΣTμνσ

μν and Σ> ¼ Σ̄S þ iΣ̄Pγ
5þ

Σ̄Vμγ
μ þ Σ̄Aμγ

5γμ þ 1
2
Σ̄Tμνσ

μν. V and A give rise to the
vector-charge and axial-charge currents through JμV ¼
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R
q V

μ and Jμ5 ¼
R
q A

μ. The axial-charge currents can be
regarded as a spin current of fermion. Taking V and A as
independent degrees of freedom, the scalar component S,
pseudoscalar component P and tensor component Sμν can
be expressed in terms of V and A.
We are going to investigate the relaxation of spin of a

massive probe fermion traversing a hot massless QED
plasma in local equilibrium. Before moving on to calculate
the collision term, we first introduce the counting in
gradients. In the heavy ion collision, the axial-vector
currents are mostly induced by the electromagnetic field
or the gradients of the fluid velocity. This motivates the
counting ofAμ ∼Oð∂Þ. On the other hand, the vector charge
current can be safely kept only to Oð∂0Þ, as it is dominated
by classical process. The power counting ofAμ and Vμ also
leads to counting of the other components S ∼Oð∂0Þ, Sμν ∼
Oð∂1Þ and P ∼Oð∂2Þ, as well as the components of the
self-energy. In the Coulomb scattering we are going to
investigate, the above counting leads to counting for the
self-energy components, ΣS ∼Oð∂0Þ, ΣVμ ∼Oð∂0Þ,
ΣAμ ∼Oð∂1Þ, ΣTμν ∼Oð∂1Þ and ΣP ∼Oð∂2Þ. The thermal-
ization of the vector charge is dominated by the classical
process, thus it is enough to keep only Oð∂0Þ terms in the
collision term. The thermalization of spin involves diffusion
of the initial spin of the probe as well as polarization induced
by gradients such as the vorticity and shear, it is required to
evaluate the collision terms up to Oð∂Þ. Then the collision
terms for vector and axial-vector components can be
obtained though comparing the Dirac structures on both
sides of Kadanoff-Baym equation, giving the vector kinetic
equation

∂μVμ ¼ −
Pμ

m
dΣSVμ − dΣVμVμ þOð∂Þ; ð3Þ

where cXY ¼ XY − XȲ. And the axial kinetic equation

P · ∂Aμ ¼ −m dΣSAμ −Pν dΣVνAμ −Pν dΣAμVν −
m
2
ϵαβλμ

dΣαβ
T Vλ

þPμ
dΣAνVν þ 1

2
ϵμνρσð∂σ dΣν

VÞVρ þOð∂2Þ: ð4Þ

The power counting Aμ ∼Oð∂Þ guarantees the mass-shell
condition of Aμ [39], see also [37] for details of derivation.
With the relations between various components of the
Wigner function, the parametrization of the various com-
ponents can be taken as

S ¼ 2πϵðP · uÞδðP2 −m2ÞmfV;

Vμ ¼ 2πϵðP · uÞδðP2 −m2ÞPμfV;

Aμ ¼ 2πϵðP · uÞδðP2 −m2Þnμ;
Sμν ¼ 2πϵðP · uÞδðP2 −m2ÞSμν: ð5Þ

We do not take any decomposition of nμ at the moment, for
now it is only constrained by Pμnμ ¼ 0 coming directly
from PμAμ ¼ 0. With the relation Sμν ¼ 1

2m ∂½μVν� −
1
m ϵμνρσP

ρAσ þOð∂2Þ between the tensor and axial-vector
component [39], Sμν is expressed as

SμνðPÞ ¼ −
1

2m
P½μ∂ν�fVðPÞ −

1

m
ϵμνρσPρnσðPÞ: ð6Þ

For the greater components, one can just substitute fV with
fV ¼ 1 − fV and substitute nμ with n̄μ ¼ −nμ. Besides,
within such power counting, one would have P ∼Oð∂2Þ,
and ΣP ∼Oð∂2Þ, they are thus excluded from the current
problem. For later convenience, the zeroth order and first
order Wigner functions of massive fermion are given by

S<ð0Þ ¼ 2πϵðP · uÞδðP2 −m2Þðmþ γμPμÞfVðPÞ;

S<ð1Þ ¼ 2πϵðP · uÞδðP2 −m2Þ
�
γ5γμnμðPÞ þ

σμν

2
SμνðPÞ

�
:

ð7Þ

For massless fermion S<ð0Þ ¼ 2πϵðP · uÞδðP2ÞγμPμfVðPÞ
and S<ð1Þ ¼ 2πϵðP · uÞδðP2Þγ5γμnμðPÞ. In the following,
we use the variable nμ instead of Aμ for the axial-vector
component to avoid the coefficient 2πϵðP · uÞδðP2 −m2Þ
on both sides of the transport equation.

III. COULOMB SCATTERING

In this section, we consider the scenario where the
massive hard fermion probes into a hot QED plasma and
undergoes a 2-by-2 scattering with hot medium at local
equilibrium. The light fermions in the medium can be well
approximated as massless. The mass of the probe fermion is
assumed to be much greater than the thermal massm ≫ eT,
in this case the Compton scattering does not contribute at
the leading logarithmic order, thus only the Coulomb
scattering is considered. This approximation can be under-
stood as a toy model for the spin evolution of the s-quark in
the quark gluon plasma. The collision terms will be grouped
into two types. The diffusion terms are those terms linear in
Aμ of the probe fermion, such terms are dominated by
classical dynamics of the interaction. The polarization terms
are those terms containing first order gradients of the fluid,
such terms delineate how the collective motion of the fluid
acts as a source to polarize the spin of the probe fermion.
Since the axial-vector component is counted as Aμ ∼Oð∂Þ,
both the spin diffusion and the first order gradients of the
medium contribute at the same order and should be treated
on the same basis. We calculate the collision term of axial
kinetic equation keeping all the contributions of the first
order gradient and work out the leading logarithmic order
collision terms. The following Feynman diagram Fig. 1
describes the Coulomb scattering of the massive probe
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fermion (P and K) with the massless medium fermion
(P0 and K0). The greater fermion self-energy is defined as

Σ>ðPÞ ¼ e4
Z
Q;K

γμS>ðKÞγνG<
μνðQÞ; ð8Þ

where
R
Q;K ¼ R

d4Kd4Qð2πÞ−8ϵðK · uÞδðK2 −m2Þð2πÞ4δ
ðP − K −QÞ. G<

μνðQÞ is the photon propagator containing
one fermion loop correction,

Gð0;1Þ<
μν ðQÞ ¼ −D22

μβðQÞD11
ανðQÞΠð0;1Þ<αβðQÞ: ð9Þ

For simplicity, we will choose Feynman gauge for D22
μβ and

D11
αν, namely D22

μβ ¼ igμβ
Q2 and D11

αν ¼ −igαν
Q2 . As processes with

the on-shell photon such as Compton scattering are sup-
pressed, the collision term is gauge invariant. A short proof
of gauge invariance is presented in the Appendix B. The
photon self-energy get gradient correction from the fermion
loop. It is also counted in ∂ with the leading order and first
order photon self-energy are

Πð0Þ<αβðQÞ ¼ −e2
Z
K0;P0

Tr½γαSð0Þ<ðP0ÞγβSð0Þ>ðK0Þ�;

Πð1Þ<αβðQÞ ¼ −e2
Z
K0;P0

Tr½γαSð1Þ<ðP0ÞγβSð0Þ>ðK0Þ

þ γαSð0Þ<ðP0ÞγβSð1Þ>ðK0Þ�; ð10Þ

where
R
K0;P0 ¼ R

d4K0d4P0ð2πÞ−8ϵðP0 · uÞϵðK0 · uÞδðP02Þ
δðK02Þð2πÞ4δðQ þ P0 − K0Þ. Fermions with momentum
P and K are the massive probe fermion, while those
with momentum P0 and K0 are the massless medium
fermions. Substituting the Wigner function of the loop
fermions, the photon propagator at zeroth order and first
order are given by

Gð0Þ<
μν ðQÞ ¼ 4e2ð2πÞ2

Z
K0;P0

1

ðQ2Þ2 ðP
0
fνK

0
μg − gμνP0 · K0Þ

× fVðP0Þf̄VðK0Þ;

Gð1Þ<
μν ðQÞ ¼ 4e2ð2πÞ2

Z
K0;P0

1

ðQ2Þ2 iϵμνρσðK
0σnρðP0Þ

× f̄VðK0Þ − P0σn̄ρðK0ÞfVðP0ÞÞ: ð11Þ

Gð0Þ<
μν is symmetric in indices, while Gð1Þ<

μν is antisym-
metric. Instead of using the hard thermal loop (HTL)
photon propagator and calculate the one loop fermion self-
energy [36,37], here we use the loop-corrected photon
propagator. The former captures the classical effects in the
evolution of probe fermion, while quantum effects such as
contributions from the gradients of the medium are not
included. One loop fermion self-energy using the HTL
photon propagator also assumes that the medium fermions
are at equilibrium, and nonequilibrium effects are

excluded. In comparison, the zeroth order Gð0Þ
μν ðQÞ

includes classical effects same as described by HTL
photon propagator, and through the first order propagator

Gð1Þ
μν ðQÞ, spin of the massless medium fermion could

contribute to the spin evolution of the probe fermion.
Besides, by calculating the two loop fermion self-energy,
one can also investigate the evolution of probe fermion in
a nonequilibrium medium. However, in this paper, as a
first step, we restrict ourself to the scenario where the
massless medium fermion is at local equilibrium.
Contracting χ>μν ¼ γμS>γν with the photon propagator,

the fermion self-energy can be decomposed to various
Dirac components [37],

χ>μνG<
μν ¼ ðS̄G<

μνgμν þ iS̄μνG<
μνÞ þ iγ5

�
−P̄G<μ

μ − iS̄αβG<
μν
ϵμναβ

2

�
þ γρðV̄μG<

ðμρÞ − V̄ρG
<μ
μ − iϵμνσρĀ

σG<μνÞ

þ γ5γρð−ĀμG<
ðμρÞ þ ĀρG

<μ
μ þ iϵμνσρV̄σG<μνÞ þ 1

2
σρσð2S̄μ

ρG<
ðμσÞ þ S̄ρσG

<μ
μ − 2iS̄G<

ρσ − iP̄ϵμνρσG<μνÞ: ð12Þ

For the purpose of obtaining the collision terms to Oð∂Þ, only terms linear in axial-vector component Aμ appear while
higher order of A are at least Oð∂2Þ and are neglected. The self-energy components appearing in the transport equation (4)
are ΣS, ΣVμ, ΣAμ and ΣTμν; the greater components are expressed as

FIG. 1. Two-loop diagram for fermion self-energy containing
propagator corrections [41]. The 12 labels are uniquely deter-
mined by the requirement that three propagators attached to a
vertex cannot be simultaneously on shell.
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Σ̄SðPÞ ¼ e2
Z
Q;K

S̄ðKÞGð0Þ<
μν ðQÞgμν;

Σ̄VμðPÞ ¼ e2
Z
Q;K

2V̄νðKÞGð0Þ<
μν ðQÞ − V̄μðKÞGð0Þ<

ρν ðQÞgρν;

Σ̄AμðPÞ ¼ e2
Z
Q;K

−2ĀνðKÞGð0Þ<
μν ðQÞ þ ĀμðKÞGð0Þ<

ρν ðQÞgρν þ iϵαβνμV̄νðKÞGð1Þ<αβðQÞ;

Σ̄TμνðPÞ ¼ e2
Z
Q;K

2S̄ρ
½μðKÞGð0Þ<

ρν� ðQÞ þ S̄μνðKÞGð0Þ<
ρλ ðQÞgρλ − 2iS̄ðKÞGð1Þ<

μν ðQÞ: ð13Þ

The lessor components of the self-energy can be obtained through replacing S> with S<, and G< with G>.
As a first step, we consider the case where the massive probe fermion has local equilibrium number distribution, so that

we can use the local equilibrium of number distribution f̄K0 f̄KfPfP0 − fK0fKf̄Pf̄P0 ¼ 0 in the derivation. For abbreviation,
we denote fVðPÞ as a general nonequilibrium number distribution, and denote fP ¼ fleqV ðPÞ ¼ nFðPÞ as the local
equilibrium number distribution. Using local equilibrium of number distribution, one can convert ∂μðf̄K0 f̄KfP0 Þ into ∂

μfP.
This simplifies the last term ∂

σΣν
VðPÞ in (4), with Σν

VðPÞ defined in (13). After straightforward but tedious algebra, the
collision terms of axial kinetic equation can be casted into P · ∂nμ ¼ Cμ,

Cμ ¼ −4e4ð2πÞ3
Z
Q;K

Z
K0;P0

fMA1
μν ðf̄KfP0 f̄K0 þ fKf̄P0fK0 ÞnνðPÞ þMA2

μν ðfPfP0 f̄K0 þ f̄Pf̄P0fK0 ÞnνðKÞ

þMA3
μν ðf̄Kf̄K0fP0 þ fKfK0 f̄P0 Þ∂νfP þMA4

μν ðfPfP0 f̄K0 þ f̄Pf̄P0fK0 Þ∂νfK
þMA5

μν ðf̄K0fPf̄K þ fK0 f̄PfKÞnνleqðP0Þ þMA6
μν ðfP0fPf̄K þ f̄P0 f̄PfKÞnνleqðK0Þg; ð14Þ

where
R
Q;K

R
K0;P0 ¼ R ð2πÞ−16d4Qd4Kd4K0d4P0ð2πÞ8δðP − K − QÞδðQ þ P0 − K0ÞϵðK · uÞϵðP0 · uÞϵðK0 · uÞδðK2 − m2Þ

δðP02ÞδðK02Þ. The various effective scattering amplitudes in (14) are given by

MA1
μν ¼ 1

ðQ2Þ2 gμνð−m
2P0 ·K0 þ 2P ·P0K ·K0Þ þ fP0 ↔ K0g;

MA2
μν ¼ 1

ðQ2Þ2 ðgμνðK ·PP0 ·K0 − 2K ·K0P ·P0Þ−K0 ·P0KμPν − 2P ·P0QμK0
ν þ 2P ·QP0

μK0
ν þ 2K ·K0P0

μPνÞ þ fP0 ↔ K0g;

MA3
μν ¼ 1

ðQ2Þ2 ϵμναβK ·K0PβP0α þfP0 ↔ K0g;

MA4
μν ¼ −

1

ðQ2Þ2
�
ϵμναβ

�
1

2
P0 ·K0PβKα þP ·P0KβK0α

�
þ ϵλναβK0

μPαKβP0λ
�
þ fP0 ↔ K0g;

MA5
μν ¼ 2

ðQ2Þ2 ðm
2Q ·K0gμν −m2K0

μQν þK ·K0PμPν −P ·K0PμKνÞ;

MA6
μν ¼ 2

ðQ2Þ2 ðm
2Q ·P0gμν −m2P0

μQν þK ·P0PμPν −P ·P0PμKνÞ; ð15Þ

where fP0 ↔ K0g denotes exchanging the two momentum
in the terms before, namely gðP0; K0Þ þ fP0 ↔ K0g means
gðP0; K0Þ þ gðK0; P0Þ, and g is an arbitrary function.
The first line in collision term (14) corresponds to

the spin diffusion of the probe fermion, which are similar
to classical spin relaxation processes considered in
Refs. [36,37]. The last two lines are polarization of probe
fermion resulting from the collection motion of the
medium as well as spin of the medium fermion. The

second line in (14) describes the polarization effect due to
spacetime gradient of fV of the probe fermion. The
last line is the contribution from spin of the medium
fermion. As Aμ is Oð∂Þ in the power counting, in order
to investigate its evolution, it is of key necessity to
evaluate all the first order gradient in the collision term.
Before going on to present the collision term after
momentum integral, we first discuss each part of the
collision terms.
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A. Diffusion

Terms with MA1
μν and MA2

μν are the spin diffusion terms,
these two terms have the same physical meaning as
discussed in [36,37], describing the relaxation of probe
spin by the QED dynamics. After simplifying the integral
measure, the diffusion term can be recasted into

Cdiff
Aμ ¼ −4e4

Z
q0;q;k0

fMA1
μν ðf̄KfP0 f̄K0 þ fKf̄P0fK0 ÞnνðPÞ

þMA2
μν ðfPfP0 f̄K0 þ f̄Pf̄P0fK0 ÞnνðKÞg; ð16Þ

where
R
q0;q;k

0 is the abbreviation for 1
ð2πÞ5

R
dq0d3qd3k0

1
2p0

0
2k0

0
2k0

δðp0 − k0 − q0Þδðp0
0 − k00 þ q0Þ. Instead of photon

propagator in the HTL approximation, we use the photon
propagator with one-loop correction (11). This leads to the
same structure of the collision term as [37], while the
coefficients will be different by a constant factor coming
SUðNÞ of the symmetry of color field in [37]. In the HTL
approximation, the probe fermion and medium fermion are
hard fermions p; k; p0; k0 ∼ T, while the momentum transfer
is soft eT ≪ q0; q ≪ T. In order to complete the momentum
integral and keep the result to leading logarithmic order, the
axial-vector components of the outgoing probe fermion is
expanded in terms of soft momentum Q as

nμðKÞ ¼ nμðP −QÞ ≃ nμðPÞ −Qν
∂PνnμðPÞ

þ 1

2
Qρ

∂PρQν
∂PνnμðPÞ þOðQ3Þ: ð17Þ

And likewise in the expansion of fK and fP0 by soft
momentum Q. The basic strategy is to expand the integrand
to OðQ−2Þ, together with the integral measure which is
OðQ2Þ, then the momentum integral gives leading loga-
rithmic result. Further details of momentum integral are
presented in Appendix A 2.

B. Polarization

The second and third lines in (14) contain first
order gradients through derivatives of number distribu-
tion of the probe ∂

νfP; ∂νfK as well as the axial-vector
component of the medium fermion nνleqðP0Þ and nνleqðK0Þ.
For fP and fK at local equilibrium, ∂νfP; ∂νfK can be
decomposed in terms of gradients of the fluid. Similar to
[62], derivative of the fluid velocity u can be decomposed
into antisymmetric and symmetric part ∂μuν ¼ ωμν þ σμν,
where ωμν ¼ ð∂μuν − ∂

νuμÞ=2 and σμν ¼ ð∂μuν þ ∂
νuμÞ=2.

With the vorticity defined as ωμ ≡ 1
2
ϵμναβuνð∂αuβÞ, the

symmetric part is casted into ωαβ ¼ −ϵαβμνωμuν þ καβ,
with καβ ¼ 1

2
ðuαDuβ − uβDuαÞ. Defining ẼσðPÞ ¼

Pλð1T uλ∂σT − σσλ − κσλÞ, we arrive at the following
decomposition,

∂
νfP ¼ −ðϵνραβPρωαuβ þ ẼνðPÞÞf0P; ð18Þ

where f0P ¼ ∂u·PfP ¼ ð− 1
TÞfPf̄P. ẼσðPÞ can be further

casted in combination of shear tensor, acceleration and
gradient of temperature

ẼσðPÞ ¼ −Pλ

�
∂
hσuλi þ 1

3
Δσλθþ uσDuλ

�
þP · u½∂σ lnT�:

ð19Þ

The spin evolution of the massive probe fermion in a
massless QED at local equilibrium also involves the
exchanging of spin with the massless medium fermion,
which are at local equilibrium. For the medium fermion,
we take the local equilibrium distribution of spin [62],
namely

Aleq
μ ðPÞ ¼ 2πϵðP · uÞδðP2Þ

�
P · ωuμ

2
−
P · uωμ

2

− SðuÞμσ ðPÞẼσðPÞ
�
f0VðPÞ; ð20Þ

where

SðuÞμν ðPÞ ¼ ϵμναβPαuβ

2P · u
: ð21Þ

The polarization effect contains contribution from vor-
ticity, shear tensor, acceleration and the gradient of
temperature. With the decomposition (Sec. IV C) and
(20), the vorticity related terms in the collision term can
be collected into,

Cvor
Aμ ¼ −4e4

Z
q0;q;k0

Cvor
μ ð−βÞf̄Kf̄K0fP0fP; ð22Þ

with βðxÞ ¼ TðxÞ−1, and

Cvor
μ ¼ −ðMA3

μνPρ þMA4
μνKρÞϵνραβωαuβ

þ 1

2
ðMA5

μνP0
ρ þMA6

μνK0
ρÞω½ρuν�: ð23Þ

The effective amplitudes MAi are defined in (15).
Equation (22) characterizes the polarization effect due
the vorticity in the medium. Using the decomposition
(Sec. IV C) and (20), the shear tensor related terms in the
collision term can be casted into
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Cshear
Aμ ¼ −4e4

Z
q0;q;k0

Cshear
μαβ σhαβið−βÞf̄Kf̄K0fP0fP; ð24Þ

with Cshear
μαβ defined through

Cshear
μαβ ¼ MA3

μαPβ þMA4
μαKβ þ

1

2P0 · u
ðMA5ÞνμϵναρλP0ρuλP0

β

þ 1

2K0 · u
ðMA6ÞνμϵναρλK0ρuλK0

β: ð25Þ

The shear tensor σhαβi is the symmetric and traceless part
of σαβ ¼ 1

2
ð∂α⊥uβ þ ∂

β
⊥uαÞ − 1

3
Δαβθ. In the local rest frame

of the fluid, the shear tensor only spatial components
σij ¼ 1

2
ð∂iuj þ ∂juiÞ − 1

3
δij∂⃗ · u⃗. The efficient amplitudes

are presented in (15). The remaining first order gradients
are the temperature gradient and acceleration, the corre-
sponding collision term is collected into

CTgraþacc
Aμ ¼ −4e4

Z
q0;q;k

0
ðCTgra

μλ ∂
λ lnT þ Cacc

μλ DuλÞ

× ð−βÞf̄Kf̄K0fP0fP; ð26Þ

with coefficients CTgra
μλ and Cacc

μλ defined as

CTgra
μλ ¼ −MA3

μλP · u −MA4
μλK · u −

1

2
ðMA5ÞνμϵνλαβP0αuβ

−
1

2
ðMA6ÞνμϵνλαβK0αuβ;

Cacc
μλ ¼ MA3

μνuνPλ þMA4
μνuνKλ: ð27Þ

The final result of the collision term will be the sum of the all
the parts above, namely CAμ ¼ Cdiff

Aμ þ Cvor
Aμ þ Cshear

Aμ þ
CTgraþacc
Aμ .

IV. RESULT

In this section, we explicitly present the result of the
collision term. The leading logarithmic contribution comes
from the soft eT ≪ q0; q ≪ T regime, the basic strategy to
obtain the leading logarithmic contribution is to collect all
the terms up to OðQ−2Þ in the integrand. Combined with
the measure which is OðQ2Þ, both combined will give the
leading logarithmic results. With the assumption that mass
of the probe fermion is much larger than thermal mass
m ≫ mD ∼ eT, Compton scattering is subleading and only
Coulomb scattering is considered. In the calculation, there
is no more restriction for the mass of the probe fermion. In
the following, we present the collision term after the
momentum integral for arbitrary mass of the probe fermion,
and also take massless and nonrelativistic limit for a
comparison.

A. Collision terms

1. Arbitrary mass

For arbitrary nonzero mass of the probe fermion,
the kinetic equation of the axial-vector component
becomes

P · ∂nμðPÞ ¼ −κLL
T
mv

�
Cð1ÞnμðPÞ þ Cð2Þuμ þ Cð3ÞP̂μ

⊥ þ Cð4ÞP̂ν⊥∂P⊥μ
nνðPÞ þ Cð5ÞP̂ν⊥∂Pν⊥n

μðPÞ

þ Cð6Þgνρ∂Pν⊥∂P
ρ
⊥n

μðPÞ þ Cð7ÞP̂ν⊥P̂
ρ
⊥∂Pν⊥∂P

ρ
⊥n

μðPÞ þ Cð8Þðωμ þ P̂μ
⊥P̂ν⊥ωνÞ

þ Cð9Þ 1
2
ðϵμνραuνP̂⊥ρP̂

β
⊥ þ ϵμνρβuνP̂⊥ρP̂

α⊥Þσhαβi þ Cð10ÞϵμναβuαP̂⊥βDuν þ Cð11ÞϵμναβuαP̂⊥β∂ν lnT

�
; ð28Þ

note that both sides of the kinetic equation are on the mass shell δðP2 −m2Þ. κLL is the leading logarithmic coefficient
given by

κLL ¼ T2

8π
e4 ln

1

e
: ð29Þ

Similar to [37], we also introduce the four velocity vμ ≡ Pμ=m for simplicity. Which has the normalization vμvμ ¼ 1, and
v0 ¼ p0=m with v ¼ jp⃗j=m. The rapidity is ηp ≡ arctanhðp=p0Þ≡ 2−1 ln½ðp0 þ pÞ=ðp0 − pÞ�. The shorthand notation
θn ≡ v − vn0ηp is defined for simplicity. The coefficients in (28) are
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Cð1Þ ¼ v
3v0

−
m2v0θ−1
3T2

ð1 − fpÞfp −
mv3

3Tv20
ð1 − 2fpÞ;

Cð2Þ ¼
�
1

3
þ θ−1

3v
−
mv0θ−1
6Tv

ð1 − 2fpÞ
�
P̂ν⊥nνðPÞ þ

mð2v3 − v20θ−1Þ
6v2

∂Pν⊥n
νðPÞ þmð2v3 − 3v20θ−1Þ

6v2
P̂ρ
⊥P̂ν⊥∂Pρ

⊥nνðPÞ;

Cð3Þ ¼
�

v
3v30

þ θ−1
3v0

−
mθ−1
6T

ð1 − 2fpÞ
�
P̂ν⊥nνðPÞ −

mv0θ−1
6v

∂Pν⊥n
νðPÞ þmð2v3 − 3v20θ−1Þ

6vv0
P̂ρ
⊥P̂ν⊥∂Pρ

⊥nνðPÞ;

Cð4Þ ¼ mv2

3v0
;

Cð5Þ ¼ m
3v0

−
m2v20θ−1
6Tv

ð1 − 2fpÞ;

Cð6Þ ¼ m2ð3v3v0 − v30θ−3Þ
12v2

;

Cð7Þ ¼ −
m2v0ð2θ1 þ θ−1Þ

12v2
;

Cð8Þ ¼
�
−
mv
3v20

−
m2v0θ−1

6T
ð1 − 2fpÞ

� ð1 − fpÞfp
2T

;

Cð9Þ ¼
�
mðv5 þ 3v20θ1Þ

3v2v20
þm2v0ð2v3 − ðv2 þ 3v20Þθ−1Þ

6Tv2
ð1 − 2fpÞ

� ð1 − fpÞfp
2T

;

Cð10Þ ¼
�
mv0θ−1

2v
þm2ð2v3 − 3θ−1v20Þ

12Tv
ð1 − 2fpÞ

� ð1 − fpÞfp
2T

;

Cð11Þ ¼
�
mð2v − 3v20θ−1Þ

6vv0
þm2ð3v3 þ 5θ1Þ

12Tv
ð1 − 2fpÞ

� ð1 − fpÞfp
2T

: ð30Þ

fp is the local equilibrium number distribution of the probe,
which is the Fermi Dirac distribution fp ¼ 1=ðeEp=T þ 1Þ,
and Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

The first two lines on the rhs of (28) are dubbed as the
spin-diffusion terms, since these terms are linear in nμðPÞ
which is related to spin of the probe fermion. If the probe
fermion is unpolarized in the initial state, the spin-diffusion
term would be vanishing at the initial time. These terms
have same structure as Refs. [36,37]. The last two lines on
the rhs of (28) delineate the spin polarization effects
induced by the first order hydrodynamic gradients of the
medium including vorticity, shear tensor, acceleration and
gradient of temperature. In previous works about the
dynamical processes of spin evolution of massive fermion
in QED and QCD plasma [36,67], the polarization effects
are not included. For simplicity, only the spin diffusion is
investigated. In Ref. [37], the polarization effect is dis-
cussed for a general collision term but not explicitly for a
system with given interaction. In a recent paper [42],
polarization effects are considered for a massless probe
fermion. In this paper, the polarization effect in considered
for the first time in the view of kinetic theory for massive
spin carrier in gauge plasma. When traversing the QED
plasma, the probe fermion experiences competing proc-
esses from diffusion and polarization, until the both balance

each other, then the spin of the probe fermion achieves local
equilibrium. It is worth emphasizing that we have taken the
assumption that the vector distribution fV of the probe
fermion has achieved local equilibrium with the medium. In
general, the relaxation of fV of the probe is coupled with
the relaxation of spin nμ and should also be incorporated.
These will be presented in further studies. With the
collision terms (28) and the coefficients (30), the diffusion
rate and polarization rate can be estimated. However, since
nμ still contains three degrees of freedom, the analysis of
diffusion rate and polarization rate will be postponed until
nμ is decomposed in Sec. IV C. As a cross-check and for
later convenience, we present first the massless limit and
nonrelativistic limit of collision terms (28), (30).

2. Massless limit

The collision terms (28) arise from soft t-channel photon
exchange of momentum Q in the scattering with back-
ground hard thermal fermions. If the probe fermion is light,
the soft t-channel fermion exchange contribution is no
more suppressed and contributes also at leading logarithmic
order. This scattering process, also known as Compton
scattering, allows for conversion of fermion to a photon.
The discussion of Compton scattering to first order of
gradients also requires inclusion of polarized photon which
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is beyond the scope of this paper. The massless limit is considered here to compare with other researches, and for the
convenience of deriving the collision terms after decomposition Sec. IV C. In the massless limit, the structure of the

collision term is unchanged, the only difference lies in the replacement in the coefficients, with CðiÞ replaced by CðiÞ
chi. With

Cð7Þ
chi ¼ 0, the nonvanishing coefficients are

Cð1Þ
chi ¼

1

3
−

p2

3T2
fpð1 − fpÞ −

p
3T

ð1 − 2fpÞ;

Cð2Þ
chi ¼

�
2

3
−

p
6T

ð1 − 2fpÞ
�
P̂ν⊥nνðPÞ þ

p
6
∂Pν⊥n

νðPÞ − p
6
P̂ρ
⊥P̂ν⊥∂Pρ

⊥nνðPÞ;

Cð3Þ
chi ¼

�
1

3
−

p
6T

ð1 − 2fpÞ
�
P̂ν⊥nνðPÞ −

p
6
∂Pν⊥n

νðPÞ − p
6
P̂ρ
⊥P̂ν⊥∂Pρ

⊥nνðPÞ;

Cð4Þ
chi ¼

p
3
; Cð5Þ

chi ¼ −
p2

6T
ð1 − 2fpÞ; Cð6Þ

chi ¼
p2

6
;

Cð8Þ
chi ¼ −

p2ð1 − 2fpÞ
6T

fpð1 − fpÞ
2T

; Cð9Þ
chi ¼

�
−
p
3
þ p2

3T
ð1 − 2fpÞ

�
fpð1 − fpÞ

2T
;

Cð10Þ
chi ¼

�
p
2
−
p2ð1 − 2fpÞ

12T

�
fpð1 − fpÞ

2T
; Cð11Þ

chi ¼
�
−
p
2
þ p2ð1 − 2fpÞ

4T

�
fpð1 − fpÞ

2T
: ð31Þ

With the above coefficients, one can derive the transport equation of fA in the massless limit (48). As a consistency check,
the diffusion terms in (48) agree with (4.28) in [37] and (4.7) in [36].

3. Nonrelativistic limit

To investigate the spin evolution of heavy quarks in the quark gluon plasma, the nonrelativistic limit of the kinetic
equation is analyzed. In the nonrelativistic limit, it is assumed that m ≫ p ∼ T. We keep the collision term to Oðm−2Þ for
later convenience when checking the eliminating of the collision term in the global equilibrium.

�
∂t þ

1

m
Pν⊥∂ν

�
nμðPÞ ¼ −κLL

�
Cð1Þ
nonnμðPÞ þ Cð2Þ

nonuμ þ Cð3Þ
nonP̂

μ
⊥ þ Cð4Þ

nonP̂ν⊥∂P⊥μ
nνðPÞ þ Cð5Þ

nonP̂ν⊥∂Pν⊥n
μðPÞ

þ Cð6Þ
nongνρ∂Pν⊥∂P

ρ
⊥n

μðPÞ þ Cð8Þ
nonðωμ þ P̂μ

⊥P̂ν⊥ωνÞ þ Cð9Þ
non

1

2
ðϵμνραuνP̂⊥ρP̂

β
⊥ þ ϵμνρβuνP̂⊥ρP̂

α⊥Þσhαβi

þ Cð10Þ
non ϵμναβuαP̂⊥βDuν þ Cð11Þ

non ϵμναβuαP̂⊥β∂ν lnT

�
; ð32Þ

with the coefficients as

Cð1Þ
non ¼ 1

m2

�
T
3
−
2p2

9T
fpð1 − fpÞ

�
; Cð2Þ

non ¼
�

T
3mp

−
p

9m2
ð1 − 2fpÞ

�
P̂ν⊥nνðPÞ þ

2T
9m

∂Pν⊥n
νðPÞ;

Cð3Þ
non ¼ T

3m2
P̂ν⊥nνðPÞ −

Tp
9m2

∂Pν⊥n
νðPÞ; Cð4Þ

non ¼ Tp
3m2

;

Cð5Þ
non ¼ T

3p
−

p
9m

ð1 − 2fpÞ −
pT
6m2

; Cð6Þ
non ¼ T

9
−

p2T
12m2

;

Cð8Þ
non ¼

�
−

T
3m

−
p2

9m2

�
fpð1 − fpÞ

2T
; Cð9Þ

non ¼
�
−

T
3m

−
4p2ð1 − 2fpÞ

9m2

�
fpð1 − fpÞ

2T
;

Cð10Þ
non ¼ pT

3m2

fpð1 − fpÞ
2T

; Cð11Þ
non ¼

�
T
3p

þ pð1 − 2fpÞ
9m

−
pT
2m2

�
fpð1 − fpÞ

2T
: ð33Þ

Both diffusion and polarization get suppressed, guaranteeing that, in the heavy quark limitm → ∞, the orientation of spin is
fixed while the spin density still experience the diffusion process. The different behavior in spin orientation and spin density
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can be observed more clearly when further decomposing
kinetic equation of nμ to its three degrees of freedom, as
presented in Sec. IV C.

B. Relaxation near global equilibrium

For quantum kinetic theory, the elimination of collision
term in global equilibrium for massive fermion has been
proved in Refs. [38,39]. The collision terms in chiral kinetic
theory is also shown to be vanishing in local equilibrium in
Refs. [42,62]. We here check the vanishing of collision
term in global equilibrium as a guarantee of the correctness

the above calculation, and also as a prerequisite for
extracting the relaxation rate. In global equilibrium,
nμðPÞ in a purely rotating fluid could be defined frame
independently [39,62] as

ngeqμ ðPÞ ¼
�
P · ωuμ

2
−
P · uωμ

2

�
f0P: ð34Þ

Using the following derivatives of the equilibrium number
distribution function, fp ¼ nFðEpÞ,

∂Pμ
⊥fp ¼ fpð1 − fpÞ

P⊥μ

p0T
;

∂Pμ
⊥∂P

ν⊥fp ¼ fpð1 − fpÞð1 − 2fpÞ
P⊥μP⊥ν

p2
0T

2
þ fpð1 − fpÞ

1

p0T

�
P⊥μP⊥ν

p2
0

þ Δμν

�
; ð35Þ

the momentum derivative of ngeqμ ðPÞ in the collision terms can be explicitly obtaining with the help of the following tensors:

∂Pν⊥n
geq
μ ðPÞ ¼ −

fpð1 − fpÞ
2T

�
ωνuμ þ

P⊥ν

p0

ωμ

�
−
fpð1 − fpÞð1 − 2fpÞ

2T
P⊥ν

p0T
ðPσ⊥ωσuμ − p0ωμÞ;

∂Pν⊥∂P
ρ
⊥n

geq
μ ðPÞ ¼ −

fpð1 − fpÞ
2T

1

p0

�
Δνρ þ

P⊥νP⊥ρ

p2
0

�
ωμ

−
fpð1 − fpÞð1 − 2fpÞ

2T
1

p0T

��
Δνρ þ

P⊥νP⊥ρ

p2
0

�
ðPσ⊥ωσuμ − p0ωμÞ þ

�
P⊥ðρωνÞuμ þ

2P⊥νP⊥ρ

p0

ωμ

��

−
fpð1 − fpÞðð1 − 2fpÞ2 − 2fpð1 − fpÞÞ

2T

P⊥νP⊥ρ

p2
0T

2
ðPσ⊥ωσuμ − p0ωμÞ: ð36Þ

Substituting these derivatives back into the diffusion part, one can explicitly find that the diffusion part balances the vorticity
part, and thus the collision terms are eliminated in global equilibrium. The vanishing of collision terms is also be proved for
the massless limit and nonrelativistic limit when inserting the derivatives in corresponding limits.
Near the global equilibrium, the relaxation of the spin is dominated by the diffusion terms, leading to the relaxation rate

near global equilibrium

P · ∂nμðPÞ ¼ ðτ̂−1ÞμνδnνðPÞ; ð37Þ

where the relaxation time is now an operator,

ðτ̂−1Þμν ¼ κLL
T
mv

�
gμν

�
v
3v0

−
m2v0θ−1
3T2

ð1 − fpÞfp −
mv3

3Tv20
ð1 − 2fpÞ þ

�
m
3v0

−
m2v20θ−1
6Tv

ð1 − 2fpÞ
�
P̂α⊥∂Pα⊥

þm2ð3v3v0 − v30θ−3Þ
12v2

gαβ∂Pα⊥∂Pβ
⊥
−
m2v0ð2θ1 þ θ−1Þ

12v2
P̂α⊥P̂

β
⊥∂Pα⊥∂Pβ

⊥

�
þmv2

3v0
P̂ν⊥∂P⊥μ

þ
�
1

3
þ θ−1

3v
−
mv0θ−1
6Tv

ð1 − 2fpÞ
�
uμP̂ν⊥ þmð2v3 − v20θ−1Þ

6v2
uμ∂Pν⊥ þmð2v3 − 3v20θ−1Þ

6v2
uμP̂ν⊥P̂

ρ
⊥∂Pρ

⊥

þ
�

v
3v30

þ θ−1
3v0

−
mθ−1
6T

ð1 − 2fpÞ
�
P̂μ
⊥P̂ν⊥ −

mv0θ−1
6v

P̂μ
⊥∂Pν⊥ þmð2v3 − 3v20θ−1Þ

6vv0
P̂μ
⊥P̂ν⊥P̂

ρ
⊥∂Pρ

⊥

�
: ð38Þ

The assumption that the number distribution of the probe fermion has reached local equilibrium with the medium leads to
the disappearance of gradient terms in the relaxation time. Otherwise, the kinetic equation of both spin and number
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distribution will couple with each other, the relaxation of the charge also contributes to spin evolution [40,42]. The full set of
kinetic equation of both spin and charge to the first order of gradient will be included in an upcoming paper.

C. Diffusion and polarization rate

So far, the decomposition ofAμ was not considered for the simplicity when deriving the transport equation. For massive
fermion, the axial-vector componentAμ has three degrees of freedom, constrained by the perpendicular relation PμAμ ¼ 0.
The further decomposition is necessary to obtain components with definite physical meanings, and to recover a smooth
connection with the chiral limit. To get the transport equation for each of the three degrees of freedom ofAμ and meanwhile
keep the correct massless limit, we adopt the following decomposition of Aμ ¼ 2πϵðP · uÞδðP2 −m2Þnμ [68],

nμðPÞ ¼ PμfA þ P2

ðu · PÞ2 − P2
Pμ
⊥fA þ P2

P · u
Mμ

⊥ þ ϵμναβPαuβ
2P · u

∂νfV: ð39Þ

fA ¼ u · n=u · P is identified as the axial-charge density, Mμ
⊥ is the transverse magnetic dipole-moment Mμ

⊥ ¼ ΞμνMν,
where Mμ ¼ − 1

2
ϵμναβuνSαβ and Sαβ is the dipole moment tensor defined in last equation in (5). In the massless limit,

restricted by on-shell condition δðP2Þ, the second and third term in (39) disappear. With such decomposition, the various
components of nμ have clear physical meanings and a smooth massless limit. See [68,69] for more details of the
decomposition.
Consider that the charge distribution has achieved local equilibrium, the general fV in (39) is replaced by the local

equilibrium distribution function fp. For convenience, we consider the scenario that the medium is in the global
equilibrium, namely we keep only the vorticity and neglect all other first order gradients. The transport equations of the
axial-charge density fAðPÞ and transverse magnetic dipole-moment Mμ

⊥ðPÞ become

P · ∂fA ¼ −κLL
T
mv

fCð1Þ
A fA þ Cð2Þ

A P̂ν⊥∂Pν⊥fA þ Cð3Þ
A gνρ∂Pν⊥∂P

ρ
⊥fA þ Cð4Þ

A P̂ν⊥P̂
ρ
⊥∂Pν⊥∂P

ρ
⊥fA þ Cð5Þ

A ∂Pν⊥M
ν⊥ þ Cð6Þ

A P̂ν⊥ωνg;

P · ∂Mμ
⊥ ¼ −κLL

T
mv

�
Cð1Þ
M Mμ

⊥ þ Cð2Þ
M P̂ν⊥∂Pν⊥M

μ
⊥ þ Cð3Þ

M

�
gνρ∂Pν⊥∂P

ρ
⊥M

μ
⊥ −

2

mv
P̂μ
⊥∂Pν⊥M

ν⊥
�

þ Cð4Þ
M P̂ν⊥P̂

ρ
⊥∂Pν⊥∂P

ρ
⊥M

μ
⊥ þ Cð5Þ

M Ξμν
∂Pν⊥fA þ Cð6Þ

M Ξμνων

�
; ð40Þ

both equations are coupled, with the coefficient CðiÞ
A defined as

Cð1Þ
A ¼ −

m2v0θ−1
3T2

ð1 − fpÞfp −
mð2v5 − v20θ−1Þ

6Tv2v20
ð1 − 2fpÞ −

v3 þ v20ðv20 þ 1Þθ1
3v4v30

;

Cð2Þ
A ¼ ð2f − 1Þθ−1m2v20

6v
þmðθ1 þ 2v3Þ

3v3v0
;

Cð5Þ
A ¼ mð2v3 − v20θ−1Þ

6v2v20
; Cð6Þ

A ¼ ð2v3 − v20θ−1Þ
6vv20

ð1 − fpÞfp
T

; ð41Þ

with Cð3Þ
A;M ¼ Cð6Þ, and Cð4Þ

A;M ¼ Cð7Þ, with Cð6;7Þ defined in (30). And the coefficients CðiÞ
M have the following expression,

Cð1Þ
M ¼ −

m2v0θ−1
3T2

ð1 − fpÞfp −
mð2v3 − v20θ−1Þ

6Tv20
ð1 − 2fpÞ −

θ1
3v30

;

Cð2Þ
M ¼ −

m2v20θ−1
6Tv

ð1 − 2fpÞ þ
mðv20θ−1 þ vÞ

3vv0
;

Cð5Þ
M ¼ mv20ðv3 − θ1Þ

6v4
; Cð6Þ

M ¼
�
mθ−1
6T

ð1 − 2fpÞ −
2v5 þ θ−1ð1 − v2Þv20

2v2v30

� ð1 − fpÞfp
2T

: ð42Þ

When the spin of the probe reaches global equilibrium, nμ takes the solution (34). The global equilibrium expression for fA
and Mμ

⊥ can be solved accordingly, giving fgeqA ¼ −P̂ν⊥ωνðp=p0Þfpð1 − fpÞ=ð2TÞ and M⊥;μ
geq ¼ Ξμνωνfp
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ð1 − fpÞ=ð2TÞ. Inserting back into the collision terms in
(40), one will also find the elimination of collision term at
global equilibrium.
The first four terms in both collision terms are the

diffusion terms, the last terms characterize the polarization
effect induced by the vorticity of the QED plasma. The
projection of vorticity to direction of momentum ωk ¼
P̂ν⊥ων acts as a source of axial charge, with the polarization
rate estimated by ΓApol ¼ ∂0fA

ΓApol ¼
e4 lnð1=eÞ

8π

T3

p0p
Cð6Þ
A ωk; ð43Þ

where Cð6Þ
A is a function of mass, momentum and

temperature. On the other hand, the diffusion rate can be
estimated as

ΓAdif ¼
e4 lnð1=eÞT3

8πp0p
Cð1Þ
A : ð44Þ

The ratio of both rates serves as an estimation of whether
the polarization effect is important during the thermal-
ization,

ΓApol

ΓAdiff
¼ Cð6Þ

A T

Cð1Þ
A

ωk
T

: ð45Þ

The dependence of Cð6Þ
A T=Cð1Þ

A on momentum and mass is
presented in left panel of Fig. 2. The ratio is obviously
suppressed for large mass. For small momentum, the ratio
approaches zero, indicating the polarization is suppressed
in the nonrelativistic limit. For the large momentum side,
the ratio is also suppressed, this is due to thermodynamical

suppression coming from fp in Cð6Þ
A . Consider s-quark in

the quark gluon plasma, which is roughly m ∼ p ∼ T, the
ratio is roughly ΓApol=ΓAdiff ∼ ωk=T. M

μ
⊥ delineates the

spin polarization in the plane transverse to momentum p⃗. It

can be further decomposed into direction along ωμ
⊥ ¼

Ξμνων denoted by M⊥;kω and component perpendicular to
this direction M⊥;⊥ω. We assume that Mμ

⊥ has smooth
dependence on momentum and that derivative terms can be
discarded. The diffusion and polarization rates are esti-
mated as

ΓMdif ¼
e4 lnð1=eÞ

8π

T3

p0p
Cð1Þ
M ;

ΓMpol ¼
e4 lnð1=eÞ

8π

T3

p0p
Cð6Þ
M ω⊥; ð46Þ

where ω⊥ ¼ jΞμνωνj. The ratio between the both is

ΓMpol

ΓMdiff
¼ Cð6Þ

M T

Cð1Þ
M

ω⊥
T

: ð47Þ

The coefficient Cð6Þ
M T=Cð1Þ

M at different momentum and
mass is presented in the right panel in Fig. 2. The ratio is
again suppressed when mass and momentum increase.
Considering when m ∼ p ∼ T, the ratio is about
ΓApol=ΓAdiff ∼ ω⊥=T. Thus for the s-quark in a quark gluon
plasma, the ratio between polarization rate and diffusion
rate is about jωj=T, which means that, compared to
thermalization, it takes longer time for the spin to reach
equilibrium, making the nonequilibrium effect important
for the spin evolution.
The massless limit and nonrelativistic limit of the

transport equations Eq. (40) are also considered, so as to
have a better understanding of the momentum and mass
dependence of the diffusion rate and polarization rate, and
to compare with the previous works [42] for the massless
case and [67] for the heavy quarks.

1. Massless limit

Limit restricted by δðP2Þ in the massless, the second and
third term in (39) naturally returns to zero. fA becomes the
only degree of freedom, and its transport equation becomes
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FIG. 2. Left: the coefficient Cð6Þ
A T=Cð1Þ

A in the ratio between polarization and diffusion of fA. Right: the coefficient C
ð6Þ
M T=Cð1Þ

M in the
ratio between polarization and diffusion of Mμ

⊥.
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P · ∂fA ¼ κLL
3

��
pð1 − fpÞfp

T
þ 1 − 2fp

�
fA

þ pð1 − 2fpÞ
2

P̂ν⊥∂Pν⊥fA −
pT
2

gνρ∂Pν⊥∂P
ρ
⊥fA

−
fpð1 − fpÞ

2p
P̂ν⊥ων

�
; ð48Þ

which is consistent with [37], up to the overall constant
SUðNÞ coefficient. The first three terms delineate the
diffusion of axial charge. Supposing that fA has smooth
dependence of momentum, the diffusion rate can be
estimated to be

Γchi
Adiff ∼

e4 lnð1=eÞT2

24πp
: ð49Þ

It agrees with that in [42]. On the other hand, the last term
in (48) is the polarization effect. If no axial charge exists in
the initial time, then there will be axial charge generated by
the vorticity. The polarization rate is estimated through

turning off the diffusion terms on the rhs and using
ΓApol ¼ ∂0fA

Γchi
Apol ∼

e4 lnð1=eÞT2

48πp

ωk
p

fp: ð50Þ

The polarization rate is further suppressed thermodynami-
cally by the distribution function. The ratio of the both tells
which effect dominates,

Γchi
Apol

Γchi
Adiff

∼
ωk
p

fp: ð51Þ

This agrees with j∂j=p observed in Ref. [42]. It is also
suppressed thermodynamically for low temperature or
particles with large momentum.

2. Nonrelativistic limit

In the nonrelativistic limit m ≫ p ∼ T, keeping leading
order of each term, both transport equations become

�
∂t þ

1

m
Pν⊥∂ν

�
fA ¼ κLL

9

�
T
p2

fA −
5T
p

P̂ν⊥∂Pν⊥fA − Tgνρ∂Pν⊥∂P
ρ
⊥fA −

2T
m

∂Pν⊥M
ν⊥ −

2pð1 − fpÞfp
m3

P̂ν⊥ων

�
;

�
∂t þ

1

m
Pν⊥∂ν

�
Mμ

⊥ ¼ κLL
9

�
2p2fpð1 − fpÞ

m2T
Mμ

⊥ þ 3T
p

P̂ν⊥∂Pν⊥M
μ
⊥ þ T

�
gνρ∂Pν⊥∂P

ρ
⊥M

μ
⊥ −

2

mv
P̂μ
⊥∂Pν⊥M

ν⊥
�

þ 2T
m

Ξμν
∂Pν⊥fA −

ð1 − fpÞfp
2m2

Ξμνων

�
: ð52Þ

The spin density characterized by fA undergoes a diffusive
process which is not suppressed, with a diffusion rate of
about

Γnon
Adiff ∼

e4 lnð1=eÞT3

72πp2
: ð53Þ

For the hard fermions p ∼ T, it is about the same order as in
the massless limit. On the other hand, the polarization
process for fA is strongly suppressed:

Γnon
Apol ∼

e4 lnð1=eÞT2pωk
36πm3

fp: ð54Þ

Compared to the polarization rate in the massless limit,
Γnon
Apol is further suppressed by ðp=mÞ3. From the ratio

between the both rates

Γnon
Apol

Γnon
Adiff

∼
p4

m3T

ωk
p

fp; ð55Þ

one can tell that the diffusion process dominates in the
nonrelativistic limit. As fA dies off quickly, the orientation

of the spin is mainly captured by the transverse dipole
moment Mμ

⊥. Both M⊥;kω and M⊥;⊥ω have a diffusion
rate

Γnon
Mdiff ∼

e4 lnð1=eÞTp2

36πm2
fp: ð56Þ

Compared to fA, diffusion of transverse dipole moment
Mμ

⊥ is suppressed by ðp=mÞ2. This diffusion rate can be
compared with Γs in Ref. [67], considering p ∼ T one can
recover g4 lnð1=gÞTðT=MÞ2 in Ref. [67]. The transverse
dipole moment also experiences polarization in the direc-
tion along ωμ

⊥, and the polarization rate is also suppressed
by ðp=mÞ2

Γnon
Mpol ∼

e4 lnð1=eÞT2ω⊥
144πm2

fp: ð57Þ

Both the diffusion rate and polarization rate of transverse
dipole moment are suppressed by ðT=mÞ2, explaining the
lock of spin orientation in the nonrelativistic limit. The ratio
between the both is
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Γnon
Mpol

Γnon
Mdiff

∼
Tω⊥
p2

: ð58Þ

For hard fermion with p ∼ T, although both rates are
suppressed in the nonrelativistic limit, their ratio is still
about ω⊥=T.

V. NUMERICAL ANALYSIS

In this section, we present preliminary numerical analy-
sis to compare the evolution with and without polarization
effect, and to show the suppression of diffusion and
polarization by mass and momentum. In order to carry
out numerical analysis, we assume for convenience that fA
and Mμ

⊥ are isotropic in momentum, then both transport
equations in (40) decouple and can be further simplified.
Besides, we ignore the spatial dependence and focus only
on the time evolution. We here focus on the evolution of the
transverse magnetic dipole moment Mμ

⊥, through some
simple numerical process, its diffusion and polarization can
be visualized. As in the last section, we defineM⊥;kω to be
the component parallel to ωμ

⊥ as M⊥;⊥ω the perpendicular
component. M⊥;⊥ω undergoes a purely diffusion process
while M⊥;kω is affected by both diffusion and polarization
processes.
We first compare the evolution for difference masses and

momentum. Taking the Gaussian initial condition
M⊥;kωðt ¼ 0; vÞ ¼ 0.01e−v

2=10 and the same for M⊥;⊥ω,
with transverse component of vorticity jωμ

⊥j ¼ 0.2T, we
compare two different mass of the probe m ¼ 0.1T and
m ¼ T. To guarantee the stability of the evolution, we solve
the transport equation from t ¼ 0 to t ¼ 10τm, with τm
characterizing the relaxation timescale τm ¼ e4 lnð1=eÞ
T3=ð8π2m2Þ, which depends on mass of the probe. The
evolution of transverse dipole moment with m ¼ 0.1T is
presented in the left panel of Fig. 3, with solid lines denoting
M⊥;kω and dashed lines for M⊥;⊥ω. The red line is the

initial condition, from red to purple are early to later time in
the evolution. One can directly observe that M⊥;kω gets
polarized by ωμ

⊥ while M⊥;⊥ω experiences only diffusion
process. Evolution of the large momentum modes are
suppressed compared to low momentum modes. This is
consistent with the analysis in the last section, that both the
polarization and diffusion are thermally suppressed by
distribution function fp.
The evolution trajectories of M⊥μ with different masses

are presented in the middle panel of Fig. 3. The black solid
dots are initial condition. The blue circles are M⊥μ with
mass m ¼ 0.1T at t ¼ 10τm¼0.1T , while the blue triangles
are M⊥μ with mass m ¼ T at t ¼ 10τm¼T . Dots connected
with red trajectories are modes with low momentum v ¼ 1,
the trajectories are rainbow colored, with purple lines for
modes with large momentum v ¼ 7. The solid trajectories
are for m ¼ 0.1T and dashed trajectories are for m ¼ T.
Comparing the final state for different mass, the trajectories
for small masses rotate by a larger angle. This is in
consistency with the analysis in (57) where the polarization
effect is at least suppressed by ð1=mÞ2 when mass
increases. The evolution trajectories are also suppressed
for those modes with large momentum, in consistency with
thermal suppression found in last section.
The middle panel shows the spin evolution driven by

both diffusion and polarization effect, as a comparison,
polarization effect is turned off in the right panel. In other
word, in the right panel, only the diffusion process is
included as was discussed in previous works [36,37,67].
With only the diffusion process, the transverse dipole
moment would not rotate in the transverse plane, only
shrink in its magnitude instead.
The diffusion and polarization effect can be obviously

observed through the above simple numerical analysis. As
is estimated in last section, both polarization and diffusion
are strongly suppressed for modes with large momentum or
large mass. When focusing on spin polarization of s-quark

FIG. 3. Evolution of transverse dipole moment with initial condition 0.01e−v
2=10, transverse vorticity is jωμ

⊥j ¼ 0.2T. Left: evolution
ofM⊥μ with m ¼ 0.1T. Middle: compare the evolution ofM⊥μ with difference mass m ¼ 0.1T and m ¼ T. Right: evolution ofM⊥μ

with polarization effect turned off.
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in heavy ion collision, where m ∼ p ∼ T, the ratio of
polarization and diffusion can be roughly estimated by
j∂j=T, which means it takes a longer time for the spin to get
polarized compared to thermalization, hence the nonequi-
librium effect is important for spin polarization. In this
sense, the full kinetic equation to first order of gradient
serves as a necessary starting point for studying the
nonequilibrium effect in the local spin polarization and
also the starting point for deriving the spin hydrodynamics.

VI. CONCLUSION AND OUTLOOK

In this paper, we investigate the spin evolution of a hard
massive probe fermion traversing in a massless hot QED
plasma at local equilibrium in the framework of quantum
kinetic equation. Mass of probe fermion is assumed to be
m ≫ mD ∼ eT to exclude Compton from our discussion. As
the first step, fV of the probe fermion is assumed to be in
local equilibrium. Under such assumptions, we derive the
collision term of axial-kinetic equation to the leading
logarithmic order with all the first order gradients included.
The diffusion and polarization effects coexist in the collision
term, where the former drives the spin fluctuation to damp
out, and the later characterizes the spin getting polarized by
the vorticity, shear tensor, acceleration and temperature
gradients of the fluid. The effect of diffusion and polari-
zation balance with each other, leading to the elimination of
collision terms in the global equilibrium. Near the global
equilibrium, the relaxation rate for the fluctuation is
extracted. So as to illustrate the difference among the three
degrees of freedom of Aμ, the axial kinetic equation is
further decomposed into transport equation of axial charge
and transverse magnetic dipole moment considering the
purely rotational medium. The diffusion and polarization
rates are extracted from the collision terms. The momentum
and mass dependence of ratio between the both effects is
analyzed. It is showed that, the ratio between polarization

and diffusion is suppressed for large mass and momentum.
When considering spin of s-quark in the quark gluon
plasma, the ratio between polarization and diffusion can
be estimated to be j∂j=T. This indicates that compared with
thermalization, spin take longer time to get polarized,
indicating nonequilibrium effects important in spin polari-
zation. Preliminary numerical analysis is carried out, show-
ing that modes with small momentum and small mass get
polarized easier, in consistency with the result of non-
relativistic limit.
The physical settings in this paper can be viewed as a toy

model for the evolution of spin of the s-quark in the quark
gluon plasma. In a more self-consistent scenario, we will
consider the scattering of massive quark with a QCD
plasma, without assuming the local equilibrium of number
distribution for the probe quark, the full set of vector kinetic
equation and axial kinetic equation will be derived. The
elimination of collision term of axial kinetic equation in
global equation is considered in this paper, and local
equilibrium for the massive fermion is still under discussion.
These will be included in a future research.
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APPENDIX A: PHASE SPACE INTEGRAL

1. Simplification of integral measure

Assuming that the medium fermion and probe fermion
are hard fermions with momentum comparable with tem-
perature p; k; p0; k0 ∼ T, while the momentum transfer is
soft q0; q ≪ T, the phase space integral can be simplified
using the small momentum transfer as well as the momen-
tum conservation and on-shell condition

ð2πÞ3
Z

d4Kd4Qd4P0d4K0

ðð2πÞ4Þ4 ð2πÞ8δðP − K −QÞδðQþ P0 − K0ÞϵðK · uÞϵðP0 · uÞϵðK0 · uÞδðK2 −m2ÞδðP02ÞδðK02Þ

¼ 1

ð2πÞ5
Z

dq0d3qd3k0
1

2p0
02k

0
02k0

δðp0 − k0 − q0Þδðp0
0 − k00 þ q0Þ: ðA1Þ

The momentum integral is left with integral over Q and k⃗0.
It is useful to decompose momentum q⃗ and k⃗0 into

k⃗0 ¼ k0 cos θkp̂þ k0 sin θk cosφkx̂þ k0 sin θk sinφkŷ;

q⃗ ¼ q cos θqp̂þ q sin θq cosφqx̂þ q sin θq sinφqŷ; ðA2Þ

where we have denoted p̂ as ẑ for now. And introduce
Ω as the angle between k⃗0 and q⃗, namely cosΩ ¼ cos θk

cos θq − sin θk sin θq cosΔφ, with Δφ ¼ φq − φk. The
measure can be parametrized asZ

d3qd3k0 ¼
Z

q2dqdcosθqdφqk02dk0dcosθkdΔφ: ðA3Þ

Considering that loop fermion are light fermions, which
can be treated as massless. Using p⃗0 ¼ k⃗0 − q⃗ and
k⃗ ¼ p⃗ − q⃗, we can use the on-shell condition to cast
the δ-function into
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δðp0 − k0 − q0Þ ≃ δ

�
q
p
p0

cos θq − q2
ðp2 sin2 θq þm2Þ

2p3
0

− q0

�
;

δðp0
0 − k00 þ q0Þ ≃ δ

�
q cosΩ − q2

sin2 Ω
2k0

− q0

�
; ðA4Þ

with p0 ¼ ðp2 þm2Þ1=2. The angular integral over φq and φk can be performed to obtain

Z
dφqdφkδðp0

0 − k00 þ q0Þ ≃ 4π
1

qð1þ q0
k0 Þ

1

½sin2 θq sin2 θk − ðcosΩ − cos θq cos θkÞ2�1=2
: ðA5Þ

Note that the above δ-function constrain the unique solution of cosΔφ, yet sinΔφ can take both solutions
�ð1 − cos2 ΔφÞ1=2. Thus integrals containing odd number of sinΔφ will be vanishing under the angular integral.
The square root constrains the domain of cos θk as cosðθq −ΩÞ < cos θk < cosðθq þ ΩÞ. The other δ-function gives

Z
d cos θqδðp0 − k0 − q0Þ ≃

1
pq
p0
ð1þ q0

p0
Þ : ðA6Þ

From the δ-function, one can solve

cosΩ ≃
q0
q
þ q
2k0

�
1 −

q20
q2

�
þOðq2Þ; sinΩ ≃

�
1 −

q20
q2

�
1=2

�
1 −

q0
2k0

�
;

cos θq ≃
p0q0
pq

þ q
2p

�
1 −

q20
q2

�
þOðq2Þ; sin θq ≃

�
1 −

p2
0

p2

q20
q2

�
1=2

�
1 −

q2 − q20
p2 − p2

0q
2
0

q0p0

2

�
; ðA7Þ

in obtaining the leading-log order result, it is enough to keep the above solution to the first order of q. Note that
−1 ≤ cosΩ; cos θq ≤ 1 also set a limit to x ¼ q0=q that − p

p0
≤ q0

q ≤ p
p0
. So that

R
dxdk0 has the integration domainR

dxdk0 →
R∞
0 dk0

Rþp=p0

−p=p0
dx. With the above approximation of small momentum transfer, the collision term at leading

logarithmic order can be explicitly calculated. The basic process is to collect all terms of integrad to Q−2, after
combining the measure, and integrate q ranges from eT ≪ q ≪ T, the log thus arises from

R
T
eT dq=q ¼ lnð1=eÞ.

To finish the remaining integral over k0, the following expression are often utilized:Z
∞

0

dk0k0nFðk0Þð−1þ nFðk0ÞÞ ¼ −T2 ln 2;Z
∞

0

dk0k02nFðk0Þð−1þ nFðk0ÞÞ ¼ −
1

6
π2T3;Z

∞

0

dk0k02n2Fðk0Þð−1þ nFðk0ÞÞ ¼ −
1

6
π2T3 þ T3 ln 2; ðA8Þ

where nFðk0Þ ¼ 1=ðek0=T þ 1Þ.

2. Diffusion

In this subsection, we show some details of calculation of diffusion term (16). The spin diffusion part defined in (16) is
evaluated by first expanding the integrand in terms of Q. For this purpose, we use the following expansions

Mμν
A1nνðPÞ ¼ þ 2

ðQ2Þ2 TA1nμðPÞ;

Mμν
A2nνðKÞ ¼ −

2

ðQ2Þ2 ðTA2nμðPÞ þ Tν
A2;1∂Pν⊥n

μðPÞ þ Tνρ
A2;1∂P

ρ
⊥∂P

ν⊥n
μðPÞ þ Tμρ

A2;2nρðPÞ þ Tμρν
A2;2∂Pν⊥nρðPÞÞ; ðA9Þ

where the coefficients T in the above expressions are kept to OðQ2Þ, giving
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TA1 ¼ 2ðP · K0Þ2 þm2Q · K0 − 2Q · K0P · K0 − 2P ·QP · K0 þQ · K0P ·QþQ2P · K0 þOðQ3Þ;
TA2 ¼ 2ðP · K0Þ2 þm2Q · K0 − 2Q · K0P · K0 − 2P ·QP · K0 þQ2P · K0 þOðQ3Þ;

Tν
A2;1 ¼ −Qνð2ðP · K0Þ2 þm2Q · K0 − 2Q · K0P · K0 − 2P ·QP · K0Þ þOðQ3Þ;

Tνρ
A2;1 ¼ QνQρðP · K0Þ2 þOðQ3Þ;

Tμρ
A2;2 ¼ −2K0μK0ρP ·Qþ 2QμK0ρP · K0 − PμQρK0 ·Qþ 2K0μQρð−P · K0 þ P ·QþQ · K0Þ þOðQ3Þ;

Tμρν
A2;2 ¼ 2P · K0ðK0μQρQν −QμK0ρQνÞ þOðQ3Þ: ðA10Þ

In obtaining the above expressions, we have used PμnμðPÞ ¼ 0 to simplify the derivatives, thus PμQν
∂PνnμðPÞ ¼

−QμnμðPÞ and PμQρ
∂PρQν

∂PνnμðPÞ ¼ −2QμQν
∂PνnμðPÞ. The leading logarithmic order requires keeping the integrand to

OðQ−2Þ, thus it is sufficient to expand the distributions to OðQÞ, giving

f̄KfP0 f̄K0 þ fKf̄P0fK0 ¼ f̄K0fK0 − ðfP − f̄K0 ÞfK0 f̄K0
q cosΩ

T
þOðq2Þ;

fPfP0 f̄K0 þ f̄Pf̄P0fK0 ¼ f̄K0fK0 − ðfK0 − fPÞfK0 f̄K0
q cosΩ

T
þOðq2Þ: ðA11Þ

Taking Tμρν
A2;2∂Pν⊥nρðPÞ for instance to illustrate the integral over such tensor structures. The basic strategy is to convert the

integral over the tensor to scalars. After integral, Tμρν
A2;2 will be function of momentum p. Besides, as one can obverse, Tμρν

A2;2

is antisymmetric in exchanging μρ, thus can be decomposed into

Tμρν
A2;2 ¼ Tð1Þ

A2;2u
½μgρ�ν þ Tð2Þ

A2;2P̂
½μ
⊥gρ�ν þ Tð3Þ

A2;2P̂
½μ
⊥uρ�uν þ Tð4Þ

A2;2u
½μP̂ρ�

⊥P̂ν⊥; ðA12Þ

with other projectors vanishing in momentum integral. Using the relations between various projectors,

u½μgρ�νT
μρν
A2;2 ¼ 6Tð1Þ

A2;2 − 2Tð4Þ
A2;2, P̂⊥½μgρ�νT

μρν
A2;2 ¼ −6Tð2Þ

A2;2 − 2Tð3Þ
A2;2, P̂⊥½μuρ�uνT

μρν
A2;2 ¼ −2Tð2Þ

A2;2 − 2Tð3Þ
A2;2, u½μP̂⊥ρ�P̂⊥νT

μρν
A2;2 ¼

−2Tð1Þ
A2;2 þ 2Tð4Þ

A2;2, then each coefficients can be obtained as combinations. The momentum integral of the various scalar
functions then follows the processes described in Appendix A 1. Giving

Tð1Þ
A2;2 ¼ κLL

T
mv

mð2v3 − v20θ−1Þ
6v2

;

Tð2Þ
A2;2 ¼ −Tð3Þ

A2;2 ¼ κLL
T
mv

mð2v3 − 3v20θ−1Þ
6v2

;

Tð4Þ
A2;2 ¼ −κLL

T
mv

mv0θ−1
6v

: ðA13Þ

With the coefficients, the original term becomes

Tμρν
A2;2∂Pν⊥nρðPÞ ¼ TðnÞ

A2;2nμðPÞ þ TðuÞ
A2;2u

μ þ TðpÞ
A2;2P̂

μ
⊥ þ Tð∂Þ

A2;2P̂
ρ
⊥∂P⊥μ

nρðPÞ; ðA14Þ

where

TðnÞ
A2;2 ¼

1

p0

Tð1Þ
A2;2;

TðuÞ
A2;2 ¼

p
p0

Tð1Þ
A2;2P̂

ρ
⊥nρðPÞ þ Tð1Þ

A2;2∂P
ρ
⊥n

ρðPÞ þ Tð4Þ
A2;2P̂

ρ
⊥P̂ν⊥∂Pν⊥nρðPÞ;

TðpÞ
A2;2 ¼

�
p2

p3
0

Tð1Þ
A2;2 þ

m2

p3
0

Tð4Þ
A2;2

�
P̂ρ
⊥nρðPÞ þ Tð2Þ

A2;2∂P
ρ
⊥n

ρðPÞ þ p
p0

Tð4Þ
A2;2P̂

ρ
⊥P̂ν⊥∂Pν⊥nρðPÞ;

Tð∂Þ
A2;2 ¼

p
p0

Tð1Þ
A2;2 − Tð2Þ

A2;2: ðA15Þ
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Other scalar function or tensors in (A10) are integrated in a
similar way. After finishing the detailed calculation, one can
arrive at the first two lines in (28) and coefficients Cð1Þ to
Cð7Þ in (30).

3. First order gradients

To calculate the collision terms related to first order
gradients including Cvor

Aμ ; C
shear
Aμ ; CTgraþacc

Aμ defined in (22),
(24) and (26). The basic strategy is to converting the
momentum integral over tensors into scalars, expanding
the integrand toOðQ−2Þ and taking the momentum integral
the same way as in Appendix A 1.

a. Vorticity

Cvor
μ in the integrand of (22) can be further decomposed

into

Cvor
μ ¼ Tvor

ν ω½μuν� þ Tμρν
vorω½ρuν�: ðA16Þ

The momentum integral over the vorticity part also begins
with expansion of the integrand over Q, the tensors above
are expanded to OðQ−2Þ giving

Tvor
ν ¼ 1

ðQ2Þ2 ð2QνðP · K0Þ2 þ ðm2 − 2P · K0ÞQ · K0Qν þ P ·QðQ · K0Pν − 2P · K0QνÞ þOðQ3ÞÞ;

Tμρν
vor ¼ 1

ðQ2Þ2 ð2K
0μðP ·QK0ρðP −QÞν þ ðP · K0 − P ·Q − K0 ·QÞQρPνÞ

þQ · K0PμQρPν − 2P · K0QμK0ρðP −QÞν þOðQ3ÞÞ; ðA17Þ

since the above two tensors are at leastOðQ−3Þ, it is enough to keepOðQÞ order of the distribution functions in order to get
the leading logarithmic result,

f̄Kf̄K0fP0fP ¼ f̄K0fK0 f̄PfP

�
1þ f̄K0

q cosΩ
T

− fP
pq cos θq

p0T

�
þOðq2Þ: ðA18Þ

The momentum integral over tensors Tvor
ν and Tμρν

vor are carried out after transforming the tensors to a series of scalar
functions. Since after momentum integral, the vector Tvor

ν will only be function of momentum P, it can be decomposed by

Tvor
ν ¼ uνT

ð1;1Þ
vor þ P̂⊥νT

ð1;2Þ
vor ; ðA19Þ

with Tð1;1Þ
vor ¼ uνTvor

ν and Tð1;2Þ
vor ¼ −P̂ν⊥Tvor

ν . The scalar coefficients can be integrated according to the process in

Appendix A 1. Then this part becomes Tvor
ν ω½μuν� ¼ Tð1;1Þ

vor ωμ − Tð1;2Þ
vor P̂⊥νω

νuμ. In the other term Tμρν
vorω½ρuν�, ω½ρuν�

projects out the antisymmetric part of Tμρν
vor , thus T

μρν
vor can be decomposed similar to (A12),

Tμρν
vor ¼ Tð2;1Þ

vor u½νgρ�μ þ Tð2;2Þ
vor P̂½ν

⊥gρ�μ þ Tð2;3Þ
vor P̂½ν

⊥uρ�uμ þ Tð2;4Þ
vor u½νP̂ρ�

⊥P̂
μ
⊥; ðA20Þ

the momentum integral over the various scalar functions Tð2;iÞ
vor can be carried out according to Appendix A 1. After

obtaining the coefficients, this part will be

Tμρν
vorω½ρuν� ¼ 2Tð2;1Þ

vor ωμ − 2ðTð2;2Þ
vor þ Tð2;3Þ

vor ÞP̂⊥νω
νuμ þ 2Tð2;4Þ

vor P̂⊥νω
νP̂μ

⊥: ðA21Þ

Together the above two parts, the vorticity term will be the Cð8Þ term in (28), with Cð8Þ defined in (30).

b. Shear

After momentum integral, the collision term Cshear
Aμ (24) will only be function of P, thus can in general be expressed in

terms of a series of symmetric and traceless projectors as

Cshear
Aμ ¼ ðuμQ̂αβC

ð1Þ
shear þ P⊥μQ̂αβC

ð2Þ
shear þ ÎμαβC

ð3Þ
shear þ T̂μαβC

ð4Þ
shearÞσhαβi; ðA22Þ

where the projectors are defined through
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Q̂αβ ¼ P̂⊥αP̂⊥β þ
1

3
Δαβ;

Îμαβ ¼ P̂⊥αΔμβ þ P̂⊥βΔμα −
2

3
P̂⊥μΔαβ;

T̂μαβ ¼
1

2
ðϵμνραuνP̂ρ

⊥P̂⊥β þ ϵμνρβuνP̂
ρ
⊥P̂⊥αÞ; ðA23Þ

which are symmetric and traceless in the indices αβ. In the
local rest frame of the fluid, the above projectors are
Qij ¼ p̂ip̂j − 1

3
δij, Ikij ¼ p̂jδik þ p̂iδjk − 2

3
p̂kδij and

Tkij ¼ 1
2
ðϵklip̂lp̂j þ ϵkljp̂lp̂iÞ, which are symmetric and

traceless in ij. Each of the four coefficients CðiÞ
shear can

be obtained by first projecting (24) onto the corresponding
projectors and then taking the momentum integral. One will

find that only Cð4Þ
shear in nonvanishing. Hence after momen-

tum integral, the shear tensor term in the collision term
appears as

Cshear
Aμ ¼ T̂μαβC

ð4Þ
shearσ

hαβi: ðA24Þ

Using the relation T̂μαβT̂μαβ ¼ −1, the evaluating of the
contribution from the shear tensor is converted to calculat-
ing the scalar function

Cð4Þ
shear ¼ −4e4

1

ð2πÞ5
Z

dq0d3qd3k0
1

2p0
02k

0
02k0

δðp0 − k0 − q0Þδðp0
0 − k00 þ q0ÞT̂μαβCshear

μαβ ð−βÞf̄Kf̄K0fP0fP ðA25Þ

and Cshear
μαβ is defined in (25), which can be simplified into

Cshear
μαβ ¼ þϵμασλ

�
−
P0 · K0

2
KσPλKβ þ K · K0P0σPλPβ − P · P0K0σKλKβ þ

m2Q · K0

P0 · u
P0σuλP0

β

�

− ϵξασλ

�
PσKλP0ξKβ þ

m2

P0 · u
QξP0σuλP0

β

�
K0

μ þ fP0 ↔ K0g; ðA26Þ

where fP0 ↔ K0g part is to taking conversion accordingly in the above all terms. Using

ϵμνρσϵμναβ ¼ −2δρσαβ ¼ −2ðδραδσβ − δσαδ
ρ
βÞ;

ϵμνρσϵμξαβ ¼ −δνρσξαβ ¼ −½δνξðδραδσβ − δσαδ
ρ
βÞ − δναðδρξδσβ − δσξδ

ρ
βÞ þ δνβðδρξδσα − δσξδ

ρ
αÞ�; ðA27Þ

to finish the contractions in T̂μαβCμαβ. Since T̂
μαβCμαβ is at least OðQÞ, it is enough to expand the distribution functions to

OðQÞ (A18). After taking the momentum integral according to Appendix A 1, one will obtain the Cð9Þ term in (28), with
Cð9Þ in (30).

c. Temperature gradients and acceleration

Both of the tensors CTgra
μλ and Cacc

μλ defined in (27) can be expanded in a general structure, namely

TμλðPÞ ¼ T1gμλ þ T2uμuλ þ T3P̂⊥μP̂⊥λ þ T4uμP̂⊥λ þ T5P̂⊥μuλ þ T6ϵμλαβuαP̂
β
⊥; ðA28Þ

where one can find only projector ϵμλαβuαP̂
β
⊥ have nonvanishing coefficient under the momentum integral. Using the

relation ϵμλρσuρP̂⊥σϵμλαβuαP̂
β
⊥ ¼ 2, (26) can be casted into

CTgraþacc
Aμ ¼ CTgraϵμλαβuαP̂

β
⊥∂λ lnT þ CaccϵμλαβuαP̂

β
⊥Duλ; ðA29Þ

with

CTgra ¼ −
4e4

ð2πÞ5
Z

dq0d3qd3k0
1

2p0
02k

0
02k0

δðp0 − k0 − q0Þδðp0
0 − k00 þ q0Þ

1

2
ϵμλρσuρP̂⊥σC

Tgra
μλ ð−βÞf̄Kf̄K0fP0fP;

Cacc ¼ −
4e4

ð2πÞ5
Z

dq0d3qd3k0
1

2p0
02k

0
02k0

δðp0 − k0 − q0Þδðp0
0 − k00 þ q0Þ

1

2
ϵμλρσuρP̂⊥σCacc

μλ ð−βÞf̄Kf̄K0fP0fP: ðA30Þ
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Using (A27) to complete the contraction, and carrying out the momentum integral according to Appendix A 1, one will
obtain the Cð10Þ and Cð11Þ term in (28), with Cð10Þ and Cð11Þ in (30).

APPENDIX B: GAUGE ISSUE

One can explicitly check that the collision term is gauge independent. In this section, we show for example that terms
related to vorticity is gauge independent. Photon propagator in temporal axial gauge, Coulomb gauge and covariant gauge
are given by

temporal axial gauge∶ Gμν ¼
−1
Q2

PT
μν þ

−1
Q2

�
Q2

q2
uμuν −

Q2

q0q2
uðμQνÞ þ

Q2

q20q
2
QμQν

�
;

Coulomb gauge∶ Gμν ¼
−1
Q2

PT
μν þ

−1
Q2

Q2

q2
uμuν;

covariant gauge∶ Gμν ¼
−1
Q2

PT
μν þ

−1
Q2

�
Q2

q2
uμuν −

q0
q2

uðμQνÞ þ
q2

q20Q
2
QμQν

�
: ðB1Þ

The above covariant gauge corresponds to the Landau gauge ξ ¼ 0

Gμν ¼
1

Q2

�
gμν − ð1 − ξÞQμQν

Q2

�
; ðB2Þ

while in the calculation we have adopted Feynman gauge ξ ¼ 1. The point is to work out the one-loop corrected photon

propagator Gð0;1Þ
μν in various gauges and to check whether the different terms among various gauges are vanishing under

momentum integral. The expression of Gð0;1Þ
μν in Landau gauge is given by (11). Feynman gauge and Landau gauge differs

only in tensor structure ofQμQν. While the three gauges in (B1) differs byQμQν, uðμQνÞ and crossing terms with PT
μν when

multiplying two photon propagators.
To check the gauge invariance of zeroth order photon propagator Gð0Þ<

μν ðQÞ ¼ D22
μβðQÞD11

ανðQÞΠð0Þ<αβðQÞ, one can find
that contractingΠð0Þ<αβ withQαQβQμQν and gμαQβQν þ gνβQμQα will both leads to vanishing results under the δ-function.

Thus Feynman gauge and Landau gauge give the same G<ð0Þ
μν . Temporal axial gauge and Coulomb gauge can be shown to

give also the same G<ð0Þ
μν .

We then check the vorticity terms in first order photon propagator Gð1Þ<
μν ðQÞ ¼ D22

μβðQÞD11
ανðQÞΠð1Þ<αβðQÞ. The vorticity

related terms in Πð1Þ<αβðQÞ is

Πð1Þ<αβ
ω ðQÞ ¼ −2iϵαρβσ

Z
P0;K0

K0
σðP0 · ωuρ − P0 · uωρÞf̄K0f0P0 − P0

ρðK0 · ωuσ − K0 · uωσÞfP0f0K0 : ðB3Þ

As only self-energy components ΣAμ and ΣTμν contains the first order photon propagator. The collision term involving

Gð1Þ<
μν ðQÞ in (4) can be extracted out using the expression of the components of self-energy (13), giving

Z
K;Q

iððm2 − P · KÞϵμνρσQν − PμϵλνρσQνPλÞðGð1Þ<μνðQÞfPf̄K −Gð1Þ>μνðQÞf̄PfKÞ

¼
Z
K;Q

iððm2 − P · KÞϵμνρσQν − PμϵλνρσQνPλÞGμα
R Gνβ

A ðΠð1Þ<
αβ ðQÞfPf̄K − Πð1Þ>

αβ ðQÞf̄PfKÞ: ðB4Þ

Although the expression of Gð1Þ<
μν ðQÞ depends on gauge choice, one can explicitly show that the collision term involving

Gð1Þ<
μν ðQÞ (B4) is not gauge depending. This can be proved by contracting

Πð1Þ<αβ
ω fPf̄K − Πð1Þ>αβ

ω f̄PfK ∝
1

2T
ϵαβρσðQ · ωK0

ρuσ − K0 · ωQρuσ þ K0 · uQρωσ −Q · uK0
ρωσÞf̄K0 f̄KfPfP0 ðB5Þ
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with QαQβQμQν, gμαQβQν þ gνβQμQα, uðαQμÞuðβQνÞ and
crossing terms, respectively, then further projecting to
ððm2 − P · KÞϵμνρσQν − PμϵλνρσQνPλÞ. One will find that
it will either be directly vanishing by symmetry, or be

proportional to q⃗ × k⃗0 · ω⃗, which is vanishing under momen-
tum integral. In this way, the vorticity related term is also
gauge independent. Other terms related to first order gradient
are also proved to be gauge independent in a similar way.
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