
Proportionality of gravitational and electromagnetic radiation
by an electron in an intense plane wave

G. Audagnotto,* C. H. Keitel , and A. Di Piazza †

Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg, Germany

(Received 3 August 2022; accepted 13 September 2022; published 20 October 2022)

Accelerated charges emit both electromagnetic and gravitational radiation. Classically, it was found that
the electromagnetic energy spectrum radiated by an electron in a monochromatic plane wave is proportional
to the corresponding gravitational one. Quantummechanically, it was shown that the amplitudes of graviton
photoproduction and Compton scattering are proportional to each other at tree level. Here, by combining
strong-field QED and quantum gravity, we demonstrate that the amplitude of nonlinear graviton photo-
production in an arbitrary plane wave is proportional to the corresponding amplitude of nonlinear Compton
scattering. Also, introducing classical amplitudeswe prove that the proportionality relies on the semiclassical
nature of the electron’s motion in a plane wave and on energy-momentum conservation laws, leading to the
same proportionality constant in the classical and quantum case. These results deepen the intertwine between
gravity and electromagnetism into both a nonlinear and a quantum level.
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I. INTRODUCTION

Recently large interest has awakened in the connection
between gravity and Standard Model gauge theories. There
are multiple motivations driving this research area, con-
cerning both fundamental and technical aspects [1–4]. It is
known that a satisfactory description of quantum gravity
is not available today; nevertheless the low-energy limit of
any possible model should be properly connected to the
Standard Model and the classical theory of gravity, which
are both experimentally well verified [5,6]. The fact that
canonical quantum gravity is not strictly renormalizable
does not affect these considerations and leading-order
calculations are of notable interest. Indeed, it is possible
to describe the dynamics of massive objects through the
classical limit of scattering amplitudes [7]. By taking into
account the proper Feynman diagrams, one can find
corrections to the Coulomb or Newton potential [8,9].
The relation between gravity and gauge theories man-

ifests itself, for instance, through the Kawai-Lewellen-Tye
relations [4,10] derived in the context of string theory,
which relate graviton and gauge-bosons tree-level ampli-
tudes. These relations suggest a more fundamental con-
nection between general relativity and gauge theories: at

the semiclassical level gravity actually behaves as a double
copy of a gauge theory [1,4,11] (see Refs. [12,13] for
studies about double copy in a background plane wave
electromagnetic field). Moreover, general considerations
about conservation laws [14–16] in tree-level diagrams
have been exploited to relate, for example, graviton photo-
production and QED Compton scattering. These factori-
zation properties and various other techniques [17] played a
central role in calculating on-shell amplitudes involving
gravitons as Compton-like scattering and photoproduction
[3,18–23].
On a different side, the recent detection of gravitational

waves has attracted a lot of attention [24]. Despite the
outstanding experimental result, the lack of measurable
events makes it necessary to search for different sources of
these perturbations. The classical interplay between gravity
and electromagnetism has a long history and in this context
Refs. [25,26] are of particular interest. In these works it is
proved that a proportionality exists between the electro-
magnetic and gravitational energy spectra of a charge
driven by a monochromatic plane wave.
The relations studied in Refs. [14–16] lead to the

following result for the linear graviton photoproduction
by an electron of charge e < 0 and mass m∶

εi;αε
�
f;με

�
f;νM

αμν
eγ→eg ¼ Hεi;αε

�
f;μM

αμ
eγ→eγ; ð1Þ

where

H ¼ −
κ

2e

�
pi · ε�fkf · pf − pf · ε�fkf · pi

ki · kf

�
; ð2Þ
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with κ ¼ ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
in units where ℏ ¼ c ¼ 1 and

α ¼ e2=4π ≈ 1=137, which are used throughout. Here, the
left-hand side is the amplitude associated to the graviton
photoproduction eðpiÞ þ γðki; εiÞ → eðpfÞ þ gðkf; εfεfÞ
and the right-hand side the linear Compton scattering
eðpiÞ þ γðki; εiÞ→ eðpfÞ þ γðkf; εfÞ. Note that the polari-
zation tensor εμνf of the graviton is assumed to be written as
εμνf ¼ εμfε

ν
f, where εμf is the helicity polarization four-

vector of a photon with the same four-momentum [27].
Equations (1) and (2) lead to the same proportionality
between spectra found in Refs. [25,26], but a relation like
Eq. (1) is not expected to hold for a higher number of
incoming photons [22] because the arguments based on
conservation laws [14] cease to apply. Thus, an inves-
tigation of this property in the context of strong-field QED,
where the effects of an electromagnetic background
are taken into account exactly, is certainly relevant and
timely.
In the present paper we show both classically and

quantum mechanically that the electromagnetic and the
gravitational radiation amplitudes in an arbitrary plane
wave background field are proportional to each other
and that the proportionality constant is the same in both
cases and equal to H. Classically, this is achieved by
introducing a concept of radiation amplitude in analogy
with the quantum one. Quantum mechanically we work
within strong-field QED in the Furry picture, which allows
us to take into account exactly the effects of the plane wave
into the electron dynamics [28] (see also Ref. [29] for a
similar computation in a circularly polarized monochro-
matic plane wave). It is remarkable that the proportionality
relies only on the symmetries of the background plane
wave and on the semiclassical nature of the quantum
dynamics of electrons in a plane wave.

II. PROPORTIONALITY BETWEEN CLASSICAL
GRAVITATIONAL AND ELECTROMAGNETIC

RADIATION AMPLITUDES

An electron in the presence of an intense electromagnetic
plane wave radiates both light and gravitational waves.
The electron is characterized by an initial four-momentum
p, whereas the plane wave is described by the four-vector
potential Aμ

BðϕÞ, where ϕ ¼ nB · x, with nμB ¼ ð1; nBÞ, nB
being the unit vector along the propagation direction
of the plane wave. We assume that Aμ

BðϕÞ satisfies
the Lorenz-gauge condition and A0

BðϕÞ¼0, and that
limϕ→�∞ Aμ

BðϕÞ ¼ 0. Below, we will use the light cone
notation by setting ñμB ¼ 1

2
ð1;−nBÞ and aμ1;2 ¼ ð0; a1;2Þ,

such that ai · nB ¼ 0 and ai · aj ¼ δij. The quantities
fnμB; ñμB; aμ1;2g form a basis of the four-vector space
such that an arbitrary four-vector vμ can be written as
vμ ¼ v−ñ

μ
B þ vþn

μ
B þ vμ⊥, where v− ¼ v · nB, vþ ¼ v · ñB,

and vμ⊥ ¼ −Σ2
i¼1ðv · aiÞaμi .

Due to their remarkably small amplitudes in most
situations, we will consider here linear gravitational waves
in the first-order weak-field approximation OðκÞ, where
the metric is expanded as gμν ¼ ημν þ κhμν [30,31],
with ημν ¼ diagðþ1;−1;−1;−1Þ. This implies that the
energy-momentum brought by the gravitational wave
itself is not included in the total energy-momentum tensor
Tμν, which is taken as the source of the gravitational
field. Every form of matter or energy couples to the
gravitational field, thus the sources of gravitational waves
in the system under consideration are the particle P, the
background field Aμ

B, and the field radiated by the charge
Aμ
R. Moreover, the electromagnetic stress tensor Tμν

EM ¼
FμαFα

ν þ 1
4
ημνFαβFαβ is quadratic in the field Fμν¼

Fμν
R þFμν

B , where Fμν
R;B¼∂

½μAν�
R;B, with a½μbν�¼aμbν−aνbμ,

and therefore a mixed term arises involving background
and radiation field. Consequently, on the whole we have
Tμν ¼ Tμν

P þ Tμν
R þ Tμν

B þ Tμν
RB, where

Tμν
P ¼ m

Z
dτuμðτÞuνðτÞδð4Þðx − xðτÞÞ; ð3Þ

Tμν
B;R ¼ Fμα

B;RFB;R;α
ν þ 1

4
ημνFαβ

B;RFB;R;αβ; ð4Þ

Tμν
RB ¼ Fμα

R FB;α
ν þ Fμα

B FR;α
ν þ 1

2
ημνFαβ

R FB;αβ; ð5Þ

with xμðτÞ being the electron trajectory parametrized via
the proper time τ and uμðτÞ ¼ dxμ=dτ.
Now, we are interested in a regimewhere the background

plane wave can be intense, in the sense that the classical
nonlinearity parameter ξ ¼ jejEB=mωB can be larger than
unity [32–34]. Here, EB and ωB are the peak value of the
electric field of the wave and its typical angular frequency,
respectively. We work in a parameter range, where radi-
ation-reaction effects can be neglected. Classically, this
implies that the parameter αχξΦ is much smaller than unity
[35], where χ ¼ ðp−=mÞðEB=EcrÞ, with pμ being the initial
four-momentum of the electron and Ecr ¼ m2=jej the
critical field of QED [32–34,36], and where Φ is the total
phase duration of the plane wave field. Quantum mechan-
ically, this implies that multiple photon emissions and
radiative corrections are negligible, which is the case if
αξΦ ≪ 1 at χ ≲ 1 [37,38]. Moreover, neglecting radiation-
reaction effects means classically that the conservation of
the total energy-momentum tensor has to be equivalent to
the electron dynamics being described by the Lorentz
equation, and this implies that the energy-momentum
tensor Tμν

R of the electromagnetic field produced by the
electron can be ignored in Tμν. It should be stressed that if
Tμν
R is taken into account, analytical problems arise because

of its divergence on the electron trajectory. This divergence
is not avoidable unless one introduces a finite size
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model for the electron. In this way, we have that Tμν ¼
Tμν
P þ Tμν

B þ Tμν
RB (see also Refs. [25,26]).

At this point, one would expect the largest electromag-
netic contribution to the gravitational field to come from the
background term Tμν

B ¼ −A02
Bn

μ
Bn

ν
B, where A0μ

B ¼ dAμ
B=dϕ.

However, since Tμν
B depends only on ϕ, its Fourier

transform Tμν
B ðkÞ ¼ ð2πÞ3δðk−Þδð2Þðk⊥ÞρðkþÞnμBnνB, with

ρðkþÞ ¼ −
R
dϕ expðikþϕÞA02

B ðϕÞ does not vanish only
for kμ ∝ kμB, with kμB ¼ ωBn

μ
B, such that, due to gauge

invariance, Tμν
B ðkÞε�με�ν ¼ 0. Therefore Tμν

B does not con-
tribute to the gravitational radiation (see also below) [39].
We then conclude that [25,26]

Tμν ¼ Tμν
P þ Tμν

RB: ð6Þ

Classically, we can introduce the amplitudes SγcðkÞ and
SgcðkÞ of the emission of electromagnetic and gravitational
radiation, respectively, in such a way that they coincide
with the first-order quantum counterparts,

SγcðkÞ ¼ −ieJμPðkÞε�μ; ð7Þ

SgcðkÞ ¼ i
κ

2
TμνðkÞε�με�ν; ð8Þ

where JμPðkÞ is the Fourier transform of the four-current
JμPðxÞ ¼ δð3Þðx − xðtÞÞdxμðtÞ=dt of the electron moving
along the trajectory xμðtÞ. As we have mentioned in the
Introduction, εμ (εμεν) is the helicity polarization four-vector
(tensor) of the electromagnetic (gravitational) wave such
that ε · ε ¼ k · ε ¼ 0 [27]. By squaring the above amplitudes
and summing over the polarizations, one finds the corre-
sponding energy emission spectra (see Refs. [26,30,40]),

dEγ

dk
¼ 1

16π3
X
pol:

Sγ�c ðkÞSγcðkÞ ¼ −
e2

16π3
J�P;μðkÞJμPðkÞ; ð9Þ

dEg

dk
¼ 1

16π3
X
pol:

Sg�c ðkÞSgcðkÞ

¼ κ2

64π3

�
TμνðkÞT�

μνðkÞ −
1

2
Tμ

μðkÞT�ν
νðkÞ

�
; ð10Þ

where the completeness relations
P

pol: εμε
�
ν ⇒ −ημν [28]

and
P

pol: εμνε
�
αβ ⇒ ðημαηνβ þ ημβηνα − ημνηαβÞ=2 were

used [41].
In order to show the proportionality between SgcðkÞ and

SγcðkÞ, we first consider the mixed energy-momentum
tensor Tμν

RBðkÞ in Fourier space, which can be written as

Tμν
RBðkÞ¼

Z
d4q
ð2πÞ4

�
1

2
Fαβ
B ðk−qÞFR;αβðqÞημν

þFμα
B ðk−qÞFR;α

νðqÞþFνα
B ðk−qÞFR;α

μðqÞ
�
: ð11Þ

By employing the retarded solution of the wave equation
□Aμ

R ¼ eJμP, the field tensor Fμν
R ðqÞ in momentum space is

given by

Fμν
R ðqÞ ¼

Z
d4xeiq·x∂½μAν�

RðxÞ ¼
ie

q2 þ iϵq0
q½μJν�PðqÞ; ð12Þ

and, since ε · ε ¼ 0, we obtain

SgcðkÞ ¼ κ

2

�
iTμν

P ðkÞ

−2e
Z

d4q
ð2πÞ4

Fμα
B ðk − qÞq½αJν�PðqÞ

q2 þ iϵq0

�
ε�με�ν: ð13Þ

The energy-momentum tensor of the electron in Fourier
space is [30]

Tμν
P ðkÞ ¼ ðπμJνPÞðkÞ ¼

Z
d4q
ð2πÞ4 π

μðk − qÞJνPðqÞ; ð14Þ

where πμðϕÞ is the electron four-momentum in the
plane wave Aμ

B ðϕÞ, with the initial condition
limϕ→−∞ πμðϕÞ ¼ pμ. Now we observe that

Fμα
B ðqÞ ¼ ð2πÞ3δðq−Þδð2Þðq⊥ÞFμα

B ðqþÞ; ð15Þ

and that in the chosen gauge it is πμ⊥ðϕÞ ¼ pμ
⊥ − eAμ

B;⊥ðϕÞ,
such that

Fμν
B ðqþÞ ¼

iqþ
e

½2πδðqþÞp½μ
⊥n

ν�
B − π½μ⊥ðqþÞnν�B �: ð16Þ

It is important to notice that one cannot use the identity
qþδðqþÞ ¼ 0 here because of the term q2 þ iϵq0 in the
denominator Eq. (13). In general, the product involving the
delta-function is not associative and, by replacing Eqs. (15)
and (16) in Eq. (13), one finds that

SgcðkÞ ¼ iκ
2k−

ðk · nBp⊥ · ε� − k · p⊥nB · ε�ÞJPðkÞ · ε�

þ κ

2

�
iTμν

P ðkÞ − i
k−

kαðπ½μ⊥nα�B JνPÞðkÞ

þ e
k−

ðFμα
B JP;αÞðkÞnνB

�
ε�με�ν; ð17Þ

where we have used the fact that in Eq. (13) one can
replace qμ − kμ ¼ ðqþ − kþÞnμB.

PROPORTIONALITY OF GRAVITATIONAL AND … PHYS. REV. D 106, 076009 (2022)

076009-3



At this point one can exploit the equation of motions in
Fourier space,

∂νT
μν
P ¼ eFμα

B JP;α ⇒ eðFμα
B JP;αÞðkÞ ¼ −ikνT

μν
P ðkÞ; ð18Þ

and use Eq. (14) to obtain an expression of SgcðkÞ depending
only on the electron four-current and four-momentum,

SgcðkÞ ¼ iκ
2k−

ðk · nBp⊥ · ε� − k · p⊥nB · ε�ÞJPðkÞ · ε�

þ iκ
2k−

½−k−πμ⊥JνP þ k · π⊥nμBJνP

− k · πnμBJ
ν
P þ k−πμJνP�ðkÞε�με�ν: ð19Þ

Finally, by observing that k · π ¼ k−πþ þ kþπ− þ k⊥ · π⊥
and that π− ¼ p−, the following proportionality is found:

SgcðkÞ ¼ −
κ

2e

�
p · ε�k · kB − k · pkB · ε�

k · kB

�
SγcðkÞ: ð20Þ

On the one hand, the proportionality constant in Eq. (20)
coincides with that in Eq. (2), as it can be easily verified by
using the relations pμ

i þ kμi ¼ pμ
f þ kμf and kf · ε�f ¼ 0 and

by identifying pμ
i ¼ pμ, kμi ¼ kμB, k

μ
f ¼ kμ, and εμf ¼ εμ.

Thus, we indicate it also asH, i.e., SgcðkÞ ¼ HSγcðkÞ. On the
other hand, Eq. (20) generalizes the results in Refs. [25,26]
as here the proportionality is shown to exist already at the
level of the amplitudes and for an arbitrary plane wave,
whereas in Refs. [25,26] the proportionality was found
in the energy spectra and for a monochromatic plane
wave. Indeed, finding the gravitational energy spectrum
is straightforward [see Eqs. (9) and (10)],

dEg

dk
¼ −

1

2

�
∂H
∂ε�μ

�
2 dEγ

dk
; ð21Þ

where

−
1

2

�
∂H
∂ε�μ

�
2

¼ −
4πG
e2

�
m2 − 2

p · kp · kB
k · kB

�
ð22Þ

in agreement with Ref. [26], once one takes into account
that there the calculations are carried out for a monochro-
matic plane wave in the average rest frame of the electron
and that the authors of Ref. [26] use the opposite Minkowski
metric tensor as compared to ours. It is instructive to show
the agreement explicitly. Since the proportionality constant
is a Lorentz-invariant quantity, we can assume without loss
of generality that in the laboratory frame the electron is
initially at rest. Below, the subscript L (R) indicates
quantities in the laboratory (average rest) frame.1 The latter
has a relative velocity as compared to the former given by
βd ¼ βdnB, with βd defined via the relation,

hπRðϕÞ ·nBi ¼ γðβdÞ½hπLðϕÞ ·nBi− βdhεLðϕÞi� ¼ 0; ð23Þ

where the averages are taken over a plane wave period. In
the average rest frame the electron energy corresponds to the
so-called effective mass m� ¼ mγ� [26], such that γ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ βdÞ=ð1 − βdÞ
p

describes the relativistic Doppler
effect: ωB;L ¼ γ�ωB;R (recall that βd is along the propaga-
tion direction of the laser). In the laboratory frame it is
pL;− ¼ m, such that

m� ¼
pL;−ωB;L

ωB;R
¼ kB;L · pL

ωB;R
: ð24Þ

Thus, since the quantity kB · p is Lorentz invariant, one
findsm� ¼ pR;−. The proportionality constant introduced in
Ref. [26] [see Eqs. (1.5), (1.6), and (2.23) there] can then be
written as

C ¼ 4πG
e2

p2
R;−k

2
R;⊥

k2R;−
: ð25Þ

Finally, the equivalence of the two expressions of the
proportionality constant is obtained by observing that in
the average rest frame the electron is initially counter-
propagating with respect to the plane wave so that pR;⊥ ¼ 0
and therefore [see Eq. (22)],

−
4πG
e2

�
m2 − 2

pR · kRpR · kB;R
kR · kB;R

�
¼ 4πG

e2
p2
R;−k

2
R;⊥

k2R;−
: ð26Þ

III. GRAVITON PHOTOPRODUCTION AT TREE
LEVEL IN STRONG-FIELD QED

Now, we pass to the quantum case. By linearizing the
Einstein-Hilbert action [30,39] one obtains a field theory
for the graviton hμν describing a spin-2 massless particle
[30,31]. Working in the de Donder (or harmonic) gauge, the
Lagrangian density of the field hμν coupled to a generic,
conserved energy-momentum tensor Tμν is given by [31]

Lg ¼ −
1

2
∂αhμν∂αhμν þ

1

4
∂
μh∂μhþ κ

2
hμνTμν; ð27Þ

where h ¼ hμμ. The electromagnetic sector is described by
the strong-field QED Lagrangian density,

Lγ ¼ −
1

4
Fμν
Q FQ;μν þ ψ̄ði=∂ − e=AB −mÞψ − eAμ

QJD;μ; ð28Þ

where JμD ¼ ψ̄γμψ is the Dirac four-current and Aμ
Q is the

photon field (Fμν
Q ¼ ∂

μAν
Q − ∂

νAμ
Q). We assume to work

within the Furry picture [42], where the Dirac field is
quantized in the presence of the plane wave field Aμ

B. Thus,

1Note that the index R has this meaning only until the end of
the section and it should not be confused with the index R in rest
of the paper.
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for instance, the positive-energy state for an electron with
four-momentum pμ outside the plane wave is given by the
Volkov spinor [28,43],

ψpðxÞ ¼ eiSpðxÞ
�
1þ e=nB=ABðϕÞ

2nB · p

�
up; ð29Þ

where Sp is the classical action of an electron in a plane
wave [32,39]: −∂μSpðxÞ ¼ πμpðϕÞ þ eAμ

BðϕÞ and up is the
free positive-energy spinor (for notational simplicity, the
spin quantum number is not indicated). The energy
momentum tensor coupled to the field hμν in Eq. (27) is
Tμν ¼ Tμν

D þ Tμν
Q þ Tμν

QB þ Tμν
B , where

Tμν
D ¼ ψ̄

�
i
4
γfμ ∂

↔
νg −

e
2
γfμAνg

B −ημν
�
i
2
∂

↔
− e=AB −m

��
ψ ;

Tμν
Q ¼ Fμα

Q F ν
Q;α þ

1

4
ημνFαβ

Q FQ;αβ;

Tμν
QB ¼ Fμα

Q F ν
B;α þFμα

B F ν
Q;α þ

1

2
ημνFαβ

Q FB;αβ; ð30Þ

with afμbνg¼aμbνþaνbμ and ψ̄ ∂

↔
νψ ¼ ψ̄ ∂⃗

νψ − ψ̄ ∂⃖
νψ .

The S-matrix transition amplitude of the graviton photo-
production by an electron driven by an intense plane wave
(ξ≳ 1) is given by Sgfi ¼ hp0; k; εμνjSjpi, where the initial
and the final electron states are Volkov states. The process
e → eþ g here is allowed because the background plane
wave supplies the otherwise missing energy-momentum.
The S-matrix is defined as S ¼ T exp ½i R d4xLiðxÞ�, where
T is the time-ordering operator and

Li ¼
κ

2
hμνTμν − eAμ

QJD;μ: ð31Þ

At the first order in κ the process is described by the
Feynman diagrams in Fig. 1 and the corresponding
amplitude is given by

Sgfi ¼ i
κ

2
T hp0j

�Z
d4xeik·xε�με�ν

�
Tμν
D ðxÞ

− ieTμν
QBðxÞ

Z
d4yJD;αðyÞAα

QðyÞ
��

jpi: ð32Þ

As in the classical case Tμν
B does not contribute because of

gauge invariance. Also, it is easily seen that this matrix

element has exactly the same form of the classical ampli-
tude Eq. (13), the only differences being the photon
propagator which now has to follow the Feynman pre-
scription and the spinorial nature of the particle,

Sgfi ¼
κ

2

�
iTμν

V ðkÞ

−2e
Z

d4q
ð2πÞ4

Fμα
B ðk − qÞq½αJν�V ðqÞ

q2 þ iϵ

�
ε�με�ν; ð33Þ

where

JμV ¼ hp0jJμDjpi ¼ ψ̄p0γμψp; ð34Þ

Tμν
V ¼ hp0jTμν

D jpi ¼ ψ̄p0

�
i
4
γfμ ∂

↔
νg −

e
2
γfμAνg

B

�
ψp ð35Þ

are the matrix elements of the corresponding operators
between Volkov states. Although the structure of the
amplitude is similar to the classical one in Eq. (13), we
stress the fact that quantum effects like spin effects and the
recoil on the electron are taken into account in Eq. (33).
Now, the considerations about the background field cor-
responding to Eqs. (15)–(16) clearly remain valid here.
Thus, it is easily seen that the retarded and the Feynman
prescriptions lead to the same result because the minus
and the perpendicular components of qμ are fixed by the
conservation laws and the remaining term kþ − qþ in the
denominator is compensated as in the classical case.
Consequently, one can derive the analogous of Eq. (17),
which now reads

Sgfi ¼ i
κ

2k−
ðk · nBp⊥ · ε� − k · p⊥nB · ε�ÞJVðkÞ · ε�

þ κ

2

�
iTμν

V ðkÞ − i
k−

kαðπ½μ⊥nα�B JνVÞðkÞ

þ e
k−

ðFμα
B JV;αÞðkÞnνB

�
ε�με�ν: ð36Þ

Moreover, the equations of motion for the matrix elements
Tμν
V and JμV are the same as for the classical quantities [see

Eq. (18)],

eðFμα
B JV;αÞðkÞ ¼ −ikνT

μν
V ðkÞ: ð37Þ

(a) (b) (c)

FIG. 1. Feynman diagrams contributing to the graviton photoproduction at the order OðκÞ in the presence of a strong electromagnetic
plane wave background field. The double oscillating lines represent the graviton, while the double fermion lines correspond to Volkov
states, and the oscillating lines with the cross represent the background field source.
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However, due to the spinorial structure of Volkov states, the
quantity Tμν

V cannot be put in the classical form as in
Eq. (14), but it can rather be written as

Tμν
V ðkÞε�με�ν ¼

�
JμVπ

ν
p þ i

e
4p−

ψ̄p0γμ=FBψpnνB

�
ε�με�ν; ð38Þ

where =FB ¼ Fαβ
B γαγβ. Interestingly, the spin terms do

cancel in the combination iTμν
V − ði=k−ÞkαTμα

V nνB in
Eq. (36). Thus, in conclusion, the same result as in the
classical treatment is found

Sgfi ¼ −
κ

2e

�
p · ε�n · nB − n · pnB · ε�

n · nB

�
Sγfi; ð39Þ

where Sγfi ¼ −ieJVðkÞ · ε� is the matrix element of non-
linear Compton scattering (see, e.g., Ref. [28]).
A comment is in order, which pertains to both the

classical and the quantum regime. The proportionality
constant H diverges as 1=θ in the limit where the angle
θ between the graviton and the plane wave photons tends to
zero (collinear emission). Since in the same limit, the
Compton-scattering probability tends to zero linearly [28],
one concludes that the graviton-emission probability
diverges logarithmically [19,26]. The same is true for
the classical gravitational energy spectrum [26]. For small
scattering angles the dominant contribution comes from the
interaction between the particle field and the background.

Classically this can be seen from the trend of the formation
length which grows with the collinearity because the
radiated electromagnetic field and the background interact
for a longer and longer time before the gravitational
conversion takes place [26]. Since the mixed electromag-
netic energy-momentum tensor grows with the formation
length, the emission probability increases. Quantum
mechanically this corresponds to the dominance of the
t-channel diagram in Fig. 1(c) in this limit. Indeed, it is
t ¼ ðp − p0Þ2 ∝ k · kB and when this goes to zero an
infinite contribution arises from the photon propagator.
It is worth noting that this diagram is dominant also in the
nonrelativistic range where the photon recoil is negligible
and p → p0 [44].

IV. CONCLUSIONS

To summarize, we have shown both classically and
quantum mechanically that the amplitudes of graviton
and photon emission by an electron in an arbitrary plane
wave are proportional to each other. Although the electron
dynamics is highly nonlinear in the plane wave and
quantum effects are large, the proportionality constant is
classical, and it does not depend on the plane wave
intensity. At the fundamental quantum level, by combining
strong-field QED and quantum gravity, our proof shows
that the proportionality relies only on the symmetries of the
plane wave and the semiclassical nature of the motion of a
quantum particle in a plane wave background.
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