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Employing constraints derived from the microscopic theory of the strong interaction, we estimate the
zero-temperature phase structure of dense isospin-asymmetric matter with two quark flavors. We find
indications that strong-interaction matter along trajectories relevant for astrophysical applications under-
goes a first-order phase transition from a color-superconducting phase to an ungapped quark-matter phase
when the density is increased. Such a phase transition is found to be absent in isospin-symmetric matter.
Moreover, by taking into account constraints from β equilibrium, charge neutrality, and color neutrality, we
provide an estimate for the speed of sound in neutron-star matter. Notably, we observe that the speed of
sound in neutron-star matter exceeds the asymptotic value associated with the noninteracting quark gas and
even increases toward lower densities across a wide range, in agreement with recent results for isospin-
symmetric matter. Considering results from studies based on chiral effective field theory at low densities,
our findings suggest the existence of a maximum in the speed of sound for n=n0 ≲ 10, where n0 is the
nuclear saturation density.
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I. INTRODUCTION

The detection of the gravitational-wave signal of a
neutron-star merger [1,2], the ongoing missions aiming at
direct neutron-star radius measurements [3–8], and precise
mass measurements of heavy neutron stars [9–12] put our
understanding of the dynamics of dense matter to the test;
see Ref. [13] for a recent discussion. In fact, a quantitative
theoretical description of astrophysical objects requires a
detailed knowledge of the equation of state (EOS) of strong-
interaction matter over a wide range of densities, up to ten
times the nuclear saturation density (or maybe even higher).
In addition, for the description of neutron-star mergers,
information on the temperature dependence of the EOS
(up to temperatures of ∼100 MeV) may also become
very relevant. Unfortunately, the theoretical description of
strong-interaction matter across a wide density and temper-
ature range is highly nontrivial, as it requires us to bridge the
gap between different (effective) degrees of freedom.
At low densities, chiral effective field theory (EFT)

provides a framework to describe the properties of nuclear
matter in a systematic fashion by means of pions and
nucleons as low-energy degrees of freedom [14]. As a
consequence, calculations based on chiral EFT interactions
yield strong constraints for the low-density part of the EOS
[15,16]; see Ref. [17] for a review. For related functional
renormalization group (fRG) studies, we refer the reader to
Refs. [18–24].
Going beyond the nucleonic low-density regime, the

situation is less clear with respect to the dominant effec-
tive degrees of freedom. In fact, an analysis of the

renormalization group (RG) flow of gluon-induced four-
quark interaction channels in a Fierz-complete setting for
two massless quark flavors suggests that many interaction
channels (including vector channels) become equally
strong in a range of densities close to the nucleonic low-
density regime [16]. A quantitative description of the
dynamics in this regime therefore requires us to include
at least vector channels, as also discussed in Refs. [25–27].
In fact, the inclusion of such channels may even lead to a
qualitative change of the EOS in this density regime [26].
Increasing the density even further, the aforementioned

Fierz-complete study of gluon-induced four-quark interac-
tion channels suggests the formation of a chirally symmetric
diquark condensate associated with pairing of the two-flavor
color-superconductor (2SC) type, as indicated by a clear
dominance of the corresponding four-quark channel [28].
This channel has also been considered in various early
seminal works, ranging from low-energy model studies
[29–32] to first-principles studies relying on the fact that the
strong coupling becomes small at high densities, owing to
asymptotic freedom [33–39]. Given this plethora of studies,
it is presently indeed widely accepted that strong-interaction
matter at low temperatures and sufficiently high densities is
a color superconductor with diquarks as effective degrees of
freedom; see Refs. [40–51] for reviews. Finally, at very high
densities and under the assumption that a potentially
existing color-superconducting gap in the excitation spec-
trum of the quarks is small compared to the chemical
potential, constraints on the EOS have been computed in a
perturbative setting [52–60].
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The “detection” of the most relevant effective degrees of
freedom in certain density ranges is very relevant for
astrophysical applications since it opens up the opportunity
to provide reliable constraints on the EOS of QCD over a
wide density range. Indeed, based on the aforementioned
RG analysis of the dominance patterns of gluon-induced
four-quark interaction channels [28], constraints on the
EOS of isospin-symmetric QCD matter with two massless
quark flavors have been computed [16]. Interestingly, the
results from this study are not only consistent with EOS
calculations based on chiral EFT interactions at low
densities but also predict the existence of a maximum in
the speed of sound at supranuclear densities which exceeds
the asymptotic high-density value of the speed of sound
associated with a noninteracting quark gas. The appearance
of this maximum could be traced back to the formation of a
diquark gap. From an astrophysical standpoint, this is
worth mentioning since, at least for neutron-rich matter,
the existence of a maximum in the speed of sound is
presumably required to meet constraints from the analysis
of neutron-star masses [13,61–64]. Recently, the fRG
calculations presented in Ref. [16] have been further
developed at intermediate and high densities by taking
into account higher-order interactions and further resolving
the momentum dependence of vertices [65]. The results
from this study are consistent with those from Ref. [16]. In
particular, first estimates for the speed of sound in isospin-
symmetric strong-interaction matter are still found to
exceed the value of the noninteracting quark gas at high
densities and even increase as the density is decreased,
suggesting the existence of a maximum below n=n0 ∼ 10,
where n0 is the nuclear saturation density.
The present work should be viewed as the first extension

of our series of studies of dense strong-interaction matter
[16,28,66–68] to finite isospin asymmetry, which is ulti-
mately required to reach out to astrophysical applications.
In the following, however, we do not aim at a first-
principles fRG study of dense isospin-asymmetric QCD
matter but at a further development of existing low-energy
models for QCD with two (massless) quark flavors at
intermediate and high densities by taking into account
constraints from calculations based on the fundamental
quark and gluon degrees of freedom [16,65]; see Sec. II.
Note that, although effects from strange quarks may
become relevant at high densities (see Ref. [69] for a
detailed discussion), we shall ignore them in the following
for simplicity. Moreover, we shall restrict ourselves to the
zero-temperature limit. Nevertheless, our present work may
still provide valuable information on the properties of dense
QCD matter and also define a starting point for the
inclusion of strange quarks in the future. The QCD-con-
strained low-energy model introduced in Sec. II is used in
two ways in Sec. III. In Sec. III A, we employ it to estimate
the zero-temperature phase diagram of asymmetric QCD
matter for n=n0 ≳ 10. Based on these results, we then

discuss implications for neutron-star matter in Sec. III B by
taking into account β equilibrium, electric charge neutrality,
and color neutrality. In particular, we present estimates
for the speed of sound. Our conclusions can be found
in Sec. IV.

II. MODEL

In this section, we construct a low-energy model for
QCD at intermediate and high densities by exploiting
results from RG studies of the quark-gluon dynamics in
this density regime [16,65]. In Sec. II A, we first discuss
general aspects of our model and how it emerges from
quark-gluon interactions in QCD. The effective potential of
this model is then derived in Sec. II B. In Sec. II C, we
present a qualitative discussion of the phase structure and
the thermodynamic properties of our model, including
possible implications for the properties of dense QCD
matter. For more quantitative studies, it is required to
determine the model parameters. In Sec. II D, we discuss
how these parameters can be constrained with information
from RG flows in QCD.

A. General aspects

In QCD, all interaction channels are originally generated
by the quark-gluon vertex. Whereas the dynamics at high
energies can be well described in a perturbative setting, the
low-energy regime is governed by nonperturbative phenom-
ena, such as spontaneous symmetry breaking. Therefore, the
description of the low-energy regime by means of suitably
chosen effective degrees of freedom may be efficient to
capture the most relevant dynamics of QCD for a given
range of the external parameters (e.g., temperature and
density). For example, QCD at low densities and temper-
atures can be well described by means of pions and
nucleons. At high densities, the dynamics in the long-range
limit may then be governed by diquarks. The transformation
of the effective action of QCD under a variation of the
resolution and the dynamical emergence of effective degrees
of freedom can be studied with RG methods [16,65,70–81].
A change in the relevant (effective) degrees of freedom

suggests introducing a scale ΛLEM below which a descrip-
tion of QCD by means of a low-energy model (LEM)
constructed from a specific set of effective degrees of
freedom is suitable. The actual value of ΛLEM is of minor
importance as it is a scheme-dependent quantity. Only the
existence of this scale matters. Within a given range of
external parameters, where the QCD ground state is
expected to be governed by spontaneous symmetry break-
ing, the associated symmetry breaking (SB) scale kSB may
be considered a suitable estimate for ΛLEM. However, the
scale kSB is a priori unknown. Even more, this choice may
be impractical, as the symmetry breaking scale kSB may
come with an unknown dependence on the external
parameters of interest. Therefore, the model scale ΛLEM is
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usually chosen such that spontaneous symmetry breaking
has not yet set in at this scale and, at the same time, the
contributions of the gauge degrees of freedom to the
couplings of the low-energy model become subdominant.
Such a range of scalesmay indeed exist. InRefs. [16,82–84],
for example, it is discussed that four-quark self-interactions
generated via two-gluon exchange can become strong
enough to contribute as relevant operators to the RG flow.
Once this is the case, the corresponding four-quark cou-
plings λ̄i are found to increase rapidly, indicating the onset of
spontaneous symmetry breaking; see Ref. [84] for a detailed
discussion.
An analysis of the RG flow of gluon-induced four-quark

interactions above and close to the symmetry breaking scale
kSB can indeed be very useful to gain an insight into the
QCD phase structure and also to identify symmetry break-
ing patterns which potentially govern the dynamics at low
energies [28]. However, a computation of, e.g., thermody-
namic observables requires us to resolve the momentum
dependence of correlation functions below the symmetry
breaking scale. To gain access to such observables at
densities n=n0 ≳ 10, we now construct a suitable low-
energy model. To this end, we first note that a recent RG
study of gluon-induced four-quark interactions suggests that
the diquark channel ∼ðψ̄bτ2ϵabcγ5Cψ̄T

c ÞðψT
dCγ5τ2ϵadeψeÞ is

the most dominant channel in this density regime, indicating
that the formation of a chirally symmetric diquark con-
densate hψ̄bτ2ϵabcγ5Cψ̄T

c i associated with pairing of the
2SC type is favored [28].1 We therefore include this four-
quark channel in the action SLEM of our low-energy model,
in accordance with early studies of dense strong-interaction
matter [29,30,32,34–36]. Moreover, to resolve (at least
some of) the momentum dependence of this channel, we
shall immediately rewrite it by introducing auxiliary fields
Δ̄a ∼ ðψ̄bτ2ϵabcγ5Cψ̄T

c Þ:
1

2
iðψT

bCγ5τ2Δ̄aϵabcψcÞ −
1

2
iðψ̄bγ5τ2Δ̄�

aϵabcCψ̄T
c Þ

þ 1

2
λ̄−1cscΔ̄�

aΔ̄a: ð1Þ

The four-quark coupling λ̄csc associated with the original
four-quark channel then appears as part of the coefficient of
the curvature term ∼Δ̄�

aΔ̄a. Note that, in Eq. (1), we have
absorbed the Yukawa coupling h̄ into the (auxiliary) fields
Δ̄a ¼ h̄Δa. This implies that a finite expectation value of the
complex-valued field Δ̄a can be identified with the gap in
the fermionic excitation spectrum, which indicates the
formation of a color superconductor.
At first glance, quark self-interaction channels of higher

order may be considered parametrically suppressed at high

momentum scales. For example, eight-quark interactions
scale as ∼g8, whereas the aforementioned four-quark
interactions only scale as ∼g4. Here, g denotes the strong
coupling. In Ref. [65], however, it has been found that,
e.g., diquarklike eight-quark interactions already become
relevant above the symmetry breaking scale kSB, i.e., at
scales of the order of the model scale ΛLEM. Therefore, a
corresponding channel should also be included in the
(classical) action SLEM of our low-energy model. As
discussed in Ref. [65], this can be conveniently done in
the form of a four-diquark channel,

∼λ̄effðΔ̄�
aΔ̄aÞ2; ð2Þ

where λ̄eff > 0 is an effective coupling constant. In fact, as
the curvature term ∼Δ̄�

aΔ̄a, this quartic term directly affects
the position of the minimum of the effective potential.
Indeed, the associated eight-quark interactions lead to a
weaker dependence of the gap on the chemical potential;
see Ref. [65].
In principle, one may now argue that gluon-induced

quark self-interactions of even higher order [e.g., as para-
metrized in the form of diquark interaction channels
∼ðΔ̄�

aΔ̄aÞ2m with m > 2] could also become relevant at
scales of the order of the model scale ΛLEM, although such
interactions naively scale as ∼g4m at high momentum
scales. However, no constraints are presently available
for such higher-order interactions. Therefore, we do not
include them in the (classical) action SLEM of our model but
only take those into account for which constraints are
available in Ref. [65]; see also Sec. II D.
To provide at least potentially useful information for

astrophysical applications (e.g., estimates for the density
dependence of thermodynamic quantities), it is required to
study matter away from the isospin-symmetric limit. In our
model, this is achieved by allowing for a difference in the
chemical potentials of the up and down quarks. We shall
refer to these flavor chemical potentials as μu and μd,
respectively. With respect to studies of neutron-star matter,
it is also required to implement β equilibrium which entails
the inclusion of a (relativistic) kinetic term for electrons and
a corresponding chemical potential μe. However, we shall
neglect quark-electron interactions and interactions among
the electrons themselves, as such interactions are much
weaker than those governed by the strong interaction.
Our low-energy model constructed from the interaction

channels (1) and (2) is not confining. While this may not be
an issue at high densities, an implementation of color
neutrality (not to be confused with color confinement) is
nevertheless required since, e.g., neutron stars should not
carry a net color charge. As detailed in Refs. [69,85,86], we
shall implement color neutrality with the aid of two
additional chemical potentials, μ3 and μ8, coupled to the
color charges associated with the generators T3 ¼ λ3=2 and

1Here, we have C ¼ iγ2γ0, and the Pauli matrix τ2 is implicitly
coupled to the flavor indices of the quarks. In color space, it is
summed over the totally antisymmetric tensor ϵabc.
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T8 ¼ λ8=2, which span the Cartan subalgebra of suð3Þ; the
λa’s are the Gell-Mann matrices.
Finally, we note that the fields Δ̄a enter our model as

auxiliary fields in the spirit of a Hubbard-Stratonovich
transformation [87,88]; i.e., they enter the (classical) action
SLEM of our model without a kinetic term. Thus, these fields
are not considered to be dynamical degrees of freedom at
the model scale ΛLEM. Nevertheless, quantum corrections
may render them dynamical. In the following, we shall
ignore such corrections; see also Ref. [65] for a detailed
discussion of this aspect.

B. Effective potential

Guided by the considerations in the preceding subsec-
tion, we make the following ansatz for the action of our
low-energy model:

SLEM ¼
Z

d4x

�
ψ̄ði=∂ − iðμ̂ðfÞ þ μ̂ðcÞÞÞψ þ 1

2
λ̄−1cscΔ̄�

aΔ̄a

þ λ̄effðΔ̄�
aΔ̄aÞ2 þ

1

2
iðψT

bCγ5τ2Δ̄aϵabcψcÞ

−
1

2
iðψ̄bγ5τ2Δ̄�

aϵabcCψ̄T
c Þ þ ψ̄ ðeÞði=∂ − iμeγ0Þψ ðeÞ

�
:

ð3Þ
Here, the fields ψ are associated with quarks whereas the
fields ψ ðeÞ describe electrons. Explicit indices of quark
fields refer to their color components. For convenience, we
have introduced the auxiliary operators

μ̂ðfÞ ¼ diagðμu; μdÞf ⊗ 1c ⊗ γ0 ð4Þ

and

μ̂ðcÞ ¼ 1f ⊗ diagðμr; μg; μbÞc ⊗ γ0; ð5Þ

where, on the right-hand side, the index f refers to flavor
space and c refers to color space. The chemical potentials
μr, μg, and μb associated with the three color charges (red,
green, and blue) are directly related to the aforementioned
chemical potentials μ3 and μ8. Indeed, we have

diagðμr; μg; μbÞc ¼ ðμ3T3 þ μ8T8Þ ð6Þ

with

μr ¼
1

2
ffiffiffi
3

p μ8 þ
1

2
μ3; ð7Þ

μg ¼
1

2
ffiffiffi
3

p μ8 −
1

2
μ3; ð8Þ

μb ¼ −
1ffiffiffi
3

p μ8: ð9Þ

With respect to the implementation of β equilibrium,
electric charge neutrality, and color neutrality, we add that
the chemical potentials μu, μd, μ3, μ8, and μe are not
independent parameters. We shall come back to this issue in
Sec. III B.
Next, we compute the effective potential U of our low-

energy model in a one-loop approximation where we only
take into account “pure” fermion loops. To this end, we
expand the auxiliary fields in Eq. (3) about a homogeneous
background, which we choose to point into the 3-direction
in color space for convenience. By integrating out the
quarks and the electrons, we then obtain

U ¼ 1

2
λ̄−1cscjΔ̄j2 þ λ̄eff jΔ̄j4 −

μ4e
12π2

−
μ4u;b
12π2

−
μ4d;b
12π2

− 8l̄ðjΔ̄j2Þ þ θðδμ2 − jΔ̄j2Þδl̄ðjΔ̄j2Þ: ð10Þ

Here, jΔ̄j2 ¼ Δ̄�
3Δ̄3,

2 where Δ̄3 now represents the homo-
geneous background field. From a minimization of U with
respect to jΔ̄j2, we eventually obtain the gap Δ̄gap in the
excitation spectrum of the quarks.
The contributions of the quark loops to the effective

potential U depend on jΔ̄j2 and are parametrized by the
functions l̄ and δl̄:

l̄ðjΔ̄j2Þ ¼ 1

4π2

Z
Λ

0

dpp2

�
ððpþ μ̄Þ2 þ jΔ̄j2Þ12

þ ððp − μ̄Þ2 þ jΔ̄j2Þ12
�

−
1

2π2

Z
Λ

ΛLEM

dpp2

�
ðp2 þ jΔ̄j2Þ12

þ μ̄2jΔ̄j2
2ðp2 þ jΔ̄j2Þ32

�
ð11Þ

and

δl̄ðjΔ̄j2Þ ¼ 2

π2

Z
pþ

p−

dpp2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp− μ̄Þ2þjΔ̄j2
q

− jδμj
�
; ð12Þ

where

p� ¼ μ̄�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − jΔ̄j2

q
: ð13Þ

2Physical observables depend only on the (gauge-invariant)
quantity jΔ̄j2 ≡ Δ̄�

aΔ̄a (where summation over a is assumed,
a ¼ 1, 2, 3). Hence, they do not depend on the chosen direction
of the background field in color space, see also Ref. [41].
Moreover, the invariance of the action SLEM under color trans-
formations also implies that the effective potential can only be a
function of jΔ̄j2. We have only picked the 3-direction for
convenience which, loosely speaking, implies that the (diquark)
condensate is only formed out of “red and green quarks.”

JENS BRAUN and BENEDIKT SCHALLMO PHYS. REV. D 106, 076010 (2022)

076010-4



We observe that δl̄ does not depend on the regularization
scale Λ at all. The Λ dependence of l̄ is removed in the limit
Λ → ∞. Thus, the effective potential U does also not
depend on Λ for Λ → ∞, as it should be (see Ref. [67]
for a detailed discussion). In practice, we ensure the
independence of Λ by choosing sufficiently large values
for Λ, i.e., Λ ≫ ΛLEM > μ̄. Note that the actual representa-
tions of the functions l̄ and δl̄ depend on the details of the
regularization. In the present work, we employ a three-
dimensional sharp cutoff/regulator for convenience.
However, our results for physical observables do not depend
on the regulator, provided that the counterterms in the third
and fourth lines of Eq. (11) are chosen carefully. The
regulator indeed only affects scheme-dependent quantities,
such as the values of the model parameters λ̄csc and λ̄eff . We
add that we simply employ the counterterms derived in
Refs. [65,67] since these terms are not affected by the
isospin asymmetry.
Let us now discuss the dependence of the effective

potential U on the various chemical potentials appearing in
our model. The contribution ∼μ4e in the effective potential
U originates from the electrons which only provide a
“charged background” for μe ≠ 0 but do not interact with
the quarks otherwise.
The various quark chemical potentials enter the effective

potential U only in specific combinations. To be precise,
we have

μ̄ ¼ μu þ μd
2

þ 1

2
ffiffiffi
3

p μ8; δμ ¼ μu − μd
2

: ð14Þ

The quantity μ̄ may be viewed as the average chemical
potential of the two quark flavors. The isospin asymmetry
can be controlled by the parameter δμ. The chemical
potential μ3 has already been set to zero in the effective
potential U. Note that this is not an additional approxima-
tion but the correct choice to ensure color neutrality in our
studies of neutron-star matter; see Appendix A.
In our derivation of the effective potential U, we have

chosen the background field Δ̄a to point into the 3-direction
in color space for convenience. Therefore, the “blue quarks”
only appear as “noninteracting spectators” in the effective
potential U via their chemical potentials μu;b and μd;b:

μu;b ¼ μu −
1ffiffiffi
3

p μ8; μd;b ¼ μd −
1ffiffiffi
3

p μ8: ð15Þ

We close this subsection by summarizing a few general
aspects on the computation of thermodynamic quantities.
First of all, for a given set of chemical potentials,
μ⃗ ≔ ðμ̄; δμ; μ3; μ8; μeÞ, the pressure P is obtained by
evaluating the effective potential U at its minimum
jΔ̄j2 ¼ jΔ̄gapj2:

P ¼ −Ujmin;μ⃗ − P0: ð16Þ

Here, P0 is the vacuum constant (associated with μ⃗ ¼ 0⃗).
Since the QCD vacuum is governed by spontaneous chiral
symmetry breaking, this constant cannot be computed
reliably within our diquark model. This entails that the
pressure is also not accessible in our present study.
However, toward higher densities (where diquarklike
channels are expected to dominate the dynamics at low
temperatures [16,28]), derivatives of the pressure with
respect to the various chemical potentials are accessible.
This includes densities and the speed of sound. To be
specific, we have

ne ¼
∂P
∂μe

ð17Þ

for the electron density. The densities of the up and down
quarks are given by

nu ¼
∂P
∂μu

and nd ¼
∂P
∂μd

; ð18Þ

respectively. Finally, the densities associated with the color
charges can be obtained from

n3 ¼
∂P
∂μ3

and n8 ¼
∂P
∂μ8

: ð19Þ

At this point, we would like to add that color neutrality is
ensured by choosing the chemical potentials μ3 and μ8
such that the “color densities” n3 and n8 vanish simulta-
neously. As discussed in Sec. III B and Appendix A, this
requires us to choose μ3 ¼ 0.
In the Introduction, we have pointed out that the speed of

sound cs is a quantity of particular interest in the context of
astrophysical applications; see Refs. [13,61–64]. This
quantity is directly related to the first derivative of the
pressure with respect to the energy density ϵ,

cs ¼
�
∂P
∂ϵ

�1
2

; ð20Þ

where

ϵ ¼ −Pþ μunu þ μdnd þ μene: ð21Þ

Note that also this quantity does not depend on the vacuum
constant P0 and is therefore accessible within our present
work. In Sec. III, we shall present estimates for the speed of
sound in isospin-symmetric strong-interaction matter,
charge-neutral strong-interaction matter in β equilibrium,
and charge- and color-neutral strong-interaction matter
in β equilibrium.
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C. Qualitative discussion of the phase structure
and thermodynamics

Before we present numerical results for the zero-
temperature phase diagram of isospin-asymmetric matter
and the speed of sound, we discuss the phase structure and
the thermodynamics of our model on a qualitative level.
For simplicity, we shall restrict our discussion to the case
of vanishing chemical potentials for the color charges
throughout this subsection; i.e., we set μ3 ¼ μ8 ¼ 0. In
any case, this already provides us with useful information
for the determination of the parameters of our model.
Let us first consider the effective potential (10) in the

isospin-symmetric case for μ̄ > 0. We shall also assume
that the parameters λ̄csc and λ̄eff have been tuned such that
the loop contributions parametrized by the functions l̄ and
δl̄ generate an effective potential U with a nontrivial
minimum at jΔ̄j ¼ jΔ̄gapðμ̄; δμ ¼ 0Þj; see Fig. 1 (blue line)
for an illustration. Note that the potential is invariant under
δμ → −δμ. Without loss of generality, it therefore suffices
to consider δμ > 0 in this subsection.
It is now important to observe that the quantum correction

δl̄ does not contribute to the effective potential for δμ ¼ 0.
Even more, we deduce from Eq. (10) that an increase of
the isospin-asymmetry parameter δμ does not affect the
dependence of the effective potential on jΔ̄j2 in the domain
jΔ̄j2 > δμ2. In particular, this implies that the position
of the minimum remains unchanged for δμ2 < jΔ̄gap

ðμ̄; δμ ¼ 0Þj2. In other words, the original minimum of
the effective potential is not shifted and remains to be a
minimum for all δμ2 < jΔ̄gapðμ̄; δμ ¼ 0Þj2. However, by
evaluating the effective potential, we also observe that the
δμ-dependent quark-loop contribution δl̄ in Eq. (10) gen-
erates a second minimum at jΔ̄j ¼ 0 for sufficiently large
values of δμ; see Fig. 1 (green line) for an illustration. These
observations suggest that a critical value δμcr > 0 of the

isospin-asymmetry parameter δμ may exist such that the
minimum at jΔ̄j ¼ jΔ̄gapðμ̄; δμ ¼ 0Þj is no longer the global
minimum of the effective potential for δμ2 > δμ2cr but may
only be a local minimum, where δμ2cr < jΔ̄gapðμ̄; δμ ¼ 0Þj2.
At δμ ¼ δμcr, the system should then undergo a first-order
phase transition. In any case, these considerations indicate
the existence of a finite range of values of δμ for which the
gap Δ̄gapðμ̄; δμÞ is identical to the gap Δ̄gapðμ̄; δμ ¼ 0Þ in the
isospin-symmetric limit; see also Ref. [89] for a correspond-
ing discussion.
We add that not all quark degrees of freedom contribute

to the formation of a color-superconducting ground state.
For example, choosing the homogeneous background to
point into the 3-direction in color space as done in this
work, the blue quarks eventually only appear as non-
interacting spectators in the effective potential; see Eq. (10).
Note that, within our present approximations, a correspond-
ing contribution to the effective potential is expected for
any choice of the homogeneous background.
Let us now discuss the existence of a critical asymmetry

δμcr for the chemical potentials from a more general
standpoint. The existence of such a critical value is indeed
a very well-known feature of two-component Fermi gases
with a superconducting ground state. For example, in the
case of an electron gas, a magnetic field can be used to
generate an asymmetry between “spin-up and spin-down
electrons” because of the Zeeman coupling of the electron
spin to the magnetic field. In other words, the magnetic
field can be used to polarize the system. When the magnetic
field becomes sufficiently strong, superfluidity is found to
disappear, and the system undergoes a first-order phase
transition to an ungapped partially polarized phase, as
shown in the seminal works of Chandrasekhar [90] and
Clogston [91]. This first-order phase transition is associated
with a critical polarization. The search for a corresponding
critical polarization in ultracold atomic two-component
Fermi gases in the unitary limit has also attracted a lot of
attention in the past 10–15 years; see Refs. [92–94] for
reviews.
Following the works of Chandrasekhar and Clogston, the

existence of a critical polarization can be understood from a
comparison of the pressure of the unpolarized superfluid
(gapped) phase with the pressure of the ungapped partially
polarized phase. Searching for the ground state is then
equivalent to searching for the phase with highest pressure
(i.e., lowest Gibbs energy).
In principle, a similar line of arguments can also be

applied to QCD. Loosely speaking, the formation of
diquarks from quarks in the color-superconducting phase
yields an energy gain per quark which is of the order of the
gap Δ̄gapðμ̄; δμ ¼ 0Þ in the isospin-symmetric limit. Note
that the diquarks in our model are composed of one up and
one down quark. Color superconductivity then disappears,
if the energy δμ gained by adding, e.g., an up quark to
the system (rather than a down quark) exceeds a critical

FIG. 1. Qualitative illustration of the effective potential U for
μe ¼ 0 as a function of jΔ̄j=μ̄ for various values of the relative
isospin asymmetry δμ=μ̄. A discussion of the model parameters
can be found in Sec. II D.
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value δμcr. The scale for δμcr is set by the gap
Δ̄gapðμ̄; δμ ¼ 0Þ. An estimate for δμcr can be obtained by
comparing the pressure of the isospin-asymmetric quark
gas in the noninteracting limit (Stefan-Boltzmann limit),

PSBðμ̄; δμÞ ¼
ðμ̄þ δμÞ4

4π2
þ ðμ̄ − δμÞ4

4π2
; ð22Þ

with the pressure of the gapped isospin-symmetric phase
evaluated at leading order in the gap [41,65,67,95,96]3:

P ¼ PSBðμ̄; 0Þ
�
1þ 2

�
Δ̄gapðμ̄; 0Þ

μ̄

�
2

þ…

�
: ð23Þ

From this comparison, we obtain

δμcrðμ̄Þ ¼
1ffiffiffi
3

p Δ̄gapðμ̄; 0Þ þ… ð24Þ

for the critical isospin asymmetry.4 We observe that δμcr
inherits the μ̄ dependence of the gap in the isospin-
symmetric limit.5 Moreover, since the pressure is not
continuously differentiable at δμcr for a given fixed μ̄, we
expect the system to undergo a first-order phase transition at
this point. A similar analysis for QCD with 2þ 1 quark
flavors can be found in Refs. [95,98].
One may now be tempted to conclude that all physical

observables remain equal to their values in the isospin-
symmetric limit for δμ2 < δμ2cr. In particular, we may expect
the pressure and the gap to remain constant within this range
of values of δμ. However, this is not the case, since, loosely
speaking, only some quark degrees of freedom contribute to
the formation of the color-superconducting ground state in
our model; see our discussion above. The remaining other
quark degrees do not couple to the (diquark) condensate. To
be more specific, the formation of a finite expectation value
of the form ∼hψ̄bτ2ϵabcγ5Cψ̄T

c i (with fixed a) is associated
with the symmetry breaking pattern SUð3Þ → SUð2Þ in
color space. For example, choosing a ¼ 3 for convenience
(as done in all explicit calculations in the present work), a
gap Δ̄gap is only generated in the subspace of the red and
green quarks. This subspace is invariant under SU(2)
color transformations. The blue quarks remain ungapped.

The observed independence of the gap on δμ below some
critical value δμcr then results from the position of the poles
of the propagators of the red and green quarks in the
complex p0 plane relative to the real p0 axis for given values
of the chemical potentials, the spatial loop momentum, and
the homogeneous diquark background Δ̄a.

6 We emphasize
that the appearance of a gap in the excitation spectrum of the
quarks as well as the invariance of the gap under a shift of δμ
(for δμ2 < δμ2cr) are physical statements which may also be
present in QCD although the local gauge invariance under
SU(3) color transformations cannot be broken [99]. In this
respect, we also add that the effective potential (10) in
general depends only on the gauge-invariant quantity Δ̄�

aΔ̄a
(summation over a is assumed). These more general
considerations also indicate that thermodynamic quantities
(e.g., pressure and densities) should still exhibit a depend-
ence on δμ for δμ2 < δμ2cr which originates from the
ungapped quarks. In our numerical results for the speed
of sound and the densities, we indeed observe a mild
dependence on the isospin-asymmetry parameter in the
gapped phase; see Sec. III B.
We close this subsection by noting that the situation

encountered in the aforementioned ultracold unitary Fermi
gases is slightly different. In these gases, all physical
observables indeed remain equal to their values in the
gapped phase up to the critical asymmetry since both
fermion degrees of freedom contribute to the formation of
the superconducting ground state. Note that the phase
transition is found to be of first order in these gases, even
if fluctuation effects are taken into account [100–103].

D. Parameter constraints from QCD

Let us begin our discussion of the determination of the
model parameters λ̄csc and λ̄eff by considering the isospin-
symmetric limit. In Ref. [65], an analysis of RG flows
starting from the QCD action indicated that the four-quark
coupling λ̄csc in the isospin-symmetric limit depends only
very mildly on the chemical potential, at least at RG scales
k (sufficiently) greater than the symmetry breaking scale
kSB. Since we choose ΛLEM > kSB, we shall assume that
λ̄csc does not depend on μ̄.
The situation is different for the effective four-diquark

coupling λ̄eff . Indeed, the aforementioned study of RG
flows in QCD suggests that this coupling depends on the
chemical potential μ̄, even above the symmetry breaking
scale. In principle, one may now exploit the RG flows in
Ref. [65] to extract the values of the couplings λ̄csc and λ̄eff
at a suitably chosen model scale ΛLEM, which could then be
used as input parameters for the evaluation of the effective
potential (10) of our model. However, the values of
couplings are scheme-dependent quantities, which in

3This expression can also be derived from Eq. (10) in the limit
of vanishing four-diquark coupling. Moreover, at leading order
in Δ̄gapðμ̄; 0Þ=μ̄, the general form of Eq. (23) may already be
deduced from purely dimensional arguments in QCD since
the gap sets the scale at high densities; see also Ref. [97] for
a discussion.

4Here, terms of higher order in the gap have been dropped.
5Taking into account that effectively only two of the three color

degrees of freedom of the quarks are gapped (see our discussion
below), we obtain δμcrðμ̄Þ ¼ ð1= ffiffiffi

2
p ÞΔ̄gapðμ̄; 0Þ þ � � �. This can

be seen by not taking into account the contributions from the
ungapped quarks into the analysis leading to Eq. (24).

6Here, p0 refers to the zeroth component of the 4-momentum
appearing in the quark propagators.
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general renders such a matching of coupling values
complicated. In our present work, we therefore tune the
model parameters λ̄csc and λ̄eff for a given value of the
chemical potential such that we recover the value of the gap
found in Ref. [65]. Note that the gap in the excitation
spectrum of the quarks is a physical observable.
To be specific, we choose ΛLEM ¼ 1 GeV and restrict

ourselves to regimes with μ̄ < ΛLEM. For the four-quark
coupling, we use λ̄−1csc ≈ 0.197 GeV2 (for all values of μ̄). As
a function of μ̄, the remaining model parameter λ̄eff is then
tuned such that the gap in our present work agrees with the
one found in the study of QCD RG flows in Ref. [65]. Since
the gap in this study comes with an uncertainty band
originating from a variation of the RG scheme and an
uncertainty in the strong coupling, we employ two param-
eter sets for λ̄eff which are associated with the lower and
upper ends of the uncertainty band of the gap, respectively.
The corresponding values for λ̄eff can be found in Ref. [65].
In Fig. 2 (green band), we show the resulting gap as a
function of the baryon density n in units of the nuclear
saturation density n0.
At this point, we would like to comment on the behavior

of the gap as a function of the density. In Ref. [65], a
comparatively weak dependence of the gap on the chemical
potential (or density) has been found; see the green-shaded
band in Fig. 2. The rapid flattening of the gap with
increasing density can be traced back to the emergence
of the four-diquark coupling already above the symmetry
breaking scale. For n=n0 ≳ 7, the results for the gap from
Ref. [65] (which we have used to fix our model parameters)
are consistent with those obtained based on a Fierz-
complete study of gluon-induced four-quark interaction
channels [16]. This is in accordance with the fact that the

latter study predicts the diquark interaction channel to be
most dominant. However, for lower densities, roughly
n=n0 ≲ 10, interaction channels other than the diquark
channel become very relevant [28]. In particular, the chiral
scalar-pseudoscalar channel starts to play a dominant role
and leads to a stronger decrease of the gap than observed in
Ref. [65] for decreasing density; see the red-shaded band in
Fig. 2. From a comparison of the red-shaded and green-
shaded band, we also cautiously conclude that the regime
n=n0 ≲ 7 is no longer accessible in our present work.
In Fig. 2, we observe that the gap from Ref. [16] is greater

than the one reported in previous low-energy model studies;
see, e.g., Ref. [29]. This may be traced back to the quark-
gluon dynamics underlying the study in Ref. [16]. Indeed,
the quark-gluon dynamics may yield a rapid increase of the
gap at lower densities, Δ̄gap ∼ expð−c=ðg4μ̄2ÞÞ (with c > 0
being a constant) [65]. Nevertheless, the results for the gap
from Refs. [16,29] are still in accordance at lower densities.
Up to this point, we have basically only discussed how

the parameters of our model can be fixed in the isospin-
symmetric limit. However, we are aiming at studies of
isospin-asymmetric strong-interaction matter. Since we use
the gap to fix our model parameters, we can exploit the fact
that the gap in our model is independent of the isospin-
asymmetry parameter δμ for δμ2 < δμ2cr; see our discussion
in Sec. II C and Fig. 1. For δμ2 > δμ2cr, the ground state is
then described by a noninteracting isospin-asymmetric
quark gas. Therefore, it is consistent to use the same
model parameters for the isospin-symmetric and the iso-
spin-asymmetric cases. Of course, the uncertainty in the
isospin-symmetric gap leads to an uncertainty in our
estimates for the phase structure and thermodynamics of
isospin-asymmetric matter; see Sec. III. This provides
insight into the sensitivity of our results for isospin-
asymmetric strong-interaction matter on the uncertainty
in the gap.

III. DENSE ASYMMETRIC QCD MATTER

A. Phase diagram of dense QCD matter

Since the computation of thermodynamic quantities with
functional approaches also requires the computation of the
order parameter, we begin our discussion of dense isospin-
asymmetric strong-interaction matter by considering the
zero-temperature phase diagram in the plane spanned by
the total baryon density n (in units of the nuclear saturation
density n0) and the down-quark fraction nd=ðnu þ ndÞ.
Throughout this subsection, we shall always consider the
case of vanishing color chemical potentials μ3 and μ8.
Constraints from color neutrality are then discussed in
Sec. III B.
In Fig. 3, we show the phase diagram spanned by n=n0

and the down-quark fraction nd=ðnuþndÞ for 5≤n=n0≤30,
as obtained from an evaluation of the effective potential (10).
In this phase diagram, we can identify three different

FIG. 2. Gap in the excitation spectrum of the quarks in isospin-
symmetric matter as a function of the baryon density n in units of
the nuclear saturation density n0. The green-shaded band repre-
sents the gap used in the present work as input parameter (based
on results from RG flows in QCD [65]). The red-shaded band
depicts results from an fRG study [16]. For an example for
conventional low energy model studies, we also show the result
for the gap from Ref. [29].
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regions, a region associated with a gapped phase (gray-
shaded area), a region associated with an ungapped phase
(blue-shaded area), and a first-order region between these
two phases. Whereas the gapped phase describes a color
superconductor and is governed by spontaneous symmetry
breaking, the ungapped phase can in principle be treated in a
perturbative setting [52–58]. The first-order region is unsta-
ble. To be more specific, we observe that the system
undergoes a (strong) first-order phase transition from the
gapped phase to the ungapped phase when we increase the
down-quark fraction from nd=ðnu þ ndÞ ¼ 1=2 (symmetric
matter) to nd=ðnu þ ndÞ ¼ 1 (pure down-quark matter) for
given fixed total density n=n0.
From Fig. 3, we deduce that the phase boundaries

decrease with increasing total density n=n0. This can
already be understood from a more general standpoint
based on our analytic estimate of the critical asymmetry
jδμcrj ¼ jΔ̄gapðμ̄; δμ ¼ 0Þj=cδ þ � � � with cδ > 0; see
Eq. (24).7 Indeed, since we have

nd
nu þ nd

¼ 1

2
−
3

2

δμ

μ̄
þ… ð25Þ

for the down-quark fraction in the ungapped phase
for δμ=μ̄ ≪ 1, the critical down-quark fraction can be
expanded as follows:

�
nd

nu þ nd

�
cr
¼ 1

2
−

3

2cδμ̄
Δ̄gapðμ̄; 0Þ þ…: ð26Þ

Using now

n ¼ 1

3
ðnu þ ndÞ ¼

2μ̄3

3π2

�
1þ 3

�
δμ

μ̄

�
2
�

ð27Þ

for the total baryon density in the ungapped phase and that
the gap scales as Δ̄gap ∼ expð−c0=μ̄2Þ with c0 > 0,8 we find
that the critical down-quark fraction scales as

�
nd

nu þ nd

�
cr
−
1

2
∼

1

n
1
3

exp

�
−
c00

n
2
3

�
ð28Þ

in the high-density limit, where c00 > 0 is a constant.9 Thus,
the first-order region approaches the isospin-symmetric line
[i.e., nd=ðnu þ ndÞ ¼ 1=2] for n → ∞, and the extent of the
gapped phase shrinks to zero in this limit. However, this
does not imply that the gap along the isospin-symmetric
line also tends to zero.
We add that the relation (28) for the scaling behavior of

the phase boundaries is very general. In fact, we did not
make use of specific properties of our model but only relied
on two general assumptions: (i) the existence of a color-
superconducting gap in QCD and its scaling behavior10 and
(ii) the general considerations which already led us to the
scaling behavior of the critical isospin asymmetry δμcr. For
completeness, we show the analytic estimate (24) for δμcr

FIG. 3. Phase diagram of isospin-asymmetric strong-interaction
matter in the plane spanned by the total baryon density n (in units
of the nuclear saturation density n0) and the down-quark fraction
nd=ðnu þ ndÞ. The uncertainty in the phase boundaries as
depicted by different line styles results from the uncertainty in
the gap (see Fig. 2), where the dotted and dot-dashed lines are
associated with the upper and lower ends of the uncertainty band
of the gap, respectively.

7For our qualitative analysis in the following, only the sign of
the constant cδ matters. However, a quantitative estimate for this
quantity can already be extracted from our analytic calculations
above, see Eq. (24), where we have found cδ ¼

ffiffiffi
3

p
.

8This is the conventional scaling behavior expected for the
color-superconducting gap in (relativistic) models [29–32]. In
QCD, the factor c0 depends on the strong coupling g; see our
discussion in Sec. II D. With respect to the gap used as input
in our present study, see Fig. 2, a fit of the constant c0 within
the density range relevant for the present work yields
c0 ≈ 0.039 GeV2 (upper end of the green-shaded band) and
c0 ≈ 0.036 GeV2 (lower end of the green-shaded band).

9Here, we have used that the pressure is a continuous function
of the chemical potentials, even in the presence of a first-order
transition. Strictly speaking, the relation (28) describes the
scaling of the upper end of the first-order region shown in Fig. 3.
Since the line describing the lower end of the first-order region is
bounded from above by the upper end, it is reasonable to expect
that the lower end of this region exhibits a similar scaling
behavior, at least at high densities.

10The details of the density dependence of the critical
down-quark fraction in Eq. (28) are determined by the depend-
ence of the gap on the chemical potential which may differ
from the one assumed in the derivation of Eq. (28); see
Refs. [31,44,46,65,104,105] for discussions of the scaling
behavior of the gap in QCD. However, the statement that the
phase boundaries approach the isospin-symmetric line is more
general as it only relies on the assumption that Δ̄gapðμ̄; 0Þ=μ̄ → 0
for μ̄ → ∞ (corresponding to n → ∞). The approach to the
isospin-symmetric limit may indeed be even slower than
described by Eq. (28). For example, the phase boundaries
may scale logarithmically as dictated by the scale dependence
of the strong coupling g.
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together with the result extracted from the effective
potential (10) in Fig. 4. To evaluate the analytic estimate
for δμcr, we have employed the gap extracted from Eq. (10).
Specific trajectories in the phase diagram spanned by the

total baryon density n and the down-quark fraction
nd=ðnu þ ndÞ are of particular interest. For example, we
may want to consider neutronlike matter which corre-
sponds to the horizontal line nd=ðnu þ ndÞ ¼ 2=3 in this
phase diagram. From Fig. 3, we deduce that such a
neutronlike matter trajectory is located in the unstable
first-order region, at least within the considered density
range. Toward lower densities, this trajectory may then
enter the gapped phase before it finally ends up in a phase
associated with spontaneous chiral symmetry breaking in
the low-density regime. As discussed above, however, this
low-density regime is not accessible with our present
model. More importantly with respect to astrophysical
applications, we shall also see in the next subsection that
realistic neutron-star matter trajectories may indeed tra-
verse the gapped phase.

B. Toward neutron-star matter

In our present work, we do not include effects from
strange quarks. Nevertheless, we would like to identify
trajectories in the phase diagram spanned by the total
baryon density n and the down-quark fraction nd=ðnu þ ndÞ
which are relevant for astrophysical applications, at least in
a world with only two quark flavors. This requires us to
take into account constraints from β equilibrium, electric
charge neutrality, and color neutrality (not to be confused
with color confinement). At least potentially, this may
already provide insight into the thermodynamic properties
of neutron-star matter.
Neutron-star matter is in β equilibrium; see, e.g.,

Refs. [69,85,95]. For our present work, this implies that

there is no preferred direction for weak-interaction proc-
esses of the following type:

u ↔ dþ eþ þ νe: ð29Þ

In chemical equilibrium, the chemical potentials of the
particles involved in such processes are then related:

μu ¼ μd þ μQ: ð30Þ

Here, μQ is the chemical potential associated with the
electric charge Q, which is directly related to the electron
chemical potential μe:

μQ ¼ −μe: ð31Þ
In Eq. (30), we have set the chemical potential of the
neutrinos νe to zero since we assume that they leave the
neutron star; see, e.g., Refs. [43,69,85,98,106,107] for
detailed discussions of this aspect.
For a study of physical observables in β equilibrium, it is

now convenient to rewrite the chemical potentials of the
two quark flavors by introducing an auxiliary chemical
potential μ for the quarks:

μu ¼ μþ 2

3
μQ and μd ¼ μ −

1

3
μQ: ð32Þ

Here, the prefactors of μQ are determined by the electric
charge of the up and down quarks, respectively. With these
relations at hand, we can also rewrite the effective potential
U. To be specific, the chemical potentials μ̄ and δμ in
Eq. (10) can be expressed as a sum of the chemical
potentials μ, μQ, and the color chemical potential μ8:

μ̄ ¼ μþ 1

6
μQ þ 1

2
ffiffiffi
3

p μ8 ð33Þ

and

δμ ¼ μu − μd
2

¼ 1

2
μQ: ð34Þ

The pressure (16) then becomes a function of the chemical
potentials μ, μQ, and μ8. Recall that we have already set
μ3 ¼ 0; see below.
Electric charge neutrality can now be implemented by

requiring that the charge density nQ vanishes:

nQ ¼ ∂P
∂μQ

¼ 2

3
nu −

1

3
nd − ne¼! 0: ð35Þ

In our present model, ne is simply the density of a free
relativistic electron gas, ne ¼ μ3e=ð3π2Þ. In the phase
diagram spanned by the total baryon density n and the
down-quark fraction nd=ðnu þ ndÞ, a trajectory respecting
the constraints from β equilibrium and electric charge
neutrality can be found by minimizing the effective

FIG. 4. Critical isospin asymmetry δμcr (in units of μ̄) as a
function of the average chemical potential μ̄. We observe that the
results for this quantity obtained from a minimization of the
effective potential (10) agree qualitatively with those from our
analytic estimate (24).
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potential (10) with respect to jΔ̄j2 for a range of values of
μ, μQ, and μ8 and then singling out the value of the electron
chemical potential μe ¼ −μQ which fulfills the constraint
(35) for given values of μ and μ8. For example, considering
μ8 ¼ 0 (i.e., ignoring color neutrality), the electron chemi-
cal potential μe and the chemical potentials of the up and
down quarks are then determined by the chemical potential
μ. The total density n as well as the densities nu and nd are
finally obtained by taking derivatives of the pressure
with respect to the corresponding chemical potentials on
this trajectory.
In addition to charge neutrality and β equilibrium, color

neutrality should be imposed in a realistic description of
neutron-star matter [69,85]. To this end, we initially
included the color chemical potentials μ3 and μ8 in the
action (3) of our model, which allow us to identify a color-
neutral trajectory in the phase diagram spanned by the total
baryon density n and the down-quark fraction nd=ðnu þ ndÞ
with the aid of the following two constraints:

n8 ¼
∂P
∂μ8

¼ 1

2
ffiffiffi
3

p ðnr þ ng − 2nbÞ¼! 0 ð36Þ

and

n3 ¼
∂P
∂μ3

¼ 1

2
ðnr − ngÞ¼! 0: ð37Þ

Here, the densities nr, ng, and nb refer to the densities of the
red, blue, and green quarks, respectively. We observe that
nr ¼ ng ¼ nb is indeed ensured by fulfilling these two
constraints.
As indicated in Sec. II B, we have already set μ3 ¼ 0 in

the effective potential U; see Eq. (10). This is not an
additional approximation but follows from the constraints
on n3 and n8 and entails that n3 ¼ 0, as detailed in
Appendix A. Thus, we are left with the chemical potential
μ8, which can be determined with the aid of con-
straint (36).
In the plane spanned by the total density n and the down-

quark fraction nd=ðnu þ ndÞ, we can now determine a
trajectory which respects the constraints from color neutral-
ity, charge neutrality, and β equilibrium. In the following,
we shall refer to this trajectory as “neutron-star matter
trajectory.” The computation of this trajectory requires us to
simultaneously solve Eq. (35), the charge neutrality con-
straint, and Eq. (36), the remaining color neutrality con-
straint. Notably, we obtain the following exact solution for
the neutron-star matter trajectory:

nd
nu þ nd

¼ 17

27
: ð38Þ

This down-quark fraction can be translated into a ratio
of protons and neutrons which are the most relevant
effective degrees of freedom at low densities. We find
np=nn ¼ 1=8, where nn is the neutron density and np is the
proton density. For the proton fraction np=ðnp þ nnÞ, we
thus have np=ðnp þ nnÞ ¼ 1=9, which is identical to
the electron fraction: ne=n ¼ np=ðnp þ nnÞ ¼ 1=9. Here,
n ¼ ðnu þ ndÞ=3 is the total baryon density.11

In Fig. 5, we show the neutron-star matter trajectory (red
solid line) in the phase diagram spanned by the baryon
density n and the down-quark fraction nd=ðnu þ ndÞ. For
comparison, we also show the neutron-star matter trajectory
as obtained from the consideration of a noninteracting
quark gas (green dashed line in Fig. 5). Note that the
position of the boundaries of the gapped and ungapped
phases differ slightly from those shown in Fig. 3. This
difference results from the fact that the phase boundaries in
Fig. 5 correspond to points where color-neutral matter
undergoes a first-order transition.

FIG. 5. Phase diagram of isospin-asymmetric strong-interaction
matter spanned by the total baryon density n (in units of the
nuclear saturation density n0) and the down-quark fraction
nd=ðnu þ ndÞ. In contrast to Fig. 3, the phase boundaries now
describe the points where color-neutral matter undergoes a first-
order phase transition. As is the case in Fig. 3, the uncertainty in
these boundaries (as depicted by different line styles) result from
the uncertainty in the gap (see Fig. 2). Dotted (dot-dashed) lines
are associated with the upper (lower) end of the uncertainty band
of the gap. The red (solid) line depicts the neutron-star matter
trajectory as obtained from our model (taking into account
electric charge neutrality, β equilibrium, and color neutrality),
whereas the green dashed line depicts the neutron-star matter
trajectory in case of a system of noninteracting quarks.

11In contrast to most of our results, our results for the neutron-
star matter trajectory and the corresponding “proton fraction” do
not come with an uncertainty band. This can be traced back to the
fact that terms suffering from the uncertainty in the gap cancel out
in the process of solving Eqs. (35) and (36) simultaneously. If we
ignore the constraint (36) from color neutrality and simply set
μ3 ¼ μ8 ¼ 0, this is no longer the case; see Figs. 6 and 7.
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Interestingly, we observe in Fig. 5 that the neutron-star
matter trajectory traverses the gapped phase but eventually
“hits” the phase boundary at n=n0 ≳ 27. Close to the phase
boundary, the gap turns out to be still sizeable within our
present approximations, Δ̄gap=μ̄ ∼ 0.3. At the transition
point, the system then undergoes a (strong) first-order
phase transition from a gapped phase to an ungapped phase
which may be fully accessible in a conventional perturbative
setting. Note that the existence of such a phase transition
may be a model-independent feature. In fact, our general
considerations in Sec. III A suggest that the phase boundary
of the gapped phase approaches the line associated with
isospin-symmetric matter for n → ∞; see Eq. (28). Thus,
one may at least naively expect that neutron-star matter
undergoes such a phase transition, provided that the
corresponding trajectory is located within the gapped phase
at some point. We emphasize that this phase transition
should not be confused with a transition from a phase
governed by spontaneous chiral symmetry breaking to a
chirally symmetric color-superconducting (gapped) phase,
which is expected to occur at much lower densities.
At this point, we also would like to add that there is no

regime/“subphase” in Figs. 3 and 5 (nor in Fig. 6 to be
discussed in the following), where, loosely speaking,
modes with a gap in the isospin-symmetric limit are
rendered gapless in the ground state by the presence of
a finite isospin imbalance.12 In particular, we observe that
this type of gapless modes is not present along the neutron-
star matter trajectory. The potential existence of such
gapless modes in QCD matter has been discussed in detail
in Refs. [109,110]; see, e.g., Refs. [43,45] for reviews.
It is instructive to investigate how color neutrality affects

our results.13 This can be done by computing the trajectory
along which charge neutrality and β equilibrium are taken
into account but the color-neutrality constraints are dropped
(i.e., μ3 ¼ μ8 ¼ 0). In the following, we shall refer to this
trajectory as “color-charged neutron-star matter trajectory.”
In Fig. 6, this trajectory is shown together with the (color-
neutral) neutron-star matter trajectory in the plane spanned
by the total density and the down-quark fraction. We find
that both trajectories lie close to each other and effectively
converge when the density is increased. As a consequence,

the electron fraction ne=n along the color-charged neutron-
star matter trajectory also approaches the one along the
(color-neutral) neutron-star matter trajectory; see Fig. 7.
However, toward lower densities, we observe that the
electron fractions associated with the two trajectories start
to deviate clearly. Recent constraints from nuclear physics
and observations disfavor large electron fractions at low
densities in neutron stars and also suggest that the electron
fraction does not increase toward lower densities [13]. With
respect to astrophysical applications, we may therefore
cautiously conclude from our results that the implementa-
tion of color neutrality becomes increasingly relevant when
the low-density regime is approached. In any case, the
electron fractions along both trajectories are still consistent
with the aforementioned constraints from nuclear physics
and observations.

FIG. 6. Phase diagram as shown in Fig. 5 but with a reduced
range of the axis associated with the down-quark fraction to show
the difference between the (color-neutral) neutron-star matter
trajectory (red line) and the color-charged neutron-star matter
trajectory (blue band).

FIG. 7. Electron fraction ne=n as a function of the total baryon
density n (in units of the nuclear saturation density n0) along the
(color-neutral) neutron-star matter trajectory and the color-
charged neutron-star matter trajectory. The lower (upper) end
of the uncertainty band is associated with the lower (upper) end of
the uncertainty band of the gap.

12In condensed matter physics, such a regime is referred to as
the Sarma phase [108]; see, e.g., Refs. [92–94] for reviews in the
context of ultracold Fermi gases.

13As discussed above, we expect neutron-star matter to be
“color neutral” see Refs. [69,85,86,111]. Results for “color
charged” neutron-star matter are shown only to illustrate which
of the quantities considered in the present work are strongly
affected by the implementation of the color-neutrality constraint,
at least within our present model setup, which allows a study of
both cases at comparatively low numerical costs. For numerically
more intense studies of properties of strong-interaction matter,
such a comparison may be potentially useful since an imple-
mentation of additional constraints (here, the color-neutrality
constraint) may then be very costly from a numerical standpoint.
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Let us finally consider the speed of sound as another
quantity of great interest with respect to astrophysical
applications. To compute the speed of sound along different
trajectories, we employ Eq. (20). In Fig. 8, we present our
results for the speed of sound squared as a function of the
total baryon density along the (color-neutral) neutron-star
matter trajectory, the trajectory associated with color-
charged neutron-star matter in β equilibrium, and iso-
spin-symmetric matter (not color neutral). Note that we
only show the speed of sound within the gapped phase in
Fig. 8. Above n=n0 ≳ 27, the neutron-star matter trajectory
as well as the color-charged neutron-star matter trajectory
cross the phase boundary; see Figs. 3 and 5. Within the
gapped phase, we observe that the three trajectories lead to
very similar results for the speed of sound. In particular, in
all three cases, the speed of sound exceeds the value of the
noninteracting quark gas and even increases toward lower
densities within the considered density range. It is worth
mentioning that, on a qualitative level, this behavior of the
speed of sound as a function of the density can also be
derived analytically from Eq. (23).14 For example, assum-
ing Δ̄gap ∼ expð−c0=μ̄2Þ and μ̄ ∼ n

1
3 as in Sec. III A, we

obtain the following estimate for the deviation of the speed
of sound squared from its value in the noninteracting limit
at high densities:

c2s −
1

3
∼

1

n
2
3

exp

�
−
2c00

n2=3

�
: ð39Þ

Here, we have restricted ourselves to the isospin-symmetric
case and also dropped corrections of higher order in 1=n1=3

and ðΔ̄gapðμ̄; 0Þ=μ̄Þ.15 In accordance with our numerical
results, we deduce from this relation that the speed of sound
indeed approaches its value in the noninteracting limit from
above at high densities. The latter statement appears to be
insensitive to the details of our assumption for the μ̄
dependence of the gap. Indeed, provided that the pressure
can bewritten in the form of Eq. (23) for small Δ̄gapðμ̄; 0Þ=μ̄,
it is sufficient that Δ̄gapðμ̄; 0Þ=μ̄ → 0 for μ̄ → ∞ and
Δ̄gapðμ̄; 0Þ increases monotonically as a function of μ̄.
In Fig. 8, we also observe that the speed of sound along

the neutron-star matter trajectory essentially agrees with
the one along the color-charged neutron-star matter tra-
jectory for the considered densities within the uncertainty
bands. Recall that the electron fractions associated with
these two trajectories start to deviate clearly toward lower
densities; see Fig. 7. We also deduce from Fig. 8 that a
finite isospin asymmetry has the tendency to slightly lower
the speed of sound. However, the effect of a finite isospin
asymmetry diminishes for increasing density. This does
not come unexpected. In fact, our general discussion in
Sec. II A already suggests that the isospin dependence may
at least be weak for some observables within the color-
superconducting phase. For the considered densities, this
observation may provide a justification to restrict more
advanced computations of thermodynamic quantities of
astrophysical relevance to the isospin-symmetric limit, at
least in a first step.
In Fig. 9, we finally compare our results for the speed of

sound with those from a computation based on an fRG
analysis of a Fierz-complete set of (gluon-induced) four-
quark interactions [16]. We observe that our present results
are consistent with those from Ref. [16] for n=n0 ≳ 7.
Taking also into account recent results from studies based
on chiral EFT interactions at low densities [15,16], the
scaling behavior of the speed of sound at high densities
suggests the existence of a maximum in the speed of sound
for n=n0 ≲ 10; see Fig. 9. Within the existing uncertainties,
this is in accordance with the aforementioned Fierz-
complete RG study starting from the QCD action [16].
Note that the existence of an increase of the speed of sound
above the value associated with the noninteracting quark gas
has also been observed and discussed in (low-energy)

FIG. 8. Speed of sound squared (in units of the speed of light
squared) in (isospin-)symmetric matter (green-shaded band),
color-charged neutron-star matter (red diamond pattern), and
(color-neutral) neutron-star matter (black-shaded band) as a
function of the total baryon density n (from n=n0 ¼ 7 to
n=n0 ¼ 26, where n0 is the nuclear saturation density). The
lower (upper) ends of the uncertainty bands are associated with
the lower (upper) end of the uncertainty band of the gap.

14For a detailed discussion of corrections to Eq. (23) and how
they may affect the speed of sound, we refer the reader
to Ref. [97].

15For simplicity, we have assumed that μ̄ ¼ ðπ2n=2Þ1=3 (rela-
tion for the noninteracting quark gas). This yields the following
relation between the constants c0 and c00: c00 ¼ c0=ðπ2=2Þ2=3. Of
course, within the gapped phase, this is only an approximation. A
more quantitative estimate may be obtained by employing an
ansatz of the following form: μ̄ ¼ cμ̄ncn , where cμ̄ and cn are
positive constants. Thus, the actual functional dependence of the
density may differ from our present estimate. Still, it appears
reasonable to expect that cn ≈ 1=3 for large μ̄ where the gap
becomes small compared to μ̄. Note also that the contribution of
the ungapped “blue” quarks to the density scales as n1=3.
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models where strong-interaction matter is studied coming
from low densities (see, e.g., Refs. [26,112–115]) rather
than from high densities as done in the present work.
Interestingly, such an increase of the speed of sound has also
been observed in a recent lattice study of two-color
QCD [116].
With respect to astrophysical applications, we add that

constraints from neutron-star masses strongly suggest the
existence of such a maximum in neutron-rich matter
[13,61–64]. However, a computation of the position of
this maximum is beyond the scope of the present work, as it
will most likely require the inclusion of additional effective
degrees of freedom, such as pions, vector mesons, and
nucleons, which are expected to become relevant in this
density regime [25,26,28,112,117].
Of course, another quantity of great relevance for

astrophysical applications is the pressure as a function of
the density. Up to a constant (vacuum constant), this
quantity can be obtained by an integration of the speed
of sound squared with respect to the energy density; see
Eq. (20). In (low-energy) model studies, different ways of
determining this constant have been discussed; see, e.g.,
Refs. [112–115]. In the following, we shall not determine
this constant but only note that a combination of our present
work with Refs. [16,65] may be used in the future to
compute estimates of the pressure and the speed of sound of
isospin-imbalanced strong-interaction matter by studying
RG flows starting from the QCD action at high momentum
scales. Results for the pressure of symmetric matter from
such an RG study can be found in Ref. [16], in which also a

comparison of the pressure with results from model studies
is provided. Our present study of the speed of sound (see
Figs. 8 and 9) suggests that the results for the pressure
presented in Ref. [16] may depend only mildly on the
isospin asymmetry at high densities, at least for imbalances
relevant for astrophysical applications. However, a detailed
analysis of this aspect is deferred to future work.

IV. CONCLUSIONS

To study the zero-temperature phase diagram of strong-
interaction matter with two massless quark flavors at supra-
nuclear densities, we have constructed a model based on
constraints from studies of RG flows in QCD [16,28,65]. In
this model, the dynamics is found to be governed by the
formation of a color-superconducting gap at sufficiently
small down-quark fractions. By increasing the down-quark
fraction for a fixed total density, we have found that the
system undergoes a (strong) first-order phase transition to an
ungapped quark-matter phase. Our results suggest that, if
this phase transition occurs in two-flavor QCD, the asso-
ciated phase boundary in the phase diagram spanned by the
total baryon density and the down-quark fraction approaches
the isospin-symmetric line when the density is increased.
The results for the zero-temperature phase diagram of

our model are in accordance with more general consid-
erations which do not rely on specific details of our model;
see our discussion in Sec. III A. These considerations
already suggest that dense neutron-star matter may undergo
a first-order phase transition from a color-superconducting
phase to an ungapped quark matter phase. However, in
terms of the density, the position of this transition to the
ungapped phase may be well beyond densities relevant for
astrophysical applications. Note that our analysis also
indicates that isospin-symmetric strong-interaction matter
does not undergo such a phase transition at high densities.
By taking into account constraints from β equilibrium,

charge neutrality, and color neutrality in our model, we
have determined a neutron-star matter trajectory in the
phase diagram spanned by the total baryon density and the
down-quark fraction. This trajectory is found to be located
in the gapped phase for n=n0 ≲ 27 but “hits” the boundary
of this phase toward higher densities, as suggested by our
general considerations. Along this trajectory (but below the
phase transition), we have computed two quantities of
particular interest in the context of astrophysical applica-
tions: the electron fraction and the speed of sound. Our
results for both quantities are in accordancewith constraints
from nuclear physics and observations [13]. In particular,
we have found that the speed of sound along the neutron-
star matter trajectory exceeds the asymptotic value asso-
ciated with the noninteracting quark gas and even increases
toward lower densities across a wide range. Taking into
account results from studies based on chiral EFT inter-
actions at low densities [15,16], the observed behavior of
the speed of sound at n=n0 ≳ 10 suggests the existence of a

FIG. 9. Speed of sound squared (in units of the speed of light
squared) in (isospin-)symmetric matter (green-shaded band, this
work and Ref. [65]) and in neutron-star matter (black-shaded
band, this work) as a function of n=n0, together with results for
the speed of sound in (isospin-)symmetric matter as obtained
from calculations based on chiral EFT (blue-shaded bands) [16],
an fRG study taking into account the formation of a diquark gap
(red-shaded band) [16], and an fRG study based on an approxi-
mation without taking into account a diquark gap [16]. The black
dashed line represents the speed of sound squared in a non-
interacting quark gas.
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maximum in this quantity at intermediate densities, as also
discussed for isospin-symmetric matter in Ref. [16]. Note
that constraints from neutron-star masses also strongly
support the existence of a maximum in the speed of sound
in neutron-rich matter [13,61–64].
With respect to astrophysical applications, it should be

added that strange quarks may become relevant in the
density regime considered in this work. In fact, taking
strange quarks into account, the ground state associated with
pairing of the two-flavor color-superconductor type (as
considered in this work) may no longer be favored [69].
Still, for example, our general considerations regarding
the density dependence of the speed of sound do not rely
on the specific type of the gap but only on the dependence of
the pressure on the gap and may therefore also hold in the
presence of strange quarks, at least in case of color-flavor
locking at high densities.16 In any case, the construction of a
2þ 1-flavor model based on, e.g., constraints from RG
flows in QCD is in principle also possible but appears to be
much more challenging. For example, the number of
possible channels in a Fierz-complete analysis of gluon-
induced four-quark interactions already grows drastically
because of the explicit breaking of the flavor symmetry
[118]. Leaving this ambitious endeavor aside, our present
work may still help to gain a better understanding of the
properties of dense strong-interaction matter in general.
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APPENDIX A: COMMENT ON COLOR
NEUTRALITY

In Sec. II B, we introduce the effective potential U of our
model, which turns out to be independent of the color
chemical potential μ3; see Eq. (10). In this Appendix, we
show that this choice for μ3 is correct for studies of color-
neutral matter. To this end, we consider the effective
potential U for finite μ3:

U ¼ 1

2
λ̄−1cscjΔ̄j2 þ λ̄eff jΔ̄j4 −

μ4u;b
12π2

−
μ4d;b
12π2

−
μ4e

12π2

− 4l̄ðjΔ̄j2Þjμ̄¼μrg
− 4l̄ðjΔ̄j2Þjμ̄¼μgr

þ 1

2
θðδμ2rg − jΔ̄j2Þδl̄ðjΔ̄j2Þj μ̄¼μrg

δμ¼δμrg

þ 1

2
θðδμ2gr − jΔ̄j2Þδl̄ðjΔ̄j2Þj μ̄¼μgr

δμ¼δμgr
: ðA1Þ

Here,

δμrg ¼ δμþ 1

2
μ3; δμgr ¼ δμ −

1

2
μ3 ðA2Þ

and

μrg ¼
μu þ μd

2
þ μr þ μg

2

¼ μu þ μd
2

þ 1

2
ffiffiffi
3

p μ8 ðA3Þ

are chemical potentials associated with red and green
quarks. Note that we have

μgr ¼ μrg ðA4Þ

and

μ3 ¼ μr − μg: ðA5Þ

The chemical potentials related to blue quarks are

μu;b ¼ μu þ μb ¼ μu −
1ffiffiffi
3

p μ8 ðA6Þ

and

μd;b ¼ μd þ μb ¼ μd −
1ffiffiffi
3

p μ8: ðA7Þ

Note that, in contrast to the blue quarks, the chemical
potentials of the green and red quarks do not appear
explicitly in our equations as we have chosen to replace
them with suitable combinations of μu, μd, μ3, μ8, and δμ;
see, e.g., Eq. (A3). Such a replacement is convenient since
the red and green quarks “mix” in the color-superconduct-
ing phase anyhow. Finally, we add that the functions l̄ and
δl̄ associated with loop integrals are given in Eqs. (11) and
(12), respectively.
Strong-interaction matter is said to be color neutral

(not to be confused with color confinement), if the densities
of the three color charges are identical: nr ¼ ng ¼ nb. As
discussed in Sec. II A, this can be achieved by requiring
that the densities n3 and n8 (associated with the color
chemical potentials μ3 and μ8) vanish:

16We refer to Appendix B for a comment on this aspect.
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n8 ¼
∂P
∂μ8

¼ 1

2
ffiffiffi
3

p ∂P
∂μr

þ 1

2
ffiffiffi
3

p ∂P
∂μg

−
1ffiffiffi
3

p ∂P
∂μb

¼ 1

2
ffiffiffi
3

p ðnr þ ng − 2nbÞ ¼! 0 ðA8Þ

and

n3 ¼
∂P
∂μ3

¼ 1

2

∂P
∂μr

−
1

2

∂P
∂μg

¼ 1

2
ðnr − ngÞ ¼! 0: ðA9Þ

Since the effective potential (A1) is invariant under r ↔ g,
we have Pðμr; μgÞ ¼ Pðμg; μrÞ. Thus, the constraint (A9) is
fulfilled, if μr ¼ μg, which is equivalent to μ3 ¼ 0. For the
purposes of the present work, it is therefore justified to set
μ3 ¼ 0 in the effective potential U, as done in Eq. (10).

APPENDIX B: COMMENT
ON STRANGE-QUARK EFFECTS

Considering the case of two massless quark flavors plus
a strange quark with mass ms, it has been shown in
Ref. [69] (see also Ref. [46] for a review) that, to order
m4

s and second order in the gap, the pressure for color-
flavor locked (CFL) quark matter can be written as

PCFL ¼ Pð0Þ
CFLðμ; msÞ þ cΔðΔ̄CFL

gap Þ2μ2 þ…; ðB1Þ

where Δ̄CFL
gap is the CFL gap, Pð0Þ

CFL is the pressure of
unpaired quark matter including terms depending explicitly
on the strange quark mass, and cΔ is a positive constant.
Note that we tacitly assume that the gap divided by the
chemical potential is sufficiently large, measured relative to
ðms=μÞ2, such that the CFL phase is favored over unpaired
quark matter [69]. Moreover, as done in Ref. [69], we have
dropped the leading-order strange-quark mass correction
∼m2

s=μ2 to the CFL gap.
At least at high densities, where the leading-order

expression (B1) may be expected to be valid, it follows
that the dependence of the pressure on the gap in the CFL
phase is qualitatively the same as in the case of strong-
interaction matter with only two massless quark flavors; see
Eq. (23). Assuming now that the CFL gap exhibits the
typical Bardeen-Cooper-Schrieffer (BCS)-type dependence
on the chemical potential and that Δ̄CFL

gap ðμÞ=μ → 0 for
μ → ∞ (as it is the case for the 2SC gap), we cautiously
conclude that the speed of sound in the CFL phase also
exceeds the asymptotic value cs ¼ 1=

ffiffiffi
3

p
and exhibits a

density dependence similar to the one in Eq. (39), at least at
sufficiently high densities. Recall that the density depend-
ence of the speed of sound given in Eq. (39) follows from
the expansion (23) for the pressure.
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