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In this paper, we construct the recursion relations for one-loop planar integrands in the SUðNÞ nonlinear
sigma model. This generalizes the soft recursions for tree-level amplitudes in a variety of quantum field
theories with special soft limits. The main ingredient is the definition of the one-loop planar integrand,
which is fixed by cuts in the sense of generalized unitarity and by requiring the Adler zero on all external
legs. We show that this does not uniquely fix the integrand, so additional constraints on the soft behavior of
the loop momentum have to be imposed. Our work is the first step in extending modern amplitudes
methods for loop amplitudes to effective field theories with special soft limits.
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I. INTRODUCTION

One of the major advances of the modern S-matrix
program is the construction of scattering amplitudes from
their physical properties without the use of the standard
Feynman diagram prescription. At tree level, scattering
amplitudes in a large class of quantum field theories are
constructible from factorizations via on-shell recursion
relations [1,2]. Discovered in the context of gauge theory,
on-shell recursion relations have been extended to a large
class of theories [3]. In all cases, the tree-level S-matrix was
completely fixed by factorizations.
In [4,5], two of the authors formulated the soft recursion

relations which use a special soft limit behavior of the
amplitude as an additional input to completely fix the tree-
level amplitude. These special soft theories include the
SUðNÞ nonlinear sigma model (NLSM), Dirac-Born-Infeld
theory, or Galileons. In all cases, the scattering amplitudes
vanish as An ¼ OðpσÞ for p → 0, where the integer σ
denotes the degree of the soft limit. In [6,7], these methods
were further generalized to vector field theories and super-
symmetric theories, and in [8–10] to theories with non-
vanishing (but known) soft limits. In all cases, the tree-level
amplitudes were completely fixed by factorizations and the
behavior in the soft limit.
In a parallel line of research, the loop recursion relations

were constructed for amplitudes in the planar maximally
supersymmetric Yang-Mills (N ¼ 4 SYM) theory [11].

The crucial ingredient is a unique definition of the planar
loop integrand, which is a rational function of external and
loop momenta completely fixed by its singularities. These
singularities correspond either to tree-level factorizations
or loop cuts. It was shown in [12] that the single cut of the
n-point N ¼ 4 SYM l-loop integrand is equal to the
forward limit of the nþ 2-point l − 1-loop integrand. This
information is a sufficient input into the recursion relations
which can be used to construct the planar N ¼ 4 SYM
integrand at arbitrary multiplicity and loop order from
elementary tree-level amplitudes.
While the tree-level recursion relations work for a large

class of theories, the loop recursion is so far specific to this
one particular theory. The reason is twofold: only in planar
(large N) theories we can define global loop variables and
talk about the loop integrand as a single object (rather than a
sum of diagrams); and in most theories the single cut of the
loop integrand is divergent and needs to be regulated [13].
In this paper, we study the one-loop amplitudes of

Goldstone boson scattering processes in the NLSM.
Based on conventional methods, only the four-point
amplitude is known beyond the tree level in the SUðNÞ
model, and the six-point one-loop result was calculated
only recently [14] for the OðNÞ nonlinear sigma model.
We focus on the planar integrand in the large N limit of

SUðNÞ and construct it using unitarity methods. While most
terms are fixed by standard cuts, we show that there is an
ambiguity in tadpole terms. These terms integrate to zero in
the dimensional regularization but are nevertheless important
for the unique definition of the integrand. We fix this
ambiguity using special soft limit constraints. Having
defined the unique one-loop integrand, we construct the
loop generalization of the soft recursion relations, which can
be used to calculate the integrand to any number of points.
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II. TREE-LEVEL SOFT RECURSION RELATIONS

We consider scattering amplitudes of Goldstone bosons
in the SUðNÞ nonlinear sigma model. The theory can be
parametrized by a Lagrangian

L2 ¼
F2

4
h∂μU∂

μU−1i; UðxÞ ¼
X∞

k¼0

uk

�
i

ffiffiffi
2

p

F
ϕðxÞ

�
k
;

ð1Þ

where ϕðxÞ ¼ ϕaðxÞta, with ta the generators of SUðNÞ
and h…i≡ Trð…Þ. We will use a general parametrization
for UðxÞ, but one can always pick a familiar exponential
form uk ¼ 1=k!. At tree-level, we can write the n-point
amplitude An as a sum over flavor-ordered amplitudes,

An ¼
X

σ∈Sn=Zn

htaσð1Þ…taσðnÞ i
ð2F2Þn=2−1 Anðpσð1Þ;…; pσðnÞÞ; ð2Þ

analogous to color ordering in the Yang-Mills amplitudes.
The ordered amplitude An vanishes in the soft limit [15],

lim
pk→0

Anðp1;…; pnÞ ¼ 0; ð3Þ

and makes manifest the Adler zero of the complete tree-
level amplitude An. Furthermore, the amplitude An is
completely fixed by factorization condition on all poles,

An⟶
P2¼0

− AL
1

P2
AR; ð4Þ

for all P ¼ pi þ � � � þ pj and the soft limit condition (3).
This allows us to write the soft recursion relations. We first
shift all momenta,

p̂n ¼ pn þ zqn; p̂1 ¼ p1 þ zq1; p̂k ¼ pkð1− akzÞ;
ð5Þ

where k ¼ 2;…; n − 1 and two momenta qn; q1 are fixed
by on-shell conditions on shifted p̂2

n ¼ p̂2
1 ¼ 0 and momen-

tum conservation. The shifted amplitude AnðzÞ factorizes
on poles P2

I ðz�I Þ ¼ 0 into a product of subamplitudes (4),
and vanishes in the soft limit z ¼ 1=ak. We can use the
residue theorem,

I
dz
z
AnðzÞ
FðzÞ ¼ 0; ð6Þ

where FðzÞ ¼ Q
kð1 − zakÞ, to reconstruct the original

amplitude (residue on z ¼ 0) from the factorization poles
of AnðzÞ. Note that there are no poles at 1 − zak ¼ 0 due to
the zeroes of (3) and the pole at z → ∞ in AnðzÞ is canceled
by the insertion of the denominator factor of (6). The tree-
level amplitude An can then be written as

An ¼
X

I;�
Resz¼z�I

ALðzÞARðzÞ
zP2

I ðzÞFðzÞ
; ð7Þ

where we sum over all factorization channels P2
I ðz�I Þ ¼ 0.

III. ONE-LOOP FEYNMAN INTEGRAND

Our goal is to define a unique NLSM loop integrand and
reconstruct it using the recursion relations. First, we realize
that beyond tree level the simple flavor ordered formula (2)
does not work because of the presence of multiple trace
terms. However, in the large N (planar) limit, the single
trace dominates and we can write

A1−loop
n ¼

X

σ∈Sn=Zn

htaσð1Þ…taσðnÞ i
ð2F2Þn=2 A1−loop

n ðpσð1Þ;…; pσðnÞÞ:

ð8Þ

The ordered amplitude A1−loop
n ðp1;…; pnÞ is UV divergent

and needs to be regulated. The loop integrand I1−loop
n is a

rational function of the planar loop momentum l and
external momenta,

A1−loop
n ¼

Z
d4lI1−loop

n ðl; pkÞ: ð9Þ

The loop momentum l is uniquely defined (see [16] for the
discussion of dual variables) as the loop momentum flow
between external legs n and 1. This gives a unique way of
labeling all contributing Feynman diagrams. The loop
integrand In is then given as a sum of appropriately
labeled Feynman diagrams prior to the loop integration.
At four points, the contributing Feynman diagrams are

where we defined l1 ¼ lþ p1, l12 ¼ lþ p1 þ p2,
l123 ¼ lþ p1 þ p2 þ p3, and identify l1234 ≡ l due to
momentum conservation. Using the stripped Feynman
rules for ordered vertices Vnðp1;…; pnÞ [15],

V4 ¼
1

2
s12 − 4u3p2

1 þ cyc;

V6 ¼ ð1 − 8u3Þs12 þ 8u23s123 þ 16u5p2
1 þ cyc; ð10Þ

we evaluate the diagrams and get the Feynman integrand,
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IFD
4 ðl; pjÞ ¼ 16u23 − 32u5 þ

nFD4
l2

þ n42
l2l2

12

þ cyc: ð11Þ

Here we define for any function fðl; p1;…; pnÞ,

fðl; p1;…; pnÞ þ cyc≡Xn

i¼1

fðl1…i; p1þi;…; pnþiÞ;

with all indices understood modulo n. The numerators in
(11) are

nFD4 ¼ ð4u3 − 1Þð2s12 þ l2
1 þ l2

123Þ þ ð8u3 − 1Þs23;

n42 ¼
1

2
ðs12 þ l2

1Þðs12 þ l2
123Þ:

Thus the loop integrand obtained from Feynman diagrams
does depend on a particular parametrization of the
Lagrangian (i.e., parameters u3, u5). However, the ampli-
tude A1−loop

n is independent of u3, u5, so terms involving
these coefficients must integrate to zero and we can fix u3,
u5 in IFD

4 to any values, not changing the physical result
for A1−loop

n .
Let us try to fix the coefficients u3, u5 in IFD

4 by
imposing an additional constraint. The natural candidate is
imposing the vanishing soft limit in any of the external
momenta pk,

lim
pk→0

I1−loop
4 ðl; pjÞ ¼ 0: ð12Þ

Taking the soft limit of (11), e.g., on line p4,

lim
p4→0

IFD
4 ðl; pjÞ ¼ 2ð32u23 − 64u5 þ 4u3 − 1Þ

þ ð4u3 − 1Þ
�
l2
1

l2
þ l2

l2
1

þ l2
12

l2
þ l2

l2
12

�

þ 4u3

�
l2
1

l2
12

þ l2
12

l2
1

�
; ð13Þ

we see that for no values of u3, u5 the soft limit can be set to
zero. We can conclude that the Feynman integrand IFD

4

does not vanish in the soft limit.

IV. SOFT INTEGRAND

The loop integrand is not a physical quantity, so we can
make an arbitrary change in the Feynman integrand IFD

4 as
long as it integrates to the same function. In other words,
we are free to add terms which integrate to zero. The only
terms in (11) which are fixed and cannot be changed are the
bubble diagrams, as they must reproduce a physical
unitarity cut which is encoded in the structure of logarithms
after integration. The tadpole (and constant) terms in (11)
can be changed in an arbitrary way as the corresponding

integrals integrate to zero. Therefore, we start with the
following ansatz,

I ans
4 ¼ α0

4
þ nans4

l2
þ n42
l2l2

12

þ cyc; ð14Þ

where the kinematical ansatz for nans4 has 5 independent
constants,

nans4 ¼ α1s12 þ α2s23 þ α3l2
1 þ α4l2

12 þ α5l2
123: ð15Þ

Now imposing the soft limit constraint (12) we fix

α0 ¼ 2; α3 ¼ −1; α4 ¼ 1; α5 ¼ −1; ð16Þ

while coefficients α1, α2 remain unfixed. This makes
perfect sense because for pk → 0 (for any k) both
Mandelstam invariants s12 and s23 are automatically zero,
and therefore we can not get any constraints on α1, α2. As a
result, we get a two-parametric soft integrand IS

4ðα1; α2Þ.
While this integrand is not (yet) uniquely fixed, we cannot
obtain it from Feynman diagrams in any parametrization
(1) of the Lagrangian.
Next, we evaluate our integrand IS

4ðα1; α2Þ on a single
cut l2 ¼ 0,

Cut½IS
4 �≡ −B6ðp1; p2; p3; p4;−l;lÞ

¼ α1s12 þ α2s23 − l2
1 þ l2

12 − l2
123 þ

2n42
l2
12

: ð17Þ

Naively, we can try to identify the on-shell function B6 on
the right-hand side with the forward limit of the six-point
tree-level amplitude (as in the N ¼ 4 SYM theory) but a
careful inspection reveals that it is not the case.
Nevertheless, it is an interesting function which can be
constrained and used to fix α1, α2. In particular, we can
impose that B6 vanishes in the soft limit l → 0,

lim
l→0

B6 ¼ −ðα1 þ 2Þs12 − α2s23 ¼! 0; ð18Þ

which fixes α1 ¼ −2, α2 ¼ 0. Interestingly, B6 also van-
ishes in the soft limits p2 → 0 and p3 → 0 but not in the
limits p1 → 0 and p4 → 0 (if it did, it would be indeed the
forward limit of the tree amplitude). Hence, we will call B6

a half-soft on-shell function.
As a result, we get a unique 4-point soft integrand

IS
4 ¼ 1

2
þ nS4
l2

þ n42
l2l2

12

þ cyc; ð19Þ

where nS4 ¼ −2s12 − l2
1 þ l2

12 − l2
123.

The generalization to n points is straightforward. We
expand the integrand
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I1−loop
n ¼ βn;0 þ

X

k

βn;kB
ðkÞ
n ; ð20Þ

where Bn denotes the standard basis of scalar loop
integrands [17],

ð21Þ

with each of the above topologies representing multiple
terms of the integrand with different numerators. All
coefficients for boxes, triangles and bubbles are fixed by
cuts in the framework of generalized unitarity [18]. The
particular coefficients βn;k depend on the choice of basis Bn
(choice of numerators). Only tadpole terms (k ¼ 1) and the
coefficient βn;0 remain unfixed by this procedure.
The coefficients βn;k are treelike objects (sums of

products of trees) with poles in external kinematics. The
soft integrand must factorize on these poles into a lower
point one-loop integrand and a tree-level amplitude

I1−loop
n ⟶

P2¼0
− I1−loop

L
1

P2
Atree
R : ð22Þ

For example, the 6-point soft integrand I1−loop
6 factorizes

on the pole s123 ¼ 0 as

− I1−loop
4 ðl; p1; p2; p3;−PÞ

1

s123
Atree
4 ðP; p4; p5; p6Þ

− Atree
4 ðp1; p2; p3;−PÞ

1

s123
I1−loop
4 ðl; P; p4; p5; p6Þ; ð23Þ

where P ¼ p1 þ p2 þ p3 is on-shell. Tadpole integrands
have again 5 degrees of freedom in the numerator (15) while
there is only one numerical constant βn;0. However, this time
there are no terms that would vanish in all soft limits
pk → 0—this is only possible for four-point kinematics.
Therefore, imposing the vanishing soft limit in external legs
already fixes the soft integrand IS

n completely for n > 4.

V. SINGLE CUT

Let us now look more closely at the single cut of the one-
loop integrand. While this is not a forward limit of the
tree-level amplitude, it is still a very interesting object
which is calculable. At four points (17) this function
B6ðp1; p2; p3; p4;−l;lÞ is equal to

B6 ¼ 2s12 þ l2
1 − l2

12 þ l2
123 −

ðs12 þ l2
1Þðs12 þ l2

123Þ
l2
12

:

ð24Þ
This function exhibits a tree-level factorization on the pole
l2
12 ¼ 0,

B6 !l
2
12
¼0

−
Atree
4 ðl; p1; p2;−PÞAtree

4 ðP; p3; p4;−lÞ
l2
12

; ð25Þ

with P ¼ l12, while it lacks all other poles that would be
present in the (divergent forward limit of the) tree-level
amplitude A6ðp1; p2; p3; p4;−l;lÞ.
This generalizes for higher n. We can define a single cut,

l2 ¼ 0, of the loop integrand I1−loop
n to be the function

Bnþ2ðp1;…; pn;−l;lÞ. This function factorizes on the
pole l2

12…m ¼ 0 as

−
Atree
nL ðl; p1;…; pm;−PÞAtree

nR ðP; pmþ1;…; pn;−lÞ
l2
12…m

; ð26Þ

where nL ¼ mþ 2, nR ¼ n −mþ 2 for m ¼ 2; 4;…;
n − 2 and P ¼ l12…m. At the same time, Bnþ2 vanishes
in the soft limits

lim
l→0

Bnþ2 ¼ 0; lim
pk→0

Bnþ2 ¼ 0; ð27Þ

for k ¼ 2;…; n − 1. The on-shell function Bnþ2 only fails
to vanish in the soft limit for p1 → 0 and pn → 0. The
conditions (26) and (27) fix Bnþ2 completely, and we can
reconstruct it using tree-level recursion relations using the
shift (5) together with shifting (on-shell) l̂ ¼ lð1 − azÞ.
Note that a is unconstrained as it does not affect momentum
conservation.
The Cauchy formula (6) then takes the form

I
dz
z

Bnþ2ðzÞ
ð1 − zaÞFðzÞ ¼ 0; ð28Þ

and we can reconstruct Bnþ2 ≡ Bnþ2ðz ¼ 0Þ from factor-
izations on l2

12…m ¼ 0.
Note that here we provide a construction for the single

cut l2 ¼ 0 but a completely analogous procedure works for
all other n − 1 single cuts. The corresponding on-shell
functions are related to Bnþ2ðp1;…; pn;−l;lÞ by cyclic
shifts. For example, at six points, a single cut l2

12 ¼ 0 gives
B6 ≡ B6ðp3; p4; p1; p2;−l12;l12Þ,

B6 ¼ 2s12 þ l2
123 − l2 þ l2

1 −
ðs12 þ l2

123Þðs12 þ l2
1Þ

l2
;

ð29Þ

which factorizes into tree amplitudes on the pole l2 ¼ 0
and vanishes for soft limits l12 → 0, p1 → 0 and p4 → 0.

VI. LOOP RECURSION RELATIONS

Now we are ready to formulate recursion relations for
one-loop soft integrands in the planar (large N) limit of
SUðNÞ NLSM. The n-point one-loop integrand I1−loop

n has
two types of poles:
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(i) Tree-level poles si…j ¼ 0: the integrand factorizes
into a product of a lower point integrand and a tree-
level amplitude (22).

(ii) Single cuts l2
1…j ¼ 0: evaluate to −Bnþ2 functions.

We proceed to shift the external momenta using a tree-
level shift (5). The integrand I1−loop

n now depends on z and
the shifted integrand IS

nðzÞ vanishes for zk ¼ 1=ak and
evaluates to known functions on both tree-level and loop
poles. Then we use the same Cauchy formula (6), now for
I1−loop
n , and evaluate the pole at z ¼ 0 as

I1−loop
n ¼

X

I;�
Resz¼z�I

ILðzÞARðzÞ þ ALðzÞIRðzÞ
zP2

I ðzÞFðzÞ

þ
X

m;�
Resz¼z�m

Bnþ2ðzÞ
zl21…mðzÞFðzÞ

: ð30Þ

In the first term we sum over tree-level poles P2
I ðz�I Þ ¼ 0

and in the second term over single cuts l2
1…mðz�mÞ ¼ 0.

To give a simple example, we reconstruct the soft
integrand (19) using (30). At four points there are no
tree-level poles and the integrand is determined by the on-
shell function (24) alone. We deform the external momenta
as in (5) and shift l̂ ¼ lþ zq, with some auxiliary vector
q, q2 ≠ 0. The latter shift is needed only for n ¼ 4 to avoid
poles at z ¼ ∞. Evaluating (30) we obtain

IS
4 ¼

X4

m¼1;�

B6ðp̂1þm;…; p̂4þm;−l̂1…m; l̂1…m; z�mÞ
ðz�m=z∓m − 1Þl2

1…mFðz�mÞ
; ð31Þ

where the two solutions to l2
1…mðz�mÞ ¼ 0 are z�m ¼

−l1…m ·Q1…m � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1…m ·Q1…mÞ2 − l2
1…mQ

2
1…m

p

Q2
1…m

: ð32Þ

For a given shift the vectors Q1…m are defined by
l̂1…mðzÞ ¼ l1…m þ zQ1…m. Concretely, for the shift used
to compute (31) and e.g., m ¼ 2 we get l̂12ðzÞ ¼ l12 þ
zQ12 with Q12 ¼ qþ q1 − a2p2, and similar for all other
m. Note that the result (31) does not depend on the shift
parameters and agrees with (19). This allows us to construct
the soft integrand for a general multiplicity.

VII. DOUBLE SOFT LIMIT

Flavor-ordered amplitudes in the NLSM are known to
satisfy a recursion relation when the soft limit of two
external momenta is taken simultaneously [15],

lim
t→0

Anðtpi; tpj; fpkgÞ ¼ Πi;jAn−2ðfpkgÞ; ð33Þ

where 1 ≤ i < j ≤ n, and fpkg, k ≠ i, k ≠ j, denotes the
dependence on the remaining momenta. The double soft
factor Πi;j equals

δj;iþ1

2

�
piþ2 · ðpi − piþ1Þ
piþ2 · ðpi þ piþ1Þ

−
pi−1 · ðpi − piþ1Þ
pi−1 · ðpi þ piþ1Þ

�
: ð34Þ

We saw that a soft integrand is uniquely determined by a
choice of coefficients α1,α2 in (17). One way to fix these
constants was the prescription (18). Alternatively we can
ask if there exists a choice that manifests the double soft
condition at the integrand level,

lim
t→0

Inðtpi; tpj; fl; pkgÞ ¼! Πi;jIn−2ðfl; pkgÞ: ð35Þ

Remarkably, the answer turns out affirmative. At four
points the soft integrand IS

4ðα1; α2Þ vanishes identically
in all double soft limits and for all α1,α2. However, at n ¼ 6
points and up, (35) represents a nontrivial constraint forcing
α1 ¼ −2 and α2 ¼ 1. The corresponding four-point double
soft integrand thus takes the form

IDS
4 ¼ 1

2
þ nDS4

l2
þ n42
l2l2

12

þ cyc; ð36Þ

now with nDS4 ¼ −2s12 þ s23 − l2
1 þ l2

12 − l2
123.

Equivalently we can reformulate the condition (35) as a
statement about the soft limit l → 0 of the six-point on-
shell function analogous to (18),

lim
l→0

B6 ¼ −ðα1 þ 2Þs12 − α2s23 ¼! −s23; ð37Þ

which does not require us to go beyond n ¼ 4 to unam-
biguously fix the double soft integrand.
The same recursion relations for Bnþ2 (28) and I1−loop

n

(30) can then be used to construct the double soft integrand
IDS
n . The only difference is the seed: the single cut function

B6. We can see that α1 ¼ −2 in both (18) and (37), while
the coefficient α2 is different. In fact, α1 ¼ −2 is required
by on-shell constructability of B6 (see [19] for more
details), but α2 is unfixed and can be set to any value.
Thus, the one-parametric family of integrands I1−loop

n ðα2Þ
satisfies all cuts and the Adler zero in external legs and can
be reconstructed using the recursion (30). The integrands
depend on α2 because the seed functions in the recursion
relations do. Here we point out two special values α2 ¼ 0, 1
for which the single cut and integrand exhibit additional
soft behavior respectively.

VIII. CONCLUSION AND OUTLOOK

In this paper we constructed the one-loop planar inte-
grand in the SUðNÞ nonlinear sigma model for all multi-
plicities. Apart from satisfying the standard cuts it satisfies
an Adler zero in all external momenta. These constraints
lead to a one-parametric family of soft integrands with two
special cases which have either the vanishing soft limit on
single cuts (18) or directly exhibit the double soft limit (35).

RECURSION RELATIONS FOR ONE-LOOP GOLDSTONE BOSON … PHYS. REV. D 106, 076008 (2022)

076008-5



We further formulated loop-level soft recursion relations to
reconstruct the soft integrands from their cuts. In the
upcoming work [19] we will show how our construction
extends to two loops and discuss the generalization to other
large N theories of Goldstone bosons.
From the traditional QFT point of view loop integrands

are intermediate unphysical objects which turn into physi-
cal amplitudes only after integration. On the other hand, the
cuts of loop integrands are tree-level amplitudes which are
physical gauge invariant objects, hence it is reasonable to
expect that the integrands share some of their properties.
Furthermore, from examples of special theories like planar
N ¼ 4 supersymmetric Yang-Mills, we know that the loop
integrand is a central object in the connection to the
geometric construction of the perturbative S-matrix in
terms of the positive Grassmannian [20] and the
Amplituhedron [21,22]. The goal of our program is to
find analogous geometric structures for theories with

special soft limits, with this paper representing a first step
in this direction.
There is a peculiar possible direction of application of our

result beyond just scalar effective theories with special soft
limits: amplitudes in the NLSM (at tree level) in d dimen-
sions are known to be obtained via dimensional reduction
from (dþ 1)-dimensonal pure Yang-Mills amplitudes [23].
It would be fascinating to see if the loop integrands are
related in the same way, and if yes, this might provide an
indirect way to find the yet-to-be discovered loop recursion
relations in pure Yang-Mills theory (see also [24–26]).
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