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Gauge invariance from on-shell massive amplitudes and tree-level unitarity
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We study the three-particle and four-particle scattering amplitudes for an arbitrary, finite number of
massive scalars, spinors and vectors by employing the on-shell massive spinor formalism. We consider the
most general three-particle amplitudes with energy-growing behavior at most of O(E). This is the special
case of the requirement of tree unitarity, which states that the N-particle scattering amplitudes at tree level

should grow at most as O(E*~") in the high-energy hard-scattering limit, i.e., at fixed nonzero angles. Then
the factorizable parts of the four-particle amplitudes are calculated by gluing the on-shell three-particle
amplitudes together and utilizing the fact that tree-level amplitudes have only simple poles. The contact
parts of the four-particle amplitudes are further determined by tree unitarity, which also puts strong
constraints on the possible allowed three-particle coupling constants and the masses. The derived relations
among them converge to the predictions of gauge invariance in the UV theory. This provides a purely on-
shell understanding of spontaneously broken gauge theories.
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I. INTRODUCTION

In Ref. [1], Weinberg took the point of view that
quantum field theory (QFT) is an inevitable outcome of
the physical principles of quantum mechanics and special
relativity. Starting from Wigner’s definition of particles as
irreducible representations of the inhomogeneous Lorentz
group and by exploring the symmetries of the S-matrix,
especially Lorentz invariance (covariance) as well as the
cluster decomposition principle, it is possible to show that
field theory is a natural framework to describe physics at
sufficiently low energy. The central role in Wigner’s
classification is played by the little group for a given
momentum, which is defined as the subgroup of the
Lorentz group that leaves the momentum unchanged.
The general unitary Lorentz transformation on the
Hilbert space, U(A), can be induced by transformations
of the little group W(A, p).

The S-matrix element is then given by the transition
amplitude between the “in” and “out” states, which
transforms as the direct product of one-particle states.
The Lorentz covariance of S-matrix requires that there
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should exist one unitary operator, acting on both “in” and
“out” states, which further leads to the commutation of the
S-operator with the free Lorentz generators. Thus, one can
show that in the time-dependent perturbation theory, if
the interaction operator can be written as an integral of a
scalar density, which commutes at spacelike or lightlike
separations,

V(1) :/d3xV(x,t), and

V(x),V(x)] =0, for (x—x')><0, (1)

then the S-matrix is Lorentz covariant. Furthermore, the
cluster-decomposition principle requires that the S-matrix
factorizes for multiparticle processes which are sufficiently
separated in space. It can be shown that if the Hamiltonian
can be expressed as the sum of the products of annihilation
and creation operators with coefficient functions only
containing single three-momentum conservation delta
function, the connected part of S-matrix will also only
carry single momentum conservation delta function. This
ensures that the S-matrix in the coordinate space satisfies
the cluster-decomposition principle. Such considerations
in addition to the requirement of Eq. (1) naturally call for
quantum fields as building blocks of V(x).

However, huge progress on studying the scattering
amplitudes for gauge theory and gravity has been made
in recent years (see Refs. [2—8] for reviews) suggesting that
pure on-shell ways to determine the S-matrix, without the
notion of local quantum fields, are worth exploring. The
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massless helicity amplitudes are natural functions of
spinor-helicity variables [9-14]. At tree level they are
rational functions of spinor products and only have simple
poles. In particular, the marvellous simplicity of the
maximal helicity violating (MHV) n-gluon amplitude
(the amplitude with the maximal number of same helicities
in the all-momenta-incoming convention) deduced by
Refs. [15,16] has suggested that there may exist alternative
ways to calculate the helicity amplitudes for the gauge
theory other than the conventional field-theory Feynman-
diagram approach.

Indeed, Witten’s formulation of perturbative gauge
theory in the twistor space [17] has motived the Cachazo-
Svrcek-Witten construction of the tree-level amplitudes
using MHV diagrams [18] and finally, the discovery of on-
shell ~Britto-Cachazo-Feng-Witten recursion relations
[19,20] has provided an efficient and elegant way to
determine the tree-level amplitudes of Yang-Mills theory
from their singularities. Note that Weinberg’s argument of
the Lorentz-covariance of the S-matrix is ensured by the
recursion relations. This has motivated active research in
the quest for the dual formulation of QFT, in which the
symmetries and the simplicities of the amplitudes, such as
the infinite-dimensional Yangian symmetry of A =4
planar supersymmetric Yang-Mills theory, are manifest,
while the notion of locality or even space-time may not be
apparent [21-25]. The formulation of planar N' = 4 SYM
amplitudes as the volume of “amplituhedron” in Ref. [26]
provides such an example; locality and unitary emerge
from positivity geometry. See also Refs. [27-30] for
deriving locality and unitary from other principles, e.g.,
gauge invariance or infrared behavior. Other interesting and
exciting approaches include the color-kinematics duality
and the double copy [31-33], the Cachazo-He-Yuan
formalism based on scattering equations [34-37] etc.

From the more practical point of view, the idea of
constructing amplitudes from the on-shell data has found
many applications in the effective field theory (EFT),
especially the EFTs that have enhanced soft limit, where
on-shell constructability becomes possible [38—42]. It has
nicely explained the one-loop nonrenormalization patterns
of dimension-six operators in the Standard Model (SM)
EFT [43] and leads to new nonrenormalization theorem of
operator mixing [44]. It also leads to the noninterference
between the SM 4-point amplitudes involving at least one
transverse vector boson and the corresponding linear
dimension-six operator contributions [45]. Calculations
of anomalous dimensions of the effective operators have
also been performed recently by using the on-shell
amplitudes in Refs. [46-51]. Furthermore, the simplicity
of on-shell helicity amplitudes can be used to enumerate
the independent EFT operators, which was first demon-
strated in the context of a gauge singlet scalar or vector
coupled to gluons in Ref. [52] and further employed in
Ref. [53-55].

Another step towards the on-shell formulation of QFT
has been put forward by Ref. [56], in which the on-shell
formalism for scattering amplitudes of general masses and
spins has been systematically developed. The massive
particles carry SU(2) little group indices in the form of
completely symmetric tensor representations, and as a
result, the Lorentz-covariance of the scattering amplitudes
for spin-§ particles has manifested itself as rank-2S tensor.
The on-shell three-particle amplitudes can be constructed
systematically by the use of massive spinor kinematic
variables A/, ;12, and the four-particle scattering amplitudes
can be derived by the fact that tree-level amplitudes have
only simple poles and the residues are determined by
unitary in the form of consistent factorization.

The presence of spurious nonlocal poles in the 3-point
on-shell massless helicity amplitudes (in the complex
momenta scheme) and the requirement of consistent
factorization for 4-point amplitudes have put strong con-
straints on the possible structure of the interacting massless
particles, such as the Yang-Mills structure for the multiple
self-interacting massless spin-1 particles, and the universal
couplings to the massless spin-2 particles [57]. In a similar
fashion, one should be able to understand the structure of
the spontaneously broken gauge theory as the consequence
of the locality and perturbative-unitarity constraints on the
massive amplitudes. It is known that the on-shell 3-point
massive amplitudes can turn the spurious poles of massless
amplitudes into some kind of mass singularities, and the
Higgs mechanism can be understood as the infrared
unification of different massless amplitudes in the ultra-
violet [56]. The 1/m mass singularities in general lead to
energy-growing behaviors for higher-point amplitudes
involving the longitudinal components of the massive
gauge bosons.

It was proven in the 1970s by the authors of Refs. [58—60]
that any tree-unitary theory of massive vector bosons (with
general interactions with scalars and spinors) is equivalent
to a spontaneously broken gauge theory. Here tree unitarity
means that the N-particle scattering amplitudes at tree level
should scale at most as E*~" in the high-energy (E) limit at
fixed, nonzero angles, i.e., the hard-scattering limit. It can be
argued that nontree-unitary theories will not be renormaliz-
able or in the modern effective field theory language, it will
have very low cutoff. In this paper, we aim to understand
this from a completely on-shell point of view, using the
aforementioned massive spinor helicity formalism. We will
study the 3-point and 4-point scattering amplitudes for an
arbitrary, finite spectrum of massive scalars, spinors, and
vectors, deriving the consequence of tree unitarity. Note that
the general 3-point on-shell massive amplitudes and four-
particle contact terms for the SM and EFTs have been
constructed by [61-68]. Reference [61] has derived the
constraints among the relevant coupling and mass param-
eters from perturbative unitary on the four-point w“ywZh
amplitude. Similar work for the on-shell description of
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Higgs mechanism in the SM electroweak sector has been
studied in Ref. [69]. See Ref. [70] for the consideration of
finite number of massless and massive scalar fields with
arbitrary local interactions, where linearized symmetry and
unification can emerge from soft theorems and perturbative
unitarity. See also Refs. [71-80] for related works.

The paper is organized as follows. In Sec. II, we first
review the definition of the little group and its role in the
classification of the irreducible representations of the
inhomogeneous Lorentz group. Then we introduce on-
shell massless and massive amplitudes and their interplay
as the connection between UV and IR physics. In Sec. III,
we discuss the relations between polarization functions and
massive spinor variables and present the general relevant or
marginal on-shell massive three-particle amplitudes involv-
ing arbitrary numbers of scalars, fermions and vector
bosons. They are selected by studying their high-energy
limit and imposing the tree-level unitarity at three-particle
level, i.e., M3 < O(E). In Sec. IV, we move on to calculate
the four-particle scattering amplitudes by obtaining the
residues from gluing together the three-particle on-shell
massive amplitudes and then imposing the tree-level
unitarity constraint, M, < O(E?), in the high-energy limit.
In addition to constraining possible contact parts of the
four-particle amplitudes, we derive relations among the
coupling constants and show that they converge to gauge
invariance in the UV theory, and a spontaneously broken
symmetry in the IR. Section V contains our conclusion and
outlook. Several appendices collect our conventions and
useful formulas.

II. THE LITTLE GROUP AND THE ON-SHELL
MASSLESS AND MASSIVE AMPLITUDES

In this section we review the basic concepts of the little
group and illustrate how the on-shell massless and
massive amplitudes make the little group transformation
manifest. The detailed discussion about the massless and
massive spinor variables are presented in Appendix B and
Appendix C, respectively.

A. Review of the little group

We start from the Wigner’s definition of the little group
[81]. In terms of Wigner’s classification, the one-particle
states can be defined as the irreducible representations of
the inhomogeneous Lorentz group and the representations
can be induced by the irreducible representations of the
little group. Given a general momentum p*, the little group
is the subgroup of the homogeneous Lorentz group SO(3,1)
or its universal covering group SL(2,C), which leaves the
momenta of the particles the same. The classification can
be performed using the reference momentum trick.

For massless particles, the reference momentum can be
chosen as k* = k(1,0,0, 1), where the little group asso-
ciated with this reference momentum is simply the isometry

group of the two-dimensional Euclidean space 1SO(2).!
Actually, by using the explicit formulas in Eq. (A4), it is
straightforward to show that the following combinations of
the generators acting on the reference momentum will give
zero four-vector,”

J?-K', -J'-K?, J3. (2)
To avoid the continuum internal indices of the particles,
only the subgroup SO(2) ~ U(1) is considered. This means
that the particles in the Hilbert space carry zero eigenvalues
of the Hermitian operators corresponding to the first two
generators. It is well known that the representation is the
helicity of the particles. The general momentum can be
obtained by the standard Lorentz transformation, which can
be chosen as’

L(p) = R(p)B(Ipl/k). (3)
where the rotation R(p) = exp(—igpJ?) exp(—ifJ?) trans-
forms the z-axis into the direction of P = (sinfcos ¢,

sin@sin ¢, cos @), and the boost B(|p|/k) is along the
z-axis, with the nonzero components of B given by

w? +1
BOy(u) = B3 (u) =",

u?—1
2u ’

2u
(4)

BY3(u) = B(u) =

For massive particles, we can choose the reference
momentum as the momentum in the rest frame k* =
m(1,0,0,0). The little group is the rotation group SO(3)
or its universal covering group SU(2). The generators are
simply

AN R £ (5)

The standard Lorentz transformation, which boosts the
standard momentum k* to the general momentum p*, can
be chosen as

L(p) = R(p)B(Ip)). (6)

'Note that ISO(2) can be considered as the Innou-Wigner
contraction of SO(3) with respect to its subgroup SO(2).

*Note that we have adopted the same convention for the
definition of boosted generators as Peskin and Schroeder [82],
which is different from that of Weinberg [1] by a minus sign. See
Appendix A for details.

*In this subsection, the boldface letter p represents the three-
momentum of the particle and in the following sections, we
sometime use it for the massive on-shell spinors with sym-
metrized little group indices. As for the latter case, it is always
associated with angle or square brackets, thus there should be no
confusion.
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TABLE I.  The little group for the massless and massive particles. The reference momenta and the corresponding
standard Lorentz transformations are also shown. Here, p stands for the unit vector along the direction of the
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3-momentum, i.e., P = (sin & cos ¢, sin O sin ¢, cos §) and 5 is the rapidity given by n = arctanh ‘%‘. The explicit
formulas for the Lorentz group generators in the vector representation are presented in Appendix A.

Standard momentum Little group

Standard Lorentz transformation

k* = k(1,0,0,1) ISO (2) L(p) = R(p)B(|p|/k)
P —-K'-I' - K2 R(p) = e~ =107
Boo(u) — B(l/l)33 — uzz:l,
B(u)'; = B(u)}, =5t
k* =m(1,0,0,0) SO(3) L(p) = R(p)B(|p)
‘117.]2,.]3 R(f)) — e—iq&ﬂe—iﬁj“’ B(|p|) — e—iq[(3

where B(|p|) = exp(—inK?) is the boost along the z-axis.
Note that we have chosen a different standard Lorentz
transformations from Ref. [1] and the reason will be clear
later on. We summarize our previous discussions in
Table 1.

In the Hilbert space, the state vector for the general
momentum p* with helicity ¢ of particle species n, ¥, , ,,
can be obtained by the unitary transformation U(L(p)) on
the state vectors associated with the standard momentum
kﬂ? \Pk,n’,n’

‘Pp,(;.n = U(L(p>)lpk,6n (7)

It can be shown that once we normalize the states of the
standard momentum,

(‘Pk’.a’,n” lPk,o,n) = 2Ek55’55nn’53<kl - k)’ (8)

the states at general momenta have the following normali-
zation,

(Tp’ o .n's ‘Pp a,n) = 2Ep55’55nn’53 (p/ - p) (9)
Given the definition, under the general proper orthochro-

nous Lorentz transformation A, the state-vectors transform
under the unitary operator U(A) as

po’n ZDO'O'

Here W(A, p) is the little group element defined as

A P )lPApo’ ne (10)

W(A. p) = L7 (Ap)AL(p). (11)
‘ (A p)) =
D/, (W(A, p)) is an irreducible unitary representation of
SU(2) with dimension 2j + 1, while for massless particles,
since helicity is a Lorentz invariant quantity, D (W (A, p))
is diagonal with phase elements,

For massive particles with spin j, D, (W

Dyo(W(A, p)) = exp(=i0(A, p)0)3yq.  (12)

It is important to point out for massive particles that when A
is the three-dimensional rotation R, the little group rotation
W(A, p) remains the same as R, i.e., W(R, p) = R, because
R is independent of the momentum p. This can be directly
derived by using the explicit formula of the standard Lorentz
transformation in Eq. (6).

The S-matrix elements are defined as the probability
transition amplitudes from the in states ¥, to the out state
‘I’/; as follows:

Spa = (W5, %5). (13)

with the state labels collectively given by a = p,o;n;;
P20y - -+, f = p'on); phohnl; - - . The in and out states
are transformed in the same way as the direct product of
one-particle states. The Lorentz invariance of the S-matrix is
defined as

Spa = (U(A)¥5, UAN)Yy), (14)
where the same unitary transformations acting on both in
and out states are the essential part. This will give us the
Lorentz covariant property of the S-matrix,

Sﬂa: Z D(_TIO'I(W
51,5/1_...

: 'D;/IOJI (W(A. Pﬁ))D:fy;ﬁfz(W(A, pa))--

(A, p1)) D50, (W(A, p2))

S/\E.Aéc' (15)

Here Aa stands for Ap;6,n;; Ap,6,n,;- -+ and the same
applies to AS. For massive particles with general spins, the
Lorentz covariance tells us that the on-shell amplitudes are
tensors under the little group SU(2), while for massless
particles, the on-shell helicity amplitudes are subject to the
U(l) little group phase transformations. Since in our
convention, we take all the momenta ingoing, the final
particle states ¥, ,, are represented by the analytical
continuation (—p, —o, n).
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B. On-shell massless and massive amplitudes

The on-shell massless helicity amplitudes are naturally
functions of spinor-helicity variables, which can be intro-
duced by exploring the equivalence between the Lorentz
group and the SL(2,C) group. The on-shell condition
p* = 0 implies that the 2 x 2 matrix p,; = p,0%; has rank
1 and can be written as the direct product of two spinor
vectors (see Appendix A for the summary of the notations
and conventions),

Paa :ﬂaid' (16)

Similar to the previous discussions about the induced
general Lorentz transformation from the little group trans-
formation, we can also specify the standard Lorentz
transformation on the spinor variables [56],

Aa(P) = D(L(P))o"45(k). (17)

and therefore, under the general Lorentz transformation A,
the spinor variable has the following little group trans-
formation,

D(A)A(p) = D(W(A, p))A(Ap). (18)
|

Al <12>h3—h1—h2 <23>h|—h2—h3 <31>h2—h3—h1 ’
3 [12]h1+h2—h3 [23]h2+h3—h| [31];,3“,[_;,2,

which have smooth limits when we take the momenta
as real quantity, i.e., 4 x 1, x 43, or 4; 1, x 43 (see
Appendix B for detail). Note that under the parity trans-
formation, the spinor-helicity variables transform as’

Ay — 2%, 2% > il (21)
which results in the interchange between the angular and
square brackets,

(12) < [12]. (22)

Since the helicities change sign under the space inversion,
the two cases in Eq. (20) are related by the parity trans-
formation.

A special case corresponds to the total helicity of +1,

|y 4 hy + hs| =1, (23)

*We can check explicitly that under this transformation, p,;
changes to p® which is consistent with the parity transformation
on the momentum (p°,p) — (p°,—p). The presence of the
factor of i is also consistent with the reality condition for the
positive energy A, = A% One can also check this explicitly by
using the explicit formulas of the spinor-helicity variables as
functions of (6, ¢) and noticing that under parity transformation,
0->n—-0,¢— ¢+ n.

Here for real momenta, D(W(A, p)) is just the U(1) little
group phase factor ex»7), which corresponds to ¢ = —1
in Eq. (12). For general complex momenta, D(W(A, p))
will be a complex number w € C, as the complexification
of the little group U(1) is GL(1,C). In these definitions
(conventions), the spinor A(4) has helicity weight —(+) 1.
If we consider the helicity amplitudes as functions of the
spinor-helicity variables 4, :1, the Lorentz covariance of the

S-matrix in Eq. (15) can be stated as follows:

where for real momenta, w; = edApi)

The beauty and power about the massless on-shell
amplitudes are manifest from the fact that the 3-pt on-shell
amplitudes in the scheme of complex momenta are
uniquely fixed by the requirement of on-shell conditions,
momentum conservation and the good behaviors under the
real momentum limit. To be specific, the on-shell three-
particle helicity amplitudes are given by

h1+h2+h3<0

, (20)
hl +h2 +h3 >0

|

where by dimensional analysis, the coupling constants
associated with the helicity amplitudes have mass dimen-
sion zero. This corresponds to the marginal interaction
terms in the classification of Wilson [83,84]. Let us focus
on the case of i + hy, + hy = 1, then we have

Mkt [19]1-20p3)1-20 3 1)1-2h, (24)

It can be immediately seen that there are always spurious
poles for amplitudes involving particles with helicities
greater than or equal to one. When we try to calculate
the residues of four-particle scattering amplitudes in one
particular channel by gluing the three-particle amplitudes
together, they will always lead to poles in other channels.
This plus the requirement of the unitarity in the form of
consistent factorization have put strong constraints on the
allowed possible interaction types and coupling structures
of three-particle on-shell amplitudes [57]. In particular, the
self-interacting multiple spin-1 particles must have Yang-
Mills structure, and the interactions between fermions and
the vector bosons must form a representation of the Lie
algebra of the vector bosons. As we will see in the following
discussion, in the case of massive vector bosons and
fermions, the same conclusion holds and the requirement
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of consistent factorization corresponds to imposing tree-
level unitarity.

The massless spinor-helicity variables have been gener-
alized to general masses and spins by Ref. [56]. In contrast
to the spinor-helicity variables, the massive spinor variables
carry little group SU(2) indices,

Ay = AL, Ay — AL (25)

a’
which corresponds to the spin degrees of freedom of the
particles. Similar to the massless case, one can obtain
the massive spinor variables at general momentum p* from
the standard Lorentz transformation of spinor variables at
standard momentum k* = m(1,0,0,0),

2a(p) = D(L(p)) /A (k). (26)

where /L%x(k),/l;%(k) correspond to spin-z components of
+1.—1, respectively. Note that in our choice of standard
Lorentz transformation in Eq. (6), AL(p) represents the spin
component along the momentum-axis, i.e., the helicity.
Once we specify the standard transformation, the general
Lorentz transformation A on the massive spinor variables
are induced by the following little group transformation,

D(A)H(p) = D(W(A. p))' ;4 (Ap). (27)

Since the spin-$ particle carries 2S completely symmetric
indices of SU(2), the Lorentz covariance of the S-matrix in
Eq. (15) is equivalent to the statement that the correspond-
ing scattering amplitudes are fully symmetric rank-2§
tensors of the massive spinor variables A/, 1/. The momen-
tum of the particle transforms trivially under the little
group, thus can be constructed as an “inner” product of
AL

Paie = 1M AL = A (28)

which can also be thought of as the sum of two rank 1
matrices. As in the massless case, 4} is independent of A
for the general complex momenta and the limit of real
momenta can be obtained by taking

i = £(20)", (29)

where the +(—) sign depends on the energy being positive
or negative, respectively. Note that another advantage for
the massive spinor variables is the simple relations with the
massless spinor variables as the high-energy limit. To see
this, we can always expand the spinors in the bases of the
little group space as

=20+, 8M, A =20 007 (30)

In terms of the expansion above, the momentum matrix can
be rewritten as

Paa = j'aj'cir — Nalla- (31)

As discussed in Appendix C, with suitable sign convention,
the on-shell condition of the momentum becomes

() =m, — [A7] = m. (32)

We will choose 4, 4 as the surviving parts in the high-energy

limit, which will scale like \/E On the other hand, the
subleading spinor variables 7, 77 scale like \/ﬂE This does not

mean that 7, 77 are totally irrelevant in the high-energy limit;
actually, there are always mass singularities associated with
massive vector bosons. The relation between UV-massless
on-shell amplitude and IR-massive amplitudes can be
described as “unbold” to “bold”, with the subtlety for
the massive spin-one or higher-spin particles. For example,
for fermion-fermion-scalar amplitudes, we have

(12) < (12), [12] < [12], (33)

while for vector-vector-scalar amplitudes, we have

[12][23] (12)(23) [12](12)
([31] ETY )eﬁ m Y

Here the bold notation means that the little group indices
are completely symmetrized with appropriate Clebsch-
Gordan coefficients [56,61]. To be more explicit, we have

12](12) Eé([vlzmhm +152(102)),

In the latter case, we can choose the suitable 5, # as the
reference spinor in order to IR-deform the massless 3-point
amplitudes (see Appendix D for detail).

Li#1, (35)

III. GENERAL RELEVANT AND MARGINAL
THREE-PARTICLE AMPLITUDES

In this section we will present the general on-shell
massive three-particle amplitudes relevant in our calcula-
tion. We only consider the particles with spin less than or
equal to one and leave other cases for future possible work.
We adopt a bottom-up approach and allow the coupling
constants to be arbitrary and eventually we will see that the
group structure and gauge invariance will emerge from the
requirement of tree-level unitarity, i.e., M, < O(E*™). In
the same spirit of Ref. [59], we consider arbitrary finite
number of scalars, fermions and vectors, by which we mean
the Hilbert space consists of one-particle states labeled by
their momenta, helicities and species ¥, ,. Note that
Ref. [61] has studied the on-shell 3-point massive amplitude
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bases with the particle spectrum of the electroweak sector in
SM in addition to one generation of fermions. We start from
the discussion of the polarization functions and their
relations with massless and massive spinor variables.

A. Polarization functions

In Ref. [1], the polarization functions are obtained by
requiring that the quantum fields constructed out of them
and the annihilation (creation) operators transform linearly
under the Lorentz group and especially independent of the
space-time coordinates. Specifically, the polarization func-
tions satisfy the following conditions,

Z 7(Pa, 0. ’l)D< Zfo Jug(p,o.n),
ZW Pa. 5. n)D ) Zfo Jve(p.o.n),
(36)

where u, and v, are the polarization functions associated
with annihilation and creation operator respectively and
D;,(A) belongs to any irreducible representation of the
Lorentz group.

The consequences of the above formulas can be explored
by the special cases. For p =0 and A = L(q) such that
W(A, p) = 1, we have the following useful identities,

S Dz (L(g))ur(0.0.m).
4
=Y DoL@)r0.0.n).  (37)
4

uz(q.0.n) =

vz(q.0.n)

which just tell us that the wave functions at general
momentum can be obtained by the Lorentz transformations
of the wave functions at zero momentum. To obtain the
wave functions at zero momentum, we can take again p =
0 but A = R, which is a three-dimensional rotation. This
time, we have

Zu;(o, o,n

(o2

S 0:(0.5.n) DY (R

o

ZDM
Zfo R)vs(0.0,n). (38)

Yuy(0,0,n),

This establishes the relations between the representations of
the little group (spins or helicities) and the representations
of the polarization functions under the Lorentz group
(or more precisely, the rotation subgroup). The solutions
of the above equation for spin-1 and spin-1/2 can be found
by exploring the explicit formulas of the representation
matrices and the results are shown in Table II.

To establish the relation between the polarization func-
tions and the massive spinor variables, we first recall the
fact that the spin-j representations of the rotation group can

be treated as symmetrized direct products of 2j spin-1/2
representations. The normalized tensor state of |[j,o)
corresponds to the following tensor components with 2j

indices [85],
2 \-2 .,
(7)) (3)
J+o ”

where the completely symmetric tensor v;’l(;..yzj

is equal to
one if there are j + ¢ values of spin % and j — o values of
spin —l and zero otherwise. The normalization prefactor

comes from the fact that there are ( ) of possibilities. It

also applies that the general 1rredu01ble representation of
proper orthochronous Lorentz group can be thought as
direct sum of spins of two particles (j;,j,), which are
representations of complexified direct sum of two SU(2)
Lie algebra 81(2) @¢ 3u(2),

Ji =-(J+iK), J, == (J - iK). (40)

l\JIP—‘
N =

In the formalism of completely symmetric tensor repre-
sentations of SU(2), we can think of the indices Z, 7 in
Eq. (38) as collections of 2j; two-value indices a; - - - ay;,
and 2j, two-value indices &; - - - @;,. The spin label ¢ for
particle of spin-j, can be treated as 2j, two-value indices
I;,---I,; . Actually, we only need the special case of
Jn = J1 + Jo. In this special case, the solutions to Eq. (38)
can be obtained by the completely symmetric product of the
building blocks u,(0, 1), u,(1,0),

Ma(o’ I) = \/;n‘(slcn ud(l’ 0) = \/’jﬂ.éléz' (41)

These are the massive spinor variables ﬂ,z with the
following index convention,

2L(0) = u,(0,1), A40) = ug(0,1).  (42)

The normalization is chosen such that

( )ﬂla(o) - ma(m - (pyo-ﬂ)p:O’ (43)

where I, & are lowered by the antisymmetric tensor &, €, e

The massive spinor variables at general momentum are
given by the standard Lorentz transformation of the zero-
momentum spinors

= (0% e 5 %) 2L, (0),
(e7#Femiter)id 31 (0), (44)

Z4(p)
A (p) =

where 7 is the rapidity defined as coshy = E/m and as a
consequence
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TABLE II

Polarization functions and spinor variables at standard and general momentum. See the main text for

detailed discussion. For the general momentum for the massless particles, 4, coincides with the high energy limit of

P

Standard momentum

Polarization functions

Spinor variables

Kk =k(1,0,0,1) 0
1
H+p 1
e*—\/i i |
0
kK =m(1,0,0,0) 0 0
0 1
O tu— L
eH = 0 e”—ﬁ ;
1 0

General momentum
p* = (E,p)

0 /1,,:\/2_k<0>,
1 1 1
Vil —i - 1
0 2= @(0),
- — Aafly
- \/E[/'lff]’
+ Haliy
€Cai — \/EW
0 A= /mél,
oh n 1 j’lil _ \/_51(1
’ V2| —i \/_/1{11217}
0 u = (;ya)
_ 1 I
= \/_’ﬁ 0 s 1)1 — ( {a[)
1 —A7
0 iy = (_27’}1('1)7
f 1 v = (’177/1113:)
2 = \/% 0
—1
o (1) 2 (p) = D(L(p))uh(k)
“u B 3 *
b /111.1( ) D (L ))(z l/}(k)

0 ,—iL
1 cos5e 2
ﬂﬁsz—P< ,29 »f»)

0 ,i5
singe'z

9 —it
-1 —Smse 2
10221/E+p( 92 l )

COS 5 ) ez
/11& = (/1(11)

2L (P)ie(p) = pot. (45)

We then make some comments on the massless particles.
For the scalar and spinor representations, satisfying
Eq. (36) in the massless version is straightforward and
there is no subtlety in taking the massless limit. For spin
larger than or equal to one, it is not possible to satisfy the
massless version of Eq. (36),

uz(pa. 5)e 0PN Jus(p,o),  (46)

ZDM

where (p,A) is the rotation angle of the little group
transformation,

W(A, p) = L7 (Ap)AL(p)

= S(a(p,A),B(p,A)R(O(p,N)).  (47)

Here S(a, f) is the invariant Abelian subgroup of the little
group ISO(2) and R() is the rotation around the z-axis. To
be more specific, we have

S(a(p.A),B(p.A)) = e~ ia(p M) (P =K") g=if(p.N)(=]'=K?)

R(O(p, A))

To see this, let us take spin-1 as an example. We can set the
momentum to the standard momentum &* = k(1,0,0,1)
and take A¥, as S¥, or R(6), and the conditions become
respectively

= e 0PN, (48)

e"(k,0)e” =Rt e’ (k,6), €' (k,0)=5"¢"(k,0). (49)
The solutions to the first equation read
ek, 1) = —(O, 1,+i,0), (50)
\/_
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TABLE III. The vertices in the Lagrangian and the corresponding on-shell massive amplitudes. Here c.p.t. means
cyclic permutation terms. All the momenta are taking to be ingoing. The on-shell amplitudes are entirely fixed by tree
unitarity; the vertices are listed only to match the conventional normalization of the coupling constants. For on-shell
massive amplitudes involving fermions, our convention is (IWM,, 2,,,, 3y7), and we suppress the fermion internal
quantum number i, and i5. The last column shows the corresponding helicity amplitudes in the high-energy limit.

PHYS. REV. D 106, 076003 (2022)

Vertices

On-shell amplitude

High-energy limit

—Cp0, Wi WPHW

nmyms

—WrW R g = WL,

m

. (12)(23)31]
\/El Ca1 asas (7

+ c.p.t.)

V3 (R [12](13)+Le (12)[13])

(1H1271371):1/2iC, o AL

ayaxas [12][]2%]
(1+12030) : z\/QC (m%—m%ﬂn%) [12][13]

a1a2a3 - 2mymy [23]

(1+12+837h) R B2

(17127334) L {28

(102+23+1);: — meLlomR% 153

ny

FahiWabeH¢i 2Fa]a2i3 [lr:]lszzn (1+12030): _ \/EF,,’;lazziz [1[22];3]
_Gaijwaﬂau¢i¢j \/_2;mlGali2i3 <1|p2 - p3‘1] (1+12030): - i\/zGalzji; %
—EPijiith i =P, (1°203%): = P; is,

~(FLHwg +WrHw,)d;

§
H; [23] + H; (23)

(192+33%3): H, [23]
09131y - g7
(10272372): H] (23)

but then the second equation can’t be satisfied for general
parameters «, . Instead, applying little group transforma-
tion S(a,f) will give us the polarization functions as
follows:

a=xif
V2k

This is the origin of the necessity of gauge invariance.
Nevertheless, the polarization vectors at the general
momentum can still be obtained by the standard Lorentz
transformation,

e(k, £) — e*(k, £) —

3 (51)

¢ (p, ) = R(D)B(pl/k)e" (k, +) = R(p)e" (k, £), (52)

where we have used the fact the boost along the z-axis
doesn’t affect the x, y components. The resulting polari-
zation vectors are the same as Eq. (B21). Under general
Lorentz transformation, they transform as a vector plus an
additional term proportional to the momentum,

_a(p.A)£ip(p.A)
Ve

¢ (p.£) = e P Ne(p,£) (53)

B. 3-point on-shell massive amplitudes

We start by listing in Table III all the interactions and the
corresponding 3-point tree-unitary on-shell amplitudes for
an arbitrary, finite number of massive scalars ¢;, fermions
wi and vectors Wy, and present the derivations in the

following.” We are adopting a purely on-shell approach in
this paper, thus it is sufficient to impose tree unitarity on the
complete basis of 3-point massive amplitudes given by
Ref. [62]. On the other hand, we would like to make
connections to the results computed using Feynman rules,
thus we also calculate the same amplitudes using the
Lagrangian in Ref. [59] and the polarization functions
derived in Sec. Il A, just to match the normalization of the
coupling constants.

Let’s start from the WWW on-shell amplitudes and
assume that all the vector bosons are massive. A complete
independent basis including seven different terms has been
derived in Ref. [61] and the requirement of tree-level
unitarity for the 3-point on-shell amplitude M3 < O(E)
has singled out the following unique structure,

(31)(12)[23]

(12)(23)[31] n

mszm

(23)(31)[12] n

54
myniy ’ ( )

or simply

12)(23)(31
12)@23)31] +c.p.t., (55)
msmy
where c.p.t. means cyclic permutation terms. The above is
clearly totally antisymmetric in exchanging the external

>Notice that we are using the sans serif {i, ], - - -} to denote the
fermionic internal quantum numbers, to differentiate from the
scalar state labels {i, j,---}.
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particle labels. Therefore, the uniqueness of the on-shell
amplitude and its permutation symmetry tells us that after
adding the vector indices, the coupling constant C,, ,,,, Will
be completely antisymmetric.

This can also be seen by plugging the polarization
vectors obtained in the previous section into the interaction
in the Lagrangian,

—C a0, WAWPHW (56)

and the resulting amplitude reads®

i (3|p113][12](21)
149,292.353)=— | Cp pg—————————+p.t. ].
M;( ) \/E( |y s +p

(58)

Here p.t. means permutation terms. We first realize that the
amplitude vanishes for the symmetric part of indices
(ay,ay), ie.,

Ciaaryas = 0. (59)
Secondly, by using Schouten identity
131[12] + [1][23] + |2][31] =0, (60)
and Dirac equations

plpl=mlp),  (plp=—mlp

we can bring Eq. (58) in the form of Eq. (54), and the
requirement of proportionality to Eq. (54) leads to

, (61)

C[ab]c = C[bc]a = C[ca]b' (62)

Combining this with Eq. (59) again tells us that C, ,,,, is
fully antisymmetric. This leads to the following normali-
zation of the on-shell WWW massive amplitude,

./\/l3(1‘” , 242 303) — \/El'ca]aza3 <M + C.p.t.> .

myny

(63)

The similar consideration of the other marginal operator
that one may write down in the Lagrangian,

_Aabcguw)ﬂauwz W/b) Wf9 Aahc = _Audw (64)

®0Our convention for the amplitudes is the same as Peskin and
Schroeder [82],

S/i‘a = 5/3.(1 + i(27l')45(4)([7,l - pﬁ)Mﬁ,a' (57)

but with all the momenta ingoing.

enforces the following relations,

A - Aa3ala29 (65)

ayaaz — Hayaza,

and as a result, the on-shell amplitude vanishes. Actually,
one can verify that in this case, the Lagrangian is a total
derivative. We arrive at Eq. (63) as our only three-vector-
boson on shell massive amplitude. We will further impose
that the coupling constant C,,;,. to be real, as required by the
optical theorem, which demands the imaginary part of the
forward scattering amplitude to be proportional to the cross
section to every possible final state,

ImMa,a ~ ZO’(C{ - ﬁ) (66)
p

Since the cross section usually starts at the 3-point coupling
to the fourth order for 2 — 2 scattering, this relation
immediately tells that the imaginary part of the of four-
particle amplitudes should start at loop level. By studying all
possible scattering processes, it is possible to show that all
coupling constants in the three-particle amplitudes should
be the case to make the Lagrangian real. In the following
discussion, we impose these constraints on all the couplings.

We can take the high-energy limit by specifying the spin
components along the three-momentum direction and the
resulting polarization amplitudes are functions of (4, ba n,7)
in Eq. (30). Let’s take the helicity configuration (17,27,3")
as an example,

M;5(17,27,3%) = M;(133,27373, 339)
= \/Eicalam (M) + O(m).

myms
(67)
By using the fact that for the total-plus 3-point on-shell

massless amplitudes, the three angular spinors are propor-
tional to each other, we have

(68)

and it is easy to see that the helicity amplitude becomes

M;(1+,27,3) = \fzicm%%. (69)

Alternatively, we can start from the above on-shell massless
amplitude and invert the procedure to IR deform it to the
massive case (see Appendix D for detail and see also
Ref. [63]). In addition to the above three massless vector
amplitude, the SU(2) covariant massive amplitude in
Eq. (63) naturally consists of massless vector-scalar-scalar
amplitude. After an involved but straightforward calculation,
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we can show that

(i —m3 —m3) [12][13]

M;(1+,20,3%) =iV2C, 4,0, 2mymy [23]

. (70)

Next, we consider the Wy amplitude. The complete
basis for such an amplitude is given by the following four
terms [62],

(12)(13), [12][13], (12)[13], (13)[12], (71)

and it is known that the former two scale as O(E?) in the
high-energy limit [61], thus should be dropped when
imposing tree unitarity; the latter two, on the other hand,
scale as O(E) and should remain. Now we can match the
basis to the following interaction terms in the Lagrangian

—WrW RWg = W, L, (72)

where L%, R* are the Hermitian matrices in the space of
fermion internal quantum numbers with labels {i,j, - -},
which we usually suppress, i.e., L%y = ;i Lijy;, etc. After
the substitution of the following polarization functions,

ug(p) = (0.lp])".
vL(p) = (0. [p]),

ur(p) = (Ip).0)".
ur(p) = (0], 0), (73)

as shown in Table II, we obtain the on-shell massive
amplitude as

M;(191,2

s Sy

3;) = M;3(14,2,3)

_ % (R [12](13) + L (12)[13)). (74)

Note that the two terms are related by parity transformation’

M gl e ipt (75)

Alternatively, one can obtain the same amplitudes by
starting from the UV massless amplitudes,

’Similar to the massless spinor-helicity variables, one can
check this explicitly by using the formulas in Eq. (C16) and
perform the parity transformation: § - 7 —60,¢ — ¢ + z. We
can also show that under this transformation, p,; = AL,
changes to p% = 2'*3% which is consistent with the parity
transformation on the momentum (p°, p) — (p° —p). The
change of sign of the little group index / is also consistent with
interpretation that it corresponds to the spin eigenstates along the
momentum direction under our choice of standard Lorentz
transformation.

M (141,243,378 = L20

Mo (171,27, 37 = ¢ (76)

and following the procedure outlined in Appendix D to IR
deform them to the massive on-shell amplitudes. It also can
be shown that the IR-unified on-shell massive amplitude in
Eq. (74) contains the following UV fermion-fermion-scalar
massless amplitude,

_ mzL”I — m3R“1

M;(10,2%2,3+1) =
my

[23].  (77)
Note that the coupling factor is proportional to m,, /my,
which is indeed in the form that one would expect from the
Higgs mechanism. This is consistent with the understanding
that Higgs mechanism can be thought as IR unification of
different massless UV amplitudes [56].

Now we turn to the interaction terms involved scalars.
The WW¢ amplitude has the following 3-term basis,

(122, 2P (121 (78)

where only the last term satisfies tree unitarity, and it is
symmetric in exchanging the two vector labels, thus the
corresponding (real) coupling constant F, ,,;, needs to be
symmetric in {a;, a,}. The W¢¢ amplitude has a 1-term
basis

(1|p> = p3[1], (79)

which already satisfies tree unitarity; it is antisymmetric in
the two external scalar labels, thus the associated (real)
coupling constant G, ;,; needs to be antisymmetric in
{i»,i3}. The ¢¢¢ amplitude has to be a (real) constant
P; i,i,» which satisfies tree unitarity and needs to be totally
symmetric.

On the other hand, the ¢y amplitude has the following
basis

(23), 23], (80)

where both terms satisfy tree unitarity. We can write down
the following amplitude,

M;5(111,2,3) = H; 23] + H] (23), (81)

where we have suppressed the indices {i,,i3} for the
fermionic internal quantum numbers of {,. %}, ie.,
H; = (H, ), etc. The coupling constants in front of
(23) and [23] are related by Hermitian conjugation because
of the aforementioned optical theorem of Eq. (66). The
relevant three-particle operators in the Lagrangian is as
follows:
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1
FupiW Wi — GuiiW 0, 0" ich; — ?Pijk¢i¢j¢k
— (W Hyg + l/_/RHjl//L)(lsﬁ (82)

It is straightforward to derive the on-shell massive ampli-
tudes from the above, which fixed the normalization of the
coupling constants as given by Table III.

IV. FOUR-PARTICLE AMPLITUDES
AND THE TREE-LEVEL UNITARITY

Now we construct 4-point amplitudes from unitarity and
locality. Locality tells us that when one internal momentum
is going on-shell, the amplitudes have simple poles in terms
of Mandelstam variables, and unitarity requires that the
residue is the product of lower-point amplitudes. To be
more explicit, one can write the 4-point amplitudes as

My = Myp+ My, (83)

where M, contains the nonlocal parts of different
factorization channels, while M, . are the possible addi-
tional contact terms. The latter is a linear combination of
all local terms given the particle contents, expressed in

the stripped-contact-term (SCT) basis {Mg’l} given by
Ref. [62],

My, = ZCiMz(li)c’ (84)

where c¢; are polynomials of Mandelstam variables.
Apparently, the slowest-energy growing behavior for these
terms are achieved when c¢; are constants. On the other
hand, the factorizable part M, is fixed by unitarity,

4 1 {10y, Iy }
_ 128250008257
My = § : § : 2 _ 2 M3.iL €14,
7 = S1i T M1

Mg (83)

en 1y,
where s;; = (p; + p j)z, and we sum over all possible states
Z of mass my and spin s; as well as all possible
factorization channels. Here again, we take all the momenta
as ingoing, which means that in the real momentum limit,
some of the momenta have negative energy. We have the
following analytical continuation,

H(=p) = =A(p),

In the above convention, the 3-point amplitudes M3 ; has
momenta p;, p; and —p — p;, while M3 ; has momenta
{p;} with j € {1,2,3,4}\{1,i} and p, + p;. Notice that
in Sec. III, on-shell massive amplitudes are considered
equivalent if they are related by equations of, but different

A(=p)=4(p).  (86)

forms of 3-point on-shell amplitudes certainly lead to
different formulas for the local terms with different coef-
ficients c;.

In order to obtain the coefficient ¢; and the coupling
relations, we will take the high-energy limit of the
amplitude M, at fixed, nonzero angles and impose the
tree-level unitary criterion, which requires that the energy
growing behavior of the four-particle amplitude should be
at most a constant. As discussed in detail in Appendix C,
we can expand the massive spinors for the external states in
the little group space as

M=ol et A=Al T (87)
and the helicity amplitudes for particle with spin § in a
particular frame can be obtained by extracting the coef-
ficients of ((¢+)5th(¢=)S=")lilx, The resulting helicity
amplitudes are functions of (A;,4;,7;,7;) with explicit
formulas as follows:

Aig =/ Ei+Pi<_CSi>, /Nli,a:\/ Ei+Pi<_CSi>»

i i

ci _ C;
ﬂi.a:\/Ei—Pi< ), Nig = — Ei—Pi<S*>’ (88)

Si
where E; and p; are the energy and the magnitude of
3-momentum for each external particle i, and c;, s; are
defined as (see the Appendix B for the discussion of the
phase convention)
0; . .0

¢ = cosz’ei’/’f, = smjef‘/’i. (89)
We have assumed that the energy of the particle is positive
and for negative energy, the spinors are obtained by the
analytic continuation in Eq. (86) and in all cases,
E; = ++/m? + p3. To simplify the derivation, we will
work in the center-of-mass frame, which is obtained by
setting the angles as follows:

01:0, 92:]7,', 63:9, 94:77,'—9,
$1=¢r =0, ¢3=¢. hy=¢+m, (90)

The magnitude of the 3-momenta p; can be obtained using
momentum conservation and on-shell condition as

L _E 1_m%+m% z_m%mg
P1=DP2= 4E2 £

2 2\ 2 2.2
p3:p4:E\/(1—m3+m4> _m3m4 (91)

4E? E*
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where 2E = | /5y, is the total center-of-mass energy. All the
helicity amplitudes will be functions of energy E and
scattering angles (0, ¢). We will take the fixed-angle high-
energy limit and extract the tree-level unitary conditions by
setting to zero the coefficients of linearly independent
functions of (0, ¢) with energy growing behavior faster
than O(E®). Table 1 in Ref. [62] shows the SCT basis for
the contact terms, organized by helicity components in
which these contact terms have the fastest energy growing
behavior. We will see that only the contact terms corre-
sponding to dimension-4 operators in an EFT Lagrangian
will survive the tree unitarity constraints.

A. Constraining the 4-point amplitudes

Let us enumerate all the possible 4-point amplitudes.

1. WWWW

We start with the WWWW amplitude. As discussed
above, the factorizable part of the amplitude M, can be
obtained by gluing the 3-point on-shell massive amplitudes
together and adding back the simple pole structures
1/(s;; = m%). By naive energy scaling counting, the energy
growing behavior of My, is at most O(E*), while in
contrast the contact terms of helicity components (+000),
(+ + +0), and (+ + —0) are at least O(E’), thus the
coefficients ¢; of these contact terms must vanish. One
example of such contact terms is [12][34](241](34), which

(+ + +—), as they are at least O(E*). On the other hand,
we need (0000) contact terms in My, which can be
parametrized as

[12][34] ey, (12) (34) + ey 2 (13)(24))
+ [13][24] (cys 5 (12)(34) + cyps 4 (13)(24)).  (92)

The requirement that M, = M, + M, satisfies tree
unitarity then uniquely fix the coefficients cy ;. This
means that we have completely determined the form of
M. [The only helicity configuration for the contact terms
that we have not discussed is (+ 4+ +—), where contact
terms in the category simply cannot exist.] The amplitude is
determined to be

My(19, 20 3% 4as)
= My (19,29, 3% 495) 4 M, (29,3, 19, 4%)
My, (3%, 19,262 4as), (93)

where the s-channel component is

My, (19,20, 3% 4%)
Calazbca3a4bNW4,b

2
mal mazma;m@ (S12 - mb)

b

is in the (+000) category. The O(E*) energy growing - Z a0, 0,0,i(12) (34) {12]?4] i (94)
behavior of M, arises only from (0000) helicity category. T Mg My, Mg Mg, (810 —mj)
This eliminates the possibility of adding contact terms for
helicity configurations (4 + 00), (+ — 00), (+ 4+ ++), and and
J
Ny p = ((343)](4(2 - 1)4] + (434](3(1 - 2)3])(12)[12]
+ ((212)(1(3 — 4)1] + (121](2(4 - 3)2])(34)[34]
2((212]((343)(14)[14] — (434](13)[13]) + (121]((434](23)[23] — (343](24)[24]))
+ (12)(34)[12][34] (i, )(mi m4)+s +2 2 _ 2 2 2
mb 12 S13— mal maz ma3 ma4
+ ((13)(24)[13][24] — (14)(23)[14][23]) (512 — m}). (95)

The - and u-channels are given by M (292,3%, 1%, 4%)
and M, (3%, 14,2%,4%), respectively. The terms on the
right-hand side of Eq. (93), as well as similar expressions
below, are organized according to the internal states of the
factorization channels, as indicated by the particle label that
is summed, or the masses in the propagators. For example,
the first term on the right-hand side of Eq. (93) has a sum of
vector index b, and together with the mass m? indicate that
this is the contribution of a vector boson exchange. Notice

|
that we have absorbed the contact terms into the different
factorization channels in a symmetric way.

Next, the O(E?) terms need to vanish as well. Here it is
convenient to calculate in the center of mass frame. We find
that O(E?) terms only exist for (+000).This leads to the
following constraint on the coefficient C,,,. of the WWW
amplitudes,

Calazbca3a4b + Ca1a3bca4a2b + Ca]a4bcaza3b = 0’ (96)
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which has the form of the Jacobi identity. Therefore, we can
identify the totally antisymmetric C,;,. as the structure
constants for some compact Lie group G.

We then proceed to consider the O(E?) terms, which
only exist for (0000). This leads to the following constraint
for C,;,. as well as the coefficients of WW¢ amplitudes
F abis

4(Fala3tFa2a4i - Fa1a4iFa2a3i)

E a1a3bca2a4b - Ca1a4bca2a3b)
b

2 2 2 2
X (3mj —mg, —mg, —mg, —m

1
+ W [Ca1a3hca2a4b (mgl - mgg)(mgz - m54)
b

- Ca|a4bca2u3b(mgl - mi)(mzztz - m%lg)]} (97)

This relation agrees with Eq. (7) in Ref. [58]. One can
check explicitly that as long as the constraints in Egs. (96)
and (97) are satisfied, the amplitude in Eq. (93) behaves as
O(E®), we have extracted all information given by tree
unitarity.

2. WWwe

We next consider the WW W ¢ amplitude. In this case, the
factorizable part M, ; at high-energy limit grows at most at
O(E?), but the energy-growing behavior of the contact
terms M., if nonvanishing, are at least of O(E?).
Therefore, we don’t need the contact terms in this case,
and the amplitude is fully determined by the factorizable
part My,

My (19,2 305 41
= My (19,292,395, 47) + M, (2,3%, 19, 47)
+ My, (35,19, 2% 4i), (98)

where the s-channel component is given by

i Clltl FaiN
M4,s<1ﬂ1,2az,3as,4t>_-M(Z st FaiNwgs

T My Mg, My, (512 = M)

alaz/ a;]l< ]< >[ }
*; Mgy Mgy M (512 — 12) )

S\S12 —

(99)

with

Ny = (3(1-2)3](12) [12] +2((121](23) 23]

— (212)(13)[13]) + “ (343](12)[12]. (100)

mb

Now, tree unitarity requires that the O(E?) terms in
Eq. (98) vanish, which turn out to only exist for the (0000)
component. This leads to the following constraints on C ..,
F ;i as well as the coefficient for the W¢p¢p amplitude G,

1
ZW [Cayarp(my 4 mg, —mz,)
b b

- Cazalb(m%) + mgQ - mtzll)Ftllagi]

- F G - Ca1a3beazi'

X Fpq,i

= Faga3jGa1ij ayarj I asij (101)

One can check that upon this constraint, the amplitude in
Eq. (98) is O(EY).

3. WWeeo

We then turn to the WWep¢ amplitude. In the high-
energy limit, the factorizable part M is of O(E?), while
contact terms for helicity components (+000) and (4 — 00)
start at O(E®) and O(E*), respectively, thus they are
eliminated by tree unitarity. The contact terms for
(+ + 00) start at O(E?), but terms in My that are in this
helicity category are only O(E®), thus contact terms for
(+ 4+ 00) cannot exist either. On the other hand, for the
(0000) component M is O(E?), while the contact terms
of O(E?) can be parametrized as

g (12)[12]. (102)

The requirement that the O(E?) contributions of the full
amplitude vanish completely determines the coefficient
Cy2g2, SO that the total amplitude is calculated to be

076003-14



GAUGE INVARIANCE FROM ON-SHELL MASSIVE AMPLITUDES ...

PHYS. REV. D 106, 076003 (2022)

2F payis Fpayi, ((131](242] — 2mj (12)(12])

My(101,2% 35 4i) =3

(Ca| athhi3 i4NW2¢2,b
b

mu, maz (S12 - mi)

ma] maZm[%(Sl?s - m%})

mg, mazmi(s23 - m127)

i 2Fba1i4Fba2i3 ((141} <232] - (523 + mzz,)<12> [12])) n Z (_ 2Fa]aszji3i4<12> [12]

my me, <S12 - m?)

. 26,71, Gy, (131)(242) | 2G i, Gy (141](232] = (525 — m}) (12) DZD) (103)
malmaz (S13 - m?) malmaz (S23 - mjz)
with
m2 —m?2 ) (m? —m?
Nyogp = <( ! 2)§ & 14) —m3 + mgl + mzz +m? +m? — 2s23> (12)[12]
’ mh 3 4
+2((131)(212] - (121)(232)). (104)

However, fixing cy2, is necessary but not sufficient to
make the O(E?) terms vanish in the above; we need an
additional constraint on the coupling constants C,., Fupis
and Gj,

1
- § W(Fa,bgFazbu - Fba1i4Fba2i3)
b b

= Gu,i,jGayiyj = Gayi,jGayinj + CayarpOpiyiy»  (105)
which agrees with Eq. (8) in Ref. [58]. One can check that
the constraint above will make the amplitude in Eq. (103)
satisfy tree unitarity. Notice that no constraint has been put
|

on the coefficient P;;. for the ¢* amplitude. Actually, in
order to obtain nontrivial constraint on the pure-scalar
interactions, one need go to higher-point amplitudes [86,87].

4. WyWy

We now turn to the 4-point amplitudes involving fer-
mions. First, we consider the case of Wy Wiy. In the high-
energy limit at fixed, nonzero angle, the factorizable part
My is growing at most at O(E?) while a nonvanishing
M, would be at least O(E*). Therefore, the possible
contact terms are forbidden by tree unitarity, and the
amplitude is fully determined by the factorizable part,

Mt 2030 3 = 3

b

2
malma3(sl3 —my i

i4] " ia
Mg, My,

i 5 . AN .
lCa1a3bNW21//‘,b ) + Z 2Fala3l<13> [13](([‘11)'4'2 [24] + (Hz )I4|z <24>)

malmu3 (s13 - mJZ)

ig] " ia

s <( : (L7 Lj, (23) [14] ([13]m,, — (143]) + Rij R (14)[23] ([13]m,,, + (321])
J

§23 — mf)

+omy(LETRS (13)[14][23] + RU L% (14)(23)[13])] + 1 < 3> ,

ig] i 4] " ia

with the numerator factor as follows:

(106)

Nyzyep = L2, <<2(1 — 3)4)(13)[13] + 2((313](12)[14] + (131](23) [34])+L2m§3 (13)[13](m;, (24) — m;, [24}))

mj,
2 2

+ RY, (4(1—3)2](13)[13] - 2((313] (14)[12] + (131](34) [23])+ 20 (13) [13] (m; [24] — m, (24))). (107)

ny

The O(E?) terms only exist for (0 — 0+) and (0 + 0—), and for them to vanish we arrive at the following constraints,

icala3bLb = [Lal ’ La3]7

i R? = R R (108)

As C,,. has been identified in Eq. (96) as structure constants in some Lie group G, the above commutation relations
indicates that L* and R* are generators in some representations of G.
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Upon identifying the commutation relations, the amplitude in Eq. (106) behaves as O(E?) for all helicity components
except for (0 4+ 0+), which are O(E). Tree unitarity then imposes another constraint

2Fa1a3i(Hi)i4i2 - miz{Lal 3 La}}i4i2 - mi4{Ral ) Ra3}i4i2 + ZZmJ lzll/lileﬁ3 + LICSR;“)
j
, (mg, —mg,)
_ Zlcalagh almz az (mizLiiiz _ mi4Rﬁi2)’ (109)
b b

which ensures that the full amplitude is O(E?).

5. Wy oy

Next, we study the Wy¢hr amplitude. Similar to the above case, the full amplitude is fully determined by the factorizable
part M, ¢, which in the high-energy limit is growing at most at O(E). On the other hand, M, is at least O(E?), thus set to 0
by tree unitarity. The amplitude is listed as follows:

My(10.20. 3,30 = 32 ( T [(02) (1407, o [14] + (31 (1), )
j a 12 i
o+ [12] (1 (14) (HE )y + (g, [14] = (124)) (H), ) R |
bt [y 1) (my12) (), + (O [12] — (142)) (1), )
I

S23 —

+ R (14) (m[12)(H,)y, + (i [12] + (231))(H] >ji2)}>

n Z beaz [Lb (2m,2,<12> [14] + <131](m,2 [24] - mj, <24>))

moma(sy3 —m3) lakz
+ Rﬁlz(2mb<14>[12] (131](m;, (24) — m;,[24]))]
iG. .. . .
.S V2iG ;i (131]((H;),,;,[24] + (H));,;,(24)) '

m, (53 —mjz')

(110)

The O(E) contributions come from the (0 + 0+) helicity components, and for them to vanish we need to impose the
following relation,

1
ZWFabi(muRilziz_ mi, LY, ) = iGuij(H,;)i, — (L“H,)i,i, + (HRY), i, (111)
- My

which ensures that the full amplitude is tree unitary.

6. Amplitudes for other processes
For all of the other four-particle processes, M, ; is already O(E?), thus the only possible contact term is the constant term
in the ¢pp¢p¢ amplitude. There are no nontrivial relations obtained in these processes, but for completeness, we list them
below. First, the amplitude for We¢¢ is given by
My (19,252,305, 4i4) = My (19,22, 35 4ia) + My (19,4522 35) + M, (19,35, 45 28), (112)

with s-channel contribution as

Fpai, Gpiyiy (2(131]mj, + (120)(m + ma = 7)) -~ Gy, Pi <121]> (113)

Mo (10,253,409 = iV3( 3

— mimy (s, —m3) = m (Slz ms3)
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The ¢ppgp¢ amplitude reads

M4(1i1 ’ 2i25 3i3’ 4i4) = M4,S(1il ’ 2i27 3i37 4i4) + M4.S(2i29 3i37 lil ’ 4i4) + '/\/l4,3‘<3i3 2 1il ’ 2i2’ 4i4) - Ki]i2i3i4’ (1 14)
where the s-channel contribution is given by
G Im? 2 _m? —m? —m? —m? 2 —m?Y(m? — m?
M4 s(lil ’ 21-27 31’3’ 454) _ _Z Gaz,zzGaz3t4 [ma(sﬂ + my mzl ;nlz mz32 ml4) + (mz] ml2)<m13 m14)}
" a my(s12 — mg)
P; . iP;
— Z i 1213] , (115)
7 (s12 = j)
and K; ;,;.;, is the constant contact term, which needs to be totally symmetric because of Bose symmetry.
Finally, we have the ¢w¢yp amplitude as
o 1
M4(111’2|2’313’4I4)_Z|:S12_m2((Hi3>i4J( )jlz(mlz [24] <214D ( )I4J(Hi])ji2 (mi4 [24]+<432])
i i
) ) ) 29) =
_Z T Gairi L, (2m2(214] — (m2 —|—m —m; )(m,2 [24] —m;, (24)))
ma 513 —m
i 24 (24
_'_ng (2m <412] (I’I’l +m —m? )(m|2<24 m| 24 Z J 1 3 I4I2[ ] 2() >I4Iz< >)’ (116)
b (s13—m;
and the yypyy amplitude reads
Com 1
My(1h,2%,35, 4%) = (;m [(Lg};, (m;, [34] — m;, (34)) + R{; (m;,(34) — m; [34]))
x (L, (mi, [12] = mi, (12)) + R (mi, (12) —m;, [12]))
~2m3(LE, Re (23)[14] + L, RE, (14)[23] 4 L, L, (13)[24] + RY, R, (24)[13)]
12 12 34 34
AL R CANKE A RCATY D 41 .
; Sz —m;
|
B. Interpretation of the constraints T4 = iGy, To = —T9 = RS Fop
We see that tree unitarity completely fixes the 4-point my
amplitudes in terms of 3-point amplitudes, with the ) m% —mi —m?2
exception of the additional parameter K, as the constant Ty = iCape 2mym, (118)
scalar contact term. Moreover, tree unitarity puts additional
constraints to all parameters of 3-point amplitudes except  Then Egs. (97), (101), (105) become
for the ¢¢¢ interaction P;j. We obtain the relations in
Egs. (96), (97), (101), (103), (108), (109), and (111). It is iCope T, = T4TE —TP T (119)
easy to see that Egs. (96) and (108) indicate that the totally ck kd
antisymmetric coupling constants C,,. are structure con- d _ ra b b ra
stants of some Lie group G, and the Wyny coupling matrix iCapalic = Tl = TiThe (120)
L% and R“ are generators of some representations of the
same Lie group. The other relations put constraints on iCopcT; = TakT,lz, - lesz] (121)

WW¢ couplings F;i, Wepgh couplings G,;; and the gy

couplings H;. To see the meaning of these relations clearly,
we define the following coupling matrices,

where the index k runs over both the vector indices {a} and
the scalar indices {i}. We will see that this corresponds to
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all of the scalar states in the UV, including the longitudinal
components of the massive vector bosons. This motivates
us to group Tf‘] T¢,, and T4 together as an anti-symmetric
matrix T;.“j., and the above is just

iCabCT;‘f}. = [T, T”];.;. (122)
In other words, the interactions between the vector and
scalar states together form a generator of the representation
of the Lie group G. If a generator a belongs to the Abelian
invariant subgroup of G, the structure constant C,,,.
vanishes for all b, ¢ and we can have additional Stii
ckelberg mass terms for the corresponding Abelian vector
bosons.

Similarly, for the fermion Yukawa interactions, one can
generalize H; to H;, by the following definition when i is a
vector index a,

(123)

After the extension, the relations in Egs. (109) and (111)
then become

L°H, — H,R® — H,T% — H.T% =0,  (124)
L°H; — HR* — H,T% — H,T{, =0,  (125)

which can be combined into the following identity,

L°H; — H:R" — H5T¢- = 0. (126)
Jt

This tells us that the coupling matrices (H;); are rank-3

i
invariant tensors of Lie group G, where the indices i,iand |
transform in the representation associated with 7%, L4, and
R4, respectively. It means that the three-particle on-shell
amplitudes involving the fermions, physical scalar states
and the longitudinal components of the massive gauge
boson respect the symmetry generated by Lie group G.

One can understand the definitions in Eqgs. (118) and
(123) at the Lagrangian level, which we discuss in
Appendix E; see also Refs. [88,89] where similar relations
are derived using current conservation. However, there is a
much more straightforward, on-shell way to arrive at these
definitions. In Table III we presented the 3-point UV
massless amplitudes contained in the high-energy limit
of the IR massive amplitudes. In particular, the same
massless vector-scalar-scalar helicity amplitude in the
UV can be generated by three different massive amplitudes
in the IR,

M;(1+,20,39)

le—n’bz,—}"‘l2 3 a a a
VA, L from 1920, 3

_ Faayiy [12][13
= V2

. 12][13
_l\/jGalizis[ [Z]g] ]

from M;(14,29 35)

from M;(1%1,2%,35)
(127)

i.e., the longitudinal modes of the vector states in the IR
amplitudes can be identified with scalar external states in the
UV. Now, in the spirit of the Goldstone boson equivalence
theorem [59,90,91], we want to unify all the scalar states in
the UV, including the physical scalar and the longitudinal
components of vector states in the IR, under a universal
coupling and a single group representation of the gauge
symmetry, then the redefinition in Eq. (118) is completely
natural. Note that the definition of Eq. (118) has also taken
into account the factor of —i between the amplitude of
longitudinal component of massive vector boson in the
high-energy limit and corresponding Goldstone boson
amplitude. Conversely, our ability to use the redefinition
in Eq. (118) to arrive at the unified commutation relation of
Eq. (122) suggests a spontaneously broken symmetry, as the
(longitudinal components of) vector states and scalar states
are clearly distinct in the IR, which are only unified in the
UV. Similarly, for 3-pt amplitudes involving fermions, the
massless scalar-fermion-fermion amplitude in the UV can
be obtained by two distinct massive amplitudes in the IR,

M(1°,242,312)
{ -l 23] from M;(141,2,,,3;)

H; [23] from M;(11,2,,3;)

(128)

Again, imposing the Goldstone boson equivalence in the
UV makes the definition in Eq. (123) completely natural,
which again manifests the existence of a spontaneously
broken symmetry that unifies the vector and scalar states.

One can also compare our general setting with the
special case of the electroweak theory in the SM. For
example, Ref. [69] studied the 4-point bosonic amplitudes
in the electroweak theory. As we are considering all
external states to be massive, to compare with their results
we need to decouple the photons in Ref. [69], i.e., setting
the coupling to photons e = 0, and as a result the W and Z
boson have the same mass: m; = my. Then relevant
coupling constants are identified as

1
——Cupe — ey for WrW=Z,

V2
2F ;0 { e’jq—‘;’ for ZZh
_

, 129
m,m,, % for WTW~h (129)

Guij g 0,
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and the tree-unitarity relations in Eq. (97) and Eq. (101)
becomes

€wwH = €7ZH-

(130)

2 ) )
eywn = 2eyy, ewwHezzH = 2€3,

Our results of the bosonic 4-point amplitudes as well as the
above relations agree with Ref. [69]. We see that the above
relations are the result of a spontaneously broken sym-
metry, where the vector and scalar states are unified under
the same group representation.

Another example is Ref. [61], which, in addition to the
electroweak sector in SM, also considered a single gen-
eration of fermions, and studied the 4-point w“wZh
amplitude, which is a special case of our consideration
with the following values for the coupling constants,

2 ~F — — COO QRLZ 1 LRO QLLI 1 R{JO
mg o wn mg mgz W v mg mgz W v
Guj—0. Hi—»—ckR = Hl -t (131)
Then Eq. (111) becomes
(cLRO _ (RLO "y 00 _RR ) _ (132)
1// ‘wZ 1// ‘wZ 2m ZZh — 1// ‘wh | —

Again, our amplitude in Eq. (110) agrees with Ref. [61]
upon the proper identification of the coupling constants,
and we agree on the above relation as well. We see clearly
that the above relation comes from the constraint that the
Yukawa coupling needs to be an invariant tensor, again a
consequence of a spontaneously broken symmetry.

V. CONCLUSION AND OUTLOOK

In this paper, we have considered the most general
3-point on-shell massive amplitudes with energy scaling at
most O(E), involving an arbitrary, finite number of scalar,
spinor, and vector particle states defined as irreducible
representations of the little group. Starting from 3-point
on-shell amplitudes, we have calculated the full 4-point
amplitudes from unitary and locality, which lead to the
formulas to construct the 4-point on-shell amplitudes in
Eq. (83) and Eq. (85). The contact terms are further
determined by the requirement of tree unitarity, which
states that the energy growing behaviors of n-point
amplitudes in the fixed-angle high-energy limit should
not exceed O(E*™"). For 4-point amplitudes, the leading
energy growing behavior should be at most a constant.
Moreover, the requirement of tree unitarity further
imposes relations on the 3-point couplings constants
and the masses of the particles. In Table IV, we summarize
the processes and relations obtained in this approach and
they coincide with Ref. [59]. We can see that the fastest
energy growing behaviors happen in the longitudinal
modes of the massive vectors, which is consistent with
the fact that the Stii eckelberg scalars are always asso-
ciated with derivatives. As discussed in Sec. IV B and
Appendix E, the relations can be understood from the
point of view of the Lie algebra. This includes the Jacobi
identity for the triple-vector couplings, commutation
relations for vector-fermions couplings, and the predic-
tions of the Higgs mechanism for the scalar-vector and
scalar fermion couplings. They all converge to the gauge
invariance from the UV interactions with possible mod-
ifications by the vector mass terms of the invariant Abelian
subgroups.

TABLEIV. Summary of couplings, processes and the corresponding relations considered in the paper. The superscripts in the particle-
type labels in the processes indicate the helicities of the corresponding particles in the high-energy limit, and we also indicate the energy
growing behaviors for each case. Relations among the coupling constants and the masses are schematically displayed in the last column.

Particles Couplings Processes Relations
wWww Cabe wEWOWw 0>W O(E?) Jacobi identity, Eq. (96)
wOwOwOwOOE?) Cupe ~ me(, Lie algebra for 7¢,
w <0>W PpO(E?) Egs. (97), (101), and (105)
w©) w0 ¢¢O(E2)
WW¢ Fopi wOwOwOWwOOE?) F i ~m,T?, Lie algebra for T,
wO w 0>W ) pO(E?) Egs. (97), (101), and (105)
W<° ¢¢O(E2>
W Gaij wWOWwOWOHO(E?) Gij ~ T¢, Lie algebra for T
W<0)W(0)¢¢(9(E2) Egs. (101) and (105)
Wy LI‘J*,R“ W(O)V,(i) W(O)y-,(¥)(9(E2) Lie algebra for L4, R%, Eq. (108)
Py HI’J WOy EWOGEHOE) Hl’] part of an invariant tensor,
WOy ) i H O(E) Egs. (109) and (111)
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From the study, we have shown that the on-shell massive
and massless amplitudes are manifestly little group covariant
and they further unleash the power of quantum mechanics
and special relativity. With analytical continuation into
complex momenta, we are able to discuss 3-point on-shell
massive spin amplitudes and massless helicity amplitudes.
The requirement of little group covariance puts strong
constraints on the possible structures and especially for
the massless case, it uniquely determines the helicity
amplitudes. In this paper, we have seen that the tree unitarity
at the 3-point on-shell massive amplitudes level already
constrains the coupling constants, like that 3-vector cou-
plings C,;. should be fully antisymmetric. As also illus-
trated in Appendix D, 3-point on-shell massive amplitudes
can be obtained from the IR deformation of the correspond-
ing massless helicity amplitudes, and one interesting obser-
vation is that the spurious poles in the massless vector
amplitudes turn into vector mass singularities in the on-shell
massive amplitudes. It further induces the energy growing
behaviors in the longitudinal modes of the massive vectors.
In other words, this translates the requirement of consistent
factorization for the 4-point massless amplitudes into the
requirement of no faster energy growing behaviors than it
should be in the tree unitary theory.

Our study can be generalized in several ways. Firstly, one
can go beyond the 4-point scattering amplitudes and
determine the form of the scalar potential from tree
unitarity. As we have seen, tree unitarity at 4-point does
not impose any constraints on the ¢¢¢ coupling or the
¢ppp¢ contact term apart from being totally symmetric,
and the relations that they satisfy can only be derived at the
5-point level. A computation of all 5-point processes when
all external states are bosonic, and at least one of them is a
scalar, should fully determine the relations satisfied by the
scalar self-interactions. Secondly, it would be nice to
explore how Higgsless theories can be embedded in the
on-shell formalism and in that cases, no scalar degrees of
freedom are involved and one needs Kaluza-Klein towers
of massive vectors and fermions [92,93]. Finally, one can
try to include the massive spin-3/2 and spin-2 particles to
see what nontrivial tree-unitary theory can be obtained.

Last but not least, efforts have been made to extend the
color-kinematics duality and the modern double copy
program to include massive gauge bosons [94-99]. The
variety of coupling relations that we present here greatly
extends the meaning of “color” relations in the usual sense
of color-kinematics duality, which may help us understand
the possible double copy structures of spontaneously
broken gauge theories.
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APPENDIX A: NOTATIONS AND CONVENTIONS

In this appendix, we collect the notations and conven-
tions used throughout the paper. We will use the mostly
minus metric,

N = diag(l,—1,-1,-1). (A1)
Our momenta are parametrized as
p' = (E.p) = (E.px. py: P2)- (A2)

Note that we will take all the momenta ingoing, which
means that E can be either positive or negative. The matrix
generators of the Lorentz group in the vector representation
are given as follows [82]:

(™Y = (st — Sk, (A3)
To be more explicit, the expressions for the rotation
generators J! = 723, J> = 731,73 = J'2 and the boost
generators K' = 7% read

00 0 0 000 O
00 0 0 000 -1
]]:_i ,Jzz—i R
00 0 1 000 O
00 -10 010 0
00 00 0100
00 10 1000
S =i . K'=i ,
0 -100 0000
00 00 0000
0010 0001
0000 0000
1000 0000
0000 1000

The finite Lorentz transformation can be obtained by the
exponential mapping

Ny = ("), (AS)
with the rotation angles as @' = w,3,--- and the boost
parameters (rapidities) as ' = ;. For the spinor repre-
sentation in the Weyl basis of Dirac matrices, the generator
matrices are:
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1/ 0 ifoF 0
Jh =~ : Kk_——( ) A6
2(0 o"‘) 2\ 0 —of (A6)

We know that SL(2,C) is the double cover of the proper,
orthochronous Lorentz group SO(3,1), similar to the fact
that the SU(2) is the double cover of the rotation group
SO(3) [100]. This can be seen by defining the 2 x 2 matrix
for each four-momentum,

Paic = PuOzr P = Pud™, (A7)
where the sigma matrices are defined as
UM = (12X2’3)7 5” = (12><2, —3), (Ag)

with ¢ as Pauli matrices. The four-momentum vector can
be obtained by exploring the following identity [101],

Tr[c#5"| = Tr["6"] = 20", (A9)
which yields
1 . .
y/— .ghaa — _ paa gt Al
P! =5 Paid" = 5 "0 (A10)

From the same identity, it can also be shown that the
determinant of the momentum matrix gives the scalar
product of the momentum

I
det po = 5 €€ pogpyy = pup”s (Al

which can be generalized to any two momentum vectors,

PlaaP5* = 2p1 - pa- (A12)
For any L € SL(2,C), the momentum matrix pg
transforms as

p—LpL, (A13)
which leaves the determinant invariant. This establishes
the connection between Lorentz group and SL(2,C). We
can also see that £ and —L gives the same Lorentz
transformation. The SL(2,C) indices a, & can be raised or
lowered by the antisymmetric tensor é% and its inverse

eaﬂ’

12

=g =1, ep=e'=-1, gy =05, (Al4)

and the same definition applies to %7, €4
APPENDIX B: MASSLESS SPINOR-HELICITY
VARIABLES

For massless particles, p> = 0, and the matrix p,; has
rank one, which can be always factorized as direct product
of two spinors,

Paa = )“aj*éz- (Bl)
For real momenta in the Minkowski space, p,, is
Hermitian, and we have
ha = ()", (B2)

with the sign determined by whether the energy is taken to
be positive (+) or negative (—). It is clear that the helicity
variables 1, 1 satisfy the massless Weyl equations,

padzd = O’ p&ala =0. (B3)
From the definition, it is also clear that given a particular
momentum p, A, and A are not uniquely determined but up
to a scaling,

A= wi, A= wll, (B4)
with w € C being a nonzero complex number. In fact, there
is no continuous way to define 4 as a function of p [17], as
will be seen later on from the concrete formulas. The
angular and square spinor products are defined as follows:

(12) = (M Ay) = Moy = e4pH05,

[12] = [ dy] = 41445 = ;AP 72 (B5)

For particle i, we also define the “half-brackets™ [61],

i) =i (il=25. =4 [i| =% (B6)

and the spinor products can also be understood as follows:

(12) = (11"12). (2] =[1[s2]%.  (B7)
Note that in our convention, for the real momenta with
same sign of energy, we have the following relation,
(12) = —[12]", (B8)
as can be directly verified by using the definition Eq. (BS)
and Eq. (B2). By using the fact that any fully anti-symmetric
rank-2 tensor is proportional to the Levi-Civita tensor &, we
can obtain the identities

Miahap = (12)€4p, Liadyy = —[12]e5. (BY)
We have some useful identities,
(ij)ljil = (ilp;lil = 2p; - p}, (B10)

and the Schouten-identity,
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(12)[3) + (23)[1) + (31)[2) = 0

[12]13] + [23]|1] + [31]]2] =0, (B11)
which can be proved by using the fact that the spinor
space is two-dimensional and any two spinors can provide a
basis as long as their angular/square inner product is not
vanishing.

For the parametrization (E, 8, ¢) in the real momenta (let
us assume the energy is positive for the moment, £ > 0),

p, = Esinfcos ¢, py = Esin@sing, p, = Ecos6.
(B12)
Then
B (E(l —cos) —Esinfe? )
Pat =\ _Esinge E(1 4 cos6),
ss* —c's*
= 2E< . ) (B13)
—-cs  cc
where we have defined
0 .0
c= cosiei‘/’, s= s1n§e7‘/’. (B14)

We can choose the spinor-helicity variables as®
—s* ~ —s
Aa:\/ZE( ) ﬂd:\/ZE( *> (B15)
c c

It is straightforward to verify that the spinors A,, A* are the
eigenvectors of the helicity operator with eigenvalues of

1 )9

" 1.~ 1 ( cos 0
= —0 - = — .
0= P75 sin Qe

sin Qe

>

), (B16)

—cosf

which confirms that A(1) carries helicity weight —1(+3).
The presence of functions sing and cosg indicates that the
spinor-helicity variables are not continuous function of the
momenta.

For massless spin-1 particles, the polarization vectors
can be written as

y)
et =efo". :\/Eﬂa a
aa H "~ aa </’M’>

where p, ji are any reference spinors linearly independent of

€ = €1 Oy = \/Eﬂg/fd’
[Afi]

(B17)

¥Here we have adopted a phase convention commonly used in
quantum mechanics [102].
Note that & is the upper index.

2, A, which is reflecting the gauge redundancy. Indeed, any
transformation of ji can be written as [7]

fi = i+ zi+ 2, (B18)
with z and 7’ being complex numbers. Since the polariza-
tion vector is invariant under the scaling of i, it becomes

/
o V2 pa
€ €

~ s

I+ z[Aj]

(B19)

which is just the residual gauge transformation preserving
the condition p,e* = 0. For example, we can choose

c* N c
/-'4(1 - ’ M(l = * 4
N N

which correspond to the explicit formulas for polarization
vectors,

(B20)

e =——(0,co80cos¢ —isingh,cos@sing + icos¢,—sin0),

e =—(0,cosfcos¢+ ising,cosfsing —icosp,—sin).

S-Sl

(B21)

The n-point helicity amplitudes are not continuous
functions of the momenta, but rather the functions of the
spinor-helicity variables,

My (A Aa) (B22)
where a = 1, ..., n denotes the particle indices and satisfy
the covariant constraint,

Mn(a)allmwc;lza) = (a)a)_zhaMn(/’{‘a’j’a)' (B23)

Let us consider the geometry of n-particle momentum
conservation,

(B24)

Zn: Pa=0 Juhas = 0.
a=1 a

We can think of this condition as imposing a constraint on
the spinor vector space {4, } or {44 }. The condition can be
fully explored by projecting into two linearly independent
spinors. For n = 3, this is easy to solve, as we can choose
either A, or 1, as generic. For example, in the first case, we
can project into the |1) subspace and the nonvanishing of
(12), (13) implies the proportionality of |2] and |3].
Similarly, in the other case, nonvanishing of [12],[13]
implies the proportionality of |2) and |3). Finally we have
two solutions,
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Generic 4 = 1; = (23)¢,
Generic 1 = A, = [23]¢,

j:2 = <31>§7 13 = <12>§7
A = [31]¢, Ay = [12]¢,

(B25)

with &, & being some reference spinors. For the three-particle amplitudes, we have

<12>h3—h1—h2 <23>h1—h2—h3 <31>h2—h3—h1 ,
3= { [12]h1+hz—h3 [23]h2+h3—h1 [31]113+h1—h2’

where we also demand that the amplitudes have a smooth
limit in Minkowski signature where the brackets also go
to zero.

APPENDIX C: MASSIVE SPINOR VARIABLES

The massive spinor variables are a bit more complicated
than the massive case, where the little group is SU(2)
instead of ISO(2). Consequently, the spinor variables carry
the little group index 7, which transform as the fundamental
representation of SU(2),

Paa = Aalzld = |p1>[P1 , <C1)
which can be thought of as the sum of two rank-1 matrices
M s A22s;. For general complex momenta, the spinor
variables transform under the fundamental representation
of W e SL(2,0),

A= 2wh,t A=W, (C2)
We adopt the following analytic continuation,
M(=p)==2(p),  A(=p)=X(p). (C3)

The case of real momenta for positive energy can be
obtained by imposing

(A)" = A (C4)

which implies

(') = 2. (C5)
Note that the little group index [/ is naturally raised or
lowered, which is consistent with the fact that the funda-
mental representation of SU(2) is self-conjugate. We can
regard the massive spinor variables as two matrices (/ is the
column index in 4 and row index in A).

Unlike the massless case, the on-shell condition p> = m
is not manifest in this decomposition, but rather a constraint
on the spinor variables,

2

det p = det A x det1 = m?. (C6)

hy +hy+hy <0

: (B26)
By +hy 4+ hy > 0

Without loss of any generality, we can always choose

det A = m, detl = m, (C7)

where m = \/E* — p>. With this convention, we have the
following identities,

ﬁalﬂﬂl = msaﬂ, /11&/1]/'} =

/101/10/ — —m{;‘”,

Me; s,

;11&;1]"‘ = —méeyy. (C8)

By using the above formulas, it is straightforward to obtain
the spinor version of the Dirac equations,

padzdl = m/lzlx’ (C9)

Pai A = —mll.

We can always expand the spinor variables in the bases of
the little group space as

A= 207T4nalH Ape = AL +ialr, (C10)

where the eigenvectors of the z-component spin operator
with eigenvalues of j:% are given by

=) =)

which satisfies

(C11)

e =1, (C12)

By using the above identity, the momentum matrix can be

written in terms of the expansion spinors A(4), 7(#),

Pae = /10:/113( - 71(177](17 (C13)
and the on-shell condition becomes
() =m,  [Aqg) = m. (C14)

Similar to the massless case, the real momentum matrix
for positive energy can be parametrized as
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(E— pcosf —p sinee‘i‘/’>
Poac =

—psin@e® E+ pcosé
ss* —c*s* cc* st
=(E+p) . |t (E=-Dp) . )
—cs  cc cs SS
(C15)

with p = |p|, and the on-shell condition is E? — p? = m?.

It is not difficult to see that the following choices of the
spinor variables can do the job,

2e=/E p<_s>, Zdzﬂz;:\/mp(_f),

C C

c* . N c
Na=vVE=p\ ). Ma=-ne==VE-p( ). (C16)

which satisfy the on-shell condition in Eq. (C14) as can be
verified directly. In the high-energy limit, we have

1~ OWE), n~0<%>,

and 4, 1 coincide with Eq. (B15) of the massless case. The
polarization vectors for the spin-1 particles transform as
symmetric rank-2 tensors under the SU(2) little group and
they can be constructed by the tensor-product of A’ and A/,

(C17)

1,31
€. =¢lll :Ql{llﬂz} _ %AO’%O}Z’ L =1,
aa m o %(/121;1(1}2 +/1£2/~1{1.11)’ 11 #Iz
(C18)

where we have adopted the same convention as [61]. The
longitudinal and transverse polarization components can be
extracted as the coefficients of (tii¢=l2 fHhgth g=hip=l
and they are found to be

A N5 -1l Aodl;
=gt T = d = atl,
11 /Nl
e, == &1 = _ﬁ”:n“ (C19)

Plugging in the formulas in Eq. (C16), we find the explicit
formulas for polarization vectors as follows:

Ou

1
€% =—(p,E,sinfcos ¢, E, sinOsin g, E,, cos 0),
m

e = —(0,cos O cos ¢ F ising, cosfsin

V2

+ icos¢,—sin0). (C20)
The amplitudes for massive particles are functions of A, ;,
which are fully symmetric rank 2S5 tensors for spin §
particles.

APPENDIX D: MASSIVE AMPLITUDES
AS IR-DEFORMATION OF THE MASSLESS
AMPLITUDES

Under our parametrization of massive spinor variables,
in the high-energy limit, they approach the massless spinor-
helicity variables as follows:

%uwuqﬂyzwmﬂqﬂ)@>

VE VE

This may provide a way to think that the massive
amplitudes as appropriate IR-deformation of the UV
massless amplitudes, especially for particles with spins.
For scalar particles, the transformations under the little
group are trivial and they don’t provide too much insight.
We also confine ourselves to the on-shell three-particle
amplitudes and leave the higher-point amplitudes for the
future. In addition, we are satisfied with considering about
the relevant and marginal interactions. This corresponds to
the total helicity of the 3-point massless amplitudes smaller
than or equal to one,

|h| = |hy + hy + hs| <1, (D2)
as the mass dimensions of the associated couplings are
given by

o) = 1=l (D3)

The first nontrivial example involves the fermion-fermion-
scalar amplitudes and as shown in Eq. (B26), there are two
kinds of marginal on-shell amplitudes,

M(172,272,3%) = (12),  M(13,2%3,30) =[12]. (D4)
The IR deformation is straightforward,
(12) - (12)¢71657 - (1127) = (12), (D5)

where symmetrization is implicitly assumed. In Ref. [56],

this has been denoted as “bolding”. Similarly, for plus-
helicity amplitude, we have

[12] - [12]. (D6)

The case of massive spin-1 particles is more interesting,

as it is famously known that an extra degree of freedom is

needed to go from massless to massive. We will pursue it by

first noticing the following properties of the massless spinor
variables for total-plus 3-point on-shell amplitudes,

[23] [23]

1) = £23) = = ),

2] = B (D7)

which can be expressed as
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23] _ (i) [12] _ (3n) 31 _ &n)

(3n)°

where 7 is any reference spinor linearly independent with
angle-bracket on-shell spinors [1), |2), |3). The first set of
on-shell massless amplitudes we are interested in are

(D8)

12][23]

M(10,2+l,30)=[ [31] 12><23>

: /\/1(10,2—1,30):<<31> :
(D9)

and for simplicity, we have set the coupling constant to one.
We can deform them to the massive amplitudes involving
two vectors and one scalar by employing the relations in
Eq. (D8). Naturally, we will choose 5 as the expansion
spinor variables of different particles with on-shell con-
straint as in Eq. (C14). To be more specific, for the total-plus
helicity amplitude, the procedure reads

[12][23]  [12)(1n,) (12)[12]
B~ m -V

. (D10)

and similarly for the CPT conjugate amplitude, we have

1223 (1)) (212
By T m TV

(D11)

Remarkably, the two helicity amplitudes are unified into one
massive object, and the spurious poles in the massless
amplitudes have turned into mass singularities for the
massive amplitudes.

The final example we are presenting here is three vector
on-shell amplitude, and up to permutation and CPT
conjugation, the relevant one is

[12°
23][31]”

M(@1F 241 371 = (D12)

and the deformation gives us two mass singularities,

_, [121Gm)Bma) ﬁw, (D13)

[12]
[23][31]

The systematic way to IR-deform the on-shell massless
amplitudes to massive ones has been explored recently
in Ref. [63].

APPENDIX E: CONSTRAINTS OF THE
COUPLING CONSTANTS FROM THE
LAGRANGIAN

In Ref. [59], the Lagrangian of the most general tree
unitary theory with a finite spectrum of spin-0, 1/2, and 1
states is given as

1 oy g T N -
L==7(Fi) +ari(@+iAR) ar +aLi(§+iA.L)qy

43100, + iAg TR = V(7) =2, Y (W)~ 3o (R)a

Yoor, 1 2
#5005 (45700, ) (€1

where F%, = 0,A% — 0,A% — f**°AbA¢ is the field strength
tensor for the gauge field A%, and T, L, and R are the
generators associated with the representation for the sca-
lars, left-handed and right-handed fermions, respectively. It
is written in the following basis, which we will call the
“gauge basis”, of scalars and vector states:

(i) The generators of the broken group G, and con-
sequently the basis of the vector bosons, are organ-
ized according to invariant subgroups of G. In
particular, the structure constants f?’¢ are in the
“Cartesian” basis such that 4 f>d¢ = () for a # b.
This tells us that if the index a belongs to the invariant
Abelian subgroup, the structure constants f*¢ vanish
for all the indices b, c.

(i) The generators T¢ associated with the scalars are
block diagonalized so that each diagonal block
corresponds to an irreducible representation of G.

The Ny, vector fields are labeled by a, and the indices 1 <
a < Ny are for the invariant Abelian subgroups that have an
explicit mass term, the explicit mass matrix being diagon-
alized to be (M3),, = 8,,(M§)*. 6, with a running from 1
to Ny are the redundant scalars in the Stii ckelberg
formalism for the massive invariant Abelian vectors. All
the other physical or Stiickelberg scalars are grouped by
7, =m,+n, with p=Ny+1,....Ng, where the con-
stants 7, are the vacuum expectation values (vev’s). V(7)
and Y (7) are quartic and linear functions of 7, respectively.

The full set of constraints on the coupling constants in

Eq. (EI) include not only the Lie algebra for the structure
constants f¢*¢ and the generators T, L, and R,

fabefcde +facefdbe +fadefbce =0
[La’ib] — l'fabCZC, [Ra’Rb] — ifabCRC,

[Ta’ Tb] — ifabCTC,
(E2)

but also the following conditions on the scalar interactions

V() =0, (E3)

To%b —TPJe = ifebe)e, (E4)

v, (#)(T*7), = 0, (ES)

LY(z) = Y(7m)R* =Y ,(7)(T"%), =0, (E6)
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where we have defined N, column vectors in the Ng-scalars
space

1<p<N,

- (E7)
Ny < p < Ng,

5P Mé

s { o

P i
pa'lg>

and the generators 7 in the N,-scalars subspace are zero,
ie, T,,=0for p.g=1,...,N, Eq. (E3) states that the
scalar potential has a local minimum at 7z, =#,, while
Egs. (E4), (ES), and (E6) guarantee that the various coupling

constants involved are invariant tensors of G. At the current
|

1
LD -2 (0,W,, —0,W,,)* -

Ny
1
Cahcay Waﬂ WZ WIZ + ; 5

stage, one can already diagonalize the fermion mass terms
so that we have

Y(n) =Y'(n) = &m;. (E8)

The field variables in Eq. (El1) in general do not
correspond to the mass eigenstates of the bosons that we
use in the on-shell calculations. The Lagrangian corre-
sponding to our parameterization of the coupling constants
in the “mass basis” is given by

2 ﬂ
ma Wu,u Wﬂ

+ WRi(d+ iW R )wr +wpi(d + iW, L)y — Zmi (WiLyir + Wirwir)

6,,45,-6“(]5,- -

i=1

Piixi i — o

where we have Ng physical massive scalar states. We have
neglected all 4-point interactions except for ¢* as the
others will be determined by the 3-point interactions by
unitary and locality. The parameters in the two Lagrangians
can be related by performing appropriate transformations
for the scalar and vector fields. The vector boson mass
matrix in Eq. (E1) is given by

Ny
(M) = D (i), (iT"y)

p=Ny+1

+ Z Ma 25ah

(E10)

The above symmetric matrix can be diagonalized by some
orthogonal transformation O, on the vector fields,

(OM?071) )y = M. (E11)
After the transformation, we can work out the linear mixing
terms between the vector and scalar states and this will give
us the Goldstone boson fields as follows:

Ny

Ne
o bM 2 lOaprql’]q
%a = Z jn 20, Z 0 " = Qaplly
=1 a p=No+1 a
(E12)

where we have grouped the scalar fields 6,, 7, into one

array IT, with

p

Kiinbi® i) —

N,
1 S
EE m[2¢l2 + FupiWayu WP dp; — GaijWaud'bid);

(WLHwr +WrHw.)d;. (E9)
|
n,=0, p=1---Ny; I, =z,
p=No+1,---Ng, (E13)
and the rotation matrix is given by
0,;21\4" 7 1< p <N,
Qup = o (E14)

mdpq”t/ N0<pSNS
One can see that Q,, = (0,,/m,)25, and Q,,0;, = S,p-
We can treat Q,, as Ny orthonormal vectors in the scalar
space, expressed in the gauge basis. Then one can find
another Ng = Ng — Ny, orthonormal vectors Q; p» such that
Q;,» which includes both Q,, and Q,,, forms a new,
complete orthonormal basis in the scalar space. The
physical scalar bosons are then given by

¢i = QipHpv (EIS)
and together with the Goldstone bosons ¢, they form a new
scalar basis @5, which is related to the gauge basis by the
rotation

@; = 0;,11,, (E16)

where the square matrix Q;q is orthogonal. (One of course
has the freedom to choose Q;, so that the mass matrix of
the physical scalars are diagonalized.)

076003-26



GAUGE INVARIANCE FROM ON-SHELL MASSIVE AMPLITUDES ...

PHYS. REV. D 106, 076003 (2022)

We have thus figured out the rotation matrices O, and
Q;, needed to transform the vector and scalar states to their
mass basis. To arrive at Eq. (E9) where all Goldstone
scalars are eliminated, we need to use the form invariance
of Eq. (El) under gauge transformations. The actual
transformations used to relate field variables in Egs. (E1)
and (E9) are [59]

Ny )
ep = ¢iQip + ZmaQapaa» 7_717 = [eMVT]pq (nq + Qiq¢i)?

a=1

. e
Aa = e"'f a chWc - |::| (3 Oy,
" { ] b . G'f ab !
gr=e"Rygr., q ="ty (E17)
where we have defined
(6 . f)ab = GCOCdfabdv (Elg)

and for any generator T, of representation R, in the gauge
basis,

6-T,=06%0,T". (E19)
Notice that the fermion masses remain diagonalized as a
consequence of Eq. (E6). Upon the above transformations,

the mass basis couplings in Eq. (E9) can be expressed in
terms of the gauge basis couplings in Eq. (E1) as

Cape :fa’b’c’ 0wy Oppy Oy RY= OabRb’ L= Oabl_'by
ra i a
Guij= —lTij» Fopi= _E(maT?u +mTG,), Hi= OipY s
(E20)

where the scalar generator 77, in the mass basis is given by

T = 040,05, Th (E21)

Now we can figure out the constraints corresponding to
Egs. (E2), (E4), and (E6) in the mass basis. The coupling
matrices T, L, R, will still satisfy the commutation relations
with C,;,. as the structure constants,

Cabe Ccde + Cace Cdbe + Cade Cbce = 07 [Ta’ Tb} = icabc ch
[L“,Lb} =iC,.L¢, [R“,Rb]:iCabCRc. (E22)

In addition, by using

04y Q52 = m 6%, (E23)

we can rewrite Eq. (E4) in the mass basis as follows:

T?bmb - Tli?ama =0, Tgbmb - T?ama =iCypcme, (E24)

which leads to

2 2 2
a_mb_mc

m
— b a _ ;
Fpi = —im,T T7, = iCpup,

a’ ja’

(E25)

2mym,

To summarize, the generator T?] can be completely

expressed in terms of C,,., G;j, F4p; and the gauge boson
masses, as in Eq. (118). Similarly, Eq. (E6) leads to
Egs. (123) and (126).
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