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We investigate the rotating quark matter in the three-flavor Nambu–Jona-Lasinio (NJL) model. The chiral
condensation, spin polarization, and number susceptibility of the light and strange quarks are carefully
studied at finite temperatures without or with finite chemical potential in this model. We find that the rotation
suppresses the chiral condensation and enhances the first-order quark spin polarization, however for the
second-order quark spin polarization and quark number susceptibility the effect is complicated and
interesting. When extending to the situation with finite chemical potential, we find the angular velocity also
plays a crucial role, at small angular velocity the chemical potential enhances the susceptibility, however in
the middle region of angular velocity the effect of the chemical potential is suppressed by the angular
velocity and susceptibility can be changed considerably, it can be observed that at very low temperature in
the presence of quark chemical potential the quark number susceptibility has two maxima with increasing
angular velocity. Furthermore, it is found that at sufficiently large angular velocity the contributions played
by the light quark and the strange quark to these phenomena are almost equal. We also discuss the chiral
phase transition of rotating quark matter in the three-flavor NJL model. We expect these studies to be used to
understand the chiral symmetry breaking and restoration as well as probe the QCD phase transition.
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I. INTRODUCTION

QCD thermodynamics has always been the subject of
intense investigations for many years, which motivates
various works to try to understand it better. In the past,
much attention has been paid to the properties of QCD in the
plane of temperature T and quark chemical potential μ.
Recently, QCDmatter under rotation is of particular interest,
since there exist some interesting phenomena in rotating
QCD matter, such as the chiral vortical effect or chiral
vortical wave [1–4], which is a key ingredient in theories that
predict observable effects associated with chiral symmetry
restoration and the production of false QCD vacuum states
[5]. Many works can be investigated in various rotation-
related phenomena, such as noncentral heavy-ion collisions
in high energy nuclear physics [6–14], the mesonic

condensation of isospin matter with rotation in hadron
physics [15], the trapped nonrelativistic bosonic cold atoms
in condensed matter physics [16–20], the rapidly spinning
neutron stars in astrophysics [21–29]. Quark matter under
rotation has been studied in ultrarelativistic heavy-ion off-
central collisions performed at the Relativistic Heavy Ion
Collider (RHIC) or the Large Hadron Collider (LHC) as well
as lattice simulation. It is known that for the region with very
low temperature and very large chemical potential there
exists uncertainty in lattice QCD due to the “sign problem.”
Reference [30] has calculated the angular momenta of
gluons and quarks in the rotating QCD vacuum, which
would be very important for future theoretical research.
One interesting phenomenon is the quark spin polariza-

tion in noncentral collisions of heavy ions, where the quark-
gluon plasma (QGP) can be generated. The coupling
between rotational motion and quantum spin in this plasma
can lead to polarization of hadrons along the direction of the
system angular momentum. This polarization provides very
valuable information about the QGP properties and can be
measured experimentally with hyperons via parity-violating
weak decays [31–42]. Experimental measurements of the Λ
hyperon polarization have been investigated at RHIC and
LHC, which would be very helpful in the study of the
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hottest, least viscous and most vortical-fluid ever produced
both for theoretical physics and experimental physics.
Recently, the global spin polarizations of Λ and Λ̄ have
been measured by the STAR collaboration in Auþ Au
collisions over a wide range of beam energies

ffiffiffiffiffiffiffiffi
sNN

p ¼
7.7–200 GeV and by ALICE collaboration in Pbþ Pb
collisions at 2.76 TeV and 5.02 TeV [43–45]. On the other
hand, theoretical research of spin polarization in the quark
matter has been explored [46–53], which plays an important
role to explain the origin of the strong magnetic field in the
magnetar as well as in changing the dynamical mass and
some other phenomena related to the chiral phase transition.
It would be very interesting to take into account the
influence of the rotating effect on the quark spin polariza-
tion, especially, in the case of s quark matter under rotation.
The study of quark spin polarization which is linked to
vorticity may help us understand the vortical nature of QGP
and the chiral dynamics of the system.
Another interesting phenomenon in noncentral collisions

of heavy ions is the fluctuations and correlations of
conserved charges as quantified by the corresponding
susceptibilities, which are sensitive observable quantities
in relativistic heavy-ion collisions and are also considered
as a useful probe for QGP [54–64]. In this paper, we mainly
focus on the baryon number fluctuation which is also
simply related to the quark number susceptibility (QNS).
QNS serves as a signature for the QGP formation in the
ultrarelativistic heavy-ion collision and also plays an
important factor to probe the QCD phase transition, as
well as the equation of state (EOS) of strongly interacting
matter [65–67]. Experimentally, various cumulants of net-
kaon multiplicity distributions of Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV have been measured by the STAR
experiment [68–70], which are related to the thermody-
namic susceptibilities. The study of QNS in lattice QCD
has been interesting [71–75]. Although susceptibilities
have been studied in the past [76–79], it has not been
checked what is the influence of considering the contri-
bution from the strange quark matter [80–91] in the rotation
system.
In this paper, encouraged by the successful description of

two-flavor QCD under rotation [92] in the Nambu–Jona-
Lasinio (NJL) model, which embodies the spontaneous
breaking of chiral symmetry via effective interactions
between quarks, we further study the three-flavor NJL
model in the framework of quarks under rotation. Since
there are several flavors and colors of quarks, several
pairings are possible, which probably lead to a great variety
of interesting phenomena. The questions we are going to
address are how the chiral condensate, quark spin polari-
zation, and quark number susceptibility are influenced by
the rotation.
Our work is organized as follows. We first discuss the

formalism of the three-flavor NJL model in the presence of
rotation in Sec. II, by using the mean-field approach and the

finite temperature field methods we obtain the grand
potential of the fermions with rotation, and the correspond-
ing analytical expressions for the gap equation, spin
polarization and susceptibility of the quarks are given.
Section III presents numerical results and discussions in
detail. Section IV summarizes and concludes the paper. A
brief description of fermions under rotation is given in
Appendix, which describes the complete set of commuting
operators in cylindrical coordinates and derives the eigen-
states of these operators.

II. FORMALISM

We start from the three-flavor NJL Lagrangian without
rotation [93]:

L¼ ψ̄ði∂μγμ−mÞψþG
X8
a¼0

½ðψ̄λaψÞ2þðψ̄iγ5λaψÞ2�þLdet;

ð1Þ

here, ψ is the quark field, m is the bare quark mass matrix,
λaða ¼ 1;…8Þ are the Gell-Mann matrices in flavor space

with λ0 ¼
ffiffi
2
3

q
1where 1 is the unit matrix in the three-flavor

space, and Ldet is given by

Ldet ¼ −Kfdet½ψ̄ð1þ γ5Þψ � þ det½ψ̄ð1 − γ5Þψ �g; ð2Þ

which is known as the six-quark ’t Hooft term. Here the
determinant is calculated over the flavor degrees of free-
dom. This term leads to mixing among the different flavors
and is also phenomenologically important to get the mass
splitting of the η and η0 mesons.
In order to derive the grand thermodynamical potential,

we use the mean field approximation which means fluctua-
tions are assumed to be small to linearize the Lagrangian.
This is done to get a Lagrangian that is quadratic in the
quarks fields and which allows the integration of the quarks
fields in the generating functional. After a large number of
quark interactions be brought to 2-quark interaction [93–98]
and neglecting the higher order fluctuations, the Lagrangian
reads (note that, for our purposes, only the scalar condensate
will contribute, so the pseudoscalar interaction has been
dropped [93]):

L ¼ ψ̄ði∂μγμ −MÞψ − 2Gðhūui2 þ hd̄di2 þ hs̄si2Þ
þ 4Khūuihd̄dihs̄si; ð3Þ

where we have defined the dynamical quark mass M as
follows

Mfi ¼ mfi − 4Ghψ̄fiψfii þ 2Khψ̄fjψfjihψ̄fkψfki
× ði ≠ j ≠ kÞ; ð4Þ
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where i, j, k denote the flavor of the quarks and take u, d for
two light flavors while s for strange quark.
The condensation of the QCD matter under the presence

of rotation in the 2-flavor NJL model has been investigated
in Ref. [92], which exhibits interesting behavior for the
paring phenomena. In the present work, we will extend to
study the properties of the quark matter under rotation in
3-flavor NJL model with finite quark chemical potential.
The Lagrangian for spinor with rotation can be written in
the following way:

L ¼
X

ψ̄fðiγ̄μð∂μ þ ΓμÞ −mþ γ0μÞψf

þ G
X8
a¼0

ðψ̄λaψÞ2 þ Ldet; ð5Þ

here γ̄μ ¼ eaμγa with eaμ the tetrads for spinors, Γμ ¼
1
4
× 1

2
½γa; γb�Γabμ which is the spinor connection, where

Γabμ ¼ ηacðecσGσ
μνebν − ebν∂μecνÞ, and Gσ

μν is the affine
connection determined by gμν. Considering the system with
an angular velocity along the fixed z-axis, then v⃗ ¼ ω⃗ × x⃗
and choosing eaμ ¼ δaμ þ δaiδ

0
μvi and eaμ ¼ δa

μ −
δa

0δi
μvi (details can be found in Refs. [16,30]), then we

can expand the Lagrangian to the first order of angular
velocity, finally, the Lagrangian is given by

L ¼ ψ̄ ½iγμ∂μ −mþ γ0μþ ðγ0Þ−1ððω⇀ × x
⇀Þ

· ð−i∂⇀Þ þ ω
⇀
· S
⇀

4×4Þ�ψ þG
X8
a¼0

ðψ̄λaψÞ2 þ Ldet; ð6Þ

where we can see as a result of rotation the Dirac operator
includes the orbit-rotation coupling term and the spin-
rotation coupling term.
The general definition of the partition function can be

written as

Z ¼
Z

D½ψ̄ �D½ψ �eiS; ð7Þ

here, S denotes the quark action, which is the integral of the
Lagrangian density L.

After using the mean field approximation and carrying
out the general approach of the path integral formulation for
Grassmann variables, we are now able to exactly integrate
out the fermionic fields and obtain

logZ ¼ −
1

T

Z
d3xð−2Gðhūui2 þ hd̄di2 þ hs̄si2Þ

þ 4Khūuihd̄dihs̄siÞ þ
X
f

log det
D−1

f

T
; ð8Þ

here

D−1 ¼ γ0
�
−iωl þ

�
nþ 1

2

�
ωþ μ

�
−M − γ

⇀
· p
⇀
; ð9Þ

which is the inverse of propagator for quarks, and

log det
D̂−1

T
¼ trlog

D̂−1

T

¼
Z

d3x
Z

d3p
ð2πÞ3 hψpðxÞj logD̂−1jψpðxÞi: ð10Þ

The Dirac fields can be defined in the terms of the wave
functions uðxÞ, vðxÞ

ψpðxÞ ¼
X

E;n;s;p

ðuðxÞ þ vðxÞÞ: ð11Þ

In order to find solutions of the Dirac equation, we should
first choose the complete set of commutating operators that
consists of the Hamiltonian of the system Ĥ, the momen-
tum in the z-direction p̂z, the square of transverse momen-
tum p̂2

t , the z-component of the total angular momentum
Ĵz, and the transverse helicity ĥt. The positive and negative
energy solutions of the Dirac field can be determined by
calculating these eigenvalue equations of the complete set
of commutating operators fĤ; p̂z; p̂2

t ; Ĵz; ĥtg, here, for the
derivation and detailed expression of the spinor u, v, the
reader can analyze the Appendix. By substituting Eq. (11)
into Eq. (10) we have:

log det
D̂−1

T
¼

X
E;n;s;p

tr log
D−1

uðxÞ
T

Z
d3x

Z
d3p
ð2πÞ3 ðhuðxÞjuðxÞiÞ ð12Þ

þ
X

E;n;s;p

tr log
D−1

vðxÞ
T

Z
d3x

Z
d3p
ð2πÞ3 ðhvðxÞjvðxÞiÞ; ð13Þ

here, the concrete form of the D−1
u that has been considered the rotation and nonzero chemical potential is
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D−1
uðxÞ ¼

� ð−iωl þ ðnþ 1
2
Þωþ μÞ −M −σ

⇀
· p
⇀

σ
⇀
· p
⇀ −ð−iωl þ ðnþ 1

2
Þωþ μÞ −M

�
; ð14Þ

which corresponds to the positive energy solution, and the concrete form for the D−1
v is

D−1
vðxÞ ¼

� ðiωl − ðnþ 1
2
Þωþ μÞ −M −σ

⇀
· p
⇀

σ
⇀
· p
⇀ −ðiωl − ðnþ 1

2
Þωþ μÞ −M

�
; ð15Þ

which corresponds to the negative energy solution. Here, in
order to study the rotating system at finite density, we have
introduced quark chemical potential μ and note that the
term ðnþ 1

2
Þω in above expressions denotes the rotational

polarization energy, which is very useful when we study the
polarization in the following sections. By using the general
methods in the finite temperature fields [99], we obtain

log det
D−1

u

T
¼ β

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2t þ p2z

q
þ
�
nþ 1

2

�
ω
�

þ logðeβð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þp2tþp2z

p
þððnþ1

2
Þω−μÞÞ þ 1Þ

þ logðeβð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þp2tþp2z

p
þððnþ1

2
ÞωþμÞÞ þ 1Þ; ð16Þ

and

log det
D−1

v

T
¼ β

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ p2t þ p2z

q
−
�
nþ 1

2

�
ω
�

þ logðeβð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þp2tþp2z

p
þð−ðnþ1

2
Þω−μÞÞ þ 1Þ

þ logðeβð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þp2tþp2z

p
þð−ðnþ1

2
ÞωþμÞÞ þ 1Þ; ð17Þ

for each flavor, here β is the inverse temperature and the
inner products of hun;sjun;si, hvn;sjvn;si are derived with
very simple expressions as follows,

Z
d3p
ð2πÞ3 hun;sjun;si ¼

1

2
ðJnðptrÞ2 þ Jnþ1ðptrÞ2Þ; ð18Þ

Z
d3p
ð2πÞ3 hvn;sjvn;si ¼

1

2
ðJnðptrÞ2 þ Jnþ1ðptrÞ2Þ: ð19Þ

Combining the Eqs. (8), (16), (17), (18), and (19) one can
now derive the expression of the grand potential for strange
quark when the momentum summation turns into the integral

X
p

→ V
Z

d3p
ð2πÞ3; ð20Þ

and the energy summation performs over Matsubara
frequency. Then the thermodynamic grand potential
Ω ¼ − T

V logZ has the following expression,

Ω ¼ 2Gð2hūui2 þ hs̄si2Þ − 4Khūui2hs̄si − 2Nc

8π2
X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpzððJnþ1ðptrÞ2 þ JnðptrÞ2Þ

× T
n
log

�
e−

−μuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
−ðnþ1

2
Þω

T þ 1
�
þ log

�
e
−μuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
−ðnþ1

2
Þω

T þ 1
�

þ log
�
e−

μuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
−ðnþ1

2
Þω

T þ 1
�
þ log

�
e
μuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
−ðnþ1

2
Þω

T þ 1
�o

− Nc

8π2
X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpzððJnþ1ðptrÞ2 þ JnðptrÞ2Þ

× T
n
log

�
e−

−μsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
−ðnþ1

2
Þω

T þ 1
�
þ log

�
e
−μsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
−ðnþ1

2
Þω

T þ 1
�

þ log
�
e−

μsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
−ðnþ1

2
Þω

T þ 1
�
þ log

�
e
μsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
−ðnþ1

2
Þω

T þ 1
�o

: ð21Þ

Here, the isospin symmetry has been considered for the light quarks, so md ¼ mu, μd ¼ μu, Nc ¼ 3 and Λ is the three-
momentum cutoff. μu is the chemical potential for the u or d quark as well as μs is that for s quark. When the isospin
symmetry is satisfied, the dynamical quark masses are simplified to give:
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Mu ¼ mu þ ð2Khs̄si − 4GÞhūui; ð22Þ

Ms ¼ ms − 4Ghs̄si þ 2Khūui2: ð23Þ

We have discussed the grand potential of quarks under rotation in detail in the previous section. In this section, we list our
final analytical expressions of the gap equation, quark spin polarization, and quark number susceptibility in the situation
with rotation. First, we consider the gap equation which will be required to minimize the grand potential, the values are
determined by solving the stationary condition, namely, ∂Ω

∂hūui ¼ ∂Ω
∂hs̄si ¼ 0, and the detailed expressions for the stationary

condition are listed as follows,

8Ghūui − 8Khūuihs̄si − Nc

8π2
X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpzððJnþ1ðptrÞ2 þ JnðptrÞ2Þ

×

8>><
>>:

4 × 2 × e
μu
T

�
e
2nωþω

T − e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
T

�
ð2G − Khs̄siÞMuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
u þ p2

t þ p2
z

p �
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
T þ e

2nωþ2μuþω
2T

��
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
þμu

T þ e
ðnþ1

2
Þω

T

�

−
8Ke

μs
T

�
e
2nωþω

T − e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
T

�
hūuiMsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
s þ p2

t þ p2
z

p �
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
T þ e

2nωþ2μsþω
2T

��
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
þμs

T þ e
ðnþ1

2
Þω

T

�
9>>=
>>; ¼ 0; ð24Þ

4Ghs̄si − 4Khūui2 − Nc

8π2
X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpzððJnþ1ðptrÞ2 þ JnðptrÞ2Þ

×

8>><
>>:−

4 × 2 × Ke
μu
T

�
e
2nωþω

T − e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
T

�
hūuiMuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
u þ p2

t þ p2
z

p �
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
T þ e

2nωþ2μuþω
2T

��
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
uþp2t þp2z

p
þμu

T þ e
ðnþ1

2
Þω

T

�

×
8Ge

μs
T

�
e
2nωþω

T − e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
T

�
Msffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
s þ p2

t þ p2
z

p �
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
T þ e

2nωþ2μsþω
2T

��
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
sþp2t þp2z

p
þμs

T þ e
ðnþ1

2
Þω

T

�
9>>=
>>; ¼ 0: ð25Þ

Here we are going to study the quark spin polarization which can be defined as taking the partial derivative of minus
grand potential with respect to angular velocity, and we introduce the following quark spin polarization as in Ref. [100]

P1 ¼
∂ð−ΩT4 Þ
∂ðωTÞ

; ð26Þ

P2 ¼
∂
2ð−ΩT4 Þ
∂ðωTÞ2

; ð27Þ

such definition ensures dimensionless polarization, then we list the detailed expression of the first-order polarization and
second-order polarization as follows,

P1 ¼
Nc

8π2T3

X∞
n¼−∞

Z
Λ

0

ptdpt

Z ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p

−
ffiffiffiffiffiffiffiffiffiffi
Λ2−p2

t

p dpzððJnþ1ðptrÞ2 þ JnðptrÞ2Þð2nþ 1Þ

×

8<
:

2 sinh
�
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

uþp2tþp2z
p

þ2nωþω
2T

�
�
cosh

�
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

uþp2tþp2z
p

þ2nωþω
2T

�
þ coshðμuT Þ

�þ
sinh

�
−2
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Next, we will investigate how much the rotation affects the baryon number fluctuations, these fluctuations can be
quantified by the susceptibilities and the QNS is defined through the Taylor expansion coefficients of the pressure over the
chemical potential [101–107]:

χn ¼
∂
nð PT4Þ
∂ðμTÞn

; ð30Þ

here, we focus on the second order derivative of pressure with respect to μ, due to symmetry, all the odd susceptibilities vanish
when μ → 0 (note, in the context of lattice calculations the susceptibilities are defined as dimensionless quantities). Using the
relation of pressure P ¼ −Ω, the actual calculation of the susceptibilities is straightforward and the detailed result is

χf2 ¼ Nc
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��
; ð31Þ

here f ¼ u, d, s. With the analytical expressions given above, we show our numerical results in the next section.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will present our numerical results for
the gap equation, quark spin polarization, and quark number
susceptibility. In our previous analytic expressions, the
z-angular-momentum quantum number n ¼ 0;�1;�2….
In principle we should sum all the values of n, fortunately,
these expressions converge so fast that it is enough for us to
sum n from −5 to 5. It should be noted that in order to
maintain the causality of a rigidly rotating system, we should
make sure that the local velocity is smaller than the light
velocity, namely, the condition ωr < 1 should be considered
in all the calculations, and for simplicity, we take the same
value of r as in Ref. [92]. Since any uniformly rotating
system should be spatially bounded, it has been expected
that the presence of boundaries can modify the properties of
the rotating system [108–112], indeed, this is only true when
the angular velocityω is much smaller than the inverse of the
system’s size [113]. Furthermore, our discussion is mainly
devoted to the bulk properties of the rotating system, so in
our analytic derivation, we ignore the finite volume boun-
dary effect and leave it to our further study. In our
calculations, for simplicity, we have let the chemical
potential μu=d ¼ μs ¼ μ, and the input parameters in the
NJL are the coupling constantsG,K, the quark massesmu=d,
ms and the three-momentum cutoff Λ. Then, in this context

we use the second case in Table 1 of Ref. [114],
that mu ¼ md ¼ 0.005 GeV, ms ¼ 0.1283 GeV, G ¼
3.672 GeV−2, K ¼ 59.628 GeV−5, Λ ¼ 0.6816 GeV,
which have been estimated by the fitting in light of the
following observations: mπ ¼ 138 MeV, fπ ¼ 92 MeV,
mK ¼ 495 MeV and mη0 ¼ 958 MeV.

A. The mean field mass gap at zero chemical potential
μ= 0 under rotation

Let us first discuss the results at zero chemical potential.
We investigate the chiral condensation in the rotating
matter under the three-flavor NJL model, especially we
consider the contribution from s quark. It is equivalent to
studying the gap equations since the gap equations corre-
spond to the coupling of the current quark masses with the
associated chiral condensates, first, in the plot of Fig. 1, we
show the differences in squared gap masses between the
case at nonzero angular velocity and that at zero angular
velocity, M2ðωÞ −M2ðω ¼ 0Þ with zero temperature and
zero chemical potential for the up quark and strange quark,
respectively. We found that the squared gap mass
differences of all quarks decrease with increasing angular
velocity, and at large angular velocity, there is a sudden
drop down for the squared gap mass differences. It obvious
that the squared gap mass difference of lighter quark is
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more affected by the angular velocity, which decreases
faster while that of the strange quark decreases slower with
angular velocity, this can be interpreted as that the quark
with a large current mass is less affected by the rotation.
Then we plot the gap equation as a function of ω with

different values of T in Fig. 2 respectively for u and s
quark. As one can see, both u quark and s quark gap
equations show that the rotation has a suppression effect on
the chiral condensation. It is clearly seen that at all
temperatures the gap equations of both u and s decrease
with increasing ω and at very low temperatures the chiral
condensate experiences a very sharp transition when ω
exceeds a certain value. It should be noted here, that
although there is a very fast drop from a high value for
the quark effective mass to a small value, however, the
phase transition here is just a rapid cross-over. It is very
interesting when comparing the different flavor situations,
in the left panel of Fig. 2 shows thatMu experiences a very
fast transition around ω ¼ 0.6 GeV at T ¼ 0.01 GeV, in
the right panel of Fig. 2 we observe that Ms also
experiences a fast change around ω ¼ 0.6 GeV but
changes not so much their mass compared to the light
quark situation, due to the coupling between the different

flavors. In addition, we also found that for the strange quark
there is a fast drop from a high value for the quark effective
mass to a small value around ω ¼ 1.0 GeV. From the
figure, we can see the role of the ω, as well as T are very
important parameters for transition. For high temperatures
the chiral condensate vanishes with the increasing ω via a
smooth cross-over, and the temperature effect becomes
weaker with increasing the value of ω. As ω further
increases the gap equations for both decrease more slowly,
and both approach their naked masses. This can be
interpreted as a hint that the chiral transitions for the s,
u do not occur at the same angular velocity with the same
temperature. It is found that the chiral condensation of u
quark has produced results almost in agreement with those
suggested in literature [4], but with a slight difference due
to the adopted parameters in Ref. [96].
We now turn to a more realistic physical environment, in

Fig. 3 we plot the gap equation as a function of T with fixed
angular velocity ω and radius r for u and s quark,
respectively. In order to enable a more realistic comparison
to experimental data in the future, here without losing
generality, we assume that ω ¼ 0.01, 0.1 GeV and r ¼ 1,
1.6 fm. From the figure, we can see clearly that there
exist some interesting behaviors in the range of
T ¼ 0.1–0.4 GeV. The left-hand side of Fig. 3 shows that
the u quark gap mass decreases with increasing temper-
ature, and the mass gap Mu falls sharply in the range of
T ¼ 0.15–0.2 GeV, however, it is a smooth behavior which
means that at low T, small ω and large radius the quark
condensate experiences a fast cross-over transition.
Therefore, in this region (T ¼ 0.15–0.2 GeV), there occurs
not a true phase transition with corresponding critical
temperature, but rather a pseudo-phase transition (cross-
over). The right-hand side of Fig. 3 shows that for the
chosen parameters the s quark gap mass decreases with
increasing temperature via a cross-over transition and the
chiral condensate gradually vanishes with increasing tem-
perature. From Fig. 3 one can also see clearly that, for a
fixed value of r the effect of rotation suppresses the
effective quark mass and for a fixed value of small ω
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FIG. 2. The mean field mass gap Mu and Ms as a function of ω for several values of T with μ ¼ 0.
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FIG. 1. Differences of squared gap masses between the case at
ω ≠ 0 and ω ¼ 0 with both μ ¼ 0 and T ¼ 0 for up quark and
strange quark as a function of ω.
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we can observe that the effective quark mass becomes
smaller at a larger radius. Here we just want to capture the
essential physics of QCDmatter under rotation, indeed, in a
realistic physical environment, it requires a more detailed
investigation.

B. Spin polarization, quark number susceptibility
at μ= 0

The logarithmic plot of first-order spin polarizations of
the rotating system as a function of ω for several fixed
values of temperature with zero chemical potential are
shown in Fig. 4. It is very clear that the angular velocity has
a strong influence on the quark first-order spin polarization
as well as the temperature. From the figure, it is observed
that the rotation system may induce a large polarization. At
all temperatures, the quark spin polarization increases with
increasing angular velocity for all quarks. At low temper-
atures, the quark first-order spin polarization increases very

rapidly in a certain angular velocity window and then
increases very slowly, while at high temperatures the quark
first-order spin polarization increases almost linearly. At
very low temperatures an interesting phenomenon of the
jump of the quark first-order spin polarization can be
observed aroundω ∼ 0.6 GeV for the rotating system in the
figure. This jump of the first-order spin polarization is a
hint for the rapid phase transition to occur, and this
distinguishing feature of the spin polarization may provide
valuable insights for investigating the rapid phase transition
in experiments.
In order to have a better understanding of the spin

polarization of quark with rotation, we plot the second-
order spin polarizations of the rotating system as a function
of ω for several temperatures with the zero chemical
potential in Fig. 5. In the case of very low temperatures,
the second-order spin polarization begins to grow signifi-
cantly only after a certain value of the angular velocity, and
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FIG. 3. (Color online) The mean field mass gap Mu and Ms as a function of T for several values of r and ω with μ ¼ 0.
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FIG. 4. The logarithmic plot of first-order spin polarizations of
the rotating system according to ω for several fixed values of
temperature T with μ ¼ 0.
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FIG. 5. The logarithmic plot of second-order spin polarizations
of the rotating system according to ω for several fixed values of
temperature T with μ ¼ 0.
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it continues to increase with increasing angular velocity,
until it reaches the highest value, at a point where, if the
angular velocity is increased even further the second-order
spin polarization becomes weaker. The dominant reason for
these tendencies comes from that the rotation under finite
temperature leads to the restoration of spontaneously
broken chiral symmetry.
On the other hand, in order to understand the properties of

the quark matter under rotation better, it is helpful to study
the behavior of baryon number susceptibility. We now turn
to study the QNS and take into account the influence of
angular velocity on QNS. First, we consider the case of zero
chemical potential, in Fig. 6 we plot the susceptibilities of u
and s quark as a function of angular velocity for several
fixed values of temperatures with zero chemical potential in
a logarithmic plot. As evident in Fig. 6, the u or s quark
number susceptibility increases as the ω increases, until it
reaches the highest point. After this point, however, an
increase in ω causes a decrease in the quark number
susceptibility. It also can be seen from the figure that the
temperature and the angular velocity play an important role
in the susceptibility, at low temperature chiral symmetry is
broken spontaneously, however with the increasing of the
angular velocity the chiral symmetry is restored, so we can
see at low temperature and low angular velocity the
susceptibility is very small and at low temperature and
large angular velocity the susceptibility almost disappears.
However, if the temperature is high the susceptibility always
occurs and the angular velocity plays a small effect on the
rotating matter.
Next, we turn to a discussion of the different features of

susceptibilities of the light and strange quarks under
rotation. When angular velocity is small, we find that it
is easier for the susceptibility of u quark compared to s
quark to have a significant rising trend. For instance, at
T ¼ 0.01 GeV, we observe only a very small dependence
of susceptibility on angular velocity, as long as ω ≤
0.45 GeV for u quark, while as long as ω ≤ 0.8 GeV for
s quark.
The susceptibility exhibits a peak as we increase the

angular velocity, and at low temperatures, there exists a

narrow region where the susceptibility can rapidly change
with ω. For the strange quark, you might have a less broad
peak, for instance, at temperature T ¼ 0.01 GeV, the width
of this region is around (0.6–1.4) GeV for χu, while the
region is around (0.9–1.4) GeV for χs. The position of its
maximum depends sensitively on temperature. Here, the
presence of a peak structure in these observable can be
interpreted as a signal of growing fluctuations in the baryon
density. At low temperatures, the sharper peak corresponds
to a smaller value of temperature. As we increase temper-
ature, we observe a significant decrease in the maximum of
the peak, and the location of the maximum moves toward
smaller values of angular velocity. It is clear from the figure
that at all values of the temperature, the behaviors of the u
quark and s quark number susceptibility are very similar
with increasing the angular velocity, and the peaks of the
susceptibilities appear at almost the same angular velocity.
When the angular velocity is large the role played by the
mass of different quarks becomes weaker, and finally, can
almost be ignored, accordingly, the contribution from the
angular velocity becomes dominant to the quark number
susceptibilities.

C. Spin polarization, quark number susceptibility
at T = 0.01 GeV and μ ≠ 0

Let us now discuss the behavior of the mean field mass
gap of the quark at very low temperature with nonzero
chemical potential, in Fig. 7 we plot Mu and Ms as a
function of ω for a variety of values of μ at T ¼ 0.01 GeV,
respectively. Compared with the Fig. 2, it is clear that a
nonzero value of the chemical potential affects the phase
transition, at T ¼ 0.01 GeV, there does not exist a sudden
drop for the mean field mass gap when μ is large both for u
and s quark, which indicating there exists a suppression
effect for the chemical potential on the phase transition. At
large chemical potential, the chiral condensate vanishes with
increasing ω via a smooth cross-over. From the figure we
can also see that there is different behavior between u and s
quark, the u quark is more affected by the presence of the
chemical potential and angular velocity than s quark
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FIG. 6. Susceptibilities of u and s quark as a function of ω for several values of T with μ ¼ 0 in a logarithmic plot.
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because the s quark has a substantial mass even after the
chiral phase transition.
In Fig. 8, the plots of the first-order spin polarization

of the rotating system as a function of angular velocity at
T ¼ 0.01 GeV are presented for nonzero chemical poten-
tial μ ¼ 0.1, 0.2, 0.3, 0.4 GeV, respectively. As it is evident
from the figure, the first-order spin polarizations of the
rotating system increase with increasing angular velocity. It
can be seen that the first-order spin polarizations are
affected obviously by the nonzero quark chemical poten-
tial. With increasing angular velocity, the first-order spin
polarization of the system will first have a clear increasing
trend at larger quark chemical potential, for example, the
first-order spin polarizations of the rotating system start to
increase evidently around ω ¼ 0.2 GeV and ω ¼ 0.4 GeV
for μ ¼ 0.2 GeV and μ ¼ 0.1 GeV, respectively. Figure 8
also demonstrates that at very large quark chemical
potential, the first-order spin polarization of the system
first quickly reaches a certain value then is only relatively
slowly varying with angular velocity, this can be under-
stood by noting that at a large value of quark chemical
potential the chiral symmetry is restored quickly.

Figure 9 displays the results of the second-order polari-
zation of the system as a function of ω for several fixed
nonzero values of chemical potential at T ¼ 0.01 GeV. In
particular, a nonmonotonic is identified, with the second-
order polarization to first increase, reach a maximum, and
then decrease sharply. This behavior is the combined effect
of the suppression in both the angular velocity itself and the
chemical potential at very low temperature.
Next, we will analyze the patterns of second-order

susceptibility of quark with rotation at nonzero chemical
potential. Let us first consider the effect of angular velocity
ω on second-order susceptibility of the quarks at very low
temperature. We plot the second-order susceptibilities of u
and s quark as a function of ω for several fixed nonzero
values of chemical potential at T ¼ 0.01 GeV in Fig. 10,
respectively. From the figure we find the susceptibilities
have similar behavior with respect to the angular velocity.
We can see if one considers the case of nonzero chemical
potential, the behavior of QNS changes considerably and is
quite dependent on the angular velocity. As shown in the
figure one can see the dependence of QNS on angular
velocity is complicated that the QNS increases with the
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FIG. 8. First-order spin polarizations of the rotating system as a
function of ω for several fixed nonzero values of μ at T
¼ 0.01 GeV.
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FIG. 9. Second-order spin polarizations of the rotating system
as a function of ω for several fixed nonzero values of μ at T
¼ 0.01 GeV.
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increasing ω when ω is smaller than a certain value while
the QNS decreases with the increasing ω when ω exceeds
another certain value, such nonmonotonic behavior of the
susceptibilities may suggest that more attention should be
given to the studies of quark matter under rotation.
There are some interesting changes compared with the

situation of zero chemical potential, at T ¼ 0.01 GeV the
curves of susceptibility of the quark have two peaks, which
are very different compared with that in Fig. 6, the curves of
QNS have such behavior because the gap mass with
nonzero chemical potential is different from that the case
with zero chemical potential and for any angular velocity
which should satisfy the gap equation, whose constraint
will have an effect on the susceptibility. In addition, a
plausible explanation for this phenomenon is that the
rotational velocity serves as an effective chemical potential
and exhibits a nontrivial behavior such that the competition
between the chemical potential and angular velocity ren-
ders the quark number susceptibility to reach its maximum
in such manner.

D. Spin polarization, quark number susceptibility
at T = 0.2 GeV and μ ≠ 0

We now discuss the rotational effect on the quark
spin polarization, quark number susceptibility at nonzero

chemical potential, and high temperature. Figure 11 shows
the mean field mass gap Mu and Ms versus ω with several
fixed values of μ at T ¼ 0.2 GeV, obviously from the
figure we can see there is a generally rotational suppression
effect on the chiral condensate for the system at high
temperature with nonzero chemical potential. In order
to have better understanding in Fig. 12 we plot
MuðωÞ=Muðω ¼ 0Þ and MsðωÞ=Msðω ¼ 0Þ as a function
of ω with several nonzero chemical potentials at
T ¼ 0.2 GeV, respectively. We can see the influence of
the angular velocity on the light quark and strange quark is
different. The figure shows thatMu is much affected due to
the small size of the up quark current mass and whose chiral
symmetry can be easily restored compared to that of
s quark.
In Fig. 13, we plot the first-order spin polarization of the

system as a function of ω for several fixed values of μ with
T ¼ 0.2 GeV. From Fig. 13 we find that at this temperature
the first-order quark spin polarization of the system always
occurs with increasing the angular velocity for all the
nonzero chemical potential, at large chemical potential
(μ ¼ 0.4 GeV), the first-order spin polarization of the
system increases almost linearly with increasing the angular
velocity. We now consider the effects of angular velocity ω
on second-order spin polarization of the system at
T ¼ 0.2 GeV with chemical potential μ ¼ 0.1, 0.2, 0.3,
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FIG. 11. The mean field mass gap Mu and Ms as a function of ω for several fixed values of μ at T ¼ 0.2 GeV.
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FIG. 10. Susceptibilities of u and s quark as a function of ω for several fixed nonzero values of μ at T ¼ 0.01 GeV.
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0.4 GeV, respectively. From Fig. 14 one immediately makes
the following observations, in the case of high temperature
the variation of second-order spin polarization of the system
with angular velocity is complicated, we find that at small

chemical potential the second-order spin polarization of the
system has a peak structure with the increase of angular
velocity when ω < 1.0 GeV, at small chemical potential
(μ ¼ 0.1 GeV) the second-order spin polarization of the
system increases with increase in angular velocity, while at
large chemical potential (μ ¼ 0.4 GeV) that decreases with
increase in angular velocity.
Next, we would like to consider the effects of angular

velocity ω on second-order susceptibility of the quarks at
high temperature with several fixed nonzero values of
chemical potential, and the numerical results are shown
in Fig. 15. It can be found that at such high temperatures the
second-order susceptibility of the quarks can always occur,
although the maximum value of susceptibility is very small
compared to the situation in Fig. 10, which means that the
contribution of angular velocity to the susceptibility is
suppressed by high temperature. From Fig. 15 one could
infer the dependence of the second-order susceptibility of
the quarks on the quark current mass when ω < 0.5 GeV,
the values of the susceptibility of the strange quark is
smaller compared to that of light quarks for the same quark
chemical potential. However, with the increase of ω, the
behavior of both quarks is very similar which means that at
high temperature and large chemical potential, the large
angular velocity takes a significant role in the behavior of
quarks under rotation. From Fig. 15, we can see that in the
case of high temperature and large chemical potential, the
behavior of both quarks is very similar with the increase of
ω, although the strange quark still has an effective mass
much larger than its bare mass. From Fig. 15 one could also
infer the dependence of susceptibility on the chemical
potential at high temperature, at small ω, the susceptibility
increases with the increasing μ, at large ω, the susceptibility
decreases with the increasing μ.

E. The chiral phase transition of quark
matter under rotation

Let us move on to the topic of the QCD phase diagram.
The investigation of the phase diagram of QCD has been an
active subject for many years. There has been some progress
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FIG. 14. Second-order spin polarizations of the rotating system
as a function of ω for several fixed nonzero values of μ at
T ¼ 0.2 GeV.
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a function of ω for several fixed values of μ at T ¼ 0.2 GeV.
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FIG. 12. MuðωÞ=Muðω ¼ 0Þ and MsðωÞ=Msðω ¼ 0Þ as a function of ω with several nonzero chemical potentials at T ¼ 0.2 GeV.
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in the study of the QCD phase diagram with lattice QCD
(LQCD) simulations [115,116], however, at large chemical
potential the predictions made by the LQCD are not very
reliable due to the sign problem of lattice gauge theory
[117]. So, in order to investigate the QCD phase diagram
many effective models have been proposed such as Nambu–
Jona-Lasinio (NJL) models, quark-meson (QM) models,
holographic QCDmodels, functional renormalization group
(fRG), Dyson Schwinger equations (DSE) as well as some
extending modes of these [93,96,118–138]. It is believed
that the addition of external influences or new parameter
ranges yields an increasing number of interesting results to
the phase diagram [139].
Investigating the QCD matter under rotation is a fasci-

nating topic, apart from the chiral condensation, spin
polarization, and number susceptibility of quark, it is also
of significant interest to explore the effects of rotation on the
phase transitions. We now first explore the phase diagram in
the T-ω plane, it is obvious that from the Fig. 2 at all
temperatures the gap equations of both u and s decrease
with increasing ω and at very low temperature the chiral
condensate experiences a very fast transition when ω

exceeds a certain value. It should be noted here that although
there is a very fast drop from a high value for the quark
effective mass to a small value, however, the transition here
is just a rapid cross-over (in the case of first-order phase
transition, the thermodynamical potential should have a
region where it is multievaluated for the same value of
omega, however, in our parameter space we cannot find
such region). This is very different when compared to the
quark matter under rotation in the 2-flavor NJL model, in
Ref. [92] the authors claim that in the case of chiral
condensation, a new phase diagram in the T-ω parameter
space is found, with a nontrivial critical point. However, in
the 3-flavor NJL model with rotation, we can only find that
there exists a rapid cross-over for the chiral condensation.
This is maybe be caused by the presence of the heavy
strange quark as well as the ’t Hooft interaction which will
have an effect on the phase transition of the system under
rotation.
When the cross-over is sufficiently rapid that the defi-

nition of a transition temperature makes sense. This can be
defined as the maximum of the chiral susceptibility, which is
proportional to the slope of the quark condensate [93]. It is
no doubt that there are many other discussions that need to
be done for the phase transition in the rotation system, here
is just a beginning and this particular topic will be discussed
in detail in future work.

IV. CONCLUSIONS AND OUTLOOK

Finally, we want to summarize our results and give a brief
outlook. In this paper, we have presented detailed analytic
formulas for the quark matter under rotation in the three-
flavor NJL model and related topics have been investigated.
In order to have a better understanding of the rotating
system with finite density, we have also introduced the
chemical potential. We studied the quark fields in cylindri-
cal coordinates as well as investigated the effect of the
rotation on the quark chiral condensate, quark spin polari-
zation, and quark number susceptibility at finite temperature
with or without finite chemical potential in this model. We
found that the angular velocity plays a very crucial role in
these topics, at low temperatures, small chemical potential,
and small angular velocity the chiral symmetry is broken
spontaneously, while at large enough angular velocity the
chiral symmetry is restored. Our numerical analysis shows
that the rotation suppresses the chiral condensation and
enhances the first-order quark spin polarization, however for
the second-order quark spin polarization and quark number
susceptibility the effect is very complicated, which can be
found to have a peak structure.
We have also explicitly computed these quantities in the

rotation system in the presence of chemical potential. We
found that the nonzero chemical potential affects and
makes the chiral condensate, quark spin polarization,
and quark number susceptibility have different behaviors.
At very low temperatures, the chiral condensate
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FIG. 15. Second-order susceptibilities of u and s quark as
a function of ω for several fixed nonzero values of μ at
T ¼ 0.2 GeV.
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experiences a very rapid transition when angular velocity
exceeds a certain value with zero chemical potential, while
at large chemical potential this transition is suppressed and
becomes a smooth crossover transition. It can be also
observed that at very low temperatures, the quark number
susceptibilities have two maxima, a plausible explanation
for this phenomenon is that the rotational velocity serves as
an effective chemical potential and exhibits a nontrivial
behavior such that the competition between the chemical
potential and angular velocity renders the quark number
susceptibility to reach its maximum in such manner. In this
paper, we especially considered the contributions from s
quark and made some comparisons between u quark and s
quark, and found that at small angular velocity the part
played by mass in these phenomena is important, however,
at sufficiently large angular velocity, the contributions
played by different quarks to these phenomena are almost
equal. In addition, we explored the chiral phase transition
of rotating quark matter in the three-flavor NJL model, we
observed that at very low temperatures there exist the
chiral condensate experiences a very fast transition when
angular velocity exceeds a certain value. Based on the
interpretations made above, it would be possible to judge
and forecast these phenomena of quark matter under
rotation if we jointly take angular velocity, chemical
potential, and temperature factors into consideration in
the three-flavor NJL model. We expect these studies to
play an important role in helping understand the properties
of strongly interacting matter under rotation.
The theoretical interest in relativistic rotating systems is

being revived in many different physical environments,
the study also calls for more investigation on different
aspects of the issue. For instance, the related effects of
rotating fermions inside a cylindrical boundary [140], the
investigation of a possible phase structure under rotation
including the s quark, especially the exploration of those
regions of the phase diagram that cannot be reached on the
lattice yet. The NJL model describes only quarks and
antiquarks and neglects the gluons, so it is also very worth
extending the rotation system to the Polyakov extended
Nambu–Jona-Lasinio (PNJL) model [141], which consid-
ers interactions between quarks and gluons, and the global
rotation opens a new window to study the properties of
QGP and a new direction in the study of heavy ion
physics. This model will have a clearer picture considering
the constraint from the experimental related to rotation
conducted at numerous research facilities worldwide as
the Brookhaven National Laboratory (BNL), the European
Organization for Nuclear Research (CERN), and the GSI
Helmholtz Centre for Heavy Ion Research (GSI), new
insights are bound to result from upcoming experimental
results and continued theoretical focus. It would be
interesting to use the results obtained in this paper to
investigate these topics which we leave to future studies.
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APPENDIX: BRIEF DESCRIPTION
OF FERMIONS UNDER ROTATION

The properties of fermions under global rotation are
relevant to a number of problems as discussed above, so it
is important to choose an appropriate complete set of
commuting operators in the cylindrical coordinates. In this
section, we will start from the Dirac equation in the rotating
frame, then we will derive the eigenvectors of the those
complete set of commuting operators.
The general Lagrangian of the rotating fermions is

written in the following way [16,30,92]

L¼ ψ̄ ½iγμ∂μ −mþ ðγ0Þ−1ððω⇀× x
⇀Þ · ð−i∂⇀Þ þω

⇀
· S
⇀

4×4Þ�ψ ;
ðA1Þ

where ψ is the quark field, ω is the angular velocity and m
is the bare quark mass matrix, as a result of rotation, we can
see the Dirac operator includes the orbit-rotation coupling
term and the spin-rotation coupling term, and we have
defined

S
⇀

4×4 ¼
1

2

�
σ
⇀

0

0 σ
⇀

�
; ðA2Þ

whose z-component is related to the spin polarization of the
quark. The corresponding Hamiltonian of Eq. (A1) in
momentum space reads

Ĥ ¼ γ0ð γ⇀ · ˆp⃗þmÞ − ω
⇀
· ðx⇀ × ˆp⃗þ S

⇀

4×4Þ ¼ Ĥ0 þ ω
⇀
· ˆJ⃗;

ðA3Þ

here
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ˆJ⃗ ¼ x
⇀
× ˆp⃗þ S

⇀

4×4; ðA4Þ

and the first term is the contribution of the angular
momentum, the second term is the contribution of the
spin angular momentum.
Now considering the energy eigenvalue equation

Ĥψ ¼ Eψ ; ðA5Þ

here ψ is the four-component spinors and can be written in
terms of two-component spinors as

ψ ¼
�
ϕ

χ

�
; ðA6Þ

substituting the Hamiltonian above into the energy eigen-
value equation, then Eq. (A5) transforms simply as

(
ðE −mþ ωzJzÞϕ ¼ σ

⇀
: ˆp⃗χ

ðEþmþ ωzJzÞχ ¼ σ
⇀
: ˆp⃗ϕ

ðA7Þ

here,

Jz ¼ Lz þ
1

2

X
z

; ðA8Þ

which is the z-component of total angular momentum, then,
we consider the z-component angular momentum eigen-
value equation

Jzψ ¼
�
nþ 1

2

�
ψ ; ðA9Þ

after some derivations, we can get the following equation

�
E −mþ ωz

�
nþ 1

2

���
Eþmþ ωz

�
nþ 1

2

��
ϕ

¼ ðσ⇀: ˆp⃗Þ2ϕ; ðA10Þ

it is very convenient to make the transform Cartesian
coordinate to the cylindrical coordinate. Here, the separa-
tion of variables method is applied and ϕ takes the form of

ϕ ¼ fðθÞgðrÞhðzÞ; ðA11Þ

after solving the z-component angular momentum eigen-
value equation in Eq. (A9), the solution of fðθÞ in the two-
component spinors ϕ above has the form

fðθÞ ¼
�

einθ

eiðnþ1Þθ

�
; ðA12Þ

substituting Eq. (A12) into the Eq. (A10) after some tedious
calculations, we find that gðrÞ satisfies the Bessel-type
equation as follows,

r2
∂
2gðrÞ
∂r2

þ r
∂gðrÞ
∂r

þ ðr2p2
t − n2ÞgðrÞ ¼ 0; ðA13Þ

r2
∂
2gðrÞ
∂r2

þ r
∂gðrÞ
∂r

þ ðr2p2
t − ðnþ 1Þ2ÞgðrÞ ¼ 0; ðA14Þ

the solutions of Eqs. (A13) and (A14) have the following
form, respectively,

gðrÞ ¼ JnðptrÞ; Jnþ1ðptrÞ; ðA15Þ

where J is the Bessel function. In order to commute with
other operators, we must define the helicity operator, the
general helicity operator has the following form

ht ¼ γ5:γ3
P⇀

:p
⇀

t

jp⇀tj
¼ 1

ijp⇀tj

0
BBBB@

0 −P− 0 0

Pþ 0 0 0

0 0 0 P−

0 0 −Pþ 0

1
CCCCA; ðA16Þ

here, pt is the transverse momentum, Pþ ¼ p̂x þ ip̂y,
P− ¼ p̂x − ip̂y and in cylindrical coordinates they have
such forms

Pþ ¼ −ieiθ
�
∂

∂r
þ i

1

r
∂

∂θ

�
; ðA17Þ

P− ¼ −ie−iθ
�
∂

∂r
− i

1

r
∂

∂θ

�
; ðA18Þ

which like shift operators when act on the terms in-
cluding angular momentum quantum number
einθJnðptrÞ, eiðnþ1ÞθJnþ1ðptrÞ, respectively, they satisfy
the following relationship

PþeinθJnðptrÞ ¼ ipteiðnþ1ÞθJnþ1ðptrÞ; ðA19Þ

P−eiðnþ1ÞθJnþ1ðptrÞ ¼ −ipteinθJnðptrÞ: ðA20Þ

Reconsidering the transverse helicity equation and the
generalized orthogonality relation

htψ ¼ sψ ; ðA21Þ

X∞
n¼−∞

ψ†ψ ¼ 1; ðA22Þ

here, s ¼ �1 represent the transverse helicity, the solutions
of the positive energy eigenvalues are obtained as follows
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u ¼ 1ffiffiffi
2

p

0
BBBBB@

eipzzeinθJnðptrÞ
seipzzeiðnþ1ÞθJnþ1ðptrÞ

eipzzeinθJnðptrÞ
seipzzeiðnþ1ÞθJnþ1ðptrÞ

1
CCCCCA; ðA23Þ

where u is a four-component spinor that must satisfy the
Dirac equation

ðiγμ∂μ −mÞu ¼ 0; ðA24Þ
substituting u into the Dirac equation gives�

E −m −σ:p
σ:p −E −m

��
cAuA
cBuB

�
¼ 0; ðA25Þ

here uA, uB are two-component spinors and cA, cB are
normalization constants, after some calculations we get

cBuB ¼ cA

� ðpz−isptÞ
Eþm eipzzeinθJnðptrÞ

ð−spzþiptÞ
Eþm eipzzeiðnþ1ÞθJnþ1ðptrÞ

�
; ðA26Þ

imposing the generalized completeness relation

X∞
n¼−∞

u†u ¼ 1; ðA27Þ

these constant factors can be determined and finally, we
obtain the positive energy particle solutions with positive
and negative helicity in the Dirac representation, which
take the following explicit form

u ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
E

r
0
BBBBB@

eipzzeinθJnðptrÞ
seipzzeiðnþ1ÞθJnþ1ðptrÞ
pz−ispt
Eþm eipzzeinθJnðptrÞ

−spzþipt
Eþm eipzzeiðnþ1ÞθJnþ1ðptrÞ

1
CCCCCA; ðA28Þ

in exactly the same way, the negative-energy antiparticle
solutions are listed below

v¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
E

r
0
BBBBB@

pz−ispt
Eþm e−ipzzeinθJnðptrÞ

−spzþipt
Eþm e−ipzzeiðnþ1ÞθJnþ1ðptrÞ

e−ipzzeinθJnðptrÞ
−se−ipzzeiðnþ1ÞθJnþ1ðptrÞ

1
CCCCCA: ðA29Þ
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