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We derive the transport coefficients of second-order fluid dynamics with 14 dynamical moments using the
method of moments and the Chapman-Enskogmethod in the relaxation-time approximation for the collision
integral of the relativistic Boltzmann equation. Contrary to results previously reported in the literature, we
find that the second-order transport coefficients derived using the two methods are in perfect agreement.
Furthermore, we show that, unlike in the case of binary hard-sphere interactions, the diffusion-shear coupling
coefficients lVπ , λVπ , and τVπ actually diverge in some approximations when the expansion order Nl → ∞.
Here we show how to circumvent such a problem in multiple ways, recovering the correct transport
coefficients of second-order fluid dynamics with 14 dynamical moments. We also validate our results for the
diffusion-shear coupling by comparison to a numerical solution of the Boltzmann equation for the
propagation of sound waves in an ultrarelativistic ideal gas.
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I. INTRODUCTION

Relativistic second-order fluid dynamics has become an
essential tool in the description of the space-time evolution
of high-energy phenomena, ranging from astrophysical
systems like accretion flows [1], stellar collapse, gamma-
ray bursts, and relativistic jets [2–5], to cosmology [6]
and relativistic nuclear collisions at BNL-RHIC and
CERN-LHC [7–12]. The space-time evolution of such
systems and the interactions among their constituents are
characterized not only in terms of an equation of state, but
also by nonequilibrium transport processes.
The conservation equations ∂μNμ ¼ ∂μTμν ¼ 0 for the

particle four-current Nμ and the energy-momentum tensor
Tμν provide 1þ 4 ¼ 5 equations. For ideal fluids, the
conservation laws govern the evolution of the equilibrium
degrees of freedom inNμ and Tμν, which are identified as the
particle number density n, energy density e, and fluid four-
velocity uμ, while the pressure is defined through an equation
of state, P≡ Pðe; nÞ. For dissipative fluids, the additional
3þ 6 ¼ 9 degrees of freedomcontained inNμ andTμν are the
bulk viscous pressure Π, the particle diffusion current Vμ,
and the shear-stress tensor πμν. Together with the
equilibrium fields, these quantities define the so-called 14
dynamical moments approximation of relativistic fluid
dynamics.

At first order in Knudsen number Kn, defined as the ratio
between the particle mean free path λmfp and a characteristic
macroscopic length scale L, the dissipative quantities are
given by the asymptotic solutions of more general equa-
tions of motion, in a manner equivalent to the Navier-
Stokes equations. On the other hand, the inverse Reynolds
number Re−1 characterizes the ratio of a dissipative to an
equilibrium quantity, e.g., jΠ=Pj, jVμ=nj, and jπμν=Pj. In
the Navier-Stokes limit, the dissipative quantities, which
are of first order in Re−1, are algebraically related to the
thermodynamic forces, which are of first order in Kn. The
first-order transport coefficients relating them measure
different properties of matter, such as viscosity, diffusivity,
and thermal or electric conductivity. These are also found in
the well-known transport laws of Newton, Fick, and Ohm.
Starting from the seminal works of Müller [13] and Israel

and Stewart [14], it became evident that, in relativistic fluid
dynamics, second-order equations are required in order to
preserve causality and stability [13–19]. When the irre-
ducible moments are expressed accurately up to second
order in Kn, Re−1, or their product, new cross-coupling
transport coefficients emerge in the transport equations. A
systematic derivation of all transport coefficients is possible
using an underlying microscopic theory, e.g., kinetic
theory.
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In the 1910’s, Chapman and Enskog proposed a pro-
cedure to derive the equations of fluid dynamics from the
Boltzmann equation [20,21]. While their method is suc-
cessful at first order, higher-order extensions yield unstable
equations, unless the dissipative quantities are promoted to
dynamical degrees of freedom [22]. These problems were
already recognized by Grad [23] in the late 1940’s and led
to a new framework known as the method of moments in
nonrelativistic kinetic theory.
Beyond the regime of applicability of relativistic fluid

dynamics (valid for small Kn and Re−1), kinetic theory
should be employed for the phase-space evolution of the
single-particle distribution function. Due to the momentum
degrees of freedom and the nonlinear collision term, kinetic
theory is computationally more expensive. In the early
1950’s, Bhatnagar, Gross, and Krook proposed the cel-
ebrated BGK relaxation-time approximation (RTA) for the
nonrelativistic Boltzmann equation [24]. The RTA paradigm
was extended to relativistic kinetic theory, first by Marle
[18,25] for massive particles and then by Anderson and
Witting [18,26] for both massive and massless particles. The
simplicity of the RTA allows us to derive analytical solutions
of the relativistic Boltzmann equation, e.g., for the Bjorken
[27,28], Gubser [29], and Hubble flows [30]. Such solutions
have served as benchmarks for testing the validity of the
equations of second-order fluid dynamics [27–32]. The
successful comparison between kinetic theory and fluid
dynamics relies on the correct implementation of the first-
and second-order transport coefficients, which is the topic of
the present work.
In this paper we rederive the transport coefficients arising

in the Anderson-Witting RTA for the linearized collision
term [26]. We adopt the method of moments as formulated
by Denicol, Niemi, Molnár, and Rischke (in the following
reluctantly referred to as DNMR) [33], as well as the second-
order Chapman-Enskog–like method introduced by Jaiswal
and others [34–36]. For the DNMR method, we actually
study three different variants, as explained in the following.
In the method of moments, the deviation δfk¼fk−f0k

of the single-particle distribution function fk from local
equilibrium f0k is characterized in terms of its irreducible
moments ρμ1���μlr . In the standard DNMR approach, δfk
is expanded in terms of an orthogonal basis taking
into account the irreducible moments ρμ1���μlr of order
0 ≤ r ≤ Nl. This expansion becomes complete in the limit
Nl → ∞, but truncating it at some finite order Nl yields an
approximation and not an exact representation of δfk.
Furthermore, the moments of negative order r < 0 are not
explicitly included in the expansion of δfk. They are
usually constructed in terms of those that are included in
this expansion, hence introducing an obvious dependence
on the truncation order Nl that affects the second-order
transport coefficients explicitly.
In the simple case of an ultrarelativistic ideal gas, the

basis functions can be computed analytically to arbitrary

order. The coefficients γðlÞr0 introduced in Ref. [33] con-
necting ρμ1���μl−r to ρμ1���μl0 turn out to diverge when Nl → ∞.
This behavior can be traced back to OðKnÞ contributions
that are not contained in γðlÞr0 . Taking the missing contri-
butions explicitly into account following Ref. [37] leads to

corrected coefficients ΓðlÞ
r0 , which still remain functions of

Nl, but are no longer divergent.
As a second approach to compute the transport coef-

ficients within the DNMR framework, we also consider the
so-called shifted-basis approach, i.e., an expansion of δfk
where a shift sl is employed for the moments of tensor
rank l. This explicitly accounts for moments of order
−sl ≤ r ≤ Nl in the expansion of δfk, such that the
representation of the negative-order moments with −sl ≤
r < 0 becomes independent of Nl.
Finally, due to the simple structure of the RTA collision

term, the negative-order moments can be obtained directly
from the moment equations, without resorting to basis-
dependent representations. We refer to this third DNMR-
type method as the basis-free approach.
For completeness, we also employ the second-order

Chapman-Enskog method introduced in Ref. [34]. Our
results are in agreement with the Nl → ∞ limit of those
obtained using the method of moments, but differ from
those reported in Refs. [34–36], obtained using the second-
order Chapman-Enskog method. We point out that this
discrepancy is due to the omission of second-order con-
tributions, which we derive explicitly.
We provide further validation of our results for the RTA

by an explicit numerical example focusing on longitudinal
waves propagating through an ultrarelativistic ideal gas,
where the mixing of the shear and diffusion modes is
characterized by lVπ. So far, this second-order transport
coefficient was reported as lVπ ≠ 0. However, comparing
the numerical solution of the Boltzmann equation [38] and
the results of the second-order fluid-dynamical equations
confirms that, in RTA, lVπ ¼ 0.
This paper is organized as follows.We review the method

ofmoments applied to the relativistic Boltzmann equation in
Sec. II. In Sec. III, we derive the transport coefficients of
second-order fluid dynamics using the RTA for the collision
term. In Sec. IV, we calculate these transport coefficients for
an ultrarelativistic ideal gas and validate our results in Sec.V
by comparison with the numerical solution of the full
Boltzmann equation in RTA in the context of the propaga-
tion of longitudinal waves. Section VI concludes this paper
with a summary of our results.
In this paper we work in flat space-time with metric

tensor gμν ¼ diagð1;−1;−1;−1Þ, and adopt natural units
ℏ ¼ c ¼ kB ¼ 1. The fluid-flow four-velocity uμ ¼ γð1; vÞ
is timelike and normalized, uμuμ ¼ 1, such that
γ ¼ ð1 − v2Þ−1=2. The local rest frame (LRF) of the fluid
is defined by uμLRF ¼ ð1; 0Þ. The rank-two projection
operator onto the three-space orthogonal to uμ is
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defined as Δμν ≡ gμν − uμuν. The symmetric, traceless, and
orthogonal projection tensors of rank 2l, Δμ1���μl

ν1���νl ,
are constructed using rank-two projection operators.
The projection of tensors Aμ1���μl is denoted as
Ahμ1���μli ≡ Δμ1���μl

ν1���νlA
ν1���νl .

The comoving derivative D≡ uμ∂μ of a quantity
A is denoted by _A ¼ DA≡ uν∂νA, while the gradient
operator is denoted by ∇νA≡ Δα

ν∂αA. Therefore, the
four-gradient is decomposed as ∂μ ≡ uμDþ∇μ, hence
∂μuν ≡ uμ _uν þ∇μuν ¼ uμ _uν þ 1

3
θΔμν þ σμν þ ωμν, where

θ≡∇μuμ is the expansion scalar, σμν ≡∇hμuνi ¼
1
2
ð∇μuν þ∇νuμÞ − 1

3
θΔμν is the shear tensor, and ωμν ≡

1
2
ð∇μuν −∇νuμÞ is the vorticity.
The four-momentum kμ ¼ ðk0;kÞ of particles is nor-

malized to their rest mass, kμkμ ¼ m2
0, where k0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
0

p
is the on shell energy of particles. We define

the energy variable Ek ≡ kμuμ and the projected momen-
tum khμi ≡ Δμ

νkν, such that kμ ¼ Ekuμ þ khμi. In the LRF,
Ek ¼ k0 is the energy and khμi ¼ ð0;kÞ is the three-
momentum.
Integrals over momentum space are abbreviated with

angular brackets, h���i≡R
dK �� �fk, h� � �i0 ≡

R
dK � � � f0k

and h� � �iδ ≡
R
dK � � � δfk. Here, dK ≡ gd3k=½ð2πÞ3k0� is

the invariant measure in momentum space and g is the
degeneracy factor of a momentum state.

II. METHOD OF MOMENTS

In this section, we recall the method of moments
introduced in Ref. [33]. In Sec. II A, the equations of motion
for the irreducible moments are presented. The expansion of
δfk is discussed in Sec. II B, extending the standard DNMR
approach of Ref. [33] to explicitly contain moments with
negative indices by using a shifted orthogonal basis. The
power-counting scheme required to close the system of
equations ofmotion for the irreduciblemoments is discussed
for the standard approach and the shifted-basis approach in
Secs. II C and II D, respectively.

A. Equations of motion for the irreducible moments

The relativistic Boltzmann equation [15,18] for the
single-particle distribution function fk reads

kμ∂μfk ¼ C½f�; ð1Þ

where C½f� is the collision term. Local equilibrium is
defined by C½f0� ¼ 0, which is fulfilled by the Jüttner
distribution [39],

f0k ¼ ½exp ðβEk − αÞ þ a�−1; ð2Þ

with α ¼ μβ, where μ is the chemical potential and β ¼
1=T the inverse temperature, while a ¼ �1 for fermions/

bosons and a → 0 for Boltzmann particles. We also
introduce the notation f̄0k ¼ 1 − af0k.
In local equilibrium, the particle four-current Nμ

0 ≡ hkμi0
and the energy-momentum tensor Tμν

0 ≡ hkμkνi0 of the fluid
are

Nμ
0 ¼ nuμ; Tμν

0 ¼ euμuν − PΔμν: ð3Þ

The tensor projections of these quantities represent the
particle density, energy density, and isotropic pressure,

n≡ Nμ
0uμ ¼ hEki0; e≡ Tμν

0 uμuν ¼ hE2
ki0;

P≡ −
1

3
Tμν
0 Δμν ¼ −

1

3
hΔμνkμkνi0; ð4Þ

where the pressure is related to energy and particle density
through an equation of state, P≡ Pðe; nÞ ¼ Pðα; βÞ.
The irreducible moments of δfk are defined as

ρμ1���μlr ≡ hEr
kk

hμ1 � � � kμliiδ; ð5Þ

where r denotes the power of energy Ek and khμ1 � � � kμli ¼
Δμ1���μl

ν1���νl k
ν1 � � � kνl are the irreducible tensors forming an

orthogonal basis [15,33].
The out-of-equilibrium particle four-current and energy-

momentum tensor are defined as

Nμ ≡ hkμi ¼ hkμi0 þ hkμiδ ¼ ðnþ ρ1Þuμ þ Vμ; ð6Þ

Tμν ≡ hkμkνi ¼ hkμkνi0 þ hkμkνiδ
¼ ðeþ ρ2Þuμuν − ðPþ ΠÞΔμν þ 2ρðμ1 u

νÞ þ πμν; ð7Þ

where the particle diffusion four-current and the shear-
stress tensor are defined by

Vμ ≡ Δμ
αNα ¼ hkhμiiδ ≡ ρμ0; ð8Þ

πμν ≡ Δμν
αβT

αβ ¼ hkhμkνiiδ ≡ ρμν0 : ð9Þ

In the Landau frame [40], the fluid flow velocity is
determined as the timelike eigenvector of the energy-
momentum tensor, euμ ¼ Tμνuν, such that

ρμ1 ≡ Δμ
αTαβuβ ¼ hEkkhμiiδ ¼ 0: ð10Þ

Furthermore, in order to determine the chemical potential
and the temperature, we apply the Landau matching
conditions [26],

ρ1 ≡ ðNμ − Nμ
0Þuμ ¼ hEkiδ ¼ 0; ð11Þ

ρ2 ≡ ðTμν − Tμν
0 Þuμuν ¼ hE2

kiδ ¼ 0; ð12Þ

such that the bulk viscous pressure can be obtained as

TRANSPORT COEFFICIENTS OF SECOND-ORDER … PHYS. REV. D 106, 076005 (2022)

076005-3



Π≡−
1

3
ðTμν−Tμν

0 ÞΔμν¼−
1

3
hΔμνkμkνiδ≡−

m2
0

3
ρ0: ð13Þ

The comoving derivative of the irreducible moments,

_ρhμ1���μlir ≡ Δμ1���μl
ν1���νlDρν1���νlr , is derived from the Boltzmann

equation (1), leading to an infinite set of coupled equations
of motion. For the sake of completeness we recall these
equations of motion up to rank 2; see Eqs. (35)–(46) in
Ref. [33],

_ρr − Cr−1 ¼ αð0Þr θ þ G3r

D20

∂μVμ −∇μρ
μ
r−1 þ rρμr−1 _uμ

þ θ

3

�
m2

0ðr − 1Þρr−2 − ðrþ 2Þρr − 3
G2r

D20

Π
�

þ
�
ðr − 1Þρμνr−2 þ

G2r

D20

πμν
�
σμν; ð14Þ

_ρhμir − Chμi
r−1 ¼ αð1Þr ∇μαþ rρμνr−1 _uν −

1

3
∇μðm2

0ρr−1 − ρrþ1Þ − Δμ
αð∇νρ

αν
r−1 þ αhr∂κπ

καÞ

þ 1

3
½m2

0ðr − 1Þρμr−2 − ðrþ 3Þρμr �θ þ 1

5
σμν½2m2

0ðr − 1Þρr−2;ν − ð2rþ 3Þρr;ν�

þ 1

3
½m2

0rρr−1 − ðrþ 3Þρrþ1 − 3αhrΠ� _uμ þ αhr∇μΠþ ρr;νω
μν þ ðr − 1Þρμνλr−2σνλ; ð15Þ

and

_ρhμνir − Chμνi
r−1 ¼ 2αð2Þr σμν þ 2

15
½m4

0ðr − 1Þρr−2 −m2
0ð2rþ 3Þρr þ ðrþ 4Þρrþ2�σμν þ 2ρλhμr ωνi

λ

þ 2

5
_uhμ½m2

0rρ
νi
r−1 − ðrþ 5Þρνirþ1� −

2

5
∇hμðm2

0ρ
νi
r−1 − ρνirþ1Þ þ

1

3
½m2

0ðr − 1Þρμνr−2 − ðrþ 4Þρμνr �θ

þ 2

7
½2m2

0ðr − 1Þρλhμr−2 − ð2rþ 5Þρλhμr �σνiλ þ rρμνγr−1 _uγ − Δμν
αβ∇λρ

αβλ
r−1 þ ðr − 1Þρμνλκr−2 σλκ; ð16Þ

where the irreducible moments of the collision term are

Chμ1���μli
r−1 ¼

Z
dKEr−1

k khμ1 � � � kμliC½f�: ð17Þ

In the above, αhr ¼ −βJrþ2;1=ðnhÞ, where the enthalpy per
particle is h≡ ðeþ PÞ=n, while

αð0Þr ¼ ð1 − rÞIr1 − Ir0 −
n
D20

ðhG2r −G3rÞ; ð18Þ

αð1Þr ¼ Jrþ1;1 −
Jrþ2;1

h
; ð19Þ

αð2Þr ¼ Irþ2;1 þ ðr − 1ÞIrþ2;2: ð20Þ

The primary and auxiliary thermodynamic integrals,
Inqðα; βÞ and Jnqðα; βÞ, respectively, are defined as

Inq ¼
ð−1Þq

ð2qþ 1Þ!! hE
n−2q
k ðΔαβkαkβÞqi0; ð21Þ

Jnq ≡ ∂Inq
∂α

����
β

¼ β−1½In−1;q−1 þ ðn − 2qÞIn−1;q�: ð22Þ

Furthermore, in the above equations, we also introduced the
functions,

Gnm ¼ Jn0Jm0 − Jn−1;0Jmþ1;0; ð23Þ

Dnq ¼ Jnþ1;qJn−1;q − J2nq: ð24Þ

The conservation of particle number ∂μNμ ¼ 0, energy
uν∂μTμν ¼ 0, and momentum Δμ

β∂αT
αβ ¼ 0 can be written

in the form,

_nþ nθ þ ∂μVμ ¼ 0; ð25Þ

_eþ ðeþ Pþ ΠÞθ − πμνσμν ¼ 0; ð26Þ

ðeþ Pþ ΠÞ _uμ −∇μðPþ ΠÞ þ Δμ
λ∂νπ

λν ¼ 0: ð27Þ

In order to solve these equations, we have to provide
equations of motion for the dissipative quantities Π, Vμ,
and πμν. In the next sections, we will show how to obtain
them from Eqs. (14)–(16) based on different series expan-
sions and approximations.

B. Expansion of the distribution function
in momentum space

The equations of motion for the primary dissipative
quantities ρ0 ¼ −3Π=m2

0, ρμ0 ¼ Vμ, and ρμν0 ¼ πμν also
include negative-order moments ρμ1���μlr<0 . From the right-
hand sides of Eqs. (14)–(16) (for r ¼ 0) we observe that
these are
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ρ−2; ρ−1; ρ
μ
−2; ρ

μ
−1; ρ

μν
−2; ρ

μν
−1: ð28Þ

Note that these equations formally also involve the
moments ρ1, ρ2, and ρμ1, which, however, vanish due to
the Landau matching conditions and the choice of the
Landau frame for the fluid velocity. Furthermore, there are
tensors of rank l > 2. These are omitted in the following,
since they are of higher order in Knudsen and inverse
Reynolds number, ρμνλ���r ≃OðKn2;Re−1KnÞ; see Ref. [33]
for a discussion.
Following the suggestions of Refs. [41–43] we consider

the expansion of δfk ¼ fk − f0k with respect to a com-
plete and orthogonal basis,

δfk ¼ f0kf̄0k
X∞
l¼0

XNlþsl

n¼0

ρμ1���μln−sl E−sl
k khμ1 � � � kμliH̃ðlÞ

kn ; ð29Þ

where the factor E−sl
k allows the expansion to contain

moments with negative energy index, hence naturally
accounting for all moments ρμ1���μlr with −sl ≤ r ≤ Nl.
In general, Nl and the shift sl can be set to different values
for each tensor rank l.
We note that Eq. (29) generalizes the expansion of

Ref. [33], recovering it when sl ¼ 0. In the above and in
what follows, we use an overhead tilde ∼ to denote
quantities which differ from the ones introduced in
Ref. [33]. When discussing the sl ¼ 0 case, all overhead

tildes will be dropped, Ã⟶
sl¼0

A.

The coefficient H̃ðlÞ
kn is a polynomial in energy of order

Nl þ sl,

H̃ðlÞ
kn ¼ ð−1Þl

l!J2l−2sl;l

XNlþsl

m¼n

ãðlÞmnP̃
ðlÞ
km; ð30Þ

where

P̃ðlÞ
km ¼

Xm
r¼0

ãðlÞmrEr
k ð31Þ

is a polynomial of order m in energy. The ãðlÞmn coefficients
are obtained through the Gram-Schmidt procedure impos-
ing the following orthogonality condition:Z

dKω̃ðlÞP̃ðlÞ
kmP̃

ðlÞ
kn ¼ δmn; ð32Þ

where the weight ω̃ðlÞ is defined as

ω̃ðlÞ ¼ ð−1Þl
ð2lþ 1Þ!!

E−2sl
k

J2l−2sl;l
ðΔαβkαkβÞlf0kf̄0k: ð33Þ

If Nl → ∞, the expansion (29) is exact. A finite
Nl þ sl < ∞ defines a truncation, i.e., the set of irreduc-
ible moments ρμ1���μlr , −sl ≤ r ≤ Nl used to approximate

δfk. Consequently, we must be able to recover any ρμ1���μlr

contained in this set from this particular truncation of δfk.
In order to see this, we define the function

F̃ ðlÞ∓rn ¼ ð−1Þll!J2l−2sl;l
Z

dKω̃ðlÞE�r
k H̃ðlÞ

kn

¼
XNlþsl

m¼n

Xm
q¼0

J�rþqþ2l−2sl;l

J2l−2sl;l
ãðlÞmnã

ðlÞ
mq: ð34Þ

Then, using Eqs. (5) and (29), any irreducible moment with
tensor-rank l and of arbitrary order r can be expressed as a
linear combination of the rank-l moments appearing in the
expansion (29),

ρμ1���μl�r−sl ≡
XNlþsl

n¼0

ρμ1���μln−sl F̃ ðlÞ∓r;n

¼
X−1
n¼−sl

ρμ1���μln F̃ ðlÞ
∓r;nþsl þ

XNl

n¼0

ρμ1���μln F̃ ðlÞ
∓r;nþsl : ð35Þ

For indices satisfying 0 ≤ i; j ≤ Nl þ sl, we have F̃
ðlÞ
−i;j ¼

δij by construction; hence Eq. (35) reduces to an identity.
On the other hand, for any r > 0, the moments ρμ1���μl−r−sl and
ρμ1���μlNlþr , which are not contained in the expansion (29), can
be expressed in terms of a sum over those moments which
do appear in Eq. (29).
The shifts sl introduced in Eq. (29) are in principle

arbitrary. However, note that in the massless case infrared
divergences can appear due to negative powers of energy
E−sl
k . In order to avoid these, the maximum possible value

of the shift is given by

smax
l ¼ l; when m0 ¼ 0: ð36Þ

This corresponds to the orthogonal basis 1, vhμ1i,
vhμ1vμ2i;…; vhμ1 � � � vμli of Ref. [43], where

vhμi ≡ khμi

Ek
¼ kμ

Ek
− uμ; ð37Þ

while the generalization to rank-l tensors reads
vhμ1 � � � vμli ¼ E−l

k khμ1 � � � kμli. This velocity-based ortho-
gonal basis is also convenient for calculating the non-
relativistic limits of the moments [43].
Finally, in the case of finite particle mass, the negative-

order moments appearing in Eq. (28) can be included in
Eq. (29) using the following parameters:

s0 ¼ s1 ¼ s2 ¼ 2; when m0 > 0: ð38Þ
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C. Power counting in the standard DNMR approach

One can show [33] that in the case of binary collisions
the linearized collision integral reads

Chμ1���μli
r−1 ¼ −

XNlþsl

n¼0

AðlÞ
r;n−slρ

μ1���μl
n−sl ; ð39Þ

where −sl ≤ r ≤ Nl. In the above, AðlÞ
rn ∼ λ−1mfp is the

collision matrix while its inverse τðlÞrn ¼ ðAðlÞÞ−1rn is related
to microscopic time scales proportional to the mean free
time between collisions.
This introduces a natural power-counting scheme in

terms of Kn and Re−1, allowing second-order fluid dynam-
ics to be derived systematically from the equations of
motion for the irreducible moments. In particular, we will
apply this power-counting scheme also to the negative-
order moments.
As stated before, the equations of motion for the

dissipative quantities follow from Eqs. (14)–(16) by choos-
ing r ¼ 0, i.e., the lowest-order irreducible moments
appearing in Eqs. (6) and (7). In this way, these moments
are chosen to be dynamical; i.e., they represent the solution
of the corresponding partial differential equations.
However, since we are dealing with an infinite hierarchy
of moment equations, we are also obliged to determine the
remaining moments with r ≠ 0.
Following Ref. [33] the moment equations for 0 < r ≤

Nl are approximated by their asymptotic solutions as

ρr>0 ≃ −
3

m2
0

Ωð0Þ
r0 Πþ 3

m2
0

ðζr −Ωð0Þ
r0 ζ0Þθ; ð40Þ

ρμr>0 ≃ Ωð1Þ
r0 V

μ þ ðκr −Ωð1Þ
r0 κ0Þ∇μα; ð41Þ

ρμνr>0 ≃ Ωð2Þ
r0 π

μν þ 2ðηr −Ωð2Þ
r0 η0Þσμν; ð42Þ

where the first-order transport coefficients ζr, κr, and ηr are

ζr ≡m2
0

3

XN0

n¼0;≠1;2
τð0Þrn α

ð0Þ
n ;

κr ≡
XN1

n¼0;≠1
τð1Þrn α

ð1Þ
n ; ηr ≡

XN2

n¼0

τð2Þrn α
ð2Þ
n : ð43Þ

Here, ΩðlÞ
rn diagonalizes the collision matrix AðlÞ

rn via

ðΩðlÞÞ−1AðlÞΩðlÞ ¼ diagðχðlÞ0 ; χðlÞ1 ;…; χðlÞNl
Þ, where with-

out loss of generality the eigenvalues are ordered as χðlÞ0 ≤
… ≤ χðlÞNl

and ΩðlÞ
00 ¼ 1 by convention.

We would like to point out that in the calculations of
Refs. [33,44] expressions for the moments of negative
order ρμ1…μl

−r were used which neglect terms of order
OðKnÞ. These are obtained by substituting only the first

terms from the right-hand sides of Eqs. (40)–(42) into
Eq. (35), leading to

ρ−r ≃ −
3

m2
0

γð0Þr0 ΠþOðKnÞ;

ρμ−r ≃ γð1Þr0 V
μ þOðKnÞ; ρμν−r ≃ γð2Þr0 π

μν þOðKnÞ; ð44Þ

where the coefficients are

γð0Þr0 ¼
XN0

n¼0;≠1;2
F ð0Þ

rn Ωð0Þ
n0 ;

γð1Þr0 ¼
XN1

n¼0;≠1
F ð1Þ

rn Ωð1Þ
n0 ; γð2Þr0 ¼

XN2

n¼0

F ð2Þ
rn Ωð2Þ

n0 : ð45Þ

However, the neglected OðKnÞ contributions to Eq. (44)
explicitly affect the results for the transport coefficients. For
instance, in Sec. IV, we show by an explicit calculation that,
in the case of an ultrarelativistic ideal gas in the RTA, all

γðlÞr0 coefficients actually diverge when Nl → ∞. On the
other hand, taking the OðKnÞ contributions into account as
described below, the modified coefficients will remain
finite in this limit.
In order to account for the neglected OðKnÞ terms, one

first substitutes all terms from Eqs. (40)–(42) into Eq. (35);
see Ref. [37]. Then, one replaces the thermodynamic
forces using the Navier-Stokes relations θ ¼ −Π=ζ0,∇μα ¼ Vμ=κ0, and σμν ¼ πμν=ð2η0Þ. We note that this
replacement is a matter of choice. If we did not do this
and just kept the terms as they appear, we would obtain
corrections to the transport coefficients of theOðKn2Þ terms
computed in Ref. [44], while the other transport coefficients
would not change as compared to their DNMR values.
However, in Sec. V we will see by comparison to the
numerical solution of the Boltzmann equation in RTA that
the approach described above leads to a better agreement
with the latter, which justifies this procedure. Ultimately,
this leads to a cancellation of the first and third terms on the
right-hand sides of Eqs. (40)–(42), such that

ρ−r ≃ −
3

m2
0

Γð0Þ
r0 Π; ρμ−r ≃ Γð1Þ

r0 V
μ; ρμν−r ≃ Γð2Þ

r0 π
μν;

ð46Þ
where the corrected DNMR coefficients are

Γð0Þ
r0 ≡ XN0

n¼0;≠1;2
F ð0Þ

rn
ζn
ζ0

;

Γð1Þ
r0 ≡ XN1

n¼0;≠1
F ð1Þ

rn
κn
κ0

; Γð2Þ
r0 ≡XN2

n¼0

F ð2Þ
rn

ηn
η0

: ð47Þ

Recently a different approximation was suggested in
Ref. [37], called Inverse Reynolds Dominance (IReD). This
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is based on a power counting without the diagonalization
procedure, i.e., without involving Eqs. (40)–(42) as an
intermediate step, but explicitly assuming that the non-
dynamical moments are approximated by

ρr>0≃−
3

m2
0

ζr
ζ0
Π; ρμr>0≃

κr
κ0
Vμ; ρμνr>0≃

ηr
η0
πμν: ð48Þ

Substituting these approximated values into Eq. (35) also
leads to the corrected DNMR results of Eqs. (46) and (47).
Note that similar approaches made in nonrelativistic [22] as
well as in multicomponent relativistic fluid dynamics [45]
are known as the order-of-magnitude approximation.
Comparing Eqs. (44) and (45) to Eqs. (46) and (47), it

becomes clear that moments with negative order explicitly
depend on the value of the corresponding coefficients, i.e.,

γðlÞr0 or ΓðlÞ
r0 . These approaches lead to transport coefficients

that explicitly depend on the truncation order Nl, while
only the latter (corrected) approach achieves convergence
when Nl → ∞. In other words, the correct representation
of the negative-order moments relies on an expansion that
includes an infinite number of positive-order moments.

D. Power counting in the shifted-basis approach

Employing now the shifted-basis approach to explicitly
include negative-order moments in the expansion of δfk, as
discussed in Sec. II B, the relations (48) are generalized in a
straightforward manner to

ρr≥−s0 ≃ −
3ζr
m2

0ζ0
Π;

ρμr≥−s1 ≃
κr
κ0

Vμ; ρμνr≥−s2 ≃
ηr
η0

πμν: ð49Þ

The first-order transport coefficients in Eq. (43) now
involve summations also over negative indices,

ζr≥−s0 ≡
m2

0

3

XN0

n¼−s0;≠1;2
τð0Þrn α

ð0Þ
n ;

κr≥−s1 ≡
XN1

n¼−s1;≠1
τð1Þrn α

ð1Þ
n ; ηr≥−s2 ≡

XN2

n¼−s2

τð2Þrn α
ð2Þ
n : ð50Þ

On the other hand, for any finite shift sl < ∞, there are
always negative-order moments that cannot be accounted
for in the expansion (29). These moments can be computed
as follows. For r > 0, Eq. (46) can be generalized to yield

ρ−r−s0 ≃ −
3

m2
0

Γ̃ð0Þ
r0 Π;

ρμ−r−s1 ≃ Γ̃ð1Þ
r0 V

μ; ρμν−r−s2 ≃ Γ̃ð2Þ
r0 π

μν; ð51Þ

where

Γ̃ð0Þ
r0 ≡ XN0

n¼−s0;≠1;2
F̃ ð0Þ

r;nþs0

ζn
ζ0
;

Γ̃ð1Þ
r0 ≡ XN1

n¼−s1;≠1
F̃ ð1Þ

r;nþs1

κn
κ0
; Γ̃ð2Þ

r0 ≡ XN2

n¼−s2

F̃ ð2Þ
r;nþs2

ηn
η0
: ð52Þ

As discussed in Eq. (38), setting sl ¼ 2 allows the
negative-order moments in Eq. (28) to be expressed using

Eq. (49), without employing any Nl-dependent Γ̃ðlÞ
r0

coefficients; however an explicit Nl dependence still
remains at the level of the first-order transport coefficients
in their definitions, Eq. (50). As it will become clear in the
next section, the transport coefficients obtained using
the shifted-basis approach will become independent of
the truncation order in the RTA.

III. TRANSIENT FLUID DYNAMICS IN THE
RELAXATION-TIME APPROXIMATION

We begin this section by discussing the Anderson-
Witting RTA in Sec. III A. The representation of nega-
tive-order moments in the basis-free and shifted-basis
approaches are presented in Secs. III B and III C, respec-
tively, while the Chapman-Enskog method is employed in
Sec. III D. The second-order transport coefficients for a
neutral fluid and the additional coefficients appearing in
magnetohydrodynamics of charged, but unpolarizable flu-
ids are reported in Secs. III E and III F, respectively.

A. The Anderson-Witting RTA

The Anderson-Witting RTA for the collision integral
reads [15,18,26]

C½f�≡ −
Ek

τR
ðfk − f0kÞ ¼ −

Ek

τR
δfk; ð53Þ

where the relaxation time τR ≡ τRðxμÞ is a momentum-
independent parameter proportional to the mean free time
between collisions. Substituting the above expression into
Eq. (17) leads to

Chμ1���μli
r−1 ¼ −

1

τR
ρμ1���μlr : ð54Þ

The matrices AðlÞ
rn , τ

ðlÞ
rn , and ΩðlÞ

rn corresponding to the
collision term (54) are diagonal,1

AðlÞ
rn ¼ δrn

τR
; τðlÞrn ¼ τRδrn; ΩðlÞ

rn ¼ δrn: ð55Þ

1The columns of ΩðlÞ
rn can be permuted arbitrarily, since all of

the eigenvalues χðlÞr of the collision matrix AðlÞ
rn are equal to τR.

For the sake of simplicity, we choose ΩðlÞ
rn to be diagonal.
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Using these results in Eqs. (14)–(16) and multiplying both
sides by τR gives

τR _ρr þ ρr ¼ τRα
ð0Þ
r θ þOðRe−1KnÞ; ð56Þ

τR _ρ
hμi
r þ ρhμir ¼ τRα

ð1Þ
r ∇μαþOðRe−1KnÞ; ð57Þ

τR _ρ
hμνi
r þ ρhμνir ¼ 2τRα

ð2Þ
r σμν þOðRe−1KnÞ; ð58Þ

where the higher-order terms on the right-hand sides of
Eqs. (14)–(16) were abbreviated by OðRe−1KnÞ for the
sake of simplicity. This implies that all irreducible moments
in these terms are considered to be of order OðRe−1Þ, in
accordance with our previous discussion.
We also point out that in the RTA all irreducible

moments have the same relaxation time, τR, and hence

there is no natural ordering of the eigenvalues χðlÞr of the
collision operator; e.g., see Sec. II C. Even so, since τR is of
first order with respect to Kn, the second-order equations of
motion for Π, Vμ and πμν can still be obtained by replacing
all moments ρμ1���μlr≠0 by their first-order approximations, as
discussed in Secs. II C and II D.
The first-order transport coefficients from Eq. (43) are

ζr ¼ τR
m2

0

3
αð0Þr ; κr ¼ τRα

ð1Þ
r ; ηr ¼ τRα

ð2Þ
r : ð59Þ

The DNMR coefficients (45) for the negative-order
moments reduce to

γðlÞr0 ¼ F ðlÞ
r0 : ð60Þ

The coefficients (52) introduced in the shifted-basis
approach are

Γ̃ð0Þ
r0 ¼

XN0

n¼−s0;≠1;2
F̃ ð0Þ

r;nþs0R
ð0Þ
n0 ;

Γ̃ð1Þ
r0 ¼

XN1

n¼−s1;≠1
F̃ ð1Þ

r;nþs1R
ð1Þ
n0 ; Γ̃ð2Þ

r0 ¼
XN2

n¼−s2

F̃ ð2Þ
r;nþs2R

ð2Þ
n0 ; ð61Þ

where we introduced

RðlÞ
r0 ≡ αðlÞr

αðlÞ0

: ð62Þ

The corrected DNMR coefficients corresponding to
Eq. (47) are obtained by setting sl ¼ 0 in Eq. (61).
The second-order equations of motion for Π ¼ − m2

0

3
ρ0,

Vμ ¼ ρμ0 and πμν ¼ ρμν0 follow after setting r ¼ 0 in
Eqs. (56)–(58). Here, the positive-order moments vanish
by the Landau-matching conditions and the choice of the
Landau frame for the fluid velocity, while the negative-
order moments are only required up to first order, since they
are always multiplied by terms of order OðKnÞ.

B. Basis-free approach for the negative-order moments

A basis-free, first-order representation of the irreducible
moments can be obtained directly from Eqs. (56)–(58),

ρr≃τRα
ð0Þ
r θ; ρμr ≃τRα

ð1Þ
r ∇μα; ρμνr ≃2τRα

ð2Þ
r σμν; ð63Þ

where all OðRe−1KnÞ terms (including those of the type

τR _ρ
hμ1���μli
r ) were neglected. Expressing the thermodynamic

forces θ,∇μα, and σμν in terms of the r ¼ 0moments leads to

ρr≠0 ≃ −
3

m2
0

Rð0Þ
r0 Π;

ρμr≠0 ≃Rð1Þ
r0 V

μ; ρμνr≠0 ≃Rð2Þ
r0 π

μν; ð64Þ
wherewehaveusedEq. (62).When r > 0, employingEq. (59)
the relations (64) are seen to be identical to the ones derived
using the so-called IReD or order-of-magnitude approaches,
shown in Eq. (49). Note that the relations (64) are valid for any
r, including r < 0, without having to calculate the negative-
order moments through sums over moments of the chosen

basis, such as those involved in computing γðlÞr0 andΓðlÞ
r0 , hence

leading to a direct basis-free approximation,

ρ−1 ≃ −
3

m2
0

Rð0Þ
−1;0Π; ρ−2 ≃ −

3

m2
0

Rð0Þ
−2;0Π; ð65Þ

ρμ−1 ≃Rð1Þ
−1;0V

μ; ρμ−2 ≃Rð1Þ
−2;0V

μ; ð66Þ

ρμν−1 ≃Rð2Þ
−1;0π

μν; ρμν−2 ≃Rð2Þ
−2;0π

μν: ð67Þ

C. Shifted-basis approach for the negative-order
moments

We now consider the representation of the moments in
the shifted-basis approach discussed in Sec. II D. For
−sl ≤ r ≤ Nl, replacing the first-order transport coeffi-
cients in Eq. (49) by their RTA expression (59) reproduces
Eq. (64). The moments with r < −sl are still computed
using Eq. (51).
When the mass m0 > 0 and sl ¼ 2, the negative-order

moments from Eqs. (65)–(67) are identically reproduced. In
order to be able to apply the matching conditions
ρ1 ¼ ρ2 ¼ ρμ1 ¼ 0, we have to make sure that these
moments are included in the basis. Thus, the truncation
orders must satisfy

N0 ≥ 2; N1 ≥ 1; N2 ≥ 0: ð68Þ

The smallest basis required to recover the RTA transport
coefficients comprises ðN0 þ s0 þ 1Þ × 1þ ðN1 þ s1 þ
1Þ × 3þ ðN2 þ s2 þ 1Þ × 5 ¼ 32 moments. Accounting
also for n, e, and uμ, there are a total of 37 degrees of
freedom, but enforcing the matching conditions, this
number is again brought down to 32.
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In the casem0 ¼ 0, inspection of the equations of motion
(14)–(16) for r ¼ 0 reveals that only the negative-order
moments ρμ−1, ρ

μν
−1, and ρμν−2 appear, which are perfectly

compatible with the largest possible shift sl ¼ l. In this
case, the smallest basis required to recover the RTA
transport coefficients comprises 3 × 1þ 3 × 3þ 3 × 5 ¼
27 moments. The total number of degrees of freedom is
then 32 (including n, e, and uμ). This number is reduced by
5 due to the matching conditions and furthermore by 1,
since the bulk viscous pressure vanishes for ultrarelativistic
particles.

D. Chapman-Enskog method

In this section, we employ the Chapman-Enskog method
following Sec. 5.5 of Ref. [18] and establish the connection
with the method of moments employed in this paper. The
power-counting scheme is performed with respect to a
parameter ε ≃ τR=L ∼OðKnÞ formally identified with the
Knudsen number, such that

δfk ≡ fk − f0k ¼ εfð1Þk þ ε2fð2Þk þ…; ð69Þ

while fð0Þk ≡ f0k is the equilibrium distribution.
The collision term is assumed to be of order Oðε−1Þ,

which is implemented in the RTA model by taking τR=ε to
be of zeroth order with respect to ε. The Boltzmann
equation (1) in RTA, Eq. (53), is then expanded as, cf.
also Eq. (28) of Ref. [26],

X∞
i¼0

εiðkμ∂μfkÞðiÞ ¼ −
εEk

τR

X∞
i¼0

εifðiþ1Þ
k ; ð70Þ

leading to an iterative procedure allowing fðiþ1Þ
k to be

obtained in terms of the lower-order terms fðjÞk with
0 ≤ j ≤ i. The index i of the expansion order takes into
account the expansion of the comoving derivative,
D≡ uμ∂μ ¼

P∞
j¼0 ε

jDj, such that the ith order contribu-
tion to the left-hand side of Eq. (70) reads

ðkμ∂μfkÞðiÞ ¼ khμi∇μf
ðiÞ
k þ Ek

Xi

j¼0

Djf
ði−jÞ
k : ð71Þ

The operator Dj is introduced at the level of the thermo-
dynamic variables α, β, and uμ via

Dα ¼
X∞
j¼0

εjDjα; Dβ ¼
X∞
j¼0

εjDjβ;

Duμ ¼
X∞
j¼0

εjDjuμ; ð72Þ

where the zeroth-order terms are

D0α ¼ nθ
D20

ðhJ20 − J30Þ; D0β ¼ nθ
D20

ðhJ10 − J20Þ;

D0uμ ¼
∇μP
eþ P

; ð73Þ

while for j > 0,

Djα¼
J20
D20

½ΠðjÞθ−πμνðjÞσμν�−
J30
D20

�
∇μV

μ
ðjÞ−

Xj−1
i¼0

Vμ
ðj−iÞDiuμ

�
; Djβ¼

J10
D20

½ΠðjÞθ−πμνðjÞσμν�−
J20
D20

�
∇μV

μ
ðjÞ−

Xj−1
i¼0

Vμ
ðj−iÞDiuμ

�
;

Djuμ¼
∇μΠðjÞ−Δμ

α∇βπ
αβ
ðjÞ

eþP
−

1

eþP

Xj−1
i¼0

½Πðj−iÞDiuμ−πμνðj−iÞDiuν�: ð74Þ

The first- and second-order corrections to f0k follow
from Eq. (70),

εfð1Þk ¼ −
τR
Ek

½khμi∇μf
ð0Þ
k þ EkD0f

ð0Þ
k �; ð75Þ

ε2fð2Þk ¼ −ε
τR
Ek

½khμi∇μf
ð1Þ
k þ EkD0f

ð1Þ
k þ EkD1f

ð0Þ
k �: ð76Þ

We now seek to reproduce the equation

δ _fk ¼ − _f0k − E−1
k kν∇νf0k − E−1

k kν∇νδfk þ E−1
k C½f�;

ð77Þ

which follows directly from the Boltzmann equation (1)
[see Eq. (34) in Ref. [33]]. At leading order, the left-hand

side is δ _fk ≃ εD0f
ð1Þ
k , while the terms on the right-hand

side can be approximated via

_f0k ¼ D0f
ð0Þ
k þ εD1f

ð0Þ
k ;

C½f�
Ek

¼ −
ε

τR
ðfð1Þk þ εfð2Þk Þ:

ð78Þ

Employing Eqs. (75) and (76), it can be seen that Eq. (77) is
recovered up to order Oðε1Þ. Since the moment equa-
tions (14)–(16) are derived from Eq. (77), the expressions
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in Eqs. (75) and (76) will lead to the same equations, up to
first order in ε. Upon multiplication with τR, this is
sufficient to derive the second-order equations of
fluid dynamics. We note that the above conclusion
was also established in Ref. [46] for the tensor
moments (l ¼ 2).
The irreducible moments ρμ1���μlr of δfk are written as

ρμ1���μlr ¼
X∞
i¼1

εiρμ1���μlr;ðiÞ ; ð79Þ

ρμ1���μlr;ðiÞ ¼
Z

dKEr
kk

hμ1 � � � kμlifðiÞk : ð80Þ

The first-order contribution to the irreducible moments can

be obtained using fð1Þk derived in Eq. (75), which can be
written in explicit form by computing the comoving
derivatives using Eq. (73),

εfð1Þk ¼ τRf0kf̄0k

�
βθ

3Ek
Δαβkαkβ

þ nθ
D20

½J30 − hJ20 þ EkðhJ10 − J20Þ�

þ
�
1

h
−

1

Ek

�
khμi∇μαþ β

Ek
khμkνiσμν

	
: ð81Þ

Plugging the above expressions into Eq. (80), using the
orthogonality relation (20) of Ref. [33], and focusing on the
l ¼ 2 case, we get

ερμνr;ð1Þ ¼ τRβσ
αβ

Z
dKf0kf̄0kEr−1

k khμkνikhαkβi

¼ 2τRβJrþ3;2σ
μν ¼ 2τRα

ð2Þ
r σμν; ð82Þ

where we employed βJrþ3;2 ¼ αð2Þr , which follows from
Eqs. (20) and (22). Similarly,

ερμr;ð1Þ ¼ τR∇μα

Z
dKf0kf̄0kEr

k

�
1

h
−

1

Ek

�
khνikhμi

¼ τR

�
Jrþ1;1 −

Jrþ2;1

h

�
∇μα ¼ τRα

ð1Þ
r ∇μα; ð83Þ

where we used Eq. (19), while with Eq. (18) the scalar
moments reduce to

ερr;ð1Þ ¼ τRα
ð0Þ
r θ: ð84Þ

It can be seen that the first-order Chapman-Enskog results
agree with those in Eq. (63) obtained in the method of
moments; hence the negative-order moments are also
computed through Eqs. (65)–(67).

In the RTA, the equivalence between the Chapman-
Enskog method and the method of moments can be
established also at second order by reproducing the
equations of motion (14)–(16). For this purpose, the left-
hand sides of the irreducible-moment equations can be
expanded with respect to ε using Eqs. (78) and (79) as

_ρhμ1���μlir − Cμ1���μl
r−1 ¼ ε

τR
ρμ1���μlr;ð1Þ þ ε

�
D0ρ

μ1���μl
r;ð1Þ þ ε

τR
ρμ1���μlr;ð2Þ

�
þOðε2Þ: ð85Þ

The second-order contribution to the irreducible moments
can be computed using Eqs. (76) and (80),

ε2ρμ1���μlr;ð2Þ ¼ −ετRΔ
μ1���μl
ν1���νl

Z
dKEr

kk
hν1 � � � kνli

×

�
D0f

ð1Þ
k þD1f

ð0Þ
k þ khμi

Ek
∇μf

ð1Þ
k

�
: ð86Þ

Taking the comoving derivative D0 outside the integral

provides D0ρ
hμ1���μli
r;ð1Þ , such that

D0ρ
hμ1���μli
r;ð1Þ þ ε

τR
ρμ1���μlr;ð2Þ

¼ Δμ1���μl
ν1���νl

Z
dK½D0ðEr

kk
hν1 � � � kνliÞ�fð1Þk

−
Z

dKEr
kk

hμ1 � � � kμli
�
D1f

ð0Þ
k þ khμi

Ek
∇μf

ð1Þ
k

�
: ð87Þ

The right-hand side of the above expression together
with the Navier-Stokes contribution from ρμ1���μlr;ð1Þ generate

all of the terms appearing on the right-hand sides of
Eqs. (14)–(16).
Discrepancies between the results obtained using the

Chapman-Enskog method and the method of moments
were reported in the literature at the level of the second-
order transport coefficients. These discrepancies are in fact
due to the omission of certain second-order terms, as we
point out in detail in the Appendix.

E. Transport coefficients in the 14-moment
approximation

Here we recall the general form of the second-order
transport equations for Π, Vμ, and πμν from Ref. [33],

τΠ _Πþ Π ¼ −ζθ þ J þKþR; ð88Þ

τV _Vhμi þ Vμ ¼ κ∇μαþ J μ þKμ þRμ; ð89Þ

τπ _π
hμνi þ πμν ¼ 2ησμν þ J μν þKμν þRμν; ð90Þ
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where τΠ, τV , and τπ are the relaxation times, ζ ¼ ζ0,
κ ¼ κ0, and η ¼ η0 are the first-order transport
coefficients, while J ;J μ, and J μν collect terms of order
OðRe−1KnÞ,

J ¼ −lΠV∇μVμ − τΠVVμ _uμ − δΠΠΠθ

− λΠVVμ∇μαþ λΠππ
μνσμν; ð91Þ

J μ ¼ −τVVνω
νμ − δVVVμθ − lVΠ∇μΠ

þ lVπΔμν∇λπ
λ
ν þ τVΠΠ _uμ − τVππ

μν _uν

− λVVVνσ
μν þ λVΠΠ∇μα − λVππ

μν∇να; ð92Þ

J μν ¼ 2τππ
hμ
λ ω

νiλ − δπππ
μνθ − τπππ

λhμσνiλ þ λπΠΠσμν

− τπVVhμ _uνi þ lπV∇hμVνi þ λπVVhμ∇νiα: ð93Þ

The tensors K, Kμ, and Kμν contain Kn2 contributions,
which will play no role in the following. The tensors R,
Rμ, and Rμν contain terms of order Re−2 originating from
quadratic terms in the collision integral, which are absent
in RTA.
We are now ready to determine the transport coefficients.

For the sake of definiteness, we work within the basis-free
approach and note that similar results are obtained when
using the shifted-basis approach. The results obtained using
the DNMR and corrected DNMR approaches can be
obtained by replacing

RðlÞ
−r;0 → γðlÞr0 ; RðlÞ

−r;0 → ΓðlÞ
r0 : ð94Þ

While in the RTA, the relaxation times satisfy

τΠ ¼ τV ¼ τπ ¼ τR; ð95Þ

we will use τΠ, τV , and τπ explicitly for the sake of clarity.
The transport coefficients appearing in the equation for the
bulk viscous pressure are

ζ ¼ τΠ
m2

0

3
αð0Þr ; ð96Þ

δΠΠ ¼ τΠ

�
2

3
−
m2

0

3

G20

D20

þm2
0

3
Rð0Þ

−2;0

�
; ð97Þ

lΠV ¼ τΠ
m2

0

3

�
G30

D20

−Rð1Þ
−1;0

�
; ð98Þ

τΠV ¼ −τΠ
m2

0

3

�
G30

D20

−
∂Rð1Þ

−1;0

∂ ln β

�
; ð99Þ

λΠV ¼ −τΠ
m2

0

3

�
∂Rð1Þ

−1;0

∂α
þ 1

h

∂Rð1Þ
−1;0

∂β

�
; ð100Þ

λΠπ ¼ −τΠ
m2

0

3

�
G20

D20

−Rð2Þ
−2;0

�
: ð101Þ

The transport coefficients for the diffusion equation are

κ ¼ τVα
ð1Þ
0 ; δVV ¼ τV

�
1þm2

0

3
Rð1Þ

−2;0

�
; ð102Þ

lVΠ ¼ τV
h
½1 − hRð0Þ

−1;0�; lVπ ¼
τV
h
½1 − hRð2Þ

−1;0�; ð103Þ

τVΠ ¼ τV
h

�
1 − h

∂Rð0Þ
−1;0

∂ ln β

�
; τVπ ¼

τV
h

�
1 − h

∂Rð2Þ
−1;0

∂ ln β

�
;

ð104Þ

λVV ¼ τV

�
3

5
þ 2m2

0

5
Rð1Þ

−2;0

�
; ð105Þ

λVΠ ¼ τV

�
∂Rð0Þ

−1;0

∂α
þ 1

h

∂Rð0Þ
−1;0

∂β

�
; ð106Þ

λVπ ¼ τV

�
∂Rð2Þ

−1;0

∂α
þ 1

h

∂Rð2Þ
−1;0

∂β

�
: ð107Þ

Finally, the transport coefficients appearing in the equation
for the shear-stress tensor are

η ¼ τπα
ð2Þ
0 ; δππ ¼ τπ

�
4

3
þm2

0

3
Rð2Þ

−2;0

�
; ð108Þ

τππ ¼ τπ

�
10

7
þ 4m2

0

7
Rð2Þ

−2;0

�
; ð109Þ

λπΠ ¼ τπ

�
6

5
þ 2m2

0

5
Rð0Þ

−2;0

�
; ð110Þ

τπV ¼ −τπ
2m2

0

5

∂Rð1Þ
−1;0

∂ ln β
; lπV ¼ −τπ

2m2
0

5
Rð1Þ

−1;0; ð111Þ

λπV ¼ −τπ
2m2

0

5

�
∂Rð1Þ

−1;0

∂α
þ 1

h

∂Rð1Þ
−1;0

∂β

�
: ð112Þ

One also observes that when m0 > 0, all coefficients
except the first-order ones, ζ, κ, and η, involve the functions

RðlÞ
−r;0. These are related to the representation of the

negative-order moments, as indicated in Eq. (94).

F. Magnetohydrodynamics transport coefficients

Here we also consider the transport coefficients arising
from the Boltzmann-Vlasov equation using the method of
moments as derived in Refs. [47,48], leading to the
equations of nonresistive and resistive magnetohydro-
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dynamics. Without repeating the details presented there, we
summarize the additional J μ1���μl

em terms that appear
on the right-hand sides of Eqs. (91)–(93) due to the
coupling of the electric charge q to the electromagnetic
field,

J em ¼ −qδΠVEVνEν; ð113Þ

J μ
em ¼ qðδVEEμ þ δVΠEΠEμ þ δVπEπ

μνEνÞ − qδVBBbμνVν;

ð114Þ

J μν
em ¼ −qðδπBBbαβΔμν

ακπκβ þ δπVEEhμVνiÞ: ð115Þ

These are obtained from Eqs. (24)–(26) of Ref. [48] by
employing the Landau frame, i.e., Wμ ≡ ρμ1 ¼ 0. In the
above the electric and magnetic fields Eμ and Bμ are
defined through the Faraday tensor Fμν and the fluid four-
velocity uμ via

Eμ ¼ Fμνuν; Bμ ¼ 1

2
ϵμναβFαβuν; ð116Þ

while bμν ¼ −ϵμναβuαbβ, bμ ¼ Bμ=B, and B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−BμBμ

p
is

the magnitude of the magnetic field.
The corresponding transport coefficients proportional

to the electric and magnetic fields are obtained by
replacing ðτð0Þ00 ; τ

ð1Þ
00 ; τ

ð2Þ
00 Þ → ðτΠ; τV; τπÞ and γðlÞr → RðlÞ

−r;0.
These are

δVE ¼ τV

�
−
n
h
þ βJ11

�
; ð117Þ

δΠVE ¼ −τΠ
m2

0

3

�
G20

D20

−Rð1Þ
−2;0 þ

1

h

∂Rð1Þ
−1;0

∂ ln β

�
; ð118Þ

δVΠE ¼ −τV
�
2

m2
0

þRð1Þ
−2;0 −

1

h

∂Rð0Þ
−1;0

∂ ln β

�
; ð119Þ

δVπE ¼ τV

�
Rð2Þ

−2;0 −
1

h

∂Rð2Þ
−1;0

∂ ln β

�
; ð120Þ

δπVE ¼ τπ

�
8

5
þ 2m2

0

5
Rð1Þ

−2;0 −
2m2

0

5h

∂Rð1Þ
−1;0

∂ ln β

�
; ð121Þ

and

δVB ¼ τV

�
−
1

h
þRð1Þ

−1;0

�
; δπB ¼ 2τπR

ð2Þ
−1;0: ð122Þ

IV. RESULTS FOR THE IDEAL
ULTRARELATIVISTIC BOLTZMANN GAS

In this section, we analyze the classical, ultrarelativistic
limit of the transport coefficients listed in Eqs. (96)–(122).
In this limit, the bulk viscous pressure Π vanishes and all
related transport coefficients do not need to be considered.
We begin this section with an explicit computation of the
thermodynamic functions and the polynomial basis focus-
ing on the specific case s0 ¼ s1 ¼ s2 ¼ 0. We then

compute the functions F ðlÞ
rn , as well as the coefficients

γðlÞr0 ¼ F ðlÞ
r0 , cf. Eq. (60), and Γ

ðlÞ
r0 , cf. Eq. (61) with sl ¼ 0

(in which case ΓðlÞ
r0 ¼ Γ̃ðlÞ

r0 ). Finally, we report the transport
coefficients.

A. Thermodynamic functions

The equilibrium distribution of an ideal Boltzmann gas is
obtained by setting a ¼ 0 in Eq. (2) and corresponds to the
Maxwell-Jüttner distribution,

f0k ¼ eα−βEk : ð123Þ

Since ∂f0k=∂α ¼ f0k, Jnq ¼ Inq by virtue of Eq. (22).
The Inq integrals can be expressed in terms of the pressure
P ¼ geα=π2β4 as

Inq ¼
Pβ2−n

2ð2qþ 1Þ!! ðnþ 1Þ!: ð124Þ

Using this result in Eqs. (19) and (20) gives

αð1Þr ¼ Pðrþ 2Þ!ð1 − rÞ
24βr−1

; αð2Þr ¼ P
30βr

ðrþ 4Þ!; ð125Þ

allowing us to express the ratios RðlÞ
r0 from Eq. (62) as

Rð1Þ
r0 ¼ ðrþ 2Þ!ð1 − rÞ

2βr
; Rð2Þ

r0 ¼ ðrþ 4Þ!
24βr

: ð126Þ

Therefore, when r ¼ −1;−2 the above results reduce to

Rð1Þ
−1;0 ¼ β; Rð1Þ

−2;0 ¼
3β2

2
; ð127Þ

Rð2Þ
−1;0 ¼

β

4
; Rð2Þ

−2;0 ¼
β2

12
: ð128Þ

B. Polynomial basis

We now construct the polynomials PðlÞ
km and HðlÞ

kn for the
case s0 ¼ s1 ¼ s2 ¼ 0 considered in Ref. [33]. By the
convention of Sec. II B the overhead tildes are omitted.
Substituting Eq. (124) for Inq into Eq. (33), we find
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ωðlÞ ¼ 2β2l−2E2l
k

Pð2lþ 1Þ! f0k; ð129Þ

where ð−ΔαβkαkβÞl ¼ E2l
k in the ultrarelativistic limit,

m0 ¼ 0. Plugging this into the orthogonality relation
(32) with Ek ¼ x=β gives

1

ð2lþ1Þ!
Z

∞

0

dxe−xx2lþ1PðlÞ
km

�
x
β

�
PðlÞ
kn

�
x
β

�
¼δmn: ð130Þ

The above relation is similar to the orthogonality relation
obeyed by the generalized Laguerre polynomials,Z

∞

0

dxe−xx2lþ1Lð2lþ1Þ
m ðxÞLð2lþ1Þ

n ðxÞ

¼ ðnþ 2lþ 1Þ!
n!

δmn: ð131Þ

Based on this analogy, the polynomials PðlÞ
kmðEkÞ can be

expressed in terms of the generalized Laguerre polynomials

Lð2lþ1Þ
m ðβEkÞ as

PðlÞ
kmðEkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!ð2lþ 1Þ!
ðmþ 2lþ 1Þ!

s
Lð2lþ1Þ
m ðβEkÞ: ð132Þ

Given the explicit representation,

Lð2lþ1Þ
m ðxÞ ¼

Xm
n¼0

ð−xÞnðmþ 2lþ 1Þ!
n!ðm − nÞ!ðnþ 2lþ 1Þ! ; ð133Þ

the expansion coefficients aðlÞmn appearing in the represen-

tation of PðlÞ
kmðEkÞ from Eq. (31) are identified as

aðlÞmn ¼ ð−βÞn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!ð2lþ 1Þ!ðmþ 2lþ 1Þ!p
n!ðm − nÞ!ðnþ 2lþ 1Þ! : ð134Þ

C. DNMR coefficients γðlÞr0

In this subsection we obtain a closed form for the

coefficients γðlÞr0 ¼ F ðlÞ
r0 . Starting from Eq. (34), we set

sl ¼ 0 and Jnq ¼ Inq, with Inq from Eq. (124), and use

Eq. (134) for the coefficients aðlÞmn and aðlÞmq, which ulti-
mately leads to

F ðlÞ
rn ¼ ð−1Þnβrþn

ðnþ 2lþ 1Þ!
XNl

m¼n

ðmþ 2lþ 1Þ!
n!ðm − nÞ! Sm; ð135Þ

where we introduced

Sm ≡Xm
q¼0

ð−1Þq
�
m

q

� ðqþ 2lþ 1 − rÞ!
ðqþ 2lþ 1Þ! : ð136Þ

In order to find Sm, we recall the definition of the Gauss
hypergeometric function [49],

2F1ða; b; c; zÞ ¼
X∞
q¼0

ðaÞqðbÞq
ðcÞqq!

zq; ð137Þ

where ðaÞq ¼ Γðaþ qÞ=ΓðaÞ is the Pochhammer symbol.
Using the property,

ð−mÞq ¼ ð−1Þq m!

ðm − qÞ! ; ð138Þ

valid for m, q ≥ 0, we get

Sm¼ð2lþ1−rÞ!
ð2lþ1Þ! 2F1ð−m;2lþ2−r;2lþ2;1Þ: ð139Þ

Note that the summation in Eq. (137) is truncated at q ¼ m
since m!=ðm − qÞ! vanishes when q > m. Using now the
identity [49],

2F1ð−m; b; c; 1Þ ¼ ðc − bÞm
ðcÞm

; ð140Þ

we arrive at

Sm ¼ ð2lþ 1 − rÞ!ðr − 1þmÞ!
ð2lþ 1þmÞ!ðr − 1Þ! : ð141Þ

Substituting Eq. (141) into Eq. (135) leads to

F ðlÞ
rn ¼ βrþn

rþ n
ð−1Þnð2lþ 1 − rÞ!ðNl þ rÞ!

n!ðr − 1Þ!ð2lþ 1þ nÞ!ðNl − nÞ! ; ð142Þ

which is valid when r ≤ 2lþ 1. When r > 2lþ 1, the
integral in Eq. (34) becomes infrared divergent in the
massless limit, due to the negative power of Ek. However,
the only moments ρμ1���μl−r which enter the equations of
motion are those with r ≤ 2; see Eq. (28). In the massless
limit, the scalar (l ¼ 0) moments ρ−2; ρ−1, and ρ0 are not
considered, so we do not need to discuss this case any
further. On the other hand, for the vector (l ¼ 1) and tensor
(l ¼ 2) moments this problem does not arise, since
there r ≤ 2 < 2lþ 1.
The validity of Eq. (142) can also be extended to r ≤ 0,

by replacing ðrþ nÞðr − 1Þ! in the denominator by
ðrþ nÞΓðrÞ. Since ΓðrÞ has simple poles when r ¼
0;−1;−2;… is a nonpositive integer, F ðlÞ

rn vanishes when-

ever r ≤ 0 and rþ n ≠ 0. The value of F ðlÞ
−n;n can be

obtained by taking the limit r → −n using

lim
r→−n

ðrþ nÞΓðrÞ ¼ ð−1Þn
n!

: ð143Þ

Substituting the above into Eq. (142) gives
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F ðlÞ
−r;n ¼ δrn; ð144Þ

for Nl ≥ r ≥ 0, which is the expected result; see discussion
after Eq. (35).
For l ¼ 1; 2 and r ¼ 1; 2, the functions γðlÞr0 ¼ F ðlÞ

r0 are
obtained as

γð1Þ10 ¼βð1þN1Þ
3

; γð1Þ20 ¼β2ð1þN1Þð2þN1Þ
12

; ð145Þ

γð2Þ10 ¼βð1þN2Þ
5

; γð2Þ20 ¼β2ð1þN2Þð2þN2Þ
40

: ð146Þ

The above expressions diverge for Nl → ∞. However, in
the following we will show that the corrected DNMR

coefficients ΓðlÞ
r0 do not diverge and, at least in RTA,

actually agree with RðlÞ
−r;0 listed in Eqs. (127) and (128).

D. Corrected DNMR coefficients ΓðlÞ
r0

We now compute the corrected coefficients ΓðlÞ
r0 in the

RTA from Eq. (61). Employing the expressions (126) and

(142) for RðlÞ
n0 and F ðlÞ

rn , respectively, gives

Γð1Þ
r0 ¼ βrð3 − rÞ!ðN1 þ rÞ!

2ðr − 1Þ!N1!

XN1

n¼0

�
N1

n

� ð−1Þnð1 − nÞ
ðnþ 3Þðnþ rÞ ;

ð147Þ

Γð2Þ
r0 ¼ βrð5 − rÞ!ðN2 þ rÞ!

24ðr − 1Þ!N2!

XN2

n¼0

�
N2

n

� ð−1Þn
ðnþ 5Þðnþ rÞ :

ð148Þ

Defining the functions,

SNðx; aÞ≡
XN
n¼0

�
N

n

� ð−xÞn
nþ aþ 1

; ð149Þ

SNðx; a; bÞ≡
XN
n¼0

�
N

n

� ð−xÞn
ðnþ aþ 1Þðnþ bþ 1Þ ; ð150Þ

we can express the coefficients (147), (148) as

Γð1Þ
r0 ¼ βrð3 − rÞ!ðrþ N1Þ!

2ðr − 1Þ!N1!

× ½4SN1
ð1; 2; r − 1Þ − SN1

ð1; r − 1Þ�; ð151Þ

Γð2Þ
r0 ¼ βrð5 − rÞ!ðrþ N2Þ!

24ðr − 1Þ!N2!
SN2

ð1; 4; r − 1Þ: ð152Þ

The functions SNðx; aÞ and SNðx; a; bÞ have an integral
representation,

SNðx; aÞ ¼
1

xaþ1

Z
x

0

dttaSNðtÞ; ð153Þ

SNðx; a; bÞ ¼
1

xbþ1

Z
x

0

dttbSNðt; aÞ; ð154Þ

where

SNðxÞ≡
XN
n¼0

�
N

n

�
ð−xÞn ¼ ð1 − xÞN; ð155Þ

by the binomial theorem. Using the definition of the
incomplete beta function,

Bxða; bÞ ¼
Z

x

0

dtta−1ð1 − tÞb−1; ð156Þ

one immediately concludes that

SNðx; aÞ ¼
1

xaþ1
Bxðaþ 1; N þ 1Þ: ð157Þ

Setting x ¼ 1 in the above expression, Bxða; bÞ becomes
the complete beta function Bða; bÞ [49],

B1ða; bÞ≡ Bða; bÞ ¼ ΓðaÞΓðbÞ
Γðaþ bÞ ; ð158Þ

such that

SNð1; aÞ ¼
XN
n¼0

�
N

n

� ð−1Þn
nþ aþ 1

¼ a!N!

ðN þ aþ 1Þ! : ð159Þ

In the case of SNðx; a; bÞ, we can consider directly the case
x ¼ 1 to find

SNð1; a; bÞ ¼
Z

1

0

dxxb−a−1Bxðaþ 1; N þ 1Þ

¼ 1

a − b
½Bðbþ 1; N þ 1Þ − Bðaþ 1; N þ 1Þ�:

ð160Þ

With the above, we arrive at

Γð1Þ
r0 ¼ βrð2 − rÞ!ðrþ 1Þ

2

�
1 −

8rðrþ N1Þ!
ðrþ 1Þ!ð3þ N1Þ!

�
; ð161Þ

Γð2Þ
r0 ¼ βrð4 − rÞ!

24

�
1 −

24ðrþ N2Þ!
ðr − 1Þ!ð5þ N2Þ!

�
: ð162Þ

In the limit N1; N2 → ∞, Γð1Þ
r0 and Γð2Þ

r0 reduce to Rð1Þ
−r;0 and

Rð2Þ
−r;0 given in Eqs. (126),
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lim
N1→∞

Γð1Þ
r0 ¼ Rð1Þ

−r;0; lim
N2→∞

Γð2Þ
r0 ¼ Rð2Þ

−r;0: ð163Þ

Setting now r ¼ 1 and 2 leads to

Γð1Þ
10 ¼ β

�
1 −

4

ð2þ N1Þð3þ N1Þ
�
; ð164Þ

Γð1Þ
20 ¼ 3β2

2

�
1 −

8

3ð3þ N1Þ
�
; ð165Þ

Γð2Þ
10 ¼ β

4

�
1 −

24ð1þ N2Þ!
ð5þ N2Þ!

�
; ð166Þ

Γð2Þ
20 ¼ β2

12

�
1 −

24ð2þ N2Þ!
ð5þ N2Þ!

�
; ð167Þ

which again reduce to the basis-free result (127), (128) in
the limit N1; N2 → ∞.

E. Transport coefficients for the
ultrarelativistic ideal gas

We now employ the basis-free results (127), (128) for

Rð1Þ
−1;0, R

ð2Þ
−1;0, and Rð2Þ

−2;0. The ultrarelativistic limit of the
transport coefficients appearing in Eqs. (102)–(107) is then
obtained as

κ ¼ βP
12

τV; δVV ¼ τV; λVV ¼ 3

5
τV;

lVπ ¼ τVπ ¼ 0; λVπ ¼
β

16
τV: ð168Þ

Equations (108)–(112) reduce to

η ¼ 4P
5
τπ; δππ ¼

4

3
τπ; τππ ¼

10

7
τπ;

lπV ¼ τπV ¼ λπV ¼ 0: ð169Þ

The coefficients in Eqs. (117)–(122) due to the electric and
magnetic fields read

δVE ¼ β2P
12

τV; δπVE ¼ 8

5
τπ;

δπB ¼ βτπ; δVB ¼ 3β

4
τV; δVπE ¼ β2

48
τV: ð170Þ

In the above, the coefficients involving the bulk viscous
pressures were omitted.
For the ideal ultrarelativistic gas, Eq. (126) can be

employed to show that

∂RðlÞ
r0

∂α
¼ 0;

∂RðlÞ
r0

∂β
¼ −

r
β
RðlÞ

r0 : ð171Þ

The above relations hold true also when r < 0 and in

particular also when RðlÞ
−r;0 is replaced by γðlÞr0 or ΓðlÞ

r0 , since

their dependence onα andβ is identical to that ofRðlÞ
−r;0. Thus,

one can conclude that in all approaches mentioned here,

τVπ ¼ lVπ; λVπ ¼
β

16
τV −

lVπ

4
: ð172Þ

Since the coefficients lVπ, τVπ , λVπ , δπB, δVB, and δVπE
involve Rð1Þ

−1;0, R
ð2Þ
−1;0, and Rð2Þ

−2;0, their values will differ
between the various approaches discussed in the present
section. All other transport coefficients assume the same
values as in the standard DNMR approach. As pointed out

in Table I, when Nl → ∞, the approach based on ΓðlÞ
r0

converges to the basis-free one employing RðlÞ
−r;0.

Conversely, the coefficients computed based on γðlÞr0 diverge
with the truncation order Nl. We illustrate these behaviors
in Fig. 1 for the coefficients shown in Table I. Note that in
the 14-moment approximation, when N0 ¼ 2, N1 ¼ 1, and

N2 ¼ 0, the results obtained using the coefficients γðlÞr0 and

ΓðlÞ
r0 are identical and reproduce those reported in

Refs. [33,48].

TABLE I. The transport coefficients lVπ; τVπ; λVπ , δπB; δVB; δVπE for an ultrarelativistic ideal gas. Their values are computed by

insertingRðlÞ
−r;0 from Eq. (126), γðlÞr0 from Eqs. (145), (146), and ΓðlÞ

r0 from Eqs. (164)–(167). The relation between λVπ and lVπ reported

in Eq. (172) holds in all three cases. The results obtained using ΓðlÞ
r0 agree with those obtained using γðlÞr0 and RðlÞ

−r;0 when ðN1; N2Þ ¼
ð1; 0Þ and when N1; N2 → ∞, respectively.

lVπ ½τV � ¼ τVπ½τV � λVπ ½τV � δVπE½τV � δVB½τV � δπB½τπ �
RðlÞ

−r;0
0 β=16 β2=48 3β=4 β=2

γðlÞr0
β
20
ð1 − 4N2Þ β

20
ð1þ N2Þ − β2

40
N2ð1þ N2Þ β

12
ð1þ 4N1Þ 2β

5
ð1þ N2Þ

ΓðlÞ
r0

6βð1þN2Þ!
ð5þN2Þ! β

16

�
1 − 24ð1þN2Þ!

ð5þN2Þ!

�
β2

48

�
1 − 24ð1þN2Þ!

ð4þN2Þ!

�
3β
4

�
1 − 16=3

ðN1þ2ÞðN1þ3Þ

�
β
2

�
1 − 24ð1þN2Þ!

ð5þN2Þ!

�
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V. SHEAR-DIFFUSION COUPLING:
LONGITUDINAL WAVES

In this section, we consider the propagation of longi-
tudinal (sound) waves through an ultrarelativistic, uncharged
ideal fluid. The purpose of this section is to compare the
prediction of second-order fluid dynamics using the various
expressions of the transport coefficients reported in Table I
with that of kinetic theory in RTA. While the former can be
estimated analytically, the latter is obtained numerically
using the method described in Ref. [38]. Per definition, a
sound wave is an infinitesimal perturbation, such that it is
sufficient to consider the linear terms in the equations of
motion. In the linearized equations of motion for an
ultrarelativistic, uncharged fluid, only the coefficients
lVπ;lπV enter [as well as some coefficients in Kμ and Kμν,
which, however, play no role in our investigation; see
comment after Eq. (93)]. Since lπV vanishes in all
approaches considered here, we will refer only to the
coefficient lVπ listed in Table I, for which we summarize
the results below,

Basis-free∶ lVπ ¼ 0; ð173Þ

DNMR∶ lVπ ¼
β

20
ð1 − 4N2ÞτV; ð174Þ

CorrectedDNMR∶ lVπ ¼
6βðN2 þ 1Þ!
ðN2 þ 5Þ! τV: ð175Þ

In addition, we recall the result reported in Ref. [35],
obtained using a second-order Chapman-Enskog approach,

Ref:½35�∶ lVπ ¼
β

4
τV: ð176Þ

We note that the result lVπ ¼ 0 was also obtained in
Ref. [50] using a Chapman-Enskog–like approach.

Since the corrected DNMR value lies between the
DNMR (for N2 ¼ 0) and basis-free (for N2 → ∞) results,
we will not consider it explicitly in what follows. Instead,
we will contrast the basis-free prediction to predictions
due to Ref. [35] and to the DNMR prediction, where for
illustrative purposes we choose N2 ¼ 2, leading to
lVπ ¼ −7βτV=20.
This section is structured as follows. In Sec. VA, we

derive the equations of motion for sound waves. The
resulting dispersion relations are computed in Sec. V B.
The analytical solutions and the numerical results are
discussed in Sec. V C.

A. Second-order equations for longitudinal waves

We assume that the background fluid is homogeneous
and at rest, while the perturbations travel along the z axis.
The velocity of the perturbed fluid is uμ ¼ γð1; 0; 0; δvÞ≃
ð1; 0; 0; δvÞ, where jδvj ≪ 1 is assumed to be small. For
simplicity, the transverse motion leading to so-called shear
waves is not taken into account. The properties of the
background fluid are

e ¼ e0 þ δe; n ¼ n0 þ δn; ð177Þ

where again jδej=e0; jδnj=n0 ≪ 1. The diffusion vector Vμ

and shear-stress tensor πμν can be described in terms of only
two scalar quantities, δV and δπ, as follows:

Vμ ¼ δVðδv; 0; 0; 1Þ; ð178Þ

and

(a) (b)

FIG. 1. Dependence on N2 ¼ N1 − 1 of the coefficients (a) lVπ ¼ τVπ (red), λVπ (blue) for a neutral fluid; and (b) δVπE (green), δVB
(blue), δπB (red) for a charged fluid, computed using the approaches shown in Table I.
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πμν ¼ δπ

0BBBBB@
δv2γ2 0 0 δvγ2

0 − 1
2

0 0

0 0 − 1
2

0

δvγ2 0 0 γ2

1CCCCCA; ð179Þ

where the properties uμVμ ¼ uμπμν ¼ πμμ ¼ 0 were
employed. Since both δV and δπ are related to gradients
of the fluid, they are of the same order of magnitude as the
perturbations. In the linearized limit, Vμ and πμν reduce to

Vμ ≃ δVð0; 0; 0; 1Þ; πμν ≃ δπ diag

�
0;−

1

2
;−

1

2
; 1

�
:

ð180Þ

Noting that the expansion scalar θ and the shear tensor
σμν reduce to

θ ¼ ∂zδv; σμν ¼ diag

�
0;
1

3
;
1

3
;−

2

3

�
∂zδv; ð181Þ

while

Δλ
μ∇νπ

μν ¼ ∂zπ
λz ¼ δλz∂zδπ; ð182Þ

the conservation equations (25)–(27) become

∂tδnþ n0∂zδvþ ∂zδV ¼ 0;

∂tδeþ ðe0 þ P0Þ∂zδv ¼ 0;

ðe0 þ P0Þ∂tδvþ ∂zδPþ ∂zδπ ¼ 0: ð183Þ

The equations of motion for δV and δπ can be obtained
from Eqs. (89), (90) and (92), (93) by ignoring terms that
are quadratic with respect to the perturbations,

τV _Vhμi þ Vμ ¼ κ∇μαþ lVπΔμν∇λπ
λ
ν;

τπ _π
hμνi þ πμν ¼ 2ησμν þ lπV∇hμVνi: ð184Þ

Using _Vhμi ≃ δμz∂tδV, _πhzzi ≃ ∂tδπ and noting that lπV ¼ 0
by virtue of Eq. (169), we find

τV∂tδV þ δV ¼ −κ∂zδαþ lVπ∂zδπ;

τπ∂tδπ þ δπ ¼ −
4η

3
∂zδv; ð185Þ

where δα ¼ 4
n0
δn − 3

P0
δP. We shall employ the Knudsen

number Kn ∼ jkτV j; jkτπj ≪ 1 for power-counting pur-
poses in order to simplify some of the expressions
appearing in the following sections.

B. Mode analysis

Now we perform the analysis of Eqs. (183) and (185) at
the level of the Fourier modes corresponding to e−iðωt−kzÞ,
introduced for a quantity Aðt; xÞ as

Aðt; xÞ ¼ A0 þ
Z

∞

−∞
dk

X
ω

e−iðωt−kzÞδAωðkÞ; ð186Þ

where A0 is the constant background value of A, while
jkj ¼ 2π=λ is the wave number (not to be confused with the
particle momentum kμ from the previous sections) and ω≡
ωðkÞ is the angular frequency, whose real part gives rise to
propagation. A negative imaginary part of ω leads to
damping of the mode. A positive imaginary part would
lead to an exponential increase and thus to an instability.
Applying the above Fourier expansion leads to the matrix
equation,

0BBBBBBBB@

−3 ω
k 4P0 0 0 0

1 − 4ω
k P0 1 0 0

0 4η
3

− i
k −

ω
k τπ 0 0

0 n0 0 − ω
k 1

− 3κ
P0

0 −lVπ
4κ
n0

− i
k −

ω
k τV

1CCCCCCCA

0BBBBBBB@

δPωðkÞ
δvωðkÞ
δπωðkÞ
δnωðkÞ
δVωðkÞ

1CCCCCCCA ¼ 0: ð187Þ

The modes supported by this system can be found by
setting the determinant of the above matrix to 0. Since
lπV ¼ 0, the ðδP; δv; δπÞ sector decouples from the
ðδn; δVÞ sector and the determinant factorizes as

ðk2 − 3ω2Þð1 − iωτπÞ −
ik2ω
P0

η ¼ 0; ð188Þ

ωð1 − iωτVÞ þ
4ik2

n0
κ ¼ 0: ð189Þ

The ðδP; δv; δπÞ sector contains the two sound or acoustic
modes as well as a shear mode, while the ðδn; δVÞ sector
contains a mode associated with particle-number transport
(in the nonrelativistic context called thermal mode) and a
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diffusive mode. While the sound modes and the thermal
mode are hydrodynamic modes (i.e., the frequency van-
ishes for zero wave number), the shear and the diffusive
modes are nonhydrodynamic modes (i.e., the frequency
does not vanish for zero wave number).
Equations (188) and (189) agree with Eqs. (4.19) and

(4.13) of Ref. [38] when identifying ω ¼ −iα and
κ ¼ λ=16. Therefore, the dispersion relations ω≡ ωðkÞ
are identical to those identified in Eqs. (4.14) and (4.20)–
(4.22) of Ref. [38]. Labeling the acoustic and shear modes
as ω�

a and ωη, respectively, we have

ω�
a ¼ �jkjcs;a − iξa; ωη ¼ −iξη; ð190Þ

where the argument k was omitted for brevity. The
quantities appearing above are defined as

cs;a¼
1

2jkjτπ
ffiffiffi
3

p
�

1

Rη

�
1−k2τ2π

�
1þ η

τπP0

��
−Rη

	
;

ξa¼
1

3τπ

�
1−

1

2Rη

�
1−k2τ2π

�
1þ η

τπP0

��
−
Rη

2

	
;

ξη¼
1

3τπ

�
1þ 1

Rη

�
1−k2τ2π

�
1þ η

τπP0

��
þRη

	
: ð191Þ

Here, the function Rη is defined as

Rη ¼
�
R<
η ; τπ < τπ;lim;

−R>
η ; τπ > τπ;lim;

R<
η ¼

�
1 − 3jkjτπ

ffiffiffiffiffiffiffiffiffiffiffi
Rη;aux

p þ 3k2τ2π

�
1 −

η

2P0τπ

��
1=3

;

R>
η ¼

�
−1þ 3jkjτπ

ffiffiffiffiffiffiffiffiffiffiffi
Rη;aux

p
− 3k2τ2π

�
1 −

η

2P0τπ

��
1=3

;

ð192Þ

with

Rη;aux ¼ 1þ 2

3
k2τ2π

�
1 −

5η

2P0τπ
−

η2

8P2
0τ

2
π

�
þ k4τ4π

9

�
1þ η

P0τπ

�
3

: ð193Þ

In the above, the value τπ;lim discerning between the two
branches for Rη is given by

τπ;lim ¼ 1

jkj
�
1þ η

P0τπ

�
−1=2

; ð194Þ

where η=ðP0τπÞ is independent of τπ since η ∼ τπ . Applying
the power-counting schemementioned above,we observe that
cs;a ≃ cs þOðKn2Þ, with cs ¼ 1=

ffiffiffi
3

p
the speed of sound,

while ξa ≃
k2η
6P0

þOðKn3Þ, and ξη ≃ 1
τπ
− k2η

3P0
þOðKn3Þ.

The thermal and diffusive modes, ω−
κ and ωþ

κ , respec-
tively, are

ω�
κ ¼−iξ�κ ; ξ�κ ¼ 1

2τV

0B@1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

16k2κτV
n0

s 1CA; ð195Þ

and agree with Eq. (4.14) of Ref. [38]. A power-
counting analysis reveals that ξ−κ ≃ 4k2κ

n0
þOðKn3Þ and

ξþκ ≃ 1
τV
− 4k2κ

n0
þOðKn3Þ.

With the dispersion relations at hand, we can now
compute the mode amplitudes. Focusing first on the
thermal and diffusive modes, it is not difficult to see that
δP�

κ ðkÞ ¼ δv�κ ðkÞ ¼ δπ�κ ðkÞ ¼ 0, while the amplitude of
the diffusion current can be linked to that of the density
fluctuations via

δV�
κ ðkÞ ¼ −

iξ�κ
k

δn�κ ðkÞ: ð196Þ

In the sound and shear sector, the amplitude of the pressure
fluctuations can be defined as an independent variable,
while the other amplitudes can be expressed as

δvωðkÞ¼
3ω

4kP0

δPωðkÞ; δπωðkÞ¼
�
3ω2

k2
−1

�
δPωðkÞ;

δnωðkÞ¼
�
3n0
4P0

þ ilVπð3ω2−k2Þ
4ik2κ
n0

þωð1− iωτVÞ

�
δPωðkÞ;

δVωðkÞ¼
iω
k

lVπð3ω2−k2Þ
4ik2κ
n0

þωð1− iωτVÞ
δPωðkÞ; ð197Þ

where ω is either ω�
a or ωη. From the above, it is clear that a

nonvanishing value of lVπ introduces acoustic and shear
modes into the diffusion current, allowing the diffusion
current to propagate by means of the sound modes. Thus,
the basis-free result lVπ ¼ 0 can be distinguished from the
Chapman-Enskog and DNMR results lVπ ≠ 0 by consid-
ering the propagation of a simple harmonic wave, which we
discuss below.

C. Numerical results

At initial time t0 ¼ 0, we consider

nðt0; zÞ ¼ n0; Pðt0; zÞ ¼ P0 þ δP cosðkzÞ; ð198Þ

while δvðt0; xÞ ¼ δπðt0; zÞ ¼ δVðt0; zÞ ¼ 0. This initial
state can be implemented by setting

δPωðk0Þ ¼
δPω

2
½δðk0 − kÞ þ δðk0 þ kÞ�; ð199Þ

with
P

ω δPω ¼ δP. This allows the solutions for δPðt; zÞ,
vðt; zÞ, and δπðt; zÞ to be written as
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δPðt; zÞ ¼ cosðkzÞ
X
ω�
a ;ωη

δPωe−iωt;

δvðt; zÞ ¼ 3i
4kP0

sinðkzÞ
X
ω�
a ;ωη

ωδPωe−iωt;

δπðt; zÞ ¼ cosðkzÞ
X
ω�
a ;ωη

�
3ω2

k2
− 1

�
δPωe−iωt: ð200Þ

Imposing the initial conditions from Eq. (198) leads toX
ω�
a ;ωη

δPω ¼ δP;
X
ω�
a ;ωη

ωδPω ¼ 0;

X
ω�
a ;ωη

ω2δPω ¼ k2

3
δP; ð201Þ

which admits the solutions,

δP�
a ¼ � k2 þ 3ωηω

∓
a

6jkjcs;aðω�
a − ωηÞ

δP;

δPη ¼ −
k2ð1 − 3c2s;aÞ − 3ξ2a
3½k2c2s;a þ ðξa − ξηÞ2�

δP: ð202Þ

For small Kn, we have

δP�
a ¼ δP

2
� ijkjηcs

4P0

δPþOðKn3Þ;

δPη ¼
k4ητ3π
9P0

δPþOðKn6Þ: ð203Þ

To correctly assess the role of lVπ , we first note that for
the shear mode, the factor 1 − iωητV ≃ 1 − τV

τπ
þOðKn2Þ.

For τV ¼ τπ ¼ τR, this is of order OðKn2Þ, while it
is of order OðKn0Þ when τV ≠ τπ . Focusing now on the
particle-number fluctuations, we may write δnωðk0Þ ¼
δnω
2
½δðk0 − kÞ þ δðk0 þ kÞ�, where the amplitude of the

corresponding acoustic and shear modes are obtained up
to second order in Kn as

δn�a ≃
n0
2P0

�
3

4
� 3ijkjcs

8P0

ηþ k2

n0
lVπη

�
δP;

δnη ≃
k2τRn0

n0η − 12P0κ
lVπηδP: ð204Þ

For the diffusion current, we write δVωðk0Þ ¼
− iδVω

2
½δðk0 − kÞ − δðk0 þ kÞ�, where

δV�
a ≃� ik3csδP

2P0jkj
lVπη; δVη ≃

kn0δP
n0η − 12P0κ

lVπη:

ð205Þ

The amplitudes of the thermal and diffusive modes δn�κ can
be found by noting that

δnðt0; zÞ ≃ cosðkzÞ
�
3n0δP
4P0

þ δnþκ þ δn−κ

þ
�
1þ τRn0P0

n0η − 12P0κ

�
k2

P0

lVπηδP

�
;

δVðt0; zÞ ≃
sinðkzÞ

k

�
k2n0lVπηδP
n0η − 12P0κ

þ ξþκ δnþκ þ ξ−κ δn−κ

�
;

ð206Þ

where only terms up to second order with respect to Kn
were shown. Imposing δnðt0; zÞ ¼ Vdðt0; zÞ ¼ 0 gives

δn�κ ≃� n0ξ∓δP
P0ðξþκ − ξ−κ Þ

�
3

4
þ τRk2P0lVπη

n0η − 12P0κ
þ k2

n0
lVπη

�
∓ k2n0

ðn0η − 12P0κÞðξþκ − ξ−κ Þ
lVπηδP; ð207Þ

while δV�
κ ¼ ξ�κ δn�κ =k. Noting that

ξþκ ξ−κ ¼ 4k2κ
n0τR

; ξþκ − ξ−κ ¼ 1

τR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16k2κτR
n0

s
; ð208Þ

we obtain δVðt; zÞ as

δVðt; zÞ ≃ kn0δP
P0

sinðkzÞ

264jkj
n0

cslVπηe−ξat sinðkcs;atÞ þ
P0lVπη

n0η − 12P0κ

0B@e−ξηt − τR
ξþκ e−ξ

þ
κ t − ξ−κ e−ξ

−
κ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16k2κ
n0

τR

q
1CA

þ κ

n0

�
3þ 4τRk2P0lVπη

n0η − 12P0κ
þ 4k2

n0
lVπη

�
e−ξ

þ
κ t − e−ξ

−
κ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16k2κ
n0

τR

q
375: ð209Þ
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It can be seen that lVπ introduces an oscillatory piece in the
diffusion current. In order to facilitate the analysis, we
introduce the amplitudes eδe, eδv, eδπ, fδn, and fδV via

0B@
eδeðtÞeδπðtÞfδnðtÞ

1CA ¼ k
π

Z
2π=k

0

dz

0B@ δeðt; zÞ
δπðt; zÞ
δnðt; zÞ

1CA cosðkzÞ; ð210Þ

� eδvðtÞfδVðtÞ
�

¼ k
π

Z
2π=k

0

dz

�
δvðt; zÞ
δVðt; zÞ

�
sinðkzÞ: ð211Þ

The linearized equations (183) and (185) are then solved as
a set of ODEs by replacing

∂zðδe;δv;δπ;δn;δVÞ→kð− eδe; eδv;− eδπ;−fδn;fδVÞ: ð212Þ

Figure 2 shows the results obtained using the values of
lVπ ¼ −7βτR=20, 0, and βτR=4, as given by the DNMR

approach based on γð2Þ1 with N2 ¼ 2 (174), the basis-free
approach (173), and in Ref. [35], respectively. The numeri-
cal results are compared with the analytical prediction
(209), shown with dashed black lines. The small discrep-
ancies seen in panel (b) are due to the approximations made
in deriving Eq. (209). Additionally, we also show with the
solid red line the numerical solution of the Boltzmann
equation (1) with the Anderson-Witting collision model
(53), obtained as described in Ref. [38]. The basis-free and
RTA results are in excellent agreement, confirming that for
the RTA, lVπ ¼ 0.

VI. CONCLUSIONS

In this paper, we computed the transport coefficients of
second-order relativistic fluid dynamics from the relativ-
istic Boltzmann equation in the relaxation-time approxi-
mation (RTA) of the collision term.
Employing the method of moments, the irreducible

moments for a negative power of energy, the so-called
negative-order moments, are usually expressed in terms of
the ones with a non-negative power of energy using a kind
of completeness relation, which becomes exact in the limit
when the truncation order Nl → ∞. Focusing on the
14-dynamical moments approximation, we then considered
different approaches to relate the negative-order moments
ρμ1���μl−r to the zeroth-order ones: (i) the original DNMR

approach [33], which features the coefficients γðlÞr0 ,
cf. Eq. (45), (ii) a corrected DNMR approach [37], which

employs the coefficients ΓðlÞ
r0 of Eq. (47), (iii) a so-called

shifted-basis approach, which includes a certain set of
negative-order moments in the expansion basis,
cf. Eq. (52), and (iv) a basis-free approach tailored to
the RTA, cf. Eq. (64).
The shifted-basis approach acknowledges the impor-

tance of the negative-order moments by including them
explicitly in the expansion basis. The magnitude of the
shifts sl for the irreducible moments of tensor rank l are
defined by the lowest-order moment ρμ1���μl−sl , which must be
explicitly accounted for in the expansion. Setting sl ¼ 2
for the m0 > 0 case and sl ¼ l when m0 ¼ 0 leads to
perfect agreement with the basis-free approach.
Furthermore, we checked our results for consistency by

employing the Chapman-Enskog approach presented in
Ref. [18]. Using the properties of the RTA collision model,
we showed that the Chapman-Enskog method and the
method of moments are equivalent up to second order. We
also showed that the discrepancies reported in Refs. [34,35]
are due to the omission of second-order contributions in
these latter references.
In the context of an ultrarelativistic ideal gas, we

computed γðlÞr0 and ΓðlÞ
r0 explicitly for l ¼ 1, 2 and

r ¼ 1; 2. We showed that γðlÞr0 and all transport coefficients

(a)

(b)

FIG. 2. Time evolution of −ṼdðtÞ=δP0 for the initial conditions
in Eq. (198). The numerical solutions of the linearized equa-
tions (183) and (185) are shown using lines and symbols for
various values of lVπ . The dashed black lines show their
approximate analytical solution given in Eq. (209). The numeri-
cal solution of the Boltzmann equation in RTA is shown with the
solid red line. All results are obtained for kτR ¼ 0.1 (a) and 0.25
(b), and we considered δP0=P0 ¼ 10−3.
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that depend on it, i.e., lVπ , τVπ , λVπ , as well as δπB, δVB,
δVπE, diverge with the truncation order Nl. Even though the

coefficients ΓðlÞ
r0 also depend explicitly on Nl, they con-

verge towards the basis-free results when Nl → ∞.
Finally, we validated our results in the context of

longitudinal waves propagating through an ultrarelativistic
ideal gas. Our result lVπ ¼ 0 for the coefficient responsible
for the coupling to the shear-stress tensor in the equation for
the diffusion current is in perfect agreement with numerical
simulations of the RTA kinetic equation.
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APPENDIX: SECOND-ORDER
CHAPMAN-ENSKOG METHOD

Recalling the notation introduced in Refs. [34,35], the

distribution function is written as fk ¼ f0k þ δfð1Þk þ δfð2Þk .

The correction δfðiÞk is obtained as

δfðiÞk ¼
�
−
τR
Ek

kμ∂μ

�
i
f0k: ðA1Þ

Due to the expansion of the comoving derivative D ¼P∞
j¼0 ε

jDj in Eq. (71), it is clear that δfðiÞk contains
contributions of order i, iþ 1,…. This should be contrasted

with the expansion in Eq. (69), where εfð1Þk and ε2fð2Þk
contain solely terms of first and second order with respect to
ε, respectively; see Eqs. (75) and (76).
For example, using Eq. (A1) together with Eq. (71) to

compute δfð1Þk , it becomes clear that it can be written in

terms of εfð1Þk and higher-order contributions as

δfð1Þk ¼ εfð1Þk − τR
X∞
i¼1

εiDif0k

¼ εfð1Þk − ετRD1f0k þOðε3Þ; ðA2Þ

where we recall that τR is of the same order as the book-

keeping parameter ε. The second-order term δfð2Þk can be
obtained as

δfð2Þk ¼ ε2fð2Þk þ ετRD1f0k þOðε3Þ; ðA3Þ

where the second term on the right-hand side makes also a
second-order contribution, being explicitly given by

D1f0k ¼ f0kf̄0k½D1α − EkD1β − βkhμiD1uμ�: ðA4Þ

The discrepancy between the results derived in the
present paper and those reported in Refs. [34,35] arises

because the second-order contribution −ετRD1f0k to δfð1Þk
was neglected in these latter references. Due to this
omission, the resulting distribution function reads

f̂k ≡ f0k þ ðδfð1Þk þ ετRD1f0kÞ þ δfð2Þk þOðε3Þ
¼ fk þ ετRD1f0k þOðε3Þ; ðA5Þ

where fk ¼ f0k þ εfð1Þk þ ε2fð2Þk þOðε3Þ. In the above
and henceforth, we use an overhead hat f̂k to denote
quantities that arise when the −ετRD1f0k term is omitted

from δfð1Þk , as considered in Refs. [34,35]. Using Eqs. (79)

and (80) with fðiÞk and f̂ðiÞk , we can evaluate the difference
ρμ1���μlr − ρ̂μ1���μlr at second order as

ρμ1���μlr − ρ̂μ1���μlr ≃ −ετR
Z

dKEr
kk

hμ1 � � � kμliD1f0k: ðA6Þ

In the case of the scalar moments, we find

ρ0 − ρ̂0 ¼ −τR
G20

D20

ðΠθ − πμνσμνÞ

− τR
G30

D20

ðVμ _uμ −∇μVμÞ þOðε3Þ; ðA7Þ

ρ1 − ρ̂1 ¼ −τRðVμ _uμ −∇μVμÞ þOðε3Þ; ðA8Þ

ρ2 − ρ̂2 ¼ τRðΠθ − πμνσμνÞ þOðε3Þ; ðA9Þ

where (74) was employed to replace D1α and D1β. Since
ρ1 ¼ ρ2 ¼ 0 according to Eqs. (11) and (12), it can be seen
that ρ̂1 and ρ̂2 will in general not vanish. By the same
reason, a nonvanishing energy-momentum flow Wμ ¼ ρμ1
appears,

TRANSPORT COEFFICIENTS OF SECOND-ORDER … PHYS. REV. D 106, 076005 (2022)

076005-21



ρμ1 − ρ̂μ1 ¼ −τRð∇μΠ − Δμ
α∇βπ

αβ − Π _uμ þ πμν _uνÞ þOðε3Þ:
ðA10Þ

Equations (A8)–(A10) show that due to second-order
inconsistencies, the Landau matching conditions (11),
(12) and the Landau frame (10) are no longer satisfied,
hence violating the conservation of particle number and
energy-momentum in the RTA.
The dissipative quantities also show discrepancies,

Π − Π̂ ¼ τRn
βD20

ðhJ10 − J20ÞðΠθ − πμνσμνÞ

þ τRn
βD20

ðhJ20 − J30ÞðVμ _uμ −∇μVμÞ þOðε3Þ;

ðA11Þ

Vμ− V̂μ¼−
τR
h
ð∇μΠ−Δμ

α∇βπ
αβ−Π _uμþπμν _uνÞþOðε3Þ;

ðA12Þ

while πμν − π̂μν ¼ Oðε3Þ. From the above relations, it can
be seen that the transport coefficients δΠΠ, λΠπ , τΠV , lΠV ,
lVΠ, lVπ , τVΠ, and τVπ are modified as follows:

�
δΠΠ

λΠπ

�
¼

�
δ̂ΠΠ

λ̂Ππ

�
−

τRn
βD20

ðhJ10 − J20Þ; ðA13Þ

�
τΠV

−lΠV

�
¼

�
τ̂ΠV

−l̂ΠV

�
−

τRn
βD20

ðhJ20 − J30Þ; ðA14Þ

0BBBBB@
lVΠ

lVπ

τVΠ

τVπ

1CCCCCA ¼

0BBBBB@
l̂VΠ

l̂Vπ

τ̂VΠ

τ̂Vπ

1CCCCCAþ τR
h
: ðA15Þ
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namique des fluides relativistes dissipatifs. I.—L’équation
de Boltzmann relativiste, Ann. I. H. P.: Phys. Theor. 10, 67
(1969).

[26] J. L. Anderson and H. R. Witting, A relativistic relaxation-
time for the Boltzmann equation, Physica 74, 466 (1974).

[27] W. Florkowski, R. Ryblewski, and M. Strickland, Testing
viscous and anisotropic hydrodynamics in an exactly
solvable case, Phys. Rev. C 88, 024903 (2013).

[28] W. Florkowski, E. Maksymiuk, R. Ryblewski, and M.
Strickland, Exact solution of the (0þ 1)-dimensional Boltz-
mann equation for a massive gas, Phys. Rev. C 89, 054908
(2014).

[29] G. S. Denicol, U. Heinz, M. Martinez, J. Noronha, and M.
Strickland, New Exact Solution of the Relativistic Boltz-
mann Equation and its Hydrodynamic Limit, Phys. Rev.
Lett. 113, 202301 (2014).

[30] D. Bazow, G. S. Denicol, U. Heinz, M. Martinez, and J.
Noronha, Analytic Solution of the Boltzmann Equation in
an Expanding System, Phys. Rev. Lett. 116, 022301 (2016).

[31] G. S. Denicol and J. Noronha, Hydrodynamic attractor and
the fate of perturbative expansions in Gubser flow, Phys.
Rev. D 99, 116004 (2019).

[32] M. McNelis, D. Bazow, and U. Heinz, Anisotropic fluid
dynamical simulations of heavy-ion collisions, Comput.
Phys. Commun. 267, 108077 (2021).

[33] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke,
Derivation of transient relativistic fluid dynamics from the
boltzmann equation, Phys. Rev. D 85, 114047 (2012).

[34] A. Jaiswal, Relativistic dissipative hydrodynamics from
kinetic theory with relaxation time approximation, Phys.
Rev. C 87, 051901 (2013).

[35] A. K. Panda, A. Dash, R. Biswas, and V. Roy, Relativistic
non-resistive viscous magnetohydrodynamics from the ki-
netic theory: A relaxation time approach, J. High Energy
Phys. 03 (2021) 216.

[36] A. K. Panda, A. Dash, R. Biswas, and V. Roy, Relativistic
resistive dissipative magnetohydrodynamics from the
relaxation time approximation, Phys. Rev. D 104, 054004
(2021).

[37] D. Wagner, A. Palermo, and V. E. Ambruş, Inverse-Reyn-
olds-dominance approach to transient fluid dynamics, Phys.
Rev. D 106, 016013 (2022).

[38] V. E. Ambruş, Transport coefficients in ultrarelativistic
kinetic theory, Phys. Rev. C 97, 024914 (2018).

[39] F. Jüttner, Das maxwellsche gesetz der geschwindigkeits-
verteilung in der relativtheorie, Ann. Phys. (N.Y.) 339, 856
(1911).

[40] L. Landau and E. M. Lifshitz, Fluid Dynamics, 2nd ed.
(Butterworth-Heinemann, London, 1987).

[41] K. S. Thorne, Relativistic radiative transfer: Moment for-
malisms, Mon. Not. R. Astron. Soc. 194, 439 (1981).

[42] H. Struchtrup, Projected moments in relativistic kinetic
theory, Physica (Amsterdam) 253A, 555 (1998).

[43] B. C. Eu, Kinetic Theory of Nonequilibrium Ensembles,
Irreversible Thermodynamics, and Generalized Hydrody-
namics, Volume 2. Relativistic Theories (Springer,
New York, 2016).

[44] E. Molnár, H. Niemi, G. S. Denicol, and D. H. Rischke,
On the relative importance of second-order terms in relati-
vistic dissipative fluid dynamics, Phys. Rev. D 89, 074010
(2014).

[45] J. A. Fotakis, E. Molnár, H. Niemi, C. Greiner, and D. H.
Rischke, Multicomponent relativistic dissipative fluid dy-
namics from the Boltzmann equation, Phys. Rev. D 106,
036009 (2022).

[46] S. Mitra, Relativistic hydrodynamics with momentum
dependent relaxation time, Phys. Rev. C 103, 014905
(2021).

[47] G. S. Denicol, X.-G. Huang, E. Molnár, G. M. Monteiro, M.
Gustavo, H. Niemi, J. Noronha, D. H. Rischke, and Q.
Wang, Non-resistive dissipative magnetohydrodynamics
from the Boltzmann equation in the 14-moment approxi-
mation, Phys. Rev. D 98, 076009 (2018).

[48] G. S. Denicol, E. Molnár, H. Niemi, and D. H. Rischke,
Resistive dissipative magnetohydrodynamics from the
Boltzmann-Vlasov equation, Phys. Rev. D 99, 056017
(2019).

[49] F. W. Olver, D.W. Lozier, R. F. Boisvert, and C.W. Clark,
NIST Handbook of Mathematical Functions Hardback
and CD-ROM (Cambridge University Press, Cambridge,
England, 2010).

[50] A. Jaiswal, B. Friman, and K. Redlich, Relativistic second-
order dissipative hydrodynamics at finite chemical potential,
Phys. Lett. B 751, 548 (2015).

TRANSPORT COEFFICIENTS OF SECOND-ORDER … PHYS. REV. D 106, 076005 (2022)

076005-23

https://doi.org/10.1002/cpa.3160020403
https://doi.org/10.1002/cpa.3160020403
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1103/PhysRevC.88.024903
https://doi.org/10.1103/PhysRevC.89.054908
https://doi.org/10.1103/PhysRevC.89.054908
https://doi.org/10.1103/PhysRevLett.113.202301
https://doi.org/10.1103/PhysRevLett.113.202301
https://doi.org/10.1103/PhysRevLett.116.022301
https://doi.org/10.1103/PhysRevD.99.116004
https://doi.org/10.1103/PhysRevD.99.116004
https://doi.org/10.1016/j.cpc.2021.108077
https://doi.org/10.1016/j.cpc.2021.108077
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevC.87.051901
https://doi.org/10.1103/PhysRevC.87.051901
https://doi.org/10.1007/JHEP03(2021)216
https://doi.org/10.1007/JHEP03(2021)216
https://doi.org/10.1103/PhysRevD.104.054004
https://doi.org/10.1103/PhysRevD.104.054004
https://doi.org/10.1103/PhysRevD.106.016013
https://doi.org/10.1103/PhysRevD.106.016013
https://doi.org/10.1103/PhysRevC.97.024914
https://doi.org/10.1002/andp.19113390503
https://doi.org/10.1002/andp.19113390503
https://doi.org/10.1093/mnras/194.2.439
https://doi.org/10.1016/S0378-4371(98)00037-5
https://doi.org/10.1103/PhysRevD.89.074010
https://doi.org/10.1103/PhysRevD.89.074010
https://doi.org/10.1103/PhysRevD.106.036009
https://doi.org/10.1103/PhysRevD.106.036009
https://doi.org/10.1103/PhysRevC.103.014905
https://doi.org/10.1103/PhysRevC.103.014905
https://doi.org/10.1103/PhysRevD.98.076009
https://doi.org/10.1103/PhysRevD.99.056017
https://doi.org/10.1103/PhysRevD.99.056017
https://doi.org/10.1016/j.physletb.2015.11.018

