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The gravitational form factors which are obtained from the matrix elements of the energy-momentum
tensor provide us information about internal distributions of mass, energy, pressure, and shear. The Druck
term is the least understood among all the gravitational form factors. In a light front quark-diquark model of
a proton, we investigate the Druck form factor. Using Abel transformation, we evaluate the 3D distribution
in the Breit frame from the 2D light front distributions. The results are compared with other models and
lattice predictions.
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I. INTRODUCTION

Form factors are sources of information about the internal
structure of hadrons. There are several form factors that give
different kinds of information about the hadrons. Hadron
structures are probed by electromagnetic, weak, and gravi-
tational interactions where particles couple to the matter
fields. In electromagnetic interaction, a photon couples to a
matter field and the corresponding conserved electromag-
netic current gives electric and magnetic charge distribu-
tions inside the hadron through form factors. The weak
interaction which is mediated through W� and Z bosons
provides axial and pseudoscalar form factors of the proton.
The gravitational interaction between a graviton and a
proton provides mass, spin, and force distribution inside
the proton [1,2]. Corresponding form factors are known as
gravitational form factors and are written as matrix elements
of the energy-momentum tensor (EMT) [3,4]. The electro-
magnetic and weak properties of the proton are well known
but the internal mass or energy distributions, the forces on
the quarks, and the angular momentum distribution inside
the proton have attracted a lot of attention only recently.
In the forward limit, the electromagnetic form factors

are equivalent to electric charge and magnetic moment and
the weak interaction form factors are equivalent to the

axial charge and pseudoscalar coupling while gravita-
tional interaction describes mass, spin, and D-term [5,6] in
this limit. The matrix element of the EMT describes the
response of the nucleon to a change in the external space-
time metric. The components of the energy-momentum
tensor tell us how matter couples to the gravitational field.
The gravitational form factors are accessible through hard
exclusive processes like deeply virtual Compton scatter-
ing (DVCS) as the second moments of generalized parton
distribution functions (GPDs) [7–10]. In [11] a connection
had been established between observables from high
energy experiments and from the analysis of gravitational
wave events. In the standard EMT parametrization, there
are three gravitational form factors (GFFs). The GFFs
AðQ2Þ, JðQ2Þ, and DðQ2Þ correspond to the time-time,
time-space, and space-space components of the energy-
momentum tensor, respectively. At zero momentum trans-
fer,Q2 ¼ 0, the GFFs AðQ2Þ and JðQ2Þ are constrained by
proton mass and spin respectively. The D-term form factor
is the new and most exciting one which is extracted
through the spatial-spatial component of the energy-
momentum tensor and encodes the information on shear
forces and pressure distribution inside the proton [12]. It
has been calculated in several models and theories in the
literature. In [12] it was shown for the first time how GPDs
can give information on the mechanical properties of the
proton in a DVCS process, as they are extracted from the
beam charge asymmetry in DVCS, while in [13,14] the
JLab group reported the first determination of the pressure
and shear forces on quarks inside the proton from
experimental data on DVCS. The EMT form factors of
the nucleon have been investigated in various approaches,
for example, in lattice QCD [15–17] in chiral perturbation
theory [18–21], in the chiral quark-soliton model [22,23],
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as well as in the Skyrme model [24,25] and in the light
cone QCD sum rule framework [26].
The pressure, shear, and energy distributions are usually

defined in terms of the static EM tensor in the 3D Breit
frame. In relativistic field theory, one cannot localize a
particle within a Compton wavelength. In other words, the
three-dimensional distributions defined in the Breit frame
are subject to relativistic corrections. Alternatively, for a
relativistic system, one can define them in the so-called
infinite momentum frame, or light front quantization, where
such relativistic effects are already incorporated. In [2] the
mechanical properties like pressure, shear, and energy
distributions of a nucleon in two dimensions were intro-
duced in the light front formalism, and also later were
discussed in [27]. While in some models one can easily
calculate the 3D distributions, in some cases, for example in
the light front wave function approach, it is easier to
calculate the 2D distributions. In [28] it was shown that
the 2D and 3D distributions can be connected through the
Abel transformation, which would make the intuitive
understanding of these distributions more clear, particularly
for relativistic systems like a nucleon. In a previous work
[29], the GFFs and the two-dimensional pressure, shear, and
energy distributions were investigated in the spectator type
model motivated by AdS/QCD. In this work, we use the
same model to obtain pressure, shear, and energy distribu-
tions of the nucleon in 3D using the invertible Abel
transformation. The outline of the present work is as
follows: In Sec. II we briefly review the light front
formalism based on the light front quark-diquark model.
In Sec. III we illustrate the definition of the gravitational
form factors as matrix elements of the energy-momentum
tensor and define the form factors in a light front quark-
diquark model. Then in Sec. IV we focus on the extraction
ofDðQ2Þ using two different approaches. And in Sec. V we
show the 3D Breit frame (BF) distributions which are the
Abel image of the 2D light front distributions by doing the
inverse Abel transformation. And finally, in Sec. VI we
present the summary and conclusion.

II. LIGHT FRONT QUARK-DIQUARK MODEL

In this model, the incoming photon, carrying a high
momentum interacts with one of the valence quarks inside
the nucleon, and the other two valence quarks form a
spectator diquark state of spin-0 (scalar diquark). Therefore
the nucleon state jP; Si having momentum P and spin S can
be represented as a two-particle Fock state. In this article we
consider the quark-scalar diquark model proposed in [30].
We use the light-cone convention x� ¼ x0 � x3, and choose
a frame where the transverse momentum of the proton
vanishes, i.e. P≡ ðPþ; M

2

Pþ ; 0⊥Þ, while the momentum of the

quark and the diquark are p≡ ðxPþ; p
2þjp2⊥j
xPþ ;p⊥Þ and PX ≡

ðð1 − xÞPþ; P−
X;−p⊥Þ respectively, where x ¼ pþ=Pþ is

the longitudinal momentum fraction of the active quark.

The two particle Fock-state expansion for the state with
helicity � 1

2
is given by

jP;�i ¼
X
q

Z
dxd2p⊥

2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

×

�
ψq�
þ ðx;p⊥Þ

����þ 1

2
; 0; xPþ;p⊥

�
þ ψq�

− ðx;p⊥Þ
����

−
1

2
; 0; xPþ;p⊥

��
; ð1Þ

where jλq; λs; xPþ;p⊥i represents the two particle state with
a quark having spin λq ¼ � 1

2
, momentum p, and a scalar

spectator diquark with spin λS ¼ 0. The two particle states
are normalized as

hλ0q; λ0s; x0Pþ;p0⊥jλq; λs; xPþ;p⊥i

¼
Y2
i¼1

16π3pþ
i δðp0þ

i − pþ
i Þδ2ðp0⊥i − p⊥iÞδλ0iλi : ð2Þ

Here ψqλN
λq

are the light front wave functions with nucleon

helicities λN ¼ �. The LFWFs are given by [30]

ψqþ
þ ðx;p⊥Þ ¼ φqð1Þðx;p⊥Þ;

ψqþ
− ðx;p⊥Þ ¼ −

p1 þ ip2

xM
φqð2Þðx;p⊥Þ;

ψq−
þ ðx;p⊥Þ ¼

p1 − ip2

xM
φqð2Þðx;p⊥Þ;

ψq−
− ðx;p⊥Þ ¼ φqð1Þðx;p⊥Þ; ð3Þ

where φð1Þ
q ðx;p⊥Þ and φð2Þ

q ðx;p⊥Þ are the wave functions
predicted by the soft-wall AdS/QCD and can be written as

φqðiÞðx;p⊥Þ ¼ NðiÞ
q
4π

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=xÞ
1 − x

r
xa

ðiÞ
q ð1 − xÞbðiÞq

× exp

�
−
p2⊥
2κ2

logð1=xÞ
ð1 − xÞ2

�
; ð4Þ

where κ ¼ 0.4 GeV is the AdS/QCD scale parameter and
the quarks are assumed to be massless [31]. The values of
the model parameters aiq and biq and the normalization
constants Ni

q were fixed by fitting the nucleon electromag-
netic form factors and can be found in Ref. [32]. The wave
functions can be reduced to the form predicted by AdS/
QCD for aiq ¼ biq ¼ 0 [33].
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III. RELATIONS BETWEEN 2D LIGHT FRONT
DISTRIBUTIONS AND 3D BREIT FRAME

DISTRIBUTIONS

As discussed in the Introduction, in case of nucleons the
total QCD EMT for the quarks and gluons can be para-
metrized in terms of three independent EMT form factors
[3,4,8,34,35] as

hp0jΘ̂μν
QCDð0Þjpi ¼ ūðp0Þ

�
AðtÞP

μPν

M
þ JðtÞ iP

fμσνgαΔα

M

þDðtÞ
4M

ðΔμΔν − ημνΔ2Þ
�
uðpÞ; ð5Þ

where Θ̂μν
QCDðxÞ is the symmetric EMT operator of QCD.

P ¼ ðpþ p0Þ=2;Δ ¼ p0 − p; t ¼ Δ2, and the symmetriza-
tion operator is defined as XfμYνg ¼ 1

2
ðXμYν þ XνYμÞ. The

GFF JðQ2Þ can be expressed as JðQ2Þ ¼ 1=2ðAðQ2Þþ
BðQ2ÞÞ, where AðQ2Þ and BðQ2Þ are very similar to the
Dirac and Pauli form factors which are obtained from
the helicity nonflip and helicity flip matrix elements of
the vector current. At zero momentum transfer the values of
these nucleon EMT form factors (FFs) (5) provide us with
the three basic characteristics of the nucleons: the mass M,
the spin J ¼ 1=2, and the D-term (also known as the Druck
term) D(0). The mass and the spin of the nucleons are well-
observed quantities. The third mechanical characteristic,
the D-term, is a more subtle term, as it is related to the
distribution of the internal forces inside the nucleons [12].
For the D-term, the first experimental data are available for
the nucleons [13,36]. Recently in Refs. [2,27] the 2D light
front pressure and shear force distributions were obtained in
terms of the Druck form factor D(t) as

D̃ðx⊥Þ ¼
1

4Pþ

Z
d2Δ⊥
ð2πÞ2 Dð−Δ2⊥Þe−iΔ⊥·x⊥ ; ð6Þ

pð2DÞðx⊥Þ ¼
1

2x⊥
d

dx⊥

�
x⊥

d
dx⊥

D̃ðx⊥Þ
�
; ð7Þ

sð2DÞðx⊥Þ ¼ −x⊥
d

dx⊥

�
1

x⊥
d

dx⊥
D̃ðx⊥Þ

�
; ð8Þ

where x⊥ is the 2D position vector in the transverse plane.
Since the 2D and 3D force distributions are expressed in
terms of the same Druck term form factor DðtÞ, those
distributions can be related to each other. To establish the
relations between 2D and 3D distributions, it is convenient to
redefine the 2D pressurePðx⊥Þ and shear force distributions
Sðx⊥Þ by multiplying Eqs. (7) and (8) with the Lorentz
factor Pþ

2M [2] i.e.,

Sðx⊥Þ ¼
Pþ

2M
sð2DÞðx⊥Þ; Pðx⊥Þ ¼

Pþ

2M
pð2DÞðx⊥Þ: ð9Þ

By using the Abel transformation [37,38], these 2D LF
distributions can be related to the 3D distributions in the
Breit frame as [28]

Sðx⊥Þ
x2⊥

¼
Z

∞

x⊥

dr
r
sðrÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − x2⊥
p ; ð10Þ

1

2
Sðx⊥Þ þ Pðx⊥Þ ¼

Z
∞

x⊥

dr
r
sðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − x2⊥

q
: ð11Þ

From Eq. (10), one can see that the function Sðx⊥Þ=x2⊥ is the
Abel image of sðrÞ. The Breit frame distributions of the
elastic pressure pðrÞ and shear force sðrÞ in 3D are obtained
in terms of Druck form factor DðtÞ (see Refs. [1,12]) as

pðrÞ ¼ 1

6M
1

r2
d
dr

r2
d
dr

D̃ðrÞ; sðrÞ ¼−
1

4M
r
d
dr

1

r
d
dr

D̃ðrÞ;
ð12Þ

where D̃ðrÞ is the 3D Fourier transform of the Druck-
term, i.e.,

D̃ðrÞ ¼
Z

d3Δ
ð2πÞ3 e

−iΔ:rDð−Δ2Þ: ð13Þ

The relations in Eqs. (10) and (11) have the form of
invertible Abel transformation [37,38]. The inverse Abel
transformation (3D Breit frame distribution in terms of the
2D light front frame distributions) of the Eqs. (10) and (11)
can be obtained as [28]

sðrÞ ¼ −
2

π
r2
Z

∞

r
dx⊥

d
dx⊥

�
Sðx⊥Þ
x2⊥

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2⊥ − r2
p ; ð14Þ

2

3
sðrÞ þ pðrÞ ¼ 4

π

Z
∞

r

dx⊥
x⊥

Sðx⊥Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2⊥ − r2
p : ð15Þ

Equation (15) implies that the normal force distribution in
3D i.e., ½2

3
sðrÞ þ pðrÞ�, is the Abel image of the light front

shear force distribution Sðx⊥Þ multiplied by 4
π. Similarly the

2D distributions for the mass/energy Eð2DÞðx⊥Þ and angular

momentum ρð2DÞ
J ðx⊥Þ are obtained by using the 2D inverse

Fourier transforms of GFFs AðtÞ and JðtÞ [2,23,27,28,39] as

Eð2DÞðx⊥Þ ¼ PþÃðx⊥Þ; ρð2DÞ
J ðx⊥Þ ¼ −

1

2
x⊥

d
dx

J̃ðx⊥Þ
ð16Þ

where Jðx⊥Þ is the angular momentum distribution in the 2D
LF frame. Ãðx⊥Þ and J̃ðx⊥Þ are the 2D inverse Fourier
transform of the corresponding GFFs, i.e.
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F̃ðx⊥Þ ¼
Z

d2Δ
ð2πÞ2 e

−iΔ⊥:x⊥Fð−Δ2⊥Þ: ð17Þ

Here x⊥ and Δ⊥ are respectively the position and momen-
tum vectors in the 2D plane transverse to the propagation
direction of the nucleon. The mass distribution can be
redefined by multiplying the Lorentz factor as [23]

Eðx⊥Þ ¼
M
Pþ Eð2DÞðx⊥Þ or Eðx⊥Þ ¼ MÃðx⊥Þ: ð18Þ

Similarly, by using the inverse Abel transformation of
Eq. (16) one can find the 3D Breit frame distributions
corresponding to the 2D mass and angular momentum
distributions as

ϵðrÞ ¼ −
1

π

Z
∞

r

dx⊥
x⊥

ðEðx⊥ÞÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2⊥ − r2
p ; ð19Þ

and

ρJðrÞ ¼ −
2

π
r2
Z

∞

r
dx⊥

d
dx⊥

�
ρJðx⊥Þ
3x2⊥

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2⊥ − r2
p : ð20Þ

After integrating Eðx⊥Þ and ρð2DÞ
J ðx⊥Þ over x⊥ one can get

the mass and spin of the proton as

Z
d2x⊥Eðx⊥Þ ¼ MAð0Þ and

Z
d2x⊥ρ

ð2DÞ
J ðx⊥Þ ¼ Jð0Þ

ð21Þ

where the form factors are normalized as Að0Þ ¼ 1
and Jð0Þ ¼ 1=2.

IV. EXTRACTION OF GFFS IN LFQDQ MODEL

The form factors AuþdðQ2Þ, BuþdðQ2Þ, and DuþdðQ2Þ in
the LFQDQ model can be parametrized in terms of
structure integrals as [29,40]

AuþdðQ2Þ ¼ Iuþd
1 ðQ2Þ; BuþdðQ2Þ ¼ Iuþd

2 ðQ2Þ ð22Þ

and

DuþdðQ2Þ ¼ −
1

Q2
½2M2Iuþd

1 ðQ2Þ −Q2Iuþd
2 ðQ2Þ

− Iuþd
3 ðQ2Þ�; ð23Þ

where Iuþd
i ¼ Iu

i þ Id
i . The explicit expressions of the

structure integrals Iq
i ðQ2Þ are given by [29]

Iq
1ðQ2Þ ¼

Z
dxx

�
Nq2

1 x2a
q
1ð1 − xÞ2bq1þ1

þ Nq2
2 x2a

q
2
−2ð1 − xÞ2bq2þ3 1

M2

�
k2

logð1=xÞ −
Q2

4

��

× exp

�
−
logð1=xÞ

k2
Q2

4

�
; ð24Þ

Iq
2ðQ2Þ ¼ 2

Z
dxNq

1N
q
2x

aq
1
þaq

2 ð1 − xÞbq1þbq
2
þ2

× exp

�
−
logð1=xÞ

k2
Q2

4

�
; ð25Þ

Iq
3ðQ2Þ ¼ 2

Z
dxNq

1N
q
2x

aq
1
þaq

2
−2ð1 − xÞbq1þbq

2
þ2

×

�
4ð1 − xÞ2k2
logð1=xÞ þQ2ð1 − xÞ2 − 4m2

�

× exp

�
−
logð1=xÞ

k2
Q2

4

�
: ð26Þ

Only the quark component of EMT has been included in
the above expressions. The complete analytic expression for
the D-term as given above in Eq. (23) along with Eqs. (24),
(25), and (26) is found to be very lengthy and not so
intuitive. It turns out that the form factor DðQ2Þ≡
DuþdðQ2Þ can be described by themultipole function as [41]

DðQ2Þ ¼ a
ð1þ bQ2Þc ; ð27Þ

where the parameters a, b, and c are given in Table I at the
initial scale as well as at a higher scale. The comparison of
the GFFs at Q2 ¼ 0 with the various phenomenological
models, lattice QCD, and existing experimental data for the
Dð0Þ and the validity for those GFFs are discussed in
Ref. [29]. In Table I fitted model parameters in the first row
are extracted at the model scale μ0 ¼ 0.313 GeV, whereas
the fitted parameters in the second row correspond to the
scale evolution of the GPDs from initial scale μ20 ¼
0.32 GeV2 to the final scale μ2 ¼ 4 GeV2. For the evolution
scheme we adopt the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations [42–44] of QCD with next-to-
next-to-leading order (NNLO) of the scale evolution. We
have used the higher-order perturbative parton evolution

TABLE I. Fitted parameters for the fitted function DfitðQ2Þ
Eq. (27) form factor. HereDfit

0 represents the form factor at model
scale while Dfit

1 show the evolved form factor from initial scale
μ20 ¼ 0.32 GeV2 to μ2 ¼ 4 GeV2 in the LFQDQ model.

Parameters a b c

Dfit
0 −18.8359 2.2823 2.7951

Dfit
1 −1.521 0.531 3.026

POONAM CHOUDHARY et al. PHYS. REV. D 106, 076004 (2022)

076004-4



toolkit (HOPPET) [45] to perform the scale evolution
numerically. We find that the QCD evolution of the GFFs
AuþdðQ2Þ, BuþdðQ2Þ are consistent with the lattice QCD
results [29,41]. Also the qualitative behavior of our D-term is
comparable with the lattice QCD [46] and the experimental
data from JLab [13] as well as other theoretical predictions
from the KM15 global fit [47], dispersion relation [48],
χQSM [22], Skyrme model [24], and bag model [49]. The
renormalization of the QCD trace anomaly for the quark and
gluon parts of the energy-momentum tensor has been studied
in Ref. [50].
We have checked the accuracy of our fitting techniques at

the initial scale using the multidimensional Monte Carlo
integration programVegas [51,52]. In Fig. 1we show the 3D
distributions which are computed with the fitted D-term
form factor given in Eq. (27) and the exact model calcu-
lations (using Vegas) at the initial scale. From Fig 1 one can
see that near the region of small spatial distance from the
center of nucleon the fitted and exact model results are
exactly overlapping, while for the large value of r, the

distributions are slightly different in two different methods.
The multipole fitting function describes the exact results
very accurately for small r, but the discrepancies at large r
are negligibly small. It allows us to use the multipole fitting
function in place of an exact expression for evaluation of
different distributions using Abel transformation.

V. DISTRIBUTIONS IN THREE DIMENSIONS

In this section, we present the results for the 3D
distributions in the Breit frame (BF). The 3D BF EMT
distributions are derived from the 2D LF EMT distributions
by using the inverse Abel transformation [37,38].
In the left and right panels of Fig. 2, we compare themodel

results for the energy(mass) distributions with the chiral
quark-solitonmodel (χQSM) [22,23] for the 2Dand 3Dmass
distributions in the LF (Drell-Yan) and BF, respectively. By
using Eq. (18) we compute the 2D momentum distributions
and then the 3D momentum distributions are calculated by
the inverse Abel transformation defined in Eq. (19). The
values of themass distribution in the 2DLF frame and 3DBF

FIG. 1. The solid-blue curve in the upper left panel shows the 3D shear force distribution in the Breit frame for the LFQDQ model
(using the inverse Abel transformation) at the initial scale for the fitted DðQ2Þ term while the purple-dashed curve is for the model data
by using the Vegas. While the upper right figure draws the 3D pressure distributions. Similarly, the lower-left panel draws the 3D normal
force distribution and the lower-right panel draws the 3D tangential force distribution, respectively.
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at the center of the nucleon are found to be Eð0Þ ¼
1.54 GeV=fm2 and ϵð0Þ ¼ 2.02 GeV=fm3 respectively. In
Fig. 2, we have shown the 2D LF frame and 3D BF mass
distributions weighted by 2πx⊥ and 4πr2 respectively. One
can see from Fig. 2 that 3D mass distribution exhibits a
broader shape than the 2D mass distributions. This indicates
that the 3D mass radius [22] should be larger than the 2D
mass radius [23]. The numerical values of the mass radii for
the 2D and 3D distributions are given in Table II. The ratio
between the 2DLF frame and 3DBFmean square mass radii
in this model is found as

hx2⊥imass

hr2imass
¼ 2

3
; ð28Þ

where these 2D and 3Dmass radii are respectively defined as
[22,23,27]

hx2⊥imass ¼
1

M

Z
d2x⊥x2⊥Eðx⊥Þ;

hr2imass ¼
R
d3rr2ϵðrÞR
d3rϵðrÞ : ð29Þ

In Fig. 3 the solid-blue curves in the left panel represent
the 2D angular momentum distribution (weighted by 2πx⊥)
calculated by using Eq. (16), for the LFQDQ model
whereas the dashed-red curves represent the same in the
χQSM model. The solid-blue (dashed-red) curves in the
right panel show the 3D angular momentum distribution
weighted by 4πr2 which are computed by using the inverse
Abel transform given in Eq. (20), in the LFQDQ (χQSM)
model. The 2D and 3D angular momentum distributions are
normalized as

Z
d2x⊥ρ2DJ ðx⊥Þ ¼

Z
d3rρJðrÞ ¼ Jð0Þ ¼ 1

2
; ð30Þ

which is related to the nucleon spin. Similar to the mass
distribution, the 3D BF angular momentum distribution is
also broader than the 2D LF frame distribution. The 2D LF
frame radius [23] for the angular momentum distribution is
related to the 3D BF distribution [22], and is smaller than
the 3D radius by a geometric factor of 4=5, i.e.,

hx2⊥iJ ≈
4

5
hr2iJ ð31Þ

FIG. 2. The solid blue curve in the left panel shows the 2D mass distribution in the 2D LF frame for the LFQDQ model while the red-
dashed curve is the 2D mass distribution for the χQSM model [23]. Similarly, the solid-blue curve in the right panel shows the 3D mass
distribution in the BF for the LFQDQ (after doing the inverse Abel transformation) whereas the red-dashed curve is the 3D mass
distribution for χQSM model [22]. The error bands correspond to 2% uncertainty in the model parameters and model predictions are at
an evolved scale μ2 ¼ 4 GeV2.

TABLE II. Various observables obtained from the EMT distributions for the proton in both 2D LF and 3D BF are
listed: the energy distributions at the nucleon center (Eð0Þ, ϵð0Þ), pressure distribution at the nucleon center (Pð0Þ,
pð0Þ), nodal points of the pressure (ðx⊥Þ0,r0), and the mean square radii of the mass, angular momentum, and
mechanical (hx2⊥i, hr2i).

Eð0Þ ðGeV=fm2Þ Pð0Þ ðGeV=fm2Þ ðx⊥Þ0 (fm) hx2⊥imass ðfm2Þ hx2⊥iJ ðfm2Þ hx2⊥imech ðfm2Þ
1.54 0.354 0.34 0.21 0.38 0.167

εð0Þ ðGeV=fm3Þ pð0Þ ðGeV=fm3Þ r0 (fm) hr2imass ðfm2Þ hr2iJ ðfm2Þ hr2imech ðfm2Þ
2.02 4.76 0.43 0.32 0.51 0.251
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where these 2D LF frame and 3D BF angular momentum
radii are defined as

hx2⊥iJ ¼ 2

Z
d2x⊥x2⊥ρ

ð2DÞ
J ðx⊥Þ and hr2iJ ¼

R
d3rr2ρJðrÞR
d3rρJðrÞ

:

ð32Þ

The numerical values of these 2D and 3D angular momen-
tum radii for the LFQDQ model are given in Table II.
The solid-blue curve in the left (right) panel of Fig. 4

shows the 3D pressure (shear-force) distributions for the
LFQDQ model, while the black-dashed, red-dotted, and

green-dot-dashed curves show the pressure and shear-force
distributions for JLab, χQSM, and lattice predictions,
respectively. The pressure pðrÞ has the global maximum
at r ¼ 0, with pð0Þ ¼ 4.76 GeV=fm3 ¼ 7.62 × 1035 Pa.
Which is 10–100 times higher than the pressure inside a
neutron star [53]. The pressure decreases monotonically,
becoming zero at the nodal point, r0 ≈ 0.43 fm. The
pressure reaches the global minimum at rp;min ¼ 0.67 fm,
after which it increases monotonically but remains negative
until it goes to zero. The positive sign of the pressure for
r < r0 corresponds to the repulsion, whereas the negative
sign in the region r > r0 is for the attraction. Unlike
pressure, the shear force distribution is always positive.

FIG. 3. The solid blue curve in the left panel shows the 2D angular momentum distribution in the LF frame for the LFQDQ model
while the red-dashed curve is the 2D angular momentum distribution for the χQSM model [23]. Similarly, the solid blue curve in the
right panel shows the 3D angular momentum distribution in the BF for the LFQDQ (after doing the inverse Abel transformation)
whereas the red-dashed curve is the 3D angular momentum distribution for χQSM model [22]. The error bands correspond to 2%
uncertainty in the model parameters and model predictions are at evolved scale μ2 ¼ 4 GeV2.

FIG. 4. The solid blue, black-dashed (with error band), red-dotted, and green-dot-dashed curves in the left panel represent the 3D
pressure distributions (in Breit Frame) for LFQDQ, JLab [13,36], χQSM [22], and Lattice predictions [17], respectively. Whereas solid-
blue, black-dashed, red-dotted, and green-dot-dashed curves in the right panel show the 3D shear-force distributions in the BF for
LFQDQ, JLab [13,36], χQSM [22], and Lattice predictions [17]. The error bands correspond to 2% uncertainty in the model parameters
and model predictions are at evolved scale μ2 ¼ 4 GeV2.
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The conservation of the EMT currents ∂μT̂
μν ¼ 0,

provides the 2D as well as 3D stability conditions. We
obtain the 3D equilibrium equations from the conservation
of the EMT currents, which are equivalent to the 2D stable
conditions as [1,23,28]

p0ðrÞ þ 2sðrÞ
r

þ 2

3
s0ðrÞ ¼ 0

⇔ P0ðx⊥Þ þ
Sðx⊥Þ
x⊥

þ 1

2
S0ðx⊥Þ ¼ 0: ð33Þ

From the above Eq. (33) one can easily see that the pressure
and shear forces are not independent functions but due to
EMT conservation, they are related to each other. Another
consequence of the EMT conservation is the von Laue
condition for the 2D and 3D pressure and shear forces for
the nucleons [1]

Z
d3rpðrÞ ¼ 0 ⇔

Z
d2x⊥Pðx⊥Þ ¼ 0; ð34Þ

Z
∞

0

drr

�
pðrÞ − 1

3
sðrÞ

�
¼ 0

⇔
Z

∞

0

dx⊥
�
Pðx⊥Þ −

1

2
Sðx⊥Þ

�
¼ 0: ð35Þ

From the above two Eqs. (34) and (35) one can see that 3D
von Laue conditions are satisfied if and only if the 2D ones
are satisfied. By using the Eq. (33) the Druck term can be
expressed in terms of 2D and 3D pressure and force
distributions as

Dð0Þ¼−M
Z

d2x⊥x2⊥Sðx⊥Þ¼ 4M
Z

d2x⊥x2⊥Pðx⊥Þ ð36Þ

and

Dð0Þ ¼ −
4

15
M

Z
d3rr2sðrÞ ¼ M

Z
d3rr2pðrÞ ð37Þ

respectively. It indicates that the 3D Able images of the 2D
distributions show the equivalently same mechanical prop-
erties as 2D distributions.
In Refs. [1,2,54] it was shown that for the local stability

of the mechanical system, the 3D and 2D pressure and
shear forces should satisfy the following conditions:

2

3
sðrÞ þ pðrÞ > 0 and

1

2
Sðx⊥Þ þ Pðx⊥Þ > 0: ð38Þ

These inequalities imply that the Druck term (D-term) for
any stable system must be negative, i.e., Dð0Þ < 0. More
discussions about the local stability [Eq. (38)] can be found
in Ref. [27]; it is an interesting result that the stability
condition in 3D implies the stability of the 2D mechanical
system [29]. This allows us to connect the 3D mechanical
radius to that in 2D as

hx2⊥imech ¼
4Dð0ÞR

0
−∞ dtDðtÞ ¼

2

3
hr2imech ð39Þ

where the 2D mechanical radius is defined as

hx2⊥imech ¼
R
d2x⊥x2⊥ð12Sðx⊥Þ þ Pðx⊥ÞÞR
d2x⊥ð12Sðx⊥Þ þ Pðx⊥ÞÞ

ð40Þ

and the mechanical radius in 3D is given by

hr2imech ¼
R
d3rr2ð2

3
sðrÞ þ pðrÞÞR

d3rð2
3
sðrÞ þ pðrÞÞ : ð41Þ

Numerical verification of the stability condition Eq. (34) is
presented in Fig. 5. The left panel in Fig. 5 shows r2pðrÞ

FIG. 5. Left panel shows r2pðrÞ as a function of r from the LFQDQ model at evolved scale μ2 ¼ 4 GeV2. It shows how the stability
condition

R∞
0 drr2pð0Þ ¼ 0 in Eq. (34) is realized. Right panel shows 4πr4pðrÞ. Note that the area under the curve is negative which

implies D < 0.

POONAM CHOUDHARY et al. PHYS. REV. D 106, 076004 (2022)

076004-8



as a function of r. The yellow shaded region in the
positive upper half in the left panel of Fig. 5 has exactly
the same surface areas as in the negative half (shaded in
green). i.e.,

Z
r0

0

drr2pðrÞ ¼ 6.74 MeV;
Z

∞

r0

drr2pðrÞ ¼ −6.74 MeV ð42Þ

where r0 is the nodal point in 3D BF, and thus they cancel
each other to produce zero as required by the stability
condition [Eq. (34)]. In the right panel of Fig. 5 we show
4πr4pðrÞwith rwhich tells us about the sign of the D-term.
The area in the negative half (green) is much larger than the
area in the positive half (yellow). From Eq. (37) we can see
that in the LFQDQ model the D-term at zero momentum
transfer takes a negative value, i.e., Dð0Þ < 0. The same
conclusion can be derived from Eq. (36) as well. For
nucleons, the D-term is found to be negative which
explains mechanical stability of the system. Note that
Dð0Þ may not be negative for other systems, e.g., in
Ref. [55] the D-term is found to be positive for the
hydrogen atomlike system. Also in Ref. [56], it has been
shown that the D-term is positive for a spin 3=2 particle,
namely the Δ resonance.
The pressure and the shear force distributions are again

related to the normal (radial) and the tangential force fields,
which are the eigenvalues of the stress tensor, Tij. So, the
3D and the 2D force fields on the BF and the 2D LF frame
can be obtained as [1,23]

FnðrÞ ¼ 4πr2
�
2

3
sðrÞ þ pðrÞ

�
;

FtðrÞ ¼ 4πr2
�
−
1

3
sðrÞ þ pðrÞ

�
ð43Þ

and

Fð2DÞ
n ðx⊥Þ ¼ 2πx⊥

�
1

2
Sðx⊥Þ þ Pðx⊥Þ

�
;

Fð2DÞ
t ðx⊥Þ ¼ 2πx⊥

�
−
1

2
Sðx⊥Þ þ Pðx⊥Þ

�
ð44Þ

respectively, In the left panel of Fig. 6 the solid-blue curve
depicts the 3D normal force field, while the black-dashed,
red-dotted, and the green-dot-dashed curves are the 3D
normal force distributions for the JLab [13,36], χQSM [22],
and lattice predictions [17], respectively. The right panel of
Fig. 6 shows the 3D tangential force field distributions for
the LFQDQ (solid-blue), JLab (black-dashed) [13,36],
χQSM (red-dotted) [22], and lattice (green-dot-dashed)
[17], respectively. The 2D normal and tangential force
field distributions for the quark-scalar-diquark model can
be found in Ref. [29]. In a stable spherically symmetric
system the normal force FnðrÞ must be a stretching force
otherwise the system would squeeze and collapse to the
center. Whereas, the tangential force changes its direction
with the distance r because the average value of possible
squeezing has to be zero for a spherically symmetric
system. The normal force complies with the local stability
condition (38) and the tangential force satisfies the von
Laue condition (34). Due to this condition, both 2D and 3D
tangential forces have at least one nodal point, which tells

FIG. 6. The solid blue, black-dashed, red-dotted, and green-dot-dashed curves in the left panel represents the 3D normal force field
distributions (in Breit frame) for LFQDQ, JLab [13,36], χQSM [22], and Lattice predictions [17], respectively. whereas the solid-blue,
black-dashed, red-dotted, and green-dot-dashed curves in the right panel show the 3D tangential force field distributions in the BF for
LFQDQ, JLab [13,36], χQSM [22], and lattice predictions [17], respectively. The error bands correspond to 2% uncertainty in the model
parameters and model predictions are at evolved scale μ2 ¼ 4 GeV2.
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that the direction of the force field should be reversed at this
point. In the LFQDQ model the 3D and 2D tangential
forces changes its direction at r0 ≈ 0.29 fm and ðx⊥Þ0 ≈
0.20 fm, respectively.
In Table II, we list the numerical values for various

observables such as energy and pressure densities at the
center of the nucleon in both the 3D BF and 2D LF frames.
The explicit values of the nodal points are also given. One
can see from Table II that the magnitudes of these
observables are larger in 3D BF than those in the 2D LF
frame. A similar type of behavior for those observables has
been also observed in Ref. [23].

VI. CONCLUSION

Of the three GFFs, Druck term, or the D-term is the least
understood form factor. The D-term is physically very
important as it gives the shear and pressure distributions
inside the proton. Recently, JLab reported the first meas-
urement of the shear and pressure forces inside the proton
and hence there are renewed interests in recent time to
study the D-term in different models. Generally, the three-
dimensional distributions are defined in the Breit frame
which are subject to relativistic corrections while in the
light front the distributions are most conveniently evaluated
in the 2D transverse plane. Recently, it was shown that the
Abel transformation relates the 2D light front distributions

to the 3D distributions in the Breit frame. In this paper, the
2D LF distributions are evaluated in a quark-scalar diquark
model of proton and then the 3D distributions are obtained
using the Abel transformation. The wave functions in the
model are constructed by modifying the two-particle wave
functions predicted by AdS/QCD which cannot be evalu-
ated in perturbation theory and encode nonperturbative
contributions. Our results are compared with the χQSM,
JLab, and lattice predictions. The 3D stability conditions
translated to 2D are found to be satisfied by the 2D
distributions obtained in the LFQDQ model. Various
properties, such as the energy and pressure distributions
at the nucleon center, mass, angular momentum, mechani-
cal radii, etc. are evaluated from the EMT distributions in
the 2D transverse plane and the corresponding 3D distri-
butions in the Breit frame are obtained by Abel trans-
formations. The normal and shear force distributions are
also evaluated in the LFQDQ model. Our results are found
to be consistent with lattice and other model predictions.
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