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Proportionality of gravitational and electromagnetic radiation
by an electron in an intense plane wave
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Accelerated charges emit both electromagnetic and gravitational radiation. Classically, it was found that
the electromagnetic energy spectrum radiated by an electron in a monochromatic plane wave is proportional
to the corresponding gravitational one. Quantum mechanically, it was shown that the amplitudes of graviton
photoproduction and Compton scattering are proportional to each other at tree level. Here, by combining
strong-field QED and quantum gravity, we demonstrate that the amplitude of nonlinear graviton photo-
production in an arbitrary plane wave is proportional to the corresponding amplitude of nonlinear Compton
scattering. Also, introducing classical amplitudes we prove that the proportionality relies on the semiclassical
nature of the electron’s motion in a plane wave and on energy-momentum conservation laws, leading to the
same proportionality constant in the classical and quantum case. These results deepen the intertwine between
gravity and electromagnetism into both a nonlinear and a quantum level.
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I. INTRODUCTION

Recently large interest has awakened in the connection
between gravity and Standard Model gauge theories. There
are multiple motivations driving this research area, con-
cerning both fundamental and technical aspects [1-4]. It is
known that a satisfactory description of quantum gravity
is not available today; nevertheless the low-energy limit of
any possible model should be properly connected to the
Standard Model and the classical theory of gravity, which
are both experimentally well verified [5,6]. The fact that
canonical quantum gravity is not strictly renormalizable
does not affect these considerations and leading-order
calculations are of notable interest. Indeed, it is possible
to describe the dynamics of massive objects through the
classical limit of scattering amplitudes [7]. By taking into
account the proper Feynman diagrams, one can find
corrections to the Coulomb or Newton potential [8,9].

The relation between gravity and gauge theories man-
ifests itself, for instance, through the Kawai-Lewellen-Tye
relations [4,10] derived in the context of string theory,
which relate graviton and gauge-bosons tree-level ampli-
tudes. These relations suggest a more fundamental con-
nection between general relativity and gauge theories: at
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the semiclassical level gravity actually behaves as a double
copy of a gauge theory [1,4,11] (see Refs. [12,13] for
studies about double copy in a background plane wave
electromagnetic field). Moreover, general considerations
about conservation laws [14-16] in tree-level diagrams
have been exploited to relate, for example, graviton photo-
production and QED Compton scattering. These factori-
zation properties and various other techniques [17] played a
central role in calculating on-shell amplitudes involving
gravitons as Compton-like scattering and photoproduction
[3,18-23].

On a different side, the recent detection of gravitational
waves has attracted a lot of attention [24]. Despite the
outstanding experimental result, the lack of measurable
events makes it necessary to search for different sources of
these perturbations. The classical interplay between gravity
and electromagnetism has a long history and in this context
Refs. [25,26] are of particular interest. In these works it is
proved that a proportionality exists between the electro-
magnetic and gravitational energy spectra of a charge
driven by a monochromatic plane wave.

The relations studied in Refs. [14-16] lead to the
following result for the linear graviton photoproduction
by an electron of charge e < 0 and mass m:
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with x=+/322G in wunits where A=c=1 and
a = e*/4x ~ 1/137, which are used throughout. Here, the
left-hand side is the amplitude associated to the graviton
photoproduction e(p;) + y(k;, &;) = e(ps) + g(ks, eref)
and the right-hand side the linear Compton scattering
e(p;) +r(ki.g) = e(ps) +v(ks.er). Note that the polari-
zation tensor 8? of the graviton is assumed to be written as
ezf-” = eye, where € is the helicity polarization four-
vector of a photon with the same four-momentum [27].
Equations (1) and (2) lead to the same proportionality
between spectra found in Refs. [25,26], but a relation like
Eq. (1) is not expected to hold for a higher number of
incoming photons [22] because the arguments based on
conservation laws [14] cease to apply. Thus, an inves-
tigation of this property in the context of strong-field QED,
where the effects of an electromagnetic background
are taken into account exactly, is certainly relevant and
timely.

In the present paper we show both classically and
quantum mechanically that the electromagnetic and the
gravitational radiation amplitudes in an arbitrary plane
wave background field are proportional to each other
and that the proportionality constant is the same in both
cases and equal to H. Classically, this is achieved by
introducing a concept of radiation amplitude in analogy
with the quantum one. Quantum mechanically we work
within strong-field QED in the Furry picture, which allows
us to take into account exactly the effects of the plane wave
into the electron dynamics [28] (see also Ref. [29] for a
similar computation in a circularly polarized monochro-
matic plane wave). It is remarkable that the proportionality
relies only on the symmetries of the background plane
wave and on the semiclassical nature of the quantum
dynamics of electrons in a plane wave.

II. PROPORTIONALITY BETWEEN CLASSICAL
GRAVITATIONAL AND ELECTROMAGNETIC
RADIATION AMPLITUDES

An electron in the presence of an intense electromagnetic
plane wave radiates both light and gravitational waves.
The electron is characterized by an initial four-momentum
p, whereas the plane wave is described by the four-vector
potential A%(¢), where ¢ = ng - x, with nly = (1,np), ng
being the unit vector along the propagation direction
of the plane wave. We assume that A%(¢) satisfies
the Lorenz-gauge condition and A%(¢$)=0, and that
limy_ .o, A (¢) = 0. Below, we will use the light cone
notation by setting i, = 3 (1, —ng) and af, = (0.a,,),
such that @;-ng =0 and a;-a; =;;. The quantities
{n. 7. ,} form a basis of the four-vector space
such that an arbitrary four-vector v# can be written as
VM = wv_ity + v nly + V|, where v_ = v - ng, v, = v-iig,
and | = =22 (v-a;)d.

Due to their remarkably small amplitudes in most
situations, we will consider here linear gravitational waves
in the first-order weak-field approximation O(k), where
the metric is expanded as g, =#,, +«h,, [30,31],
with 7, = diag(+1,—1,—=1,—1). This implies that the
energy-momentum brought by the gravitational wave
itself is not included in the total energy-momentum tensor
T#, which is taken as the source of the gravitational
field. Every form of matter or energy couples to the
gravitational field, thus the sources of gravitational waves
in the system under consideration are the particle P, the
background field A, and the field radiated by the charge
Ak. Moreover, the electromagnetic stress tensor Ty =
FrOFY + i F¥F,, is quadratic in the field F*=
Fi +F%, where F’,;”.B:aWAﬁqu, with alb!=a#b* —a b*,
and therefore a mixed term arises involving background
and radiation field. Consequently, on the whole we have
TW = TW £ T + T 4 T, where

T =m / drut (t)u* (7)6™ (x — x(7)), (3)
v a v 1 v 0
Tyr = FgrFerd + 177” FB/,}RFB.R,aﬂ, (4)

1
Tity = FiFpat + FiFrg + 30 Fi Fop. (5)

with x#(7) being the electron trajectory parametrized via
the proper time 7z and uw#(7) = dx*/dx.

Now, we are interested in a regime where the background
plane wave can be intense, in the sense that the classical
nonlinearity parameter £ = |e|Ez/mwy can be larger than
unity [32-34]. Here, Ep and wp are the peak value of the
electric field of the wave and its typical angular frequency,
respectively. We work in a parameter range, where radi-
ation-reaction effects can be neglected. Classically, this
implies that the parameter ay£® is much smaller than unity
[35], where y = (p_/m)(Eg/E,,), with p* being the initial
four-momentum of the electron and E.. = m?/|e| the
critical field of QED [32-34,36], and where ® is the total
phase duration of the plane wave field. Quantum mechan-
ically, this implies that multiple photon emissions and
radiative corrections are negligible, which is the case if
af® <« 1 at y < 1[37,38]. Moreover, neglecting radiation-
reaction effects means classically that the conservation of
the total energy-momentum tensor has to be equivalent to
the electron dynamics being described by the Lorentz
equation, and this implies that the energy-momentum
tensor 7% of the electromagnetic field produced by the
electron can be ignored in 7**. It should be stressed that if
T% is taken into account, analytical problems arise because
of its divergence on the electron trajectory. This divergence
is not avoidable unless one introduces a finite size
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model for the electron. In this way, we have that T =
Ty + T + Thy (see also Refs. [25,26]).

At this point, one would expect the largest electromag-
netic contribution to the gravitational field to come from the
background term T% = —AZnnk, where A% = dA%/d¢.
However, since T% depends only on ¢, its Fourier
transform 7% (k) = (27)38(k_)6? (k| )p(k, )nlyny, with
plky) == [dpexp(ik, §)AZ(¢) does not vanish only
for k* o kg, with Ky = wpn’y, such that, due to gauge
invariance, T’ (k)e,e; = 0. Therefore T does not con-
tribute to the gravitational radiation (see also below) [39].
We then conclude that [25,26]

™ = TV 4 T4 (6)

Classically, we can introduce the amplitudes S%(k) and
S?(k) of the emission of electromagnetic and gravitational
radiation, respectively, in such a way that they coincide
with the first-order quantum counterparts,

SL(k) = —ieJy(k)e). (7)

SY(k) = igT””(k)ef,e’,j, (8)

where J%(k) is the Fourier transform of the four-current
Jh(x) = 6@ (x —x(t))dx"(t)/dt of the electron moving
along the trajectory x#(¢). As we have mentioned in the
Introduction, & (¢*€") is the helicity polarization four-vector
(tensor) of the electromagnetic (gravitational) wave such
thate - € = k- € = 0[27]. By squaring the above amplitudes
and summing over the polarizations, one finds the corre-
sponding energy emission spectra (see Refs. [26,30,40]),

d€

| . e?
& =165 ZSZ (k)Se(k) = = {g3 TpuR)Ip(K). ()
pol.

g, 1
— S (k) SY(k)
k 167 pz;

K2

= 64r°

Sloywrew]. o)

T

where the completeness relations Zpol_ €,6, = —1,, [28]
and Zpol H aﬁ = (nuanvﬂ + Mupva — rl;u/rlaﬂ)/z were
used [41].

In order to show the proportionality between S?(k) and
S%(k), we first consider the mixed energy-momentum
tensor T%5(k) in Fourier space, which can be written as

d4

T = [ G

=)l
+F’é{l(k_Q)FR,(zy(q)+F’}_{§a<k_q)FR,aﬂ(Q) . (11)

By employing the retarded solution of the wave equation
A% = eJ’, the field tensor F’% (¢) in momentum space is
given by

O R
and, since € - & = 0, we obtain

st =5 i

Y / d'q Fy (k= 9)qJ7(q)
(2r)* q*> + ieq’

ee;.  (13)
The energy-momentum tensor of the electron in Fourier
space is [30]

4

T = a0 = [ S5

(k= q)Jp(q), (14)

where 7#(¢) is the electron four-momentum in the

plane wave A% (¢), with the initial condition
lim,_,_, 7#(¢) = p*. Now we observe that
Fi'(q) = (22)°8(q-)8% (g )F'(q1).  (15)

and that in the chosen gauge it is 7 (¢) = p| — eAl | (@),
such that
v iq
Fif(q.) == " [25(q.)pliny — al (g )] (16)
It is important to notice that one cannot use the identity
q.6(q.) = 0 here because of the term g + ieq® in the
denominator Eq. (13). In general, the product involving the

delta-function is not associative and, by replacing Eqgs. (15)
and (16) in Eq. (13), one finds that

iK
2k_

Se(k) = (k-ngp, e —k-ping-e)Jp(k)- &

;\N

v l al yy
5 [T (k) = = ko (75 (&)

+

??‘|Q N X

<F”“J,Ja><k>n;] el (a7

where we have used the fact that in Eq. (13) one can
replace ¢ — k* = (q, — k. )n's.
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At this point one can exploit the equation of motions in
Fourier space,

0T = eFip, = e(FiTp ) (K) = =ik, T (K),  (18)

and use Eq. (14) to obtain an expression of S¢(k) depending
only on the electron four-current and four-momentum,
K

2k

Se(k) = (k-ngp, - —k-pyng-€)Jp(k)- e

+ % [~k " J% + k- 7 T

— k- znlgJly + k_mt I (k)ener . (19)
Finally, by observing that k-7 = k_n, + k. n_+k, -7,
and that z_ = p_, the following proportionality is found:

K <p-£*k-k3—k-pk3-8*

SU(k) = —
k) =-3, k- kg

>SZ(k). (20)

On the one hand, the proportionality constant in Eq. (20)
coincides with that in Eq. (2), as it can be easily verified by
using the relations p% + ki’ = p; + kK and k; - €} = 0 and
by identifying p/' = p#, k¥ = kf, k? = k*, and 8? =&+,
Thus, we indicate it also as H, i.e., S2(k) = HS%(k). On the
other hand, Eq. (20) generalizes the results in Refs. [25,26]
as here the proportionality is shown to exist already at the
level of the amplitudes and for an arbitrary plane wave,
whereas in Refs. [25,26] the proportionality was found
in the energy spectra and for a monochromatic plane
wave. Indeed, finding the gravitational energy spectrum
is straightforward [see Eqgs. (9) and (10)],

d€ 1 [oH\2dE
9 __ 9 . (21)
dk — 2\oe;) dk

! <0H>2 _ 4G (mz _oPkpoky kB) (22)
2 \ 0, e’ k- kg

in agreement with Ref. [26], once one takes into account
that there the calculations are carried out for a monochro-
matic plane wave in the average rest frame of the electron
and that the authors of Ref. [26] use the opposite Minkowski
metric tensor as compared to ours. It is instructive to show
the agreement explicitly. Since the proportionality constant
is a Lorentz-invariant quantity, we can assume without loss
of generality that in the laboratory frame the electron is
initially at rest. Below, the subscript L (R) indicates
quantities in the laboratory (average rest) frame.' The latter
has a relative velocity as compared to the former given by
B, = Pung, with p,; defined via the relation,

where

'Note that the index R has this meaning only until the end of
the section and it should not be confused with the index R in rest
of the paper.

(R (p) -mp) =y(Ba)[(m (@) np) —Palec(@))] =0, (23)

where the averages are taken over a plane wave period. In
the average rest frame the electron energy corresponds to the

so-called effective mass m, = my, [26], such that y, =
V(1 +B4)/(1 = B,) describes the relativistic Doppler
effect: wp; = y,wp g (recall that g, is along the propaga-
tion direction of the laser). In the laboratory frame it is
pr.— = m, such that

_ PL-WpL _ kB,L “PL (24)

m,

WB R @WB R

Thus, since the quantity kg - p is Lorentz invariant, one
finds m, = pp_. The proportionality constant introduced in
Ref. [26] [see Eqgs. (1.5), (1.6), and (2.23) there] can then be
written as

4rG pr kg |

= . (25)
e kg —

Finally, the equivalence of the two expressions of the
proportionality constant is obtained by observing that in
the average rest frame the electron is initially counter-
propagating with respect to the plane wave so thatpg | = 0
and therefore [see Eq. (22)],

_42G <m2 _oPr- krpg - kB.R) _ 4G P ki . (26)

62 kR . kB,R 62 k%{—

ITII. GRAVITON PHOTOPRODUCTION AT TREE
LEVEL IN STRONG-FIELD QED

Now, we pass to the quantum case. By linearizing the
Einstein-Hilbert action [30,39] one obtains a field theory
for the graviton &, describing a spin-2 massless particle
[30,31]. Working in the de Donder (or harmonic) gauge, the
Lagrangian density of the field &, coupled to a generic,
conserved energy-momentum tensor 7+ is given by [31]

1 1 K
L,= —Eaahwd"‘h" + Zaf‘hdﬂh +§hﬂ,,T” . (27)

where h = I*,. The electromagnetic sector is described by
the strong-field QED Lagrangian density,

| _ .
L, = _ZF”Q Fou+w(ig—efp —m)y — EA”QJDJ" (28)

where J}, = yy*y is the Dirac four-current and AY, is the
photon field (F|; = d"A} — 0"A};). We assume to work
within the Furry picture [42], where the Dirac field is
quantized in the presence of the plane wave field A%. Thus,
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for instance, the positive-energy state for an electron with

four-momentum p* outside the plane wave is given by the
Volkov spinor [28,43],

€ ?iBAB( )

= , 29

pla) = 0 |1+ BB, o

where S, is the classical action of an electron in a plane
wave [32,39]: —0"S,(x) = 4 (¢) + eAl(¢) and u,, is the
free positive-energy spinor (for notational simplicity, the
spin quantum number is not indicated). The energy
momentum tensor coupled to the field &, in Eq. (27) is
T =Ty + Ty + Tpg + Tl , where

v _ v v v l<_)
T = 4},{/4@ }_E}/{ﬂA L— < J—efy— )}

1
Tl = Fiy'F
0 0aty

1
Ty = P Fui P Foit g PP (0

WFY F o ap,

with al#b*} = a#b* + a*b* and 3 Yy = 1/75 Y — 1[/5 Y.
The S-matrix transition amplitude of the graviton photo-
production by an electron driven by an intense plane wave
(£ 2 1) is given by S9, = (p's k. €,,|S|p), where the initial
and the final electron states are Volkov states. The process
e — e + g here is allowed because the background plane
wave supplies the otherwise missing energy-momentum.
The S-matrix is defined as S = 7 exp [i [ d*xL;(x)], where
7T is the time-ordering operator and

Ly =S = eAydp,. (31)

At the first order in x the process is described by the
Feynman diagrams in Fig. 1 and the corresponding
amplitude is given by

§9, = i§T<p’|{/d4xe’k" : *[T"”( )
~iety) [ E30na)a50)] o). 32)

As in the classical case T% does not contribute because of
gauge invariance. Also, it is easily seen that this matrix

element has exactly the same form of the classical ampli-
tude Eq. (13), the only differences being the photon
propagator which now has to follow the Feynman pre-
scription and the spinorial nature of the particle,

K[
Sf‘i ) {lTl\l/ (k)

=y d'q FYk=0aV@)] ... )
(27[)4 q2 +i€ H=U

where

Ty = (p'IBIp) = wpr'y,. (34)

v v _ i <, e v
= 1) = vy (57430 - 570 Yy 9

are the matrix elements of the corresponding operators
between Volkov states. Although the structure of the
amplitude is similar to the classical one in Eq. (13), we
stress the fact that quantum effects like spin effects and the
recoil on the electron are taken into account in Eq. (33).
Now, the considerations about the background field cor-
responding to Eqgs. (15)—(16) clearly remain valid here.
Thus, it is easily seen that the retarded and the Feynman
prescriptions lead to the same result because the minus
and the perpendicular components of g* are fixed by the
conservation laws and the remaining term k, — ¢, in the
denominator is compensated as in the classical case.
Consequently, one can derive the analogous of Eq. (17),
which now reads

Sg _i2k (k-ngpy-€ —k-ping-e)Jy(k)- &
ST (k) = = k(0% ) (k
5 _k_ o(mingJy) (k)
€ a v * Lk
) 0 e (36)

Moreover, the equations of motion for the matrix elements
T'/ and J), are the same as for the classical quantities [see
Eq. (18)],

e(Fig'Jy.q) (k) = =ik, Ty (k). (37)

(a) [= ==

p S

FIG. 1.

Feynman diagrams contributing to the graviton photoproduction at the order O(x

) in the presence of a strong electromagnetic

plane wave background field. The double oscillating lines represent the graviton, while the double fermion lines correspond to Volkov
states, and the oscillating lines with the cross represent the background field source.
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However, due to the spinorial structure of Volkov states, the
quantity 7% cannot be put in the classical form as in
Eq. (14), but it can rather be written as

. e _ * %
(R = (S + i P )il 9

where Fp = F%ﬂ YaYp- Interestingly, the spin terms do
cancel in the combination 7% — (i/k_)k, T} n% in
Eq. (36). Thus, in conclusion, the same result as in the
classical treatment is found

K (p-&€n-ng—n-png-e
8% === S (39
fi e ( n-ng ) fi ( )
where %, = —ieJy(k)-€* is the matrix element of non-

linear Compton scattering (see, e.g., Ref. [28]).

A comment is in order, which pertains to both the
classical and the quantum regime. The proportionality
constant H diverges as 1/6 in the limit where the angle
6 between the graviton and the plane wave photons tends to
zero (collinear emission). Since in the same limit, the
Compton-scattering probability tends to zero linearly [28],
one concludes that the graviton-emission probability
diverges logarithmically [19,26]. The same is true for
the classical gravitational energy spectrum [26]. For small
scattering angles the dominant contribution comes from the
interaction between the particle field and the background.

Classically this can be seen from the trend of the formation
length which grows with the collinearity because the
radiated electromagnetic field and the background interact
for a longer and longer time before the gravitational
conversion takes place [26]. Since the mixed electromag-
netic energy-momentum tensor grows with the formation
length, the emission probability increases. Quantum
mechanically this corresponds to the dominance of the
t-channel diagram in Fig. 1(c) in this limit. Indeed, it is
t=(p—-p')? «xk-kz and when this goes to zero an
infinite contribution arises from the photon propagator.
It is worth noting that this diagram is dominant also in the
nonrelativistic range where the photon recoil is negligible
and p — p' [44].

IV. CONCLUSIONS

To summarize, we have shown both classically and
quantum mechanically that the amplitudes of graviton
and photon emission by an electron in an arbitrary plane
wave are proportional to each other. Although the electron
dynamics is highly nonlinear in the plane wave and
quantum effects are large, the proportionality constant is
classical, and it does not depend on the plane wave
intensity. At the fundamental quantum level, by combining
strong-field QED and quantum gravity, our proof shows
that the proportionality relies only on the symmetries of the
plane wave and the semiclassical nature of the motion of a
quantum particle in a plane wave background.
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