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We derive the transport coefficients of second-order fluid dynamics with 14 dynamical moments using the
method of moments and the Chapman-Enskog method in the relaxation-time approximation for the collision
integral of the relativistic Boltzmann equation. Contrary to results previously reported in the literature, we
find that the second-order transport coefficients derived using the two methods are in perfect agreement.
Furthermore, we show that, unlike in the case of binary hard-sphere interactions, the diffusion-shear coupling
coefficients £y, Ay,, and 7y, actually diverge in some approximations when the expansion order N, — 0.
Here we show how to circumvent such a problem in multiple ways, recovering the correct transport
coefficients of second-order fluid dynamics with 14 dynamical moments. We also validate our results for the
diffusion-shear coupling by comparison to a numerical solution of the Boltzmann equation for the
propagation of sound waves in an ultrarelativistic ideal gas.
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I. INTRODUCTION

Relativistic second-order fluid dynamics has become an
essential tool in the description of the space-time evolution
of high-energy phenomena, ranging from astrophysical
systems like accretion flows [1], stellar collapse, gamma-
ray bursts, and relativistic jets [2-5], to cosmology [6]
and relativistic nuclear collisions at BNL-RHIC and
CERN-LHC [7-12]. The space-time evolution of such
systems and the interactions among their constituents are
characterized not only in terms of an equation of state, but
also by nonequilibrium transport processes.

The conservation equations 9,N* = 9, 7" =0 for the
particle four-current N* and the energy-momentum tensor
T# provide 144 =5 equations. For ideal fluids, the
conservation laws govern the evolution of the equilibrium
degrees of freedom in N* and T**, which are identified as the
particle number density n, energy density e, and fluid four-
velocity u#, while the pressure is defined through an equation
of state, P = P(e, n). For dissipative fluids, the additional
3 + 6 = 9 degrees of freedom contained in N* and 7#* are the
bulk viscous pressure II, the particle diffusion current V¥,
and the shear-stress tensor #**. Together with the
equilibrium fields, these quantities define the so-called 74
dynamical moments approximation of relativistic fluid
dynamics.
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At first order in Knudsen number Kn, defined as the ratio
between the particle mean free path 4, and a characteristic
macroscopic length scale L, the dissipative quantities are
given by the asymptotic solutions of more general equa-
tions of motion, in a manner equivalent to the Navier-
Stokes equations. On the other hand, the inverse Reynolds
number Re™! characterizes the ratio of a dissipative to an
equilibrium quantity, e.g., [I1/P|, |V#/n|, and |z**/P|. In
the Navier-Stokes limit, the dissipative quantities, which
are of first order in Re™!, are algebraically related to the
thermodynamic forces, which are of first order in Kn. The
first-order transport coefficients relating them measure
different properties of matter, such as viscosity, diffusivity,
and thermal or electric conductivity. These are also found in
the well-known transport laws of Newton, Fick, and Ohm.

Starting from the seminal works of Miiller [13] and Israel
and Stewart [14], it became evident that, in relativistic fluid
dynamics, second-order equations are required in order to
preserve causality and stability [13—19]. When the irre-
ducible moments are expressed accurately up to second
order in Kn, Re™!, or their product, new cross-coupling
transport coefficients emerge in the transport equations. A
systematic derivation of all transport coefficients is possible
using an underlying microscopic theory, e.g., kinetic
theory.

© 2022 American Physical Society
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In the 1910’s, Chapman and Enskog proposed a pro-
cedure to derive the equations of fluid dynamics from the
Boltzmann equation [20,21]. While their method is suc-
cessful at first order, higher-order extensions yield unstable
equations, unless the dissipative quantities are promoted to
dynamical degrees of freedom [22]. These problems were
already recognized by Grad [23] in the late 1940’s and led
to a new framework known as the method of moments in
nonrelativistic kinetic theory.

Beyond the regime of applicability of relativistic fluid
dynamics (valid for small Kn and Re™'), kinetic theory
should be employed for the phase-space evolution of the
single-particle distribution function. Due to the momentum
degrees of freedom and the nonlinear collision term, kinetic
theory is computationally more expensive. In the early
1950’s, Bhatnagar, Gross, and Krook proposed the cel-
ebrated BGK relaxation-time approximation (RTA) for the
nonrelativistic Boltzmann equation [24]. The RTA paradigm
was extended to relativistic kinetic theory, first by Marle
[18,25] for massive particles and then by Anderson and
Witting [18,26] for both massive and massless particles. The
simplicity of the RTA allows us to derive analytical solutions
of the relativistic Boltzmann equation, e.g., for the Bjorken
[27,28], Gubser [29], and Hubble flows [30]. Such solutions
have served as benchmarks for testing the validity of the
equations of second-order fluid dynamics [27-32]. The
successful comparison between kinetic theory and fluid
dynamics relies on the correct implementation of the first-
and second-order transport coefficients, which is the topic of
the present work.

In this paper we rederive the transport coefficients arising
in the Anderson-Witting RTA for the linearized collision
term [26]. We adopt the method of moments as formulated
by Denicol, Niemi, Molndr, and Rischke (in the following
reluctantly referred to as DNMR) [33], as well as the second-
order Chapman-Enskog-like method introduced by Jaiswal
and others [34-36]. For the DNMR method, we actually
study three different variants, as explained in the following.

In the method of moments, the deviation dfy = fi — fok
of the single-particle distribution function f from local
equilibrium f is characterized in terms of its irreducible
moments p,'#. In the standard DNMR approach, &f}
is expanded in terms of an orthogonal basis taking
into account the irreducible moments py' "* of order
0 < r £ N,. This expansion becomes complete in the limit
N, — o0, but truncating it at some finite order N, yields an
approximation and not an exact representation of JfY.
Furthermore, the moments of negative order r < 0 are not
explicitly included in the expansion of dfy. They are
usually constructed in terms of those that are included in
this expansion, hence introducing an obvious dependence
on the truncation order N, that affects the second-order
transport coefficients explicitly.

In the simple case of an ultrarelativistic ideal gas, the
basis functions can be computed analytically to arbitrary

order. The coefficients y%) introduced in Ref. [33] con-
necting p2* to pij' " turn out to diverge when N, — oo.

This behavior can be traced back to O(Kn) contributions

that are not contained in y%). Taking the missing contri-

butions explicitly into account following Ref. [37] leads to

corrected coefficients F%), which still remain functions of

Ny, but are no longer divergent.

As a second approach to compute the transport coef-
ficients within the DNMR framework, we also consider the
so-called shifted-basis approach, i.e., an expansion of 5f)
where a shift s, is employed for the moments of tensor
rank #. This explicitly accounts for moments of order
—s, <r <N, in the expansion of &fy, such that the
representation of the negative-order moments with —s, <
r < 0 becomes independent of N,.

Finally, due to the simple structure of the RTA collision
term, the negative-order moments can be obtained directly
from the moment equations, without resorting to basis-
dependent representations. We refer to this third DNMR-
type method as the basis-free approach.

For completeness, we also employ the second-order
Chapman-Enskog method introduced in Ref. [34]. Our
results are in agreement with the N, — oo limit of those
obtained using the method of moments, but differ from
those reported in Refs. [34—-36], obtained using the second-
order Chapman-Enskog method. We point out that this
discrepancy is due to the omission of second-order con-
tributions, which we derive explicitly.

We provide further validation of our results for the RTA
by an explicit numerical example focusing on longitudinal
waves propagating through an ultrarelativistic ideal gas,
where the mixing of the shear and diffusion modes is
characterized by ¢y, So far, this second-order transport
coefficient was reported as ¢y, # 0. However, comparing
the numerical solution of the Boltzmann equation [38] and
the results of the second-order fluid-dynamical equations
confirms that, in RTA, ¢y, = 0.

This paper is organized as follows. We review the method
of moments applied to the relativistic Boltzmann equation in
Sec. II. In Sec. III, we derive the transport coefficients of
second-order fluid dynamics using the RTA for the collision
term. In Sec. IV, we calculate these transport coefficients for
an ultrarelativistic ideal gas and validate our results in Sec. V
by comparison with the numerical solution of the full
Boltzmann equation in RTA in the context of the propaga-
tion of longitudinal waves. Section VI concludes this paper
with a summary of our results.

In this paper we work in flat space-time with metric
tensor g, = diag(1,—1,—1,~1), and adopt natural units
h = ¢ = kg = 1. The fluid-flow four-velocity u* = y(1,v)
is timelike and normalized, w"u, =1, such that
y = (1 —v?)71/2, The local rest frame (LRF) of the fluid
is defined by ufgr = (1,0). The rank-two projection
operator onto the three-space orthogonal to u* is
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defined as A = ¢*¥ — u”u”. The symmetric, traceless, and
orthogonal projection tensors of rank 27, AL,
are constructed using rank-two projection operators.
The projection of tensors A#1"# is denoted as
Alrne) = ARTE Avve,

The comoving derivative D =u*d, of a quantity
A is denoted by A = DA = u*d,A, while the gradient
operator is denoted by V,A = A%J,A. Therefore, the
four-gradient is decomposed as 9, = u,D +V,, hence
O, u, = u,it, + V,u, = u,it, +30A,, +0,, + w,,, where
0= V”u” is the expansion scalar, " = Viyy) =
L(VRuY + VVut) —1OA is the shear tensor, and o =
1(VFur = V¥u#) is the vorticity.

The four-momentum k* = (k°, k) of particles is nor-
malized to their rest mass, k“k, =mj, where k°=

/k? + m} is the on shell energy of particles. We define
the energy variable Ey = k*u, and the projected momen-
tum k% = ALk, such that k¥ = Eu* + k). In the LRF,
Ey =k is the energy and k¥ = (0,k) is the three-
momentum.

Integrals over momentum space are abbreviated with
angular brackets, (--)= [dK--fy, (---)g= [dK - fox
and (--)s= [dK---5fy. Here, dK = gd°k /[(27)*k°] is
the invariant measure in momentum space and g is the
degeneracy factor of a momentum state.

II. METHOD OF MOMENTS

In this section, we recall the method of moments
introduced in Ref. [33]. In Sec. II A, the equations of motion
for the irreducible moments are presented. The expansion of
Of 1s discussed in Sec. II B, extending the standard DNMR
approach of Ref. [33] to explicitly contain moments with
negative indices by using a shifted orthogonal basis. The
power-counting scheme required to close the system of
equations of motion for the irreducible moments is discussed
for the standard approach and the shifted-basis approach in
Secs. II C and II D, respectively.

A. Equations of motion for the irreducible moments

The relativistic Boltzmann equation [15,18] for the
single-particle distribution function f) reads

k0, fx = Cf]. (1)

where C[f] is the collision term. Local equilibrium is
defined by C[f,] =0, which is fulfilled by the Jiittner
distribution [39],

)

with a = pff, where u is the chemical potential and f =
1/T the inverse temperature, while a = 41 for fermions/

fox = [exp (BEx —a) +a]™",

bosons and a — 0 for Boltzmann particles. We also
introduce the notation fo, = 1 — afok.

In local equilibrium, the particle four-current Njj = (k*),,
and the energy-momentum tensor 7" = (k*k*), of the fluid
are

N = nu#, Ty = euw'u” — PA*. (3)
The tensor projections of these quantities represent the
particle density, energy density, and isotropic pressure,

n= N’Suﬂ = <Ek>0’ e = Tl(;yuyuv = <Ei>0’

1w 1 )
P= 2T, = =3 (A, 0K, (4)

3
where the pressure is related to energy and particle density
through an equation of state, P = P(e,n) = P(a, ).

The irreducible moments of §f) are defined as
Pl = <E§k<”1 ...kmw>>5, (5)
where r denotes the power of energy E) and k1 - - k#) =
ADVDkM - kv are the irreducible tensors forming an
orthogonal basis [15,33].

The out-of-equilibrium particle four-current and energy-
momentum tensor are defined as

Nt = (k) = (k') + (k)5 = (n+ p)u' + V¥, (6)
T = () = (R + (KR,
= (e +pr)u'u’ — (P + IT)A* + ZpE”u”) + v, (7)

where the particle diffusion four-current and the shear-
stress tensor are defined by

(8)
)
In the Landau frame [40], the fluid flow velocity is

determined as the timelike eigenvector of the energy-
momentum tensor, eu* = T"u,, such that

VH = ALN® = (kW) s = ph,

= NETP = (kW) = ppy’

P = AT Puy = (ExkW) s = 0. (10)

Furthermore, in order to determine the chemical potential
and the temperature, we apply the Landau matching
conditions [26],

p1 = (N* = No)u, = (Ex)s = 0. (11)
pr = (T = T Ju,u, = (Eg)s =0, (12)

such that the bulk viscous pressure can be obtained as
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| 1 ) m . 0, G3
M= (P~ T )0 == (B KK =0, (13) o= Cror = a0+ T 0,V =V, iy
. . . . o , Gy,

The comoving derivative of the irreducible moments, + 3 mg(r—1)p, o — (r+2)p, -3 D IT
p<” ) = = A Dpyt", is derived from the Boltzmann 20
equation (1), leading to an infinite set of coupled equations + [(r D, + G, ﬂﬂu} P (14)
of motion. For the sake of completeness we recall these "2 Dy "
equations of motion up to rank 2; see Eqs. (35)—(46) in
Ref. [33],

|
. U . 1
pl =¥ = al'Vra + i, — —V"(m(z)ﬂr 1= Pra1) = Da(Vop ) + aton®)
1
+ g [m%(r - l)pl: (}" + 3)/0"]9 +z 5 Gﬂy[zm (r - l)pr—Q,v - (2)” + 3)pr,u]
1
+ 3 [m3rp,_1 — (r+3)p,1 = 3]t + o VI + p, 0 + (r = 1) r_zo'm (15)
and
o (Ur v 2 4
= cltl = 2aom S mi(r = 1)p, 5 = mi(2r 4 3)p, + (r+ 4)p )0 + 20" a]
+ 22 = (4 5] = 2V, — ) S (r = 1), — (r + 4)pt0
3 0"Pr-1 Pri1l =3 0Pr=1 = Pre1) T3 M Pr-2 Pr
2’ v vy - Q VAK
+ 5 2m(r = 0)pYy = (2r + )16 + )i, = NG+ (= D)o (16)
where the irreducible moments of the collision term are Gum = 309 m0 = In-1.0dms1.00 (23)
— )
C(ﬂll “He) — /dKElr(—lell . kﬂf>c[f] (]7) an - Jn-‘rl,q«]n—l,q an. (24)

In the above, a = —f3J,,,/(nh), where the enthalpy per
particle is h = (e + P)/n, while

(XgO):(l_r)lrl_IrO_%ULGW_Gy)’ (18)
J
o) = g1 — o2l (19)
h
o = Loy +(r=110,. (20)

The primary and auxiliary thermodynamic integrals,
I,(a, p) and J,,,(a, f3), respectively, are defined as

o (_l)q n=2q ( A aff q
Iy *W@k (A% kykp)) s (21)
oI,
‘]nq = a9 1 = ﬂ_l[ln—l,q—l + (n - 2‘1>1n—l,q]- (22)
g

Furthermore, in the above equations, we also introduced the
functions,

The conservation of particle number d,N* = 0, energy

u,d,T" = 0, and momentum AgdaT“ﬂ = 0 can be written
in the form,
n+nd+ 9,V =0, (25)
é+(e+P+1)0 -6, =0, (26)
(e+P+1IDa* = VH(P+ 1) + A*0,7x% =0.  (27)

In order to solve these equations, we have to provide
equations of motion for the dissipative quantities I1, V¥,
and 7#*. In the next sections, we will show how to obtain
them from Eqgs. (14)—(16) based on different series expan-
sions and approximations.

B. Expansion of the distribution function
in momentum space

The equations of motion for the primary dissipative
quantities py = —3I1/m3, pj = V¥, and pj’ =" also
include negative-order moments p/''**. From the right-
hand sides of Egs. (14)-(16) (for r = 0) we observe that
these are
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p—Zap—lﬂaliZ’plilvpliyZ’plivl‘ (28)

Note that these equations formally also involve the
moments p;, p,, and p’f , which, however, vanish due to
the Landau matching conditions and the choice of the
Landau frame for the fluid velocity. Furthermore, there are
tensors of rank £ > 2. These are omitted in the following,
since they are of higher order in Knudsen and inverse
Reynolds number, pi**" ~ O(Kn2, Re~'Kn); see Ref. [33]
for a discussion.

Following the suggestions of Refs. [41-43] we consider
the expansion of dfy = fix — fox With respect to a com-
plete and orthogonal basis,

(] Nf"rS/’
8fw = foufox Y D> Phit By k- K, >an), (29)
=0 n=0

where the factor E** allows the expansion to contain
moments with negative energy index, hence naturally
accounting for all moments p}'"* with —s, < r < N,.
In general, N, and the shift s, can be set to different values
for each tensor rank .

We note that Eq. (29) generalizes the expansion of
Ref. [33], recovering it when s, = 0. In the above and in
what follows, we use an overhead tilde ~ to denote
quantities which differ from the ones introduced in
Ref. [33]. When discussing the s, = O case, all overhead

~ 5,=0
tildes will be dropped, A IS A.
The coefficient ﬂl(fn) is a polynomial in energy of order
N, 7 +s s

ﬂ(f) B (_l)f No+sg

~(0) p(¢)
n - amnP m 30
K ONop_ss, e 5= K (30
where
P =" anlE; (31)
r=0

is a polynomial of order m in energy. The Zzﬁ,,f,z coefficients

are obtained through the Gram-Schmidt procedure impos-
ing the following orthogonality condition:

/ dKa )PP — 5, (32)

where the weight @) is defined as

(@) (1" B e 7
o\ = A%k k . 33
2r+ 1)”J2f—2sff( akp) fofox-  (33)
If N, — oo, the expansion (29) is exact. A finite
N, + s, < oo defines a truncation, i.e., the set of irreduc-
ible moments p)' ", —s, < r < N, used to approximate

5f%. Consequently, we must be able to recover any p)' "/
contained in this set from this particular truncation of Jf).
In order to see this, we define the function

~ (¢ ~ r~ 4
FU\ = (<1 nns, v / K\ B

N ST ki, (&) ~(£)
Z Z Amndmg- (34)
m=n q— JZf 2500

Then, using Egs. (5) and (29), any irreducible moment with
tensor-rank £ and of arbitrary order r can be expressed as a
linear combination of the rank-Z moments appearing in the
expansion (29),

NZKW (*)

- MMy T

pir sp Pn—s¢ ‘7:¢V,ﬂ
n=0

Z p‘l;l WF:Frnanf +Z o W]::FrnJrs,’ (35)

n=—s,

For indices satisfying 0 < i, j < N, + s,, we have j:(j)j =

0;; by construction; hence Eq. (35) reduces to an identity.

On the other hand, for any r > 0, the moments p”,.”5 and

p’;,‘ +”r’ , which are not contained in the expansion (29), can
be expressed in terms of a sum over those moments which
do appear in Eq. (29).

The shifts s, introduced in Eq. (29) are in principle
arbitrary. However, note that in the massless case infrared
divergences can appear due to negative powers of energy
E.*. In order to avoid these, the maximum possible value

of the shift is given by

sP™ =¢, when my =0. (36)
This corresponds to the orthogonal basis 1, v,
plpi) oyl gke) of Ref. [43], where
(u) H
oo = KR (37)
Ey  Ex
while the generalization to rank-£ tensors reads
plr kel = ExfkU .. k#e) This velocity-based ortho-

gonal basis is also convenient for calculating the non-
relativistic limits of the moments [43].

Finally, in the case of finite particle mass, the negative-
order moments appearing in Eq. (28) can be included in
Eq. (29) using the following parameters:

Sop =81 = 8 = 2, when mey > 0. (38)

076005-5



AMBRUS, MOLNAR, and RISCHKE

PHYS. REV. D 106, 076005 (2022)

C. Power counting in the standard DNMR approach

One can show [33] that in the case of binary collisions
the linearized collision integral reads

Ny+s,p
ﬂl He) _ Z Arn S{pﬁl 'S'fﬁlf’ (39)
where —s, <r < N,. In the above A ~ Al mip is the
collision matrix while its inverse 'rm = (A7l is related

to microscopic time scales proportional to the mean free
time between collisions.

This introduces a natural power-counting scheme in
terms of Kn and Re™!, allowing second-order fluid dynam-
ics to be derived systematically from the equations of
motion for the irreducible moments. In particular, we will
apply this power-counting scheme also to the negative-
order moments.

As stated before, the equations of motion for the
dissipative quantities follow from Eqgs. (14)—(16) by choos-
ing r=20, ie., the lowest-order irreducible moments
appearing in Egs. (6) and (7). In this way, these moments
are chosen to be dynamical; i.e., they represent the solution
of the corresponding partial differential equations.
However, since we are dealing with an infinite hierarchy
of moment equations, we are also obliged to determine the
remaining moments with r # 0.

Following Ref. [33] the moment equations for 0 < r <
N, are approximated by their asymptotic solutions as

3 0 3 0
Prs0 = _—ZQS‘O)H—F—Z({r —950)50)9, (40)
my my
Py QU Vit (k, - QK Vi, (41)
Q( ) n 2 _ 9(2) n 42
Pt = Q0 +2(n, — Qg 'ng)o™, (42)

where the first-order transport coefficients ¢, k,, and #, are

m2 Mo o) (o
CrE?O S el

n=0,#1,2

N,
r= g rn an s
n=0,#

Ny
0= Z T&i)a,(lz). (43)
n=0

Here Q%) diagonalizes the collision matrix AS? via

Q)1 AY) dlag(;( )(1 .. x;fj) where with-
out loss of generality the eigenvalues are ordered as ;((()f) <

. < )(Svi) and Qg{;) = 1 by convention.

We would like to point out that in the calculations of
Refs. [33 441 expressions for the moments of negative
order p";*" were used which neglect terms of order
O(Kn). These are obtained by substituting only the first

terms from the right-hand sides of Egs. (40)—(42) into
Eq. (35), leading to

3
por =5y T+ O(Kn),

2
0
PV O(Kn), ey + O(Kn). (44)

where the coefficients are

9= 3 Aal,
n=0,#1,2

0 S (g0 0 = @60

7o = Y FrnlQy. o =D FulQy.  (45)
n=0,#1 n=0

However, the neglected O(Kn) contributions to Eq. (44)
explicitly affect the results for the transport coefficients. For
instance, in Sec. IV, we show by an explicit calculation that,
in the case of an ultrarelativistic ideal gas in the RTA, all
y%) coefficients actually diverge when N, — co. On the
other hand, taking the O(Kn) contributions into account as
described below, the modified coefficients will remain
finite in this limit.

In order to account for the neglected O(Kn) terms, one
first substitutes all terms from Eqgs. (40)—(42) into Eq. (35);
see Ref. [37]. Then, one replaces the thermodynamic
forces using the Navier-Stokes relations 6 = —I1/{,,
Via = V¥ [k, and o = 7"/ (2n,). We note that this
replacement is a matter of choice. If we did not do this
and just kept the terms as they appear, we would obtain
corrections to the transport coefficients of the O(Kn?) terms
computed in Ref. [44], while the other transport coefficients
would not change as compared to their DNMR values.
However, in Sec. V we will see by comparison to the
numerical solution of the Boltzmann equation in RTA that
the approach described above leads to a better agreement
with the latter, which justifies this procedure. Ultimately,
this leads to a cancellation of the first and third terms on the
right-hand sides of Egs. (40)—(42), such that

3
P—r= __F(r())rI

v (2)
pP-r= IirO ﬂm/’
mo

ply =g v
(46)
where the corrected DNMR coefficients are

Ny

F,g) = frn é!
n=0,%#1,2 €o
) _ NS K 0) _ N~ 2N
ry= Fdl =, Lo =)Y Fol—. (47)
0 n;ﬁél Ko 0 n=0 Mo

Recently a different approximation was suggested in
Ref. [37], called Inverse Reynolds Dominance (IReD). This

076005-6



TRANSPORT COEFFICIENTS OF SECOND-ORDER ...

PHYS. REV. D 106, 076005 (2022)

is based on a power counting without the diagonalization
procedure, i.e., without involving Egs. (40)-(42) as an
intermediate step, but explicitly assuming that the non-

dynamical moments are approximated by
3 Cr Kr v rll‘
Proo———T1,  pl ==t VH o YL, 48
r> m(z) gO >0 Ko >0 o ( )

Substituting these approximated values into Eq. (35) also
leads to the corrected DNMR results of Egs. (46) and (47).
Note that similar approaches made in nonrelativistic [22] as
well as in multicomponent relativistic fluid dynamics [45]
are known as the order-of-magnitude approximation.
Comparing Eqgs. (44) and (45) to Eqgs. (46) and (47), it
becomes clear that moments with negative order explicitly
depend on the value of the corresponding coefficients, i.e.,

y%) or F%). These approaches lead to transport coefficients

that explicitly depend on the truncation order N,, while
only the latter (corrected) approach achieves convergence
when N, — oco. In other words, the correct representation
of the negative-order moments relies on an expansion that
includes an infinite number of positive-order moments.

D. Power counting in the shifted-basis approach

Employing now the shifted-basis approach to explicitly
include negative-order moments in the expansion of §fy, as
discussed in Sec. II B, the relations (48) are generalized in a
straightforward manner to

3¢,
Pre—sy = — H’
= m(z)Co
K n
Proms = VI plEy, -t (49)
0 Mo

The first-order transport coefficients in Eq. (43) now
involve summations also over negative indices,

N,

2 0
m 0) (0
Z:rz—so = ?0 Z TE‘H)(XS; ),
n=-sy,#1,2
al 1 1 4 2 2
Kysos, = Z#l al ), Nyses, = Z D@, (50)
n=-=sy, n=—=s,

On the other hand, for any finite shift s, < oo, there are
always negative-order moments that cannot be accounted
for in the expansion (29). These moments can be computed
as follows. For r > 0, Eq. (46) can be generalized to yield

where

Ny é,
FO= N FO, o

r0 rntsy ¢ °
n=—so.#1.2 ’Co
1 - (1 K 2 2 . 2 n
fg= > Flu- Ti=> Fo" (62
n=-—s1,#1 Ko n=-s, o

As discussed in Eq. (38), setting s, = 2 allows the
negative-order moments in Eq. (28) to be expressed using
Eq. (49), without employing any N,-dependent I’ %)
coefficients; however an explicit N, dependence still
remains at the level of the first-order transport coefficients
in their definitions, Eq. (50). As it will become clear in the
next section, the transport coefficients obtained using
the shifted-basis approach will become independent of
the truncation order in the RTA.

III. TRANSIENT FLUID DYNAMICS IN THE
RELAXATION-TIME APPROXIMATION

We begin this section by discussing the Anderson-
Witting RTA in Sec. III A. The representation of nega-
tive-order moments in the basis-free and shifted-basis
approaches are presented in Secs. III B and III C, respec-
tively, while the Chapman-Enskog method is employed in
Sec. I D. The second-order transport coefficients for a
neutral fluid and the additional coefficients appearing in
magnetohydrodynamics of charged, but unpolarizable flu-
ids are reported in Secs. III E and III F, respectively.

A. The Anderson-Witting RTA

The Anderson-Witting RTA for the collision integral
reads [15,18,26]

C[f]E_E_<fk_f0k):_f_:5fkv (53)

K

TR
where the relaxation time 7z = 7x(x*) is a momentum-
independent parameter proportional to the mean free time

between collisions. Substituting the above expression into
Eq. (17) leads to

(54)

r—1

C(m--w) _ _ipl;l"'/‘f‘
TR

The matrices A(rf;), 1%), and Qgi) corresponding to the

collision term (54) are diagonal,'

A2 o

o) =148, QY =s5,. (55

"The columns of Q%) can be permuted arbitrarily, since all of

the eigenvalues ;(ﬁf)

For the sake of simplicity, we choose ol

of the collision matrix A are equal to 7.

) to be diagonal.

076005-7



AMBRUS, MOLNAR, and RISCHKE

PHYS. REV. D 106, 076005 (2022)

Using these results in Eqs. (14)—(16) and multiplying both
sides by 7 gives

TRle +pr= TRaS’())e + O(RC_IKH), (56)
wept! +pl = 1pat ' VFa + O(Re'Kn),  (57)

TRbﬁ’"’) + pﬁ”w = 21Ra52)6”” + O(Re™'Kn), (58)
where the higher-order terms on the right-hand sides of
Egs. (14)—(16) were abbreviated by O(Re~'Kn) for the
sake of simplicity. This implies that all irreducible moments
in these terms are considered to be of order O(Re™!), in
accordance with our previous discussion.

We also point out that in the RTA all irreducible
moments have the same relaxation time, 7z, and hence
there is no natural ordering of the eigenvalues )(gf) of the
collision operator; e.g., see Sec. II C. Even so, since 7y is of
first order with respect to Kn, the second-order equations of
motion for I, V¥ and #** can still be obtained by replacing
all moments p)L"* by their first-order approximations, as
discussed in Secs. II C and II D.

The first-order transport coefficients from Eq. (43) are

2
¢, = TR@aﬁo), K, = TRagl), n, = TRa§2>. (59)

3

The DNMR coefficients (45) for the negative-order
moments reduce to

7o = Fuo- (60)

The coefficients (52) introduced in the shifted-basis
approach are

No
=(0 7(0 0
fo= > Fo Ry

n=—sy,#1,2
D NN 20 o) =0 ™ 20 )
Fr() = Z fr,nJr.\‘]RnO ’ Fr() = Z fr,n+S2Rn0’ (61)
n=—sy,#1 n=-s,

where we introduced

\Q

)

o)

a

R = (62)
The corrected DNMR coefficients corresponding to
Eq. (47) are obtained by setting s, = 0 in Eq. (61). ,

The second-order equations of motion for IT = —% P05
Vi =pl and 7 = pj’ follow after setting r =0 in
Eqgs. (56)—(58). Here, the positive-order moments vanish
by the Landau-matching conditions and the choice of the
Landau frame for the fluid velocity, while the negative-
order moments are only required up to first order, since they
are always multiplied by terms of order O(Kn).

B. Basis-free approach for the negative-order moments

A basis-free, first-order representation of the irreducible
moments can be obtained directly from Egs. (56)—(58),
Py zTRa£O>9, or :TRagl)V"a, o :ZTRaﬁz)a’”“, (63)
where all O(Re™'Kn) terms (including those of the type

2?7 were neglected. Expressing the thermodynamic

forces 8, V*a, and 6#* in terms of the r = 0 moments leads to

3 0
Pr#o = _m_%R o 11,

i

pf#o = RE? VE, pf:éo = R%)”’wa (64)
where we have used Eq. (62). When r > 0, employing Eq. (59)
the relations (64) are seen to be identical to the ones derived
using the so-called IReD or order-of-magnitude approaches,
shown in Eq. (49). Note that the relations (64) are valid for any
r, including r < 0, without having to calculate the negative-
order moments through sums over moments of the chosen
basis, such as those involved in computing y%> and F%), hence
leading to a direct basis-free approximation,

N 0) ~_ 3 R0
po - m_%R_l oIl P =— 2 R 0ML - (65)
1 1
poarYove =R e (66)
v 2 I v 2 v
P R(_f,oﬂ’ . e R(_z),o”” : (67)

C. Shifted-basis approach for the negative-order
moments

We now consider the representation of the moments in
the shifted-basis approach discussed in Sec. IID. For
—s, <r < N,, replacing the first-order transport coeffi-
cients in Eq. (49) by their RTA expression (59) reproduces
Eq. (64). The moments with r < —s, are still computed
using Eq. (51).

When the mass mq > 0 and s, = 2, the negative-order
moments from Eqs. (65)—(67) are identically reproduced. In
order to be able to apply the matching conditions
pL=p,=p{ =0, we have to make sure that these
moments are included in the basis. Thus, the truncation
orders must satisfy

Ny > 2, N >1, N, > 0. (68)
The smallest basis required to recover the RTA transport
coefficients comprises (Ng+so+ 1) x 14+ (N; + 51+
1) x3+ (Ny+s,+ 1) x5=232 moments. Accounting
also for n, e, and u”, there are a total of 37 degrees of
freedom, but enforcing the matching conditions, this
number is again brought down to 32.
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In the case m = 0, inspection of the equations of motion
(14)—(16) for r = 0 reveals that only the negative-order
moments p*,, p/, and p", appear, which are perfectly
compatible with the largest possible shift s, = Z. In this
case, the smallest basis required to recover the RTA
transport coefficients comprises 3 x 1 +3x34+3 x5 =
27 moments. The total number of degrees of freedom is
then 32 (including n, e, and »*). This number is reduced by
5 due to the matching conditions and furthermore by 1,
since the bulk viscous pressure vanishes for ultrarelativistic
particles.

D. Chapman-Enskog method

In this section, we employ the Chapman-Enskog method
following Sec. 5.5 of Ref. [18] and establish the connection
with the method of moments employed in this paper. The
power-counting scheme is performed with respect to a
parameter € ~ 75/L ~ O(Kn) formally identified with the
Knudsen number, such that

(kasz_fOk:€f1((1>+82f5(2)+"'7 (69)
while f\”) = fo is the equilibrium distribution.

The collision term is assumed to be of order O(e7!),
which is implemented in the RTA model by taking 7z /e to
be of zeroth order with respect to e. The Boltzmann
equation (1) in RTA, Eq. (53), is then expanded as, cf.
also Eq. (28) of Ref. [26],

0

> el (K, fi
0

E
- E'kzlka*l’ (70)

i—1
J2o J30 { {
Da= (10— 0u] == |V, VY, V¥ Du
J Dzo[ wl = Dy | * U ; (=) 71 m
VHT ALV o7 j-1
B
D.u' = —yDiut — zr””
i e+P e—f—P; i

The first- and second-order corrections to fq, follow
from Eq. (70),

VoSO 4+ E DoY), (75)
22 = —e R kwv #V 4 B Do + EcD1fY). (76)

We now seek to reproduce the equation

5fx = —fox — E 'k, VY fox — Ex'k, VY6 f + EZ'CIf],
(77)

to be
obtained in terms of the lower-order terms ff? with
0 < j <i. The index i of the expansion order takes into
account the expansion of the comoving derivative,
D =u"d, = ) %,¢€ D, such that the ith order contribu-
tion to the left-hand side of Eq. (70) reads

leading to an iterative procedure allowing f]((iﬂ)

VY A ES DT (1)

J=0

(kllaﬂfk)<i> = kW

The operator D; is introduced at the level of the thermo-
dynamic variables «, 8, and u* via

DazZeija, D[J’ZZEjDJﬁ,
=0 =0

Dut = Zeiju", (72)
=0

where the zeroth-order terms are

né né

Dya = Fm(hfzo - J30)s Dyf = Do (hd 1o = Ja0),
VHP
Do = ——— &
ok e+ P 73)

while for j > 0,

_Jo

—=[;6- ﬂ””
Dy

Jao L
wl=p | VeVl = 2 Vi Pittu]
Do i=0

(74)

I
which follows directly from the Boltzmann equation (1)
[see Eq. (34) in Ref. [33]]. At leading order, the left-hand

side is o fk ~eD, ff(l), while the terms on the right-hand
side can be approximated via

Clf]

: 0 0
fOk:DOfE{)“'SDIfE()’ B
K

£ 1 2
= —— (i +erd).
TR
(78)
Employing Egs. (75) and (76), it can be seen that Eq. (77) is

recovered up to order O(e!). Since the moment equa-
tions (14)—(16) are derived from Eq. (77), the expressions
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in Egs. (75) and (76) will lead to the same equations, up to
first order in e. Upon multiplication with 7, this is
sufficient to derive the second-order equations of
fluid dynamics. We note that the above conclusion
was also established in Ref. [46] for the tensor
moments (£ = 2).

The irreducible moments p}' " of §f are written as

ﬂl He i 141 ,“/’ (79)

A :/dKEﬂkm, cgee) £ (80)

The first-order contribution to the irreducible moments can

be obtained using ff(l) derived in Eq. (75), which can be
written in explicit form by computing the comoving
derivatives using Eq. (73),

0
é’fk = TRfOkak {ﬁ—Aaﬁk kﬂ

— hJay + Ex(hJ g — J2)]

1 1 p
. § S A VS Ly A0y . 1
+<h Ek>k ”a+Ekk k aﬂy} (81)

Plugging the above expressions into Eq. (80), using the
orthogonality relation (20) of Ref. [33], and focusing on the
¢ =2 case, we get

ertsy) = rubo [ AR fouFo KAk oy
= 21pfJ 320" = 21Ra§2)aﬂ”, (82)

where we employed BJ,,3, = a£2>

Egs. (20) and (22). Similarly,

, which follows from

1 1
gp/:,u) = TRv”a/dKfOkakEk (h Ek>k<y)k(u>

= TR (Jr+1,1

where we used Eq. (19), while with Eq. (18) the scalar
moments reduce to

J
- r;lz")V”a—rRa(rl)V"a, (83)

EPr(1) = TRag())H. (84)

It can be seen that the first-order Chapman-Enskog results
agree with those in Eq. (63) obtained in the method of
moments; hence the negative-order moments are also
computed through Egs. (65)-(67).

In the RTA, the equivalence between the Chapman-
Enskog method and the method of moments can be
established also at second order by reproducing the
equations of motion (14)—(16). For this purpose, the left-
hand sides of the irreducible-moment equations can be
expanded with respect to € using Eqgs. (78) and (79) as

< (U1 pe)

P _ Cﬂl“'ﬂf
r —

_ & e pop u
R 1<>f+‘+)0/’1<>[+ Pra)
+ 0(€?). (85)

The second-order contribution to the irreducible moments
can be computed using Eqgs. (76) and (80),

82:0/:,](55” = —eTp ALY /dKE’ k. ko)

Jm)
x [Doffj)Jrle}f)JrE—kvﬂffj) . (86)

Taking the comoving derivative D, outside the integral

provides D0p<” s ), such that

wine) | € e
D hl
0Py (1) + TRPV,(Z)

At / dK[Dy(EGk@ - k)] )

Jm)
- / AKELkW - . jre) {le{?HE—kvﬂf{j’ . (87)

The right-hand side of the above expression together
with the Navier-Stokes contribution from p* .]('i;‘ ¢ generate

all of the terms appearing on the right-hand sides of
Eqgs. (14)—(16).

Discrepancies between the results obtained using the
Chapman-Enskog method and the method of moments
were reported in the literature at the level of the second-
order transport coefficients. These discrepancies are in fact
due to the omission of certain second-order terms, as we
point out in detail in the Appendix.

E. Transport coefficients in the 14-moment
approximation

Here we recall the general form of the second-order
transport equations for I, V¥, and #** from Ref. [33],

mll+ 1 =—-(0+7+K+R, (88)
VW 4 VI = kVra+ JF+ KF +RE, (89)

T W) g = 2ot - T KM R, (90)
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where 7y, 7y, and 7, are the relaxation times, { = ¢,
K=Ky, and #n=rmny are the first-order transport
coefficients, while 7, J#, and J** collect terms of order
O(Re™'Kn),

j: —anVﬂV" —Tnvvﬂl/.i” —6]‘[]‘[H9

- /IHVV#V”O( + lnﬂﬂ”ygﬂw (91)
jﬂ = —TVVya)”” - 5‘/‘/‘/”9 - fVHV”H
—|— fVﬂAlwv/lﬂiy + TVHHI;l” - TVﬂ.ﬂ'ﬂUI;ty
— /IV\/VDGWJ + /IVHHVMG - ﬂv,[ﬂ”’“vba, (92)
T = 21,,7151” ' — 8,70 — TMJLM‘O'? + Azllo?”
Lo V) £ £ VOV 4 A VW (93)

The tensors K, K*, and K* contain Kn? contributions,
which will play no role in the following. The tensors R,
R¥, and R* contain terms of order Re~2 originating from
quadratic terms in the collision integral, which are absent
in RTA.

We are now ready to determine the transport coefficients.
For the sake of definiteness, we work within the basis-free
approach and note that similar results are obtained when
using the shifted-basis approach. The results obtained using
the DNMR and corrected DNMR approaches can be
obtained by replacing

Ry =rg. ROy -1 (94)
While in the RTA, the relaxation times satisfy
=Ty =T, = Tg, (95)

we will use 7p, 7y, and 7, explicitly for the sake of clarity.
The transport coefficients appearing in the equation for the
bulk viscous pressure are

2
m
(=mza’. (96)
2 m2 G20 m2 0
onm = T [g - ?OD—zo + ?OR(—;O} , (97)
A m_%{@_R(l) ] (98)
=g Z10]>
2 (1)
my | Gso IR i
= —gp 0 (230 Tl 99
fv = =y [DZO 6lnﬁ}’ (59)
m2 oRW IGR(I)
My = —tp =2 | ——0 4 L0 100
nv 21 3 [ o nop (100)

Az = —Tn [D_zo - Rizz).o} :

(101)
The transport coefficients for the diffusion equation are
(1 mg (1)
K=71ya, , 6‘/\/ =Ty |:1 -+ ?R_2‘0:| s (102)

by =L =IROL fye =21 = HRE ). (103)

0 2
o 1—h(m(‘1)*° o _w],_ oR%,
I olng |’ V2T olng |’
(104)
3 2m?
Ay =1y {— n ﬂnﬁo} , (105)
5775 2
orY, 10R",
P LRl ) 106
VII TV|: o h dﬂ] ( )
oR%), 10RY,
dyy = 10 L0 107
| sl o

Finally, the transport coefficients appearing in the equation
for the shear-stress tensor are

4 2
n= Tﬂa(<)2>’ Opn = Tz |:§ + ?R(—ZZ),O} ’ (108)
10 4m2 2)
T =1, [7 + Rl (109)
Aal = Tp ST R50|- (110)
Zm% GR(_II)‘O Zm% (1)
WS omp s (v s Rete (1D
omz [orRY  1oRY
2 _ =0 —1,0 - —-1,0 112
7V Tr 3 |: oa h ()ﬁ ( )

One also observes that when m, > 0, all coefficients
except the first-order ones, ¢, k, and #, involve the functions
R(_L?,o- These are related to the representation of the
negative-order moments, as indicated in Eq. (94).

F. Magnetohydrodynamics transport coefficients

Here we also consider the transport coefficients arising
from the Boltzmann-Vlasov equation using the method of
moments as derived in Refs. [47,48], leading to the
equations of nonresistive and resistive magnetohydro-
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dynamics. Without repeating the details presented there, we
summarize the additional J%, " terms that appear
on the right-hand sides of Egs. (91)—(93) due to the
coupling of the electric charge q to the electromagnetic

field,

T em = —a6nveVVE,, (113)

em = q(SypE" + SyngllE* + Sy, E,) — q8ygBOV
(114)

Thm = —(8,3Bb™ Ngn* + 8,yg EVVY)).  (115)

These are obtained from Egs. (24)—(26) of Ref. [48] by
employing the Landau frame, i.e., W¥ = p} = 0. In the
above the electric and magnetic fields E# and B* are
defined through the Faraday tensor F** and the fluid four-
velocity u# via

1
Ef = Fi'y,, Bt = Ee"”"ﬂFaﬁuy, (116)
while b** = —e””“ﬁuabﬂ, b* = B*/B,and B = /—=B"B, is

the magnitude of the magnetic field.
The corresponding transport coefficients proportional
to the electric and magnetic fields are obtained by

replacing (T(()%),Tég,‘[é%)) - (tm, 7y, 7,) and 7S R(_,)O
These are
n
Sye =Ty —Z+ﬂ111 ; (117)
(1)
0 |G m | 1IRZ,
13} =— — : 118
NVE = —tn—» 3 [Dzo R h olnp (118)
(0)
2 (1) 10RZ
5VHE:—TV[m—(2)+ 20" o p (119)
2)
5 10RI,
s = v [R5 120
8 2m?Z 2m? 0R
5 AR, -0 l 121
vE = {5 5 2075, g (121)
and
1
dyp = Ty [_Z + R(—lf,o} . O = 27,,72(_21)’0. (122)

IV. RESULTS FOR THE IDEAL
ULTRARELATIVISTIC BOLTZMANN GAS

In this section, we analyze the classical, ultrarelativistic
limit of the transport coefficients listed in Egs. (96)—(122).
In this limit, the bulk viscous pressure I vanishes and all
related transport coefficients do not need to be considered.
We begin this section with an explicit computation of the
thermodynamic functions and the polynomial basis focus-
ing on the specific case sy=s; =5, =0. We then

compute the functions F ri, as well as the coefficients

o) = F'9 ot Eq. (60) and ‘%) cf. Eq. (61) with s, = 0

(in which case FEO) =

coefficients.

rO ). Finally, we report the transport

A. Thermodynamic functions
The equilibrium distribution of an ideal Boltzmann gas is
obtained by setting a = 0 in Eq. (2) and corresponds to the
Maxwell-Jiittner distribution,

fox = e*PEx. (123)

Since dfox/0a = foxs Jng = 1,4 by virtue of Eq. (22).

The 1,,, integrals can be expressed in terms of the pressure
P = ge®/n*p* as
PﬁZ—n
= BN 124
=30 n Y (124)
Using this result in Egs. (19) and (20) gives
1) P(r+2)!(1—r) ) )
r — T~ - ) r - iX} 125
“ 24p7 @ = g T HAL (129)

allowing us to express the ratios R(rg) from Eq. (62) as

(1) (r+2)!(1 —r) (2) (r+4)!
R =~———"~ 7 R = 126
Therefore, when r = —1, —2 the above results reduce to
(1) n o3P
RZio =P R0 :77 (127)
y B 2 p
RE, =5 RE =T (128)
B. Polynomial basis
We now construct the polynomials Pﬁ( ) and H , for the

case sy =s; = s, =0 considered in Ref. [33] By the
convention of Sec. II B the overhead tildes are omitted.
Substituting Eq. (124) for 1, into Eq. (33), we find
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2ﬂ2f—2E2f
@ = 7kf0k5

PQC+1)! (129)

where (—A%k,ks)” = Ey in the ultrarelativistic limit,
mg = 0. Plugging this into the orthogonality relation
(32) with Ey = x/p gives

1 o — o (X o) (X
(2/+1)!A e xZﬂle‘")’(ﬂ)P;‘") (ﬁ)zﬁ”‘”' 130

The above relation is similar to the orthogonality relation
obeyed by the generalized Laguerre polynomials,

/oo dxe‘xxszL,%fH)(x)LSLMH)(x)
0

(n+2041)!

! 5mn- (131)

Based on this analogy, the polynomials Pgi(Ek) can be

expressed in terms of the generalized Laguerre polynomials
2f+1 ( BE,) as

@ m!(2¢ + 1)! L2+
P (Ey) = 4| —————L E 132
(B0 =\ oy 2z p i BB (132
Given the explicit representation,
2f+] M —x m + 20 + )
133
nz:; nl(m—n)!(n+2¢+1)!" (133)

the expansion coefficients a,(f:,z appearing in the represen-

tation of Pg(i,)l(Ek) from Eq. (31) are identified as

A/mlQ2¢ +1)(m+26 4 1)!
n!(m—n)!(n+2¢+1)!

am = (—P) (134)

C. DNMR coefficients y% )
In this subsection we obtain a closed form for the
coefficients y%) =F %). Starting from Eq. (34), we set
sy =0and J,, = I,,, with I,, from Eq. (124), and use
@) (@)

Eq. (134) for the coefficients a,,, and apg, which ulti-
mately leads to

(=D)nprn Je(m+2¢ 4 1)1

Fi) =
(n+22+ 1)1 4= nl(m—n)!

S,. (135

where we introduced

=20 () e

(136)

In order to find S,,, we recall the definition of the Gauss
hypergeometric function [49],

2F1abcz :Z(a)

q=0 (C

(137)

where (a), = I'(a + g)/T'(a) is the Pochhammer symbol.
Using the property,

(=) = (1)1 (138)
—m —,
1 (m—q)!
valid for m, g > 0, we get
(2¢+1-r)!
S, =———,F, 204+2—-r20+2;1). 139
m (2f+1)' 2 ( m + r + ) ( )

Note that the summation in Eq. (137) is truncated at ¢ = m
since m!/(m — ¢)! vanishes when ¢ > m. Using now the
identity [49],

2F1(_m’b;c;1):7m’ (140)

we arrive at

R+ T =) (r=1+m)!

S, = 141
" 24+ 1+m)!(r—1)! (141)
Substituting Eq. (141) into Eq. (135) leads to
r+n ng 1—
r+ nn!( - 1).(2f—|- 1+ n)!(N,» - n).

which is valid when r <27 + 1. When r > 2 + 1, the
integral in Eq. (34) becomes infrared divergent in the
massless limit, due to the negative power of Ey . However,
the only moments p~, " which enter the equations of
motion are those with r < 2; see Eq. (28). In the massless
limit, the scalar (£ = 0) moments p_,, p_;, and p, are not
considered, so we do not need to discuss this case any
further. On the other hand, for the vector (£ = 1) and tensor
(Z =2) moments this problem does not arise, since
there r <2 <27+ 1.

The validity of Eq. (142) can also be extended to r < 0,
by replacing (r+n)(r—1)! in the denominator by
(r+n)[(r). Since I'(r) has simple poles when r =
0,—1, -2, ... is a nonpositive integer, F $Z> vanishes when-

ever <0 and r+n # 0. The value of .7-"<_fn)_n can be
obtained by taking the limit r — —n using

lim (r 4 n)[(r) = (="

p—— n!

(143)

Substituting the above into Eq. (142) gives
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FO = 6.m. (144)
for N, > r > 0, which is the expected result; see discussion
after Eq. (35).

For £ = 1,2 and r = 1,2, the functions y%) =F %) are
obtained as

1+N 2(14+N,)(2+N
7§L)=ﬂ( M), yé}f=ﬂ( HND)E N (145)
3 12
1 2(14+N,)(2+N

0 40

The above expressions diverge for N, — oo. However, in
the following we will show that the corrected DNMR

@)

coefficients I',,;’ do not diverge and, at least in RTA,

actually agree with R(_fr)o listed in Eqgs. (127) and (128).

D. Corrected DNMR coefficients F%) )

We now compute the corrected coefficients F(,g) in the

RTA from Eq. (61). Employing the expressions (126) and

(142) for R%) and F %), respectively, gives

"= PIN, + )N\ (=1)"(1=n
Fﬁ})):ﬂ( ) +)z< )(( )"(1-n)

20r=1!Nyt =\ n ) (n+3)(n+r)’
(147)
F<2>:ﬁ’(S—r)!(Nerr)!i(Nz) (-1)"
0 24(r=1)INy! =\ n ) (n+5)(n+r)
(148)
Defining the functions,
Y ONN ()
‘q) = 14
Swixa) ;(n>n+a+l’ (149)
e (—x)"
Sy(x;a,b) = , (150
vxa.b) ;<n>(n+a+l)(n+b+l) (150)
we can express the coefficients (147), (148) as
F(l):ﬁ’(3—r)!(r+N1)!
0 2(r—1)IN,!
X [4Sy, (152, r=1) =Sy, (157 = 1)], (151)
(5 — r)! !
@ PO NI g sy (1s2)

0 24(r — 1)!N,!

The functions Sy(x;a) and Sy(x;a, b) have an integral
representation,

Sy(x;a) = %/X drt*Sy (1), (153)
X 0
Sy(x;a,b) = blﬂ/x dtt’Sy(t; a), (154)
X7 Jo
where
su)=> () ) =-a (s
n=0

by the binomial theorem. Using the definition of the
incomplete beta function,

B,(a,b) / “amei (1=l (156)
0
one immediately concludes that
Sn(x;a) B (a+1,N+1). (157)

= xa+1

Setting x = 1 in the above expression, B,(a, b) becomes
the complete beta function B(a, b) [49],

B\(a,b) = B(a,b) = %, (158)
such that

N /NN (-1)" a!N!
Sy(1;a) = = . (159
(La) ;<n>n+a+l (N+a+1)! (159)

In the case of Sy (x; a, b), we can consider directly the case
x =1 to find

I
Sy(1;a,b) = / dxx’="'B (a +1,N +1)
0

= Bl ILNE D —Bat+ LN,

a—2>b
(160)
With the above, we arrive at
W _P=n'r+D[ __ 8r(rtNy)
=T {1 <r+1>!<3+N1>J’ (161)
@ _PE-n'[  24(r+N,)
0= {1 <r—1>!<s+N2>J' (162)

(1)

In the limit Ny, N, — oo, F(r(l)) and F%> reduce to R_, , and

R?, given in Egs. (126),
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. 1 1 . 2 2
Nlllinmrgo) = R(—Zo’ A}ZI_IPOOFEO> = R(—Zo' (163)
Setting now r = 1 and 2 leads to
i) —ﬂ[l - } (164)
2+N)(B3+Ny)
1 3P 8
s, = l———, 165
02 [ 33+N,) (165)
) p 24(1 +N2)!
i =-11-=——"—22| 166
04 { (5+Ny)! (166)
2
) p 24(2 +N2)!
Iy =—=|1—-————|, 167
20 12 |: (5 +N2)! ( )

which again reduce to the basis-free result (127), (128) in
the limit Ny, N, — oo.

E. Transport coefficients for the
ultrarelativistic ideal gas
We now employ the basis-free results (127), (128) for
RY o, R, and RY) . The ultrarelativistic limit of the

transport coefficients appearing in Eqs. (102)—(107) is then
obtained as

pP 3
K:ET\A Oyy = Ty, Ayy :gfvﬂ
o _ b
Cyr =Ty, =0, Ayg = 2Ty (168)
16
Equations (108)-(112) reduce to
e _10
’7 - 5 7’-7[’ 7/ 37'-7[’ TIZI! 7 Tl[’
LﬂﬂV:TﬂV:iﬂV:O. (169)

The coefficients in Egs. (117)—(122) due to the electric and
magnetic fields read

TABLE L

p*P 8
OvE :ﬁfv, 5nVE:§Tm
3p p?
Oz = P1s, Oyp = ZTVv Ovag = ISTV- (170)

In the above, the coefficients involving the bulk viscous
pressures were omitted.

For the ideal ultrarelativistic gas, Eq. (126) can be
employed to show that

(¢) (%)
072,0 0Rr0 r ()
=0, ——=—-TRy. 171
o aﬂ ﬂ r0 ( )

The above relations hold true also when r <0 and in

particular also when R(_L?O is replaced by y%) or F%) , since

their dependence on a and /3 is identical to that of R(_fr).o. Thus,

one can conclude that in all approaches mentioned here,

ﬁ l’ﬂVﬂ

Ayg = 7Ty —

16 4

Typ = fVﬂ? (172)

Since the coefficients £y, Ty, Ayz Oxzp»> Oy, and Sy ¢
involve R(_ll)’o, R(_zl)’o, and R(_ZZ)’O, their values will differ
between the various approaches discussed in the present
section. All other transport coefficients assume the same
values as in the standard DNMR approach. As pointed out

in Table I, when N, — oo, the approach based on Fi?

converges to the basis-free one employing 73(_?0-

Conversely, the coefficients computed based on y%) diverge
with the truncation order N,. We illustrate these behaviors
in Fig. 1 for the coefficients shown in Table I. Note that in
the 14-moment approximation, when Ny =2, N; = 1, and

N, = 0, the results obtained using the coefficients y%) and

F%) are identical and reproduce those reported in

Refs. [33,48].

The transport coefficients £y, Ty;, Avz, Oz, 0vg, Oy, for an ultrarelativistic ideal gas. Their values are computed by

inserting R(—?o from Eq. (126), y%) from Eqgs. (145), (146), and I“(r? from Egs. (164)—(167). The relation between Ay, and £, reported

in Eq. (172) holds in all three cases. The results obtained using F(rg

(1,0) and when N, N, — oo, respectively.

agree with those obtained using y(? and R(—i),o when (N, N,) =

7

Cvalty] = ty.ley] Avzlty] Svzeltv] dyslty] 3874
RO, 0 5/16 /48 3p/4 52
70 5 (1= 4N2) H1+N) —LEN,(1+Ny) H1+4N) TO+M)
(¢) 6B(1+N,)!
r ] 24(1EN,)! P 24(14N,)! 35 16/3 ] 24(14N)!
0 G+N)! 16 {1 ~ 5N, } ® |1~ } T {1 __(N1+2_)(N1+3):| 2 [1 ~ 5N, }
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Dependence on N, = N| — 1 of the coefficients (a) £y, = 7y, (red), 1y, (blue) for a neutral fluid; and (b) ¢ (green), dyp

(blue), 6,5 (red) for a charged fluid, computed using the approaches shown in Table 1.

V. SHEAR-DIFFUSION COUPLING:
LONGITUDINAL WAVES

In this section, we consider the propagation of longi-
tudinal (sound) waves through an ultrarelativistic, uncharged
ideal fluid. The purpose of this section is to compare the
prediction of second-order fluid dynamics using the various
expressions of the transport coefficients reported in Table I
with that of kinetic theory in RTA. While the former can be
estimated analytically, the latter is obtained numerically
using the method described in Ref. [38]. Per definition, a
sound wave is an infinitesimal perturbation, such that it is
sufficient to consider the linear terms in the equations of
motion. In the linearized equations of motion for an
ultrarelativistic, uncharged fluid, only the -coefficients
vy €y enter [as well as some coefficients in ¥ and KH,
which, however, play no role in our investigation; see
comment after Eq. (93)]. Since £, vanishes in all
approaches considered here, we will refer only to the
coefficient £y, listed in Table I, for which we summarize
the results below,

Basis-free: Ly, =0, (173)
) _ b
DNMR: £y, = (1=4No)zy,  (174)
6B(N, +1)!
Corrected DNMR: £y, = MTV. (175)
(N, +5)!

In addition, we recall the result reported in Ref. [35],
obtained using a second-order Chapman-Enskog approach,

Ref.[35]:  fyr="1y. (176)

4

We note that the result £y, =0 was also obtained in
Ref. [50] using a Chapman-Enskog—like approach.

Since the corrected DNMR value lies between the
DNMR (for N, = 0) and basis-free (for N, — o) results,
we will not consider it explicitly in what follows. Instead,
we will contrast the basis-free prediction to predictions
due to Ref. [35] and to the DNMR prediction, where for
illustrative purposes we choose N, =2, leading to
v, = —1pzy/20.

This section is structured as follows. In Sec. VA, we
derive the equations of motion for sound waves. The
resulting dispersion relations are computed in Sec. V B.
The analytical solutions and the numerical results are
discussed in Sec. V C.

A. Second-order equations for longitudinal waves

We assume that the background fluid is homogeneous
and at rest, while the perturbations travel along the z axis.
The velocity of the perturbed fluid is w* = y(1,0,0, 6v)=~
(1,0,0,6v), where |6v| < 1 is assumed to be small. For
simplicity, the transverse motion leading to so-called shear
waves is not taken into account. The properties of the
background fluid are

e = ¢+ de, n=ny+on, (177)

where again |Se|/ e, |6n|/ny < 1. The diffusion vector V#
and shear-stress tensor 7 can be described in terms of only
two scalar quantities, 6V and 6z, as follows:

Vi =6V(80,0,0,1), (178)

and
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sv’y? 0 0 Svy?
0 —% 0 0
7 = én ., (179)
0 0 —% 0
svy> 0 0 r?

where the properties u, V¥ =u, " =nx*, =0 were
employed. Since both 6§V and o6z are related to gradients
of the fluid, they are of the same order of magnitude as the

perturbations. In the linearized limit, V# and #** reduce to

1 1
VEa6V(0,0.0.1), 2o diag<o,_§,_§,1),
(180)

Noting that the expansion scalar @ and the shear tensor
o reduce to

, 11 2
0 = 0,50, 0””=d13g<0,§,§,—§>6z61}, (181)

while
AN 7 = 07" = 8406w, (182)
the conservation equations (25)—(27) become
0,06n + nyo,6v + 0.0V = 0,
0,;6e + (eg + Py)d.6v =0,
(eg + Py)0,6v + 0,6P + 9.67 = 0. (183)

The equations of motion for 6V and dx can be obtained
from Egs. (89), (90) and (92), (93) by ignoring terms that
are quadratic with respect to the perturbations,

-32  4p, 0 0
1 —fep, 1 0
0 ¥ -i-tn 0
0 ng 0 -2
I -

The modes supported by this system can be found by
setting the determinant of the above matrix to 0. Since
=0, the (6P,6v,6m) sector decouples from the
(6n,8V) sector and the determinant factorizes as

.k2
(K = 302)(1 — iwz,) — ‘P“’

n=0,
0

Tv‘./<ﬂ> + Vﬂ = KV”a + fv,,A’“’V,lﬂ'ﬁ,
2,70 4 = 2ot - £, VY. (184)

Using V% ~ §40,8V, #\%) ~ 9,6z and noting that #,, = 0
by virtue of Eq. (169), we find

10,8V + 8V = —k0,8a + £,0,57,

4
1,0,67 + 61 = — ?ﬂazév, (185)
where da = --6n —3-5P. We shall employ the Knudsen

0 0

number Kn ~ |kzy|, |k7,| < 1 for power-counting pur-
poses in order to simplify some of the expressions
appearing in the following sections.

B. Mode analysis
Now we perform the analysis of Egs. (183) and (185) at

the level of the Fourier modes corresponding to e~#(®=k2),
introduced for a quantity A(z,x) as
At x) = Ay + / dky "emi@k)5A,, (k). (186)

@

where A is the constant background value of A, while
|k| = 27/ 4 is the wave number (not to be confused with the
particle momentum k* from the previous sections) and w =
w(k) is the angular frequency, whose real part gives rise to
propagation. A negative imaginary part of ® leads to
damping of the mode. A positive imaginary part would
lead to an exponential increase and thus to an instability.
Applying the above Fourier expansion leads to the matrix
equation,

(187)

4ik?
o(l — iwty) +rll—0K =0.

(189)
The (6P, bv, 67) sector contains the two sound or acoustic
modes as well as a shear mode, while the (6n,5V) sector
contains a mode associated with particle-number transport
(in the nonrelativistic context called thermal mode) and a
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diffusive mode. While the sound modes and the thermal
mode are hydrodynamic modes (i.e., the frequency van-
ishes for zero wave number), the shear and the diffusive
modes are nonhydrodynamic modes (i.e., the frequency
does not vanish for zero wave number).

Equations (188) and (189) agree with Eqgs. (4.19) and
(4.13) of Ref. [38] when identifying @ = —ia and
k = A/16. Therefore, the dispersion relations @ = w(k)
are identical to those identified in Egs. (4.14) and (4.20)—
(4.22) of Ref. [38]. Labeling the acoustic and shear modes
as o} and w,, respectively, we have

wzzt = i|k|cs;a —i&,. w, = _igm (190)
where the argument k was omitted for brevity. The
quantities appearing above are defined as

1 1 n
Cog=—7=9 — 1—kzr,2,<1+—>}—R },
N 2|k|7ﬂ\/§{Rﬂ|: 7Py !

1 1 n R
= l—— 1=k 1+— )| -5,
A e e G

1 1 2.2 n
.»:,7_31”{1+Rn{1 kT,r<1+T”PO>:|+R,7}. (191)

Here, the function R, is defined as

<
R — {Rn ’ Tr < Tz lim»
n >

_Rn y Tp > Tz:lim>

1/3
R: = [1- R 22(1 -1
= (1= b Ry 02 (1= 3|
n 1/3
Ry = | =1+ 3|k|ty\/Ryaux — 3K 72 1 — ,
2POTﬂ

(192)
with
2 5n 772
R =14+2k22(1- -
= g (1250 - )
ke n\3
—Z11 . 193
* 9 < +POTIZ> ( )

In the above, the value 7y, discerning between the two
branches for R, is given by

1 n -1/2
= — 1 )
|k|< *Por)

where 1/ (Pyt,) is independent of 7, since n ~ 7,. Applying
the power-counting scheme mentioned above, we observe that
Cyq = Cy + O(Kn?), with ¢, = 1//3 the speed of sound,

while &, = 51+ O(Kn®), and &, =~ L — K2+ O(Kn?).

(194)

The thermal and diffusive modes, w; and w;, respec-
tively, are

gizi 14 1_16k21<rv
21y ng ’

(1)2: = _iél:ct7

(195)

and agree with Eq. (4.14) of Ref. [38]. A power-
counting analysis reveals that & :%—i— O(Kn*) and

Fal -y oK)

With the dispersion relations at hand, we can now
compute the mode amplitudes. Focusing first on the
thermal and diffusive modes, it is not difficult to see that
SPE(k) = 6vE(k) = ot (k) = 0, while the amplitude of
the diffusion current can be linked to that of the density
fluctuations via

&
k

In the sound and shear sector, the amplitude of the pressure
fluctuations can be defined as an independent variable,
while the other amplitudes can be expressed as

Vi (k) = -

sn (k). (196)

3w 3w?
ov, (k) =——06P, (k orn, (k)=|——1|6P,(k),
al0)= P 0. 0y (6)= (51 ), 1)

: 2_k2

oma(h)= [0 2B g, )

4P, S to(l-ioty)

j v (3w?* — k>
5V, () =2 _LuaB0 =K) 5p ) (197)

= :
k%—l—a)(l—zwrv)

where o i1s either wf Or @, From the above, it is clear that a
nonvanishing value of ¢y, introduces acoustic and shear
modes into the diffusion current, allowing the diffusion
current to propagate by means of the sound modes. Thus,
the basis-free result £y, = 0 can be distinguished from the
Chapman-Enskog and DNMR results £y, # 0 by consid-
ering the propagation of a simple harmonic wave, which we
discuss below.

C. Numerical results

At initial time f, = 0, we consider

T’l(l‘o,Z) = Ny, P(to,Z) = PO + oP COS(kZ), (198)

while &v(ty, x) = 6x(ty,z) = 6V(ty,z) = 0. This initial
state can be implemented by setting

P 15k = k) + (K + k)],

(SP&)(k/) = 2

(199)

with Y°_ 6P, = SP. This allows the solutions for 6P(t, z),
v(t, z), and 67(t, z) to be written as
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8P(1,z) = cos(kz) Y _ 8P,

o, w,

Sv(t, z) =

sin(kz) g ®SP e~

wF @y

6r(t, z) = cos(kz) Z (3/{_0; - 1>5Pwe‘i“”. (200)

oF .0

4kP0

n

Imposing the initial conditions from Eq. (198) leads to

> 6P, = 5P, > wsP, =0,

+ +
Wy Wy, Wy Wy

Z w?SP,, (201)
wF o
which admits the solutions,
k* 4+ 3w,0F
pr = % sp
6|klcs;a<a)a - 0),7)
K2 (1 —3c¢%,) —3&2
5P, = — 2( . o) % sp. (202)
3[k Cia + (5(1 - 517) ]
For small Kn, we have
spr = O L 1KInes sp ok,
“« T 4P,
k*nel 6
opP, = 6P + O(Kn®). (203)
9P,

To correctly assess the role of £y, we first note that for

For the diffusion current, we write &V, (k)=
— e [5(K' — k) — 8(K' + k)], where
ik3c 6P kno,6P
SVE~+ oyl oV, 2 ——— .
a 2P0|k| vall K non — 12POK' vall
(205)

The amplitudes of the thermal and diffusive modes én can
be found by noting that

3nyoP
on(ty, z) ~ cos(kz) [ + on + ony;
0 4P,
Py \ K
+<1 + kP00 > fv,,n(SP]
sin(kz) (k 1oty NP
k

non — 12Pyk

6V (tg, z2) =

+ &font + é,:én;>,

(206)

non — 12Pyx

where only terms up to second order with respect to Kn
were shown. Imposing 6n(ty, z) = V4(ty,z) = 0 gives

Snt o~ + no&FoP E tRk*Pol v k_2 "
) Po(&8 = &5) non — 12Pok '

the shear mode, the factor 1 — iw,7y ~ 1 -2+ O(Kn?). K*ng
. 5 L F = CvaoP, (207)
For 7y =1, = 7g, this is of order O(Kn?®), while it (ngn — 12Pgk) (EF — &)
is of order O(Kn") when 7, # 7,. Focusing now on the
particle-number fluctuations, we may write &n, (k') = L
% (5(k' — k) + 8(K' + k)], where the amplitude of the while 6Vic = &con/k. Noting that
corresponding acoustic and shear modes are obtained up
to second order in Kn as
4k 1 16k*kt
n 3ilklc e = g - =—y/1-——=,  (208)
ong e (5% £y ) OP, o Lo T ’
ng 2PO <4 SPO + Vﬂﬂ) noTg TR no
k2
Sy —— R0 g nsP (204)
non — 12Pox we obtain 6V (¢, z) as
|
5P k Pyt e
oV(t,z) =~ Lsin(kz) uc LypneSal sin(ke 1) +—2 vall | e=&i — ¢ Sce
PO ny ’ non — 12POK 1 16k*
no
K drpgk®Poly.n Ak e~ — et
(3 TRET0VA TR, ) S (209)
no non — 12Pyk  ny 16K« Tx
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FIG.2. Time evolution of —V,(t)/8P, for the initial conditions
in Eq. (198). The numerical solutions of the linearized equa-
tions (183) and (185) are shown using lines and symbols for
various values of #y,. The dashed black lines show their
approximate analytical solution given in Eq. (209). The numeri-
cal solution of the Boltzmann equation in RTA is shown with the
solid red line. All results are obtained for k7, = 0.1 (a) and 0.25
(b), and we considered P,/P, = 1073.

It can be seen that £y, introduces an oscillatory piece in the
diffusion current. In order to facilitate the analysis, we

introduce the amplitudes 5;3, 5~v, 571, gﬁ, and 6V via

Se(r) P de(t,z)
ox(1) —;/ dz| 6x(t,z) | cos(kz), (210)
an(1) ’ on(t, z)

(E0) 4 [ a( s

The linearized equations (183) and (185) are then solved as
a set of ODEs by replacing

0.(8e.5v,6m,6n,8V) — k(—be,6v,—6m,—on.8V).  (212)

Figure 2 shows the results obtained using the values of
Oy, = —1Pr/20, 0, and fry/4, as given by the DNMR

approach based on y(lz) with N, =2 (174), the basis-free
approach (173), and in Ref. [35], respectively. The numeri-
cal results are compared with the analytical prediction
(209), shown with dashed black lines. The small discrep-
ancies seen in panel (b) are due to the approximations made
in deriving Eq. (209). Additionally, we also show with the
solid red line the numerical solution of the Boltzmann
equation (1) with the Anderson-Witting collision model
(53), obtained as described in Ref. [38]. The basis-free and
RTA results are in excellent agreement, confirming that for
the RTA, ¢y, = 0.

VI. CONCLUSIONS

In this paper, we computed the transport coefficients of
second-order relativistic fluid dynamics from the relativ-
istic Boltzmann equation in the relaxation-time approxi-
mation (RTA) of the collision term.

Employing the method of moments, the irreducible
moments for a negative power of energy, the so-called
negative-order moments, are usually expressed in terms of
the ones with a non-negative power of energy using a kind
of completeness relation, which becomes exact in the limit
when the truncation order N, — co. Focusing on the
14-dynamical moments approximation, we then considered
different approaches to relate the negative-order moments
P4 to the zeroth-order ones: (i) the original DNMR

approach [33], which features the coefficients y(r?,

cf. Eq. (45), (ii) a corrected DNMR approach [37], which

employs the coefficients F%) of Eq. (47), (iii) a so-called
shifted-basis approach, which includes a certain set of
negative-order moments in the expansion basis,
cf. Eq. (52), and (iv) a basis-free approach tailored to
the RTA, cf. Eq. (64).

The shifted-basis approach acknowledges the impor-
tance of the negative-order moments by including them
explicitly in the expansion basis. The magnitude of the
shifts s, for the irreducible moments of tensor rank ¢ are
defined by the lowest-order moment _‘s'f"” ¢, which must be
explicitly accounted for in the expansion. Setting s, = 2
for the my > 0 case and s, = ¢ when my = 0 leads to
perfect agreement with the basis-free approach.

Furthermore, we checked our results for consistency by
employing the Chapman-Enskog approach presented in
Ref. [18]. Using the properties of the RTA collision model,
we showed that the Chapman-Enskog method and the
method of moments are equivalent up to second order. We
also showed that the discrepancies reported in Refs. [34,35]
are due to the omission of second-order contributions in
these latter references.

In the context of an ultrarelativistic ideal gas, we

computed }’%) and F%) explicitly for # =1, 2 and
r = 1,2. We showed that y(r? and all transport coefficients
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that depend on it, i.e., £y, Tyz, Ayg, as well as 5,5, Oyp,
Oy .E, diverge with the truncation order N,. Even though the
coefficients F%> also depend explicitly on N, they con-
verge towards the basis-free results when N, — oo.

Finally, we validated our results in the context of
longitudinal waves propagating through an ultrarelativistic
ideal gas. Our result 7y, = 0 for the coefficient responsible
for the coupling to the shear-stress tensor in the equation for
the diffusion current is in perfect agreement with numerical
simulations of the RTA kinetic equation.
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APPENDIX: SECOND-ORDER
CHAPMAN-ENSKOG METHOD
Recalling the notation introduced in Refs. [34,35], the
distribution function is written as f = fox + 0f l((” +of 1((2>.
The correction §f E(’ ! is obtained as

i T '
ok = (—;kﬂa,,) fox: (A1)
k

Due to the expansion of the comoving derivative D =
> %0€/D; in Eq. (71), it is clear that 5f\) contains
contributions of order i, i + 1, .... This should be contrasted

with the expansion in Eq. (69), where eff(l) and &2 f](f)
contain solely terms of first and second order with respect to
g, respectively; see Eqgs. (75) and (76).

For example, using Eq. (A1) together with Eq. (71) to

compute o ff(l), it becomes clear that it can be written in

terms of ef S) and higher-order contributions as

fy) =efi) =t > €Difo
i=1

= é’f]((l) —ergD fox + O(&%), (A2)

where we recall that 7 is of the same order as the book-

keeping parameter €. The second-order term Jf f) can be
obtained as

5f) = %) + ergD  fo + O(e3),  (A3)

where the second term on the right-hand side makes also a
second-order contribution, being explicitly given by

D fox = foxfox[D1a — ExDif — Bk Dyu,].  (A4)

The discrepancy between the results derived in the
present paper and those reported in Refs. [34,35] arises

because the second-order contribution —etgx Dy fox to Of 1((1)
was neglected in these latter references. Due to this
omission, the resulting distribution function reads

fi=Ffox + (5f|((1) + etgD; fox) + 5f|(<;2> + 0(&)
= fx + D fox + O(€%). (AS)
where fi = fox +ef\) + 27 + 0(63). In the above

and henceforth, we use an overhead hat f‘k to denote
quantities that arise when the —ezp D1 f( term is omitted

from of E(I), as considered in Refs. [34,35]. Using Egs. (79)
and (80) with fl((i) and ]A“l((’) , we can evaluate the difference

PR — pRHE at second order as

i He

P — P~ ey / dKEﬁkQ‘l kPO D ok (A6)

In the case of the scalar moments, we find

G
Po—Po = _TRﬁ (HQ - ”ﬂbo—/w)
Dy
G
— g 2 (VFit, =V, V¥) + O(e%), (A7)
Dy
1 _,bl = _TR(VM’:‘u - VﬂVﬂ) + 0(83)’ (AS)
pr— Py = 1x(110 — c,,) + O(&3), (A9)

where (74) was employed to replace Dy« and D;f. Since
p1 = po = 0 according to Egs. (11) and (12), it can be seen
that p; and p, will in general not vanish. By the same
reason, a nonvanishing energy-momentum flow W* = pff
appears,
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P =P = —tg(VFIL = AGVpn® — T + n*11,) + O(&?).
(A10)

Equations (A8)-(A10) show that due to second-order
inconsistencies, the Landau matching conditions (11),
(12) and the Landau frame (10) are no longer satisfied,
hence violating the conservation of particle number and
energy-momentum in the RTA.

The dissipative quantities also show discrepancies,

N Tph
N-1= ﬂgm (hd 1o = Jo0) (110 = G,
TrNn . 3
+ (thO—J30)(V"u”—VMV”)+0(8 ),
BDy

(Al1)

vH— :—%(V”H—Aﬁvﬁﬂ“ﬁ—nﬁ”—|—7r””itu)—|—0(£3),

(A12)

while 7#* — #* = O(€*). From the above relations, it can
be seen that the transport coefficients o, A, Tnys £mvs
Cyns Cvgs Tym, and 7y, are modified as follows:

51‘[1‘[ SHH) TrNn
=1 . — hdg—Jr), Al3
(o) (lm I (=) (AL3)

v Ty TRN
= o — hd»y — J3o), Al4
(—m) (—m) Py 20~ T (ALY)

Cvn bAﬂvn

Cvn Z
S I AL NS (A15)

Tyn %Vn h
Tvn %Vn:
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