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We study the three-particle and four-particle scattering amplitudes for an arbitrary, finite number of
massive scalars, spinors and vectors by employing the on-shell massive spinor formalism. We consider the
most general three-particle amplitudes with energy-growing behavior at most of OðEÞ. This is the special
case of the requirement of tree unitarity, which states that the N-particle scattering amplitudes at tree level
should grow at most asOðE4−NÞ in the high-energy hard-scattering limit, i.e., at fixed nonzero angles. Then
the factorizable parts of the four-particle amplitudes are calculated by gluing the on-shell three-particle
amplitudes together and utilizing the fact that tree-level amplitudes have only simple poles. The contact
parts of the four-particle amplitudes are further determined by tree unitarity, which also puts strong
constraints on the possible allowed three-particle coupling constants and the masses. The derived relations
among them converge to the predictions of gauge invariance in the UV theory. This provides a purely on-
shell understanding of spontaneously broken gauge theories.
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I. INTRODUCTION

In Ref. [1], Weinberg took the point of view that
quantum field theory (QFT) is an inevitable outcome of
the physical principles of quantum mechanics and special
relativity. Starting from Wigner’s definition of particles as
irreducible representations of the inhomogeneous Lorentz
group and by exploring the symmetries of the S-matrix,
especially Lorentz invariance (covariance) as well as the
cluster decomposition principle, it is possible to show that
field theory is a natural framework to describe physics at
sufficiently low energy. The central role in Wigner’s
classification is played by the little group for a given
momentum, which is defined as the subgroup of the
Lorentz group that leaves the momentum unchanged.
The general unitary Lorentz transformation on the
Hilbert space, UðΛÞ, can be induced by transformations
of the little group WðΛ; pÞ.
The S-matrix element is then given by the transition

amplitude between the “in” and “out” states, which
transforms as the direct product of one-particle states.
The Lorentz covariance of S-matrix requires that there

should exist one unitary operator, acting on both “in” and
“out” states, which further leads to the commutation of the
S-operator with the free Lorentz generators. Thus, one can
show that in the time-dependent perturbation theory, if
the interaction operator can be written as an integral of a
scalar density, which commutes at spacelike or lightlike
separations,

VðtÞ ¼
Z

d3xVðx; tÞ; and

½VðxÞ;Vðx0Þ� ¼ 0; for ðx − x0Þ2 ≤ 0; ð1Þ

then the S-matrix is Lorentz covariant. Furthermore, the
cluster-decomposition principle requires that the S-matrix
factorizes for multiparticle processes which are sufficiently
separated in space. It can be shown that if the Hamiltonian
can be expressed as the sum of the products of annihilation
and creation operators with coefficient functions only
containing single three-momentum conservation delta
function, the connected part of S-matrix will also only
carry single momentum conservation delta function. This
ensures that the S-matrix in the coordinate space satisfies
the cluster-decomposition principle. Such considerations
in addition to the requirement of Eq. (1) naturally call for
quantum fields as building blocks of VðxÞ.
However, huge progress on studying the scattering

amplitudes for gauge theory and gravity has been made
in recent years (see Refs. [2–8] for reviews) suggesting that
pure on-shell ways to determine the S-matrix, without the
notion of local quantum fields, are worth exploring. The
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massless helicity amplitudes are natural functions of
spinor-helicity variables [9–14]. At tree level they are
rational functions of spinor products and only have simple
poles. In particular, the marvellous simplicity of the
maximal helicity violating (MHV) n-gluon amplitude
(the amplitude with the maximal number of same helicities
in the all-momenta-incoming convention) deduced by
Refs. [15,16] has suggested that there may exist alternative
ways to calculate the helicity amplitudes for the gauge
theory other than the conventional field-theory Feynman-
diagram approach.
Indeed, Witten’s formulation of perturbative gauge

theory in the twistor space [17] has motived the Cachazo-
Svrcek-Witten construction of the tree-level amplitudes
using MHV diagrams [18] and finally, the discovery of on-
shell Britto-Cachazo-Feng-Witten recursion relations
[19,20] has provided an efficient and elegant way to
determine the tree-level amplitudes of Yang-Mills theory
from their singularities. Note that Weinberg’s argument of
the Lorentz-covariance of the S-matrix is ensured by the
recursion relations. This has motivated active research in
the quest for the dual formulation of QFT, in which the
symmetries and the simplicities of the amplitudes, such as
the infinite-dimensional Yangian symmetry of N ¼ 4
planar supersymmetric Yang-Mills theory, are manifest,
while the notion of locality or even space-time may not be
apparent [21–25]. The formulation of planar N ¼ 4 SYM
amplitudes as the volume of “amplituhedron” in Ref. [26]
provides such an example; locality and unitary emerge
from positivity geometry. See also Refs. [27–30] for
deriving locality and unitary from other principles, e.g.,
gauge invariance or infrared behavior. Other interesting and
exciting approaches include the color-kinematics duality
and the double copy [31–33], the Cachazo-He-Yuan
formalism based on scattering equations [34–37] etc.
From the more practical point of view, the idea of

constructing amplitudes from the on-shell data has found
many applications in the effective field theory (EFT),
especially the EFTs that have enhanced soft limit, where
on-shell constructability becomes possible [38–42]. It has
nicely explained the one-loop nonrenormalization patterns
of dimension-six operators in the Standard Model (SM)
EFT [43] and leads to new nonrenormalization theorem of
operator mixing [44]. It also leads to the noninterference
between the SM 4-point amplitudes involving at least one
transverse vector boson and the corresponding linear
dimension-six operator contributions [45]. Calculations
of anomalous dimensions of the effective operators have
also been performed recently by using the on-shell
amplitudes in Refs. [46–51]. Furthermore, the simplicity
of on-shell helicity amplitudes can be used to enumerate
the independent EFT operators, which was first demon-
strated in the context of a gauge singlet scalar or vector
coupled to gluons in Ref. [52] and further employed in
Ref. [53–55].

Another step towards the on-shell formulation of QFT
has been put forward by Ref. [56], in which the on-shell
formalism for scattering amplitudes of general masses and
spins has been systematically developed. The massive
particles carry SU(2) little group indices in the form of
completely symmetric tensor representations, and as a
result, the Lorentz-covariance of the scattering amplitudes
for spin-S particles has manifested itself as rank-2S tensor.
The on-shell three-particle amplitudes can be constructed
systematically by the use of massive spinor kinematic
variables λIα, λ̃

I
_α, and the four-particle scattering amplitudes

can be derived by the fact that tree-level amplitudes have
only simple poles and the residues are determined by
unitary in the form of consistent factorization.
The presence of spurious nonlocal poles in the 3-point

on-shell massless helicity amplitudes (in the complex
momenta scheme) and the requirement of consistent
factorization for 4-point amplitudes have put strong con-
straints on the possible structure of the interacting massless
particles, such as the Yang-Mills structure for the multiple
self-interacting massless spin-1 particles, and the universal
couplings to the massless spin-2 particles [57]. In a similar
fashion, one should be able to understand the structure of
the spontaneously broken gauge theory as the consequence
of the locality and perturbative-unitarity constraints on the
massive amplitudes. It is known that the on-shell 3-point
massive amplitudes can turn the spurious poles of massless
amplitudes into some kind of mass singularities, and the
Higgs mechanism can be understood as the infrared
unification of different massless amplitudes in the ultra-
violet [56]. The 1=m mass singularities in general lead to
energy-growing behaviors for higher-point amplitudes
involving the longitudinal components of the massive
gauge bosons.
It was proven in the 1970s by the authors of Refs. [58–60]

that any tree-unitary theory of massive vector bosons (with
general interactions with scalars and spinors) is equivalent
to a spontaneously broken gauge theory. Here tree unitarity
means that the N-particle scattering amplitudes at tree level
should scale at most as E4−N in the high-energy (E) limit at
fixed, nonzero angles, i.e., the hard-scattering limit. It can be
argued that nontree-unitary theories will not be renormaliz-
able or in the modern effective field theory language, it will
have very low cutoff. In this paper, we aim to understand
this from a completely on-shell point of view, using the
aforementioned massive spinor helicity formalism. We will
study the 3-point and 4-point scattering amplitudes for an
arbitrary, finite spectrum of massive scalars, spinors, and
vectors, deriving the consequence of tree unitarity. Note that
the general 3-point on-shell massive amplitudes and four-
particle contact terms for the SM and EFTs have been
constructed by [61–68]. Reference [61] has derived the
constraints among the relevant coupling and mass param-
eters from perturbative unitary on the four-point ψcψZh
amplitude. Similar work for the on-shell description of
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Higgs mechanism in the SM electroweak sector has been
studied in Ref. [69]. See Ref. [70] for the consideration of
finite number of massless and massive scalar fields with
arbitrary local interactions, where linearized symmetry and
unification can emerge from soft theorems and perturbative
unitarity. See also Refs. [71–80] for related works.
The paper is organized as follows. In Sec. II, we first

review the definition of the little group and its role in the
classification of the irreducible representations of the
inhomogeneous Lorentz group. Then we introduce on-
shell massless and massive amplitudes and their interplay
as the connection between UV and IR physics. In Sec. III,
we discuss the relations between polarization functions and
massive spinor variables and present the general relevant or
marginal on-shell massive three-particle amplitudes involv-
ing arbitrary numbers of scalars, fermions and vector
bosons. They are selected by studying their high-energy
limit and imposing the tree-level unitarity at three-particle
level, i.e.,M3 ≲OðEÞ. In Sec. IV, we move on to calculate
the four-particle scattering amplitudes by obtaining the
residues from gluing together the three-particle on-shell
massive amplitudes and then imposing the tree-level
unitarity constraint,M4 ≲OðE0Þ, in the high-energy limit.
In addition to constraining possible contact parts of the
four-particle amplitudes, we derive relations among the
coupling constants and show that they converge to gauge
invariance in the UV theory, and a spontaneously broken
symmetry in the IR. Section V contains our conclusion and
outlook. Several appendices collect our conventions and
useful formulas.

II. THE LITTLE GROUP AND THE ON-SHELL
MASSLESS AND MASSIVE AMPLITUDES

In this section we review the basic concepts of the little
group and illustrate how the on-shell massless and
massive amplitudes make the little group transformation
manifest. The detailed discussion about the massless and
massive spinor variables are presented in Appendix B and
Appendix C, respectively.

A. Review of the little group

We start from the Wigner’s definition of the little group
[81]. In terms of Wigner’s classification, the one-particle
states can be defined as the irreducible representations of
the inhomogeneous Lorentz group and the representations
can be induced by the irreducible representations of the
little group. Given a general momentum pμ, the little group
is the subgroup of the homogeneous Lorentz group SO(3,1)
or its universal covering group SLð2; CÞ, which leaves the
momenta of the particles the same. The classification can
be performed using the reference momentum trick.
For massless particles, the reference momentum can be

chosen as kμ ¼ kð1; 0; 0; 1Þ, where the little group asso-
ciated with this reference momentum is simply the isometry

group of the two-dimensional Euclidean space ISO(2).1

Actually, by using the explicit formulas in Eq. (A4), it is
straightforward to show that the following combinations of
the generators acting on the reference momentum will give
zero four-vector,2

J2 − K1; − J1 − K2; J3: ð2Þ

To avoid the continuum internal indices of the particles,
only the subgroup SOð2Þ ≃ Uð1Þ is considered. This means
that the particles in the Hilbert space carry zero eigenvalues
of the Hermitian operators corresponding to the first two
generators. It is well known that the representation is the
helicity of the particles. The general momentum can be
obtained by the standard Lorentz transformation, which can
be chosen as3

LðpÞ ¼ Rðp̂ÞBðjpj=kÞ; ð3Þ

where the rotation Rðp̂Þ ¼ expð−iϕJ3Þ expð−iθJ2Þ trans-
forms the z-axis into the direction of p̂ ¼ ðsin θ cosϕ;
sin θ sinϕ; cos θÞ, and the boost Bðjpj=kÞ is along the
z-axis, with the nonzero components of B given by

B0
0ðuÞ ¼B3

3ðuÞ ¼
u2þ 1

2u
; B0

3ðuÞ ¼B3
0ðuÞ ¼

u2 − 1

2u
:

ð4Þ

For massive particles, we can choose the reference
momentum as the momentum in the rest frame kμ ¼
mð1; 0; 0; 0Þ. The little group is the rotation group SO(3)
or its universal covering group SU(2). The generators are
simply

J1; J2; J3: ð5Þ

The standard Lorentz transformation, which boosts the
standard momentum kμ to the general momentum pμ, can
be chosen as

LðpÞ ¼ Rðp̂ÞBðjpjÞ; ð6Þ

1Note that ISO(2) can be considered as the Innou-Wigner
contraction of SO(3) with respect to its subgroup SO(2).

2Note that we have adopted the same convention for the
definition of boosted generators as Peskin and Schroeder [82],
which is different from that of Weinberg [1] by a minus sign. See
Appendix A for details.

3In this subsection, the boldface letter p represents the three-
momentum of the particle and in the following sections, we
sometime use it for the massive on-shell spinors with sym-
metrized little group indices. As for the latter case, it is always
associated with angle or square brackets, thus there should be no
confusion.
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where BðjpjÞ ¼ expð−iηK3Þ is the boost along the z-axis.
Note that we have chosen a different standard Lorentz
transformations from Ref. [1] and the reason will be clear
later on. We summarize our previous discussions in
Table I.
In the Hilbert space, the state vector for the general

momentum pμ with helicity σ of particle species n, Ψp;σ;n,
can be obtained by the unitary transformation UðLðpÞÞ on
the state vectors associated with the standard momentum
kμ, Ψk;σ;n,

Ψp;σ;n ¼ UðLðpÞÞΨk;σ;n: ð7Þ

It can be shown that once we normalize the states of the
standard momentum,

ðΨk0;σ0;n0 ;Ψk;σ;nÞ ¼ 2Ekδσ0σδnn0δ
3ðk0 − kÞ; ð8Þ

the states at general momenta have the following normali-
zation,

ðΨp0;σ0;n0 ;Ψp;σ;nÞ ¼ 2Epδσ0σδnn0δ
3ðp0 − pÞ: ð9Þ

Given the definition, under the general proper orthochro-
nous Lorentz transformation Λ, the state-vectors transform
under the unitary operator UðΛÞ as

UðΛÞΨp;σ;n ¼
X
σ0
Dσ0σðWðΛ; pÞÞΨΛp;σ0;n: ð10Þ

Here WðΛ; pÞ is the little group element defined as

WðΛ; pÞ ¼ L−1ðΛpÞΛLðpÞ: ð11Þ

For massive particles with spin j, Dσ0σðWðΛ; pÞÞ ¼
Dj

σ0σðWðΛ; pÞÞ is an irreducible unitary representation of
SU(2) with dimension 2jþ 1, while for massless particles,
since helicity is a Lorentz invariant quantity,Dσ0σðWðΛ; pÞÞ
is diagonal with phase elements,

Dσ0σðWðΛ; pÞÞ ¼ expð−iθðΛ; pÞσÞδσ0σ: ð12Þ

It is important to point out for massive particles that when Λ
is the three-dimensional rotation R, the little group rotation
WðΛ; pÞ remains the same as R, i.e.,WðR; pÞ ¼ R, because
R is independent of the momentum p. This can be directly
derived by using the explicit formula of the standard Lorentz
transformation in Eq. (6).
The S-matrix elements are defined as the probability

transition amplitudes from the in states Ψþ
α to the out state

Ψ−
β as follows:

Sβα ¼ ðΨ−
β ;Ψþ

α Þ; ð13Þ

with the state labels collectively given by α ¼ p1σ1n1;
p2σ2n2; � � �, β ¼ p0

1σ
0
1n

0
1;p

0
2σ

0
2n

0
2; � � �. The in and out states

are transformed in the same way as the direct product of
one-particle states. The Lorentz invariance of the S-matrix is
defined as

Sβα ¼ ðUðΛÞΨ−
β ; UðΛÞΨþ

α Þ; ð14Þ

where the same unitary transformations acting on both in
and out states are the essential part. This will give us the
Lorentz covariant property of the S-matrix,

Sβα ¼
X

σ̄1;σ̄01;���
Dσ̄1σ1ðWðΛ; p1ÞÞDσ̄2σ2ðWðΛ;p2ÞÞ

� � �D�
σ̄0
1
σ0
1
ðWðΛ;p0

1ÞÞD�
σ̄0
2
σ0
2
ðWðΛ; p0

2ÞÞ � � �SΛβ̄;Λᾱ: ð15Þ

Here Λᾱ stands for Λp1σ̄1n1;Λp2σ̄2n2; � � � and the same
applies to Λβ̄. For massive particles with general spins, the
Lorentz covariance tells us that the on-shell amplitudes are
tensors under the little group SU(2), while for massless
particles, the on-shell helicity amplitudes are subject to the
U(1) little group phase transformations. Since in our
convention, we take all the momenta ingoing, the final
particle states Ψp;σ;n are represented by the analytical
continuation ð−p;−σ; nÞ.

TABLE I. The little group for the massless and massive particles. The reference momenta and the corresponding
standard Lorentz transformations are also shown. Here, p̂ stands for the unit vector along the direction of the

3-momentum, i.e., p̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ and η is the rapidity given by η ¼ arctanh jpj
E . The explicit

formulas for the Lorentz group generators in the vector representation are presented in Appendix A.

Standard momentum Little group Standard Lorentz transformation

kμ ¼ kð1; 0; 0; 1Þ ISO (2)
J2 − K1;−J1 − K2; J3

LðpÞ ¼ Rðp̂ÞBðjpj=kÞ
Rðp̂Þ ¼ e−iϕJ

3

e−iθJ
2

B0
0ðuÞ ¼ BðuÞ33 ¼ u2þ1

2u ,

BðuÞ03 ¼ BðuÞ30 ¼ u2−1
2u

kμ ¼ mð1; 0; 0; 0Þ SO(3)
J1; J2; J3

LðpÞ ¼ Rðp̂ÞBðjpjÞ
Rðp̂Þ ¼ e−iϕJ

3

e−iθJ
2

, BðjpjÞ ¼ e−iηK
3
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B. On-shell massless and massive amplitudes

The on-shell massless helicity amplitudes are naturally
functions of spinor-helicity variables, which can be intro-
duced by exploring the equivalence between the Lorentz
group and the SLð2; CÞ group. The on-shell condition
p2 ¼ 0 implies that the 2 × 2 matrix pα _α ¼ pμσ

μ
α _α has rank

1 and can be written as the direct product of two spinor
vectors (see Appendix A for the summary of the notations
and conventions),

pα _α ¼ λαλ̃ _α: ð16Þ
Similar to the previous discussions about the induced
general Lorentz transformation from the little group trans-
formation, we can also specify the standard Lorentz
transformation on the spinor variables [56],

λαðpÞ ¼ DðLðpÞÞαβλβðkÞ; ð17Þ
and therefore, under the general Lorentz transformation Λ,
the spinor variable has the following little group trans-
formation,

DðΛÞλðpÞ ¼ DðWðΛ; pÞÞλðΛpÞ: ð18Þ

Here for real momenta, DðWðΛ; pÞÞ is just the U(1) little
group phase factor e

i
2
θðΛ;pÞ, which corresponds to σ ¼ − 1

2

in Eq. (12). For general complex momenta, DðWðΛ; pÞÞ
will be a complex number w ∈ C, as the complexification
of the little group U(1) is GLð1; CÞ. In these definitions
(conventions), the spinor λðλ̃Þ has helicity weight −ðþÞ 1

2
.

If we consider the helicity amplitudes as functions of the
spinor-helicity variables λ; λ̃, the Lorentz covariance of the
S-matrix in Eq. (15) can be stated as follows:

Mh1;…;hnðw1λ1; w−1
1 λ̃1; � � � ;wnλn; w−1

n λ̃nÞ
¼ w−2h1

1 � � �w−2hn
n Mh1;…;hnðλ1; λ̃1; � � � ; λn; λ̃nÞ; ð19Þ

where for real momenta, wi ¼ e
i
2
θðΛ;piÞ.

The beauty and power about the massless on-shell
amplitudes are manifest from the fact that the 3-pt on-shell
amplitudes in the scheme of complex momenta are
uniquely fixed by the requirement of on-shell conditions,
momentum conservation and the good behaviors under the
real momentum limit. To be specific, the on-shell three-
particle helicity amplitudes are given by

Mh1;h2;h3
3 ¼

� h12ih3−h1−h2h23ih1−h2−h3h31ih2−h3−h1 ; h1 þ h2 þ h3 < 0

½12�h1þh2−h3 ½23�h2þh3−h1 ½31�h3þh1−h2 ; h1 þ h2 þ h3 > 0
; ð20Þ

which have smooth limits when we take the momenta
as real quantity, i.e., λ1 ∝ λ2 ∝ λ3, or λ̃1 ∝ λ̃2 ∝ λ̃3 (see
Appendix B for detail). Note that under the parity trans-
formation, the spinor-helicity variables transform as4

λα → iλ̃ _α; λ̃ _α → iλα; ð21Þ
which results in the interchange between the angular and
square brackets,

h12i ↔ ½12�: ð22Þ
Since the helicities change sign under the space inversion,
the two cases in Eq. (20) are related by the parity trans-
formation.
A special case corresponds to the total helicity of �1,

jh1 þ h2 þ h3j ¼ 1; ð23Þ

where by dimensional analysis, the coupling constants
associated with the helicity amplitudes have mass dimen-
sion zero. This corresponds to the marginal interaction
terms in the classification of Wilson [83,84]. Let us focus
on the case of h1 þ h2 þ h3 ¼ 1, then we have

Mh1;h2;h3
3 ¼ ½12�1−2h3 ½23�1−2h1 ½31�1−2h2 : ð24Þ

It can be immediately seen that there are always spurious
poles for amplitudes involving particles with helicities
greater than or equal to one. When we try to calculate
the residues of four-particle scattering amplitudes in one
particular channel by gluing the three-particle amplitudes
together, they will always lead to poles in other channels.
This plus the requirement of the unitarity in the form of
consistent factorization have put strong constraints on the
allowed possible interaction types and coupling structures
of three-particle on-shell amplitudes [57]. In particular, the
self-interacting multiple spin-1 particles must have Yang-
Mills structure, and the interactions between fermions and
the vector bosons must form a representation of the Lie
algebra of the vector bosons. As wewill see in the following
discussion, in the case of massive vector bosons and
fermions, the same conclusion holds and the requirement

4We can check explicitly that under this transformation, pα _α

changes to p _αα which is consistent with the parity transformation
on the momentum ðp0; p⃗Þ → ðp0;−p⃗Þ. The presence of the
factor of i is also consistent with the reality condition for the
positive energy λ̃ _α ¼ λ�α. One can also check this explicitly by
using the explicit formulas of the spinor-helicity variables as
functions of ðθ;ϕÞ and noticing that under parity transformation,
θ → π − θ, ϕ → ϕþ π.
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of consistent factorization corresponds to imposing tree-
level unitarity.
The massless spinor-helicity variables have been gener-

alized to general masses and spins by Ref. [56]. In contrast
to the spinor-helicity variables, the massive spinor variables
carry little group SU(2) indices,

λα → λIα; λ̃ _α → λ̃I_α; ð25Þ

which corresponds to the spin degrees of freedom of the
particles. Similar to the massless case, one can obtain
the massive spinor variables at general momentum pμ from
the standard Lorentz transformation of spinor variables at
standard momentum kμ ¼ mð1; 0; 0; 0Þ,

λIαðpÞ ¼ DðLðpÞÞαβλIβðkÞ; ð26Þ

where λ
1
2
αðkÞ; λ−

1
2

α ðkÞ correspond to spin-z components of
þ 1

2
;− 1

2
, respectively. Note that in our choice of standard

Lorentz transformation in Eq. (6), λIαðpÞ represents the spin
component along the momentum-axis, i.e., the helicity.
Once we specify the standard transformation, the general
Lorentz transformation Λ on the massive spinor variables
are induced by the following little group transformation,

DðΛÞλIðpÞ ¼ DðWðΛ; pÞÞIJλJðΛpÞ: ð27Þ

Since the spin-S particle carries 2S completely symmetric
indices of SU(2), the Lorentz covariance of the S-matrix in
Eq. (15) is equivalent to the statement that the correspond-
ing scattering amplitudes are fully symmetric rank-2S
tensors of the massive spinor variables λI; λ̃I . The momen-
tum of the particle transforms trivially under the little
group, thus can be constructed as an “inner” product of
λI; λ̃I ,

pα _α ¼ εIJλ
I
αλ̃

J
_α ¼ λIαλ̃I _α; ð28Þ

which can also be thought of as the sum of two rank 1
matrices. As in the massless case, λIα is independent of λ̃I
for the general complex momenta and the limit of real
momenta can be obtained by taking

λ̃I _α ¼ �ðλIαÞ�; ð29Þ

where the þð−Þ sign depends on the energy being positive
or negative, respectively. Note that another advantage for
the massive spinor variables is the simple relations with the
massless spinor variables as the high-energy limit. To see
this, we can always expand the spinors in the bases of the
little group space as

λIα ¼ λαζ
−I þ ηαζ

þI; λ̃I_α ¼ λ̃ _αζ
þI þ η̃ _αζ

−I: ð30Þ

In terms of the expansion above, the momentum matrix can
be rewritten as

pα _α ¼ λαλ̃ _α − ηαη̃ _α: ð31Þ

As discussed in Appendix C, with suitable sign convention,
the on-shell condition of the momentum becomes

hληi ¼ m; ½λ̃ η̃� ¼ m: ð32Þ

Wewill choose λ; λ̃ as the surviving parts in the high-energy
limit, which will scale like

ffiffiffiffi
E

p
. On the other hand, the

subleading spinor variables η; η̃ scale like mffiffiffi
E

p . This does not

mean that η; η̃ are totally irrelevant in the high-energy limit;
actually, there are always mass singularities associated with
massive vector bosons. The relation between UV-massless
on-shell amplitude and IR-massive amplitudes can be
described as “unbold” to “bold”, with the subtlety for
the massive spin-one or higher-spin particles. For example,
for fermion-fermion-scalar amplitudes, we have

h12i ↔ h12i; ½12� ↔ ½12�; ð33Þ

while for vector-vector-scalar amplitudes, we have�½12�½23�
½31� ;

h12ih23i
h31i

�
↔

ffiffiffi
2

p ½12�h12i
m2

: ð34Þ

Here the bold notation means that the little group indices
are completely symmetrized with appropriate Clebsch-
Gordan coefficients [56,61]. To be more explicit, we have

½12�h12i≡ 1ffiffiffi
2

p ð½1I12�h1I22iþ ½1I22h1I12iÞ; I1 ≠ I2 ð35Þ

In the latter case, we can choose the suitable η; η̃ as the
reference spinor in order to IR-deform the massless 3-point
amplitudes (see Appendix D for detail).

III. GENERAL RELEVANT AND MARGINAL
THREE-PARTICLE AMPLITUDES

In this section we will present the general on-shell
massive three-particle amplitudes relevant in our calcula-
tion. We only consider the particles with spin less than or
equal to one and leave other cases for future possible work.
We adopt a bottom-up approach and allow the coupling
constants to be arbitrary and eventually we will see that the
group structure and gauge invariance will emerge from the
requirement of tree-level unitarity, i.e., Mn ≲OðE4−nÞ. In
the same spirit of Ref. [59], we consider arbitrary finite
number of scalars, fermions and vectors, by which we mean
the Hilbert space consists of one-particle states labeled by
their momenta, helicities and species Ψp;σ;n. Note that
Ref. [61] has studied the on-shell 3-point massive amplitude
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bases with the particle spectrum of the electroweak sector in
SM in addition to one generation of fermions. We start from
the discussion of the polarization functions and their
relations with massless and massive spinor variables.

A. Polarization functions

In Ref. [1], the polarization functions are obtained by
requiring that the quantum fields constructed out of them
and the annihilation (creation) operators transform linearly
under the Lorentz group and especially independent of the
space-time coordinates. Specifically, the polarization func-
tions satisfy the following conditions,

X
σ̄

ul̄ðpΛ; σ̄; nÞDðjnÞ
σ̄σ ðWðΛ; pÞÞ ¼

X
l

Dl̄lðΛÞulðp; σ; nÞ;
X
σ̄

vl̄ðpΛ; σ̄; nÞDðjnÞ�
σ̄σ ðWðΛ; pÞÞ ¼

X
l

Dl̄lðΛÞvlðp; σ; nÞ;

ð36Þ

where ul and vl are the polarization functions associated
with annihilation and creation operator respectively and
Dl̄lðΛÞ belongs to any irreducible representation of the
Lorentz group.
The consequences of the above formulas can be explored

by the special cases. For p ¼ 0 and Λ ¼ LðqÞ such that
WðΛ; pÞ ¼ 1, we have the following useful identities,

ul̄ðq; σ; nÞ ¼
X
l

Dl̄lðLðqÞÞulð0; σ; nÞ;

vl̄ðq; σ; nÞ ¼
X
l

Dl̄lðLðqÞÞvlð0; σ; nÞ; ð37Þ

which just tell us that the wave functions at general
momentum can be obtained by the Lorentz transformations
of the wave functions at zero momentum. To obtain the
wave functions at zero momentum, we can take again p ¼
0 but Λ ¼ R, which is a three-dimensional rotation. This
time, we have

X
σ̄

ul̄ð0; σ̄; nÞDðjnÞ
σ̄σ ðRÞ ¼

X
l

Dl̄lðRÞulð0; σ; nÞ;
X
σ̄

vl̄ð0; σ̄; nÞDðjnÞ�
σ̄σ ðRÞ ¼

X
l

Dl̄lðRÞvlð0; σ; nÞ: ð38Þ

This establishes the relations between the representations of
the little group (spins or helicities) and the representations
of the polarization functions under the Lorentz group
(or more precisely, the rotation subgroup). The solutions
of the above equation for spin-1 and spin-1=2 can be found
by exploring the explicit formulas of the representation
matrices and the results are shown in Table II.
To establish the relation between the polarization func-

tions and the massive spinor variables, we first recall the
fact that the spin-j representations of the rotation group can

be treated as symmetrized direct products of 2j spin-1=2
representations. The normalized tensor state of jj; σi
corresponds to the following tensor components with 2j
indices [85],

�
2j

jþ σ

�−1=2
v
s1���s2j
j;σ ; ð39Þ

where the completely symmetric tensor v
s1���s2j
j;σ is equal to

one if there are jþ σ values of spin 1
2
and j − σ values of

spin − 1
2
and zero otherwise. The normalization prefactor

comes from the fact that there are ð 2j
jþσÞ of possibilities. It

also applies that the general irreducible representation of
proper orthochronous Lorentz group can be thought as
direct sum of spins of two particles ðj1; j2Þ, which are
representations of complexified direct sum of two SU(2)
Lie algebra suð2Þ ⊕C suð2Þ,

J1 ¼
1

2
ðJþ iKÞ; J2 ¼

1

2
ðJ − iKÞ: ð40Þ

In the formalism of completely symmetric tensor repre-
sentations of SU(2), we can think of the indices l; l̄ in
Eq. (38) as collections of 2j1 two-value indices α1 � � � α2j1
and 2j2 two-value indices _α1 � � � _α2j2 . The spin label σ for
particle of spin-jn can be treated as 2jn two-value indices
I1; � � � I2jn . Actually, we only need the special case of
jn ¼ j1 þ j2. In this special case, the solutions to Eq. (38)
can be obtained by the completely symmetric product of the
building blocks uαð0; IÞ; u _αðI; 0Þ,

uαð0; IÞ ¼
ffiffiffiffi
m

p
δIα; u _αðI; 0Þ ¼

ffiffiffiffi
m

p
δI _α: ð41Þ

These are the massive spinor variables λ; λ̃ with the
following index convention,

λIαð0Þ ¼ uαð0; IÞ; λ̃I _αð0Þ ¼ u _αð0; IÞ: ð42Þ

The normalization is chosen such that

λIαð0Þλ̃I _αð0Þ ¼ mσ0α _α ¼ ðpμσ
μÞp¼0; ð43Þ

where I; _α are lowered by the antisymmetric tensor εIJ, ε _α _β.
The massive spinor variables at general momentum are
given by the standard Lorentz transformation of the zero-
momentum spinors

λIαðpÞ ¼ ðe−iϕσ3

2 e−iθ
σ2

2 e−η
σ3

2 Þαα0λIα0 ð0Þ;
λ̃I _αðpÞ ¼ ðe−iϕσ3

2 e−iθ
σ2

2 eη
σ3

2 Þ _α _α0 λ̃I _α0 ð0Þ; ð44Þ

where η is the rapidity defined as cosh η ¼ E=m and as a
consequence
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λIαðpÞλ̃I _αðpÞ ¼ pμσ
μ: ð45Þ

We then make some comments on the massless particles.
For the scalar and spinor representations, satisfying
Eq. (36) in the massless version is straightforward and
there is no subtlety in taking the massless limit. For spin
larger than or equal to one, it is not possible to satisfy the
massless version of Eq. (36),

ul̄ðpΛ; σ̄Þe−iσθðp;ΛÞ ¼
X
l

Dl̄lðΛÞulðp; σÞ; ð46Þ

where θðp;ΛÞ is the rotation angle of the little group
transformation,

WðΛ; pÞ ¼ L−1ðΛpÞΛLðpÞ
¼ Sðαðp;ΛÞ; βðp;ΛÞÞRðθðp;ΛÞÞ: ð47Þ

Here Sðα; βÞ is the invariant Abelian subgroup of the little
group ISO(2) and RðθÞ is the rotation around the z-axis. To
be more specific, we have

Sðαðp;ΛÞ; βðp;ΛÞÞ ¼ e−iαðp;ΛÞðJ2−K1Þe−iβðp;ΛÞð−J1−K2Þ;

Rðθðp;ΛÞÞ ¼ e−iθðp;ΛÞJ3 : ð48Þ

To see this, let us take spin-1 as an example. We can set the
momentum to the standard momentum kμ ¼ kð1; 0; 0; 1Þ
and take Λμ

ν as Sμν or RðθÞ, and the conditions become
respectively

ϵμðk;σÞe−iσθ¼Rμ
νϵ

νðk;σÞ; ϵμðk;σÞ¼Sμνϵνðk;σÞ: ð49Þ

The solutions to the first equation read

ϵμðk;�1Þ ¼ 1ffiffiffi
2

p ð0; 1;�i; 0Þ; ð50Þ

TABLE II. Polarization functions and spinor variables at standard and general momentum. See the main text for
detailed discussion. For the general momentum for the massless particles, λα coincides with the high energy limit of

λ
−1
2

α .

Standard momentum Polarization functions Spinor variables

kμ ¼ kð1; 0; 0; 1Þ
ϵþμ ¼ 1ffiffi

2
p

0
BB@

0

1

i
0

1
CCA, ϵ−μ ¼ 1ffiffi

2
p

0
BB@

0

1

−i
0

1
CCA

λα ¼
ffiffiffiffiffi
2k

p �
0

1

�
,

λ̃ _α ¼ ffiffiffiffiffi
2k

p �
1

0

�
,

ϵ−α _α ¼
ffiffiffi
2

p
λαμ̃ _α

½λ̃ μ̃�,

ϵþα _α ¼
ffiffiffi
2

p
μαλ̃ _α
hμλi

kμ ¼ mð1; 0; 0; 0Þ
ϵ0μ ¼

0
BB@

0

0

0

1

1
CCA, ϵþμ ¼ 1ffiffi

2
p

0
BB@

0

1

i
0

1
CCA, ϵ−μ ¼ 1ffiffi

2
p

0
BB@

0

1

−i
0

1
CCA

uþ1
2 ¼ ffiffiffiffi

m
p

0
BB@

1

0

1

0

1
CCA, u−

1
2 ¼ ffiffiffiffi

m
p

0
BB@

0

1

0

1

1
CCA,

vþ1
2 ¼ ffiffiffiffi

m
p

0
BB@

1

0

−1
0

1
CCA, v−

1
2 ¼ ffiffiffiffi

m
p

0
BB@

0

1

0

−1

1
CCA

λIα ¼
ffiffiffiffi
m

p
δIα,

λ̃I _α ¼ ffiffiffiffi
m

p
δI _α

ϵIJα _α ¼
ffiffi
2

p
m λfI1α λ̃I2g_α

uI ¼
�

λIα
λ̃I _α

�

vI ¼
�

λIα
−λ̃I _α

�
ūI ¼ ð−λαI ; λ̃I _αÞ,
v̄I ¼ ðλαI ; λ̃I _αÞ

General momentum
pμ ¼ ðE;pÞ

ϵμðpÞ ¼ Lμ
νðpÞϵνðkÞ,

uaðpÞ ¼ DðLðpÞÞabubðkÞ,
vaðpÞ ¼ DðLðpÞÞabvbðkÞ

λIαðpÞ ¼ DðLðpÞÞβαλIβðkÞ
λ̃I _αðpÞ ¼ D�ðLðpÞÞ _β_αλ̃I _βðkÞ

λ
1
2
α ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

E − p
p �

cos θ
2
e−i

ϕ
2

sin θ
2
ei

ϕ
2

�

λ
−1
2

α ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p �
− sin θ

2
e−i

ϕ
2

cos θ
2
ei

ϕ
2

�
λ̃I _α ¼ ðλIαÞ�
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but then the second equation can’t be satisfied for general
parameters α, β. Instead, applying little group transforma-
tion Sðα; βÞ will give us the polarization functions as
follows:

ϵμðk;�Þ → ϵμðk;�Þ − α� iβffiffiffi
2

p
k

kμ: ð51Þ

This is the origin of the necessity of gauge invariance.
Nevertheless, the polarization vectors at the general
momentum can still be obtained by the standard Lorentz
transformation,

ϵμðp;�Þ ¼ Rðp̂ÞBðjpj=kÞϵμðk;�Þ ¼ Rðp̂Þϵμðk;�Þ; ð52Þ

where we have used the fact the boost along the z-axis
doesn’t affect the x, y components. The resulting polari-
zation vectors are the same as Eq. (B21). Under general
Lorentz transformation, they transform as a vector plus an
additional term proportional to the momentum,

ϵμðp;�Þ→ e−iθðp;ΛÞϵμðp;�Þ−αðp;ΛÞ� iβðp;ΛÞffiffiffi
2

p
k

pμ: ð53Þ

B. 3-point on-shell massive amplitudes

We start by listing in Table III all the interactions and the
corresponding 3-point tree-unitary on-shell amplitudes for
an arbitrary, finite number of massive scalars ϕi, fermions
ψ i and vectors Wa

μ, and present the derivations in the

following.5 We are adopting a purely on-shell approach in
this paper, thus it is sufficient to impose tree unitarity on the
complete basis of 3-point massive amplitudes given by
Ref. [62]. On the other hand, we would like to make
connections to the results computed using Feynman rules,
thus we also calculate the same amplitudes using the
Lagrangian in Ref. [59] and the polarization functions
derived in Sec. III A, just to match the normalization of the
coupling constants.
Let’s start from the WWW on-shell amplitudes and

assume that all the vector bosons are massive. A complete
independent basis including seven different terms has been
derived in Ref. [61] and the requirement of tree-level
unitarity for the 3-point on-shell amplitude M3 ≲OðEÞ
has singled out the following unique structure,

h12ih23i½31�
m3m1

þ h23ih31i½12�
m1m2

þ h31ih12i½23�
m2m3

; ð54Þ

or simply

h12ih23i½31�
m3m1

þ c:p:t:; ð55Þ

where c.p.t. means cyclic permutation terms. The above is
clearly totally antisymmetric in exchanging the external

TABLE III. The vertices in the Lagrangian and the corresponding on-shell massive amplitudes. Here c.p.t. means
cyclic permutation terms. All the momenta are taking to be ingoing. The on-shell amplitudes are entirely fixed by tree
unitarity; the vertices are listed only to match the conventional normalization of the coupling constants. For on-shell
massive amplitudes involving fermions, our convention is ð1W=ϕ; 2ψ ; 3ψ̄ Þ, and we suppress the fermion internal
quantum number i2 and i3. The last column shows the corresponding helicity amplitudes in the high-energy limit.

Vertices On-shell amplitude High-energy limit

−Cabc∂νWa
μWbμWcν ffiffiffi

2
p

iCa1a2a3

�
h12ih23i½31�

m1m3
þ c:p:t:

�
ð1þ12−13þ1Þ∶ ffiffiffi

2
p

iCa1a2a3
½13�3

½12�½23�
ð1þ12030Þ∶i ffiffiffi

2
p

Ca1a2a3
ðm2

1
−m2

2
−m2

3
Þ

2m2m3

½12�½13�
½23�

−ψ̄R=WaRaψR − ψ̄L=WaLaψL
ffiffi
2

p
m1

ðRa1 ½12�h13iþLa1h12i½13�Þ ð1þ12þ1
23−

1
2Þ∶Ra1 ½12�2

½23�
ð1−12−1

23þ1
2Þ∶La1 h12i2

h23i
ð102þ1

23þ1
2Þ∶ − m2La1−m3Ra1

m1
½23�

FabiWaμWbμϕi 2Fa1a2i3
½12�h21i
m1m2

ð1þ12030Þ∶ − ffiffiffi
2

p Fa1a2 i3
m2

½12�½13�
½23�

−GaijWaμ∂
μϕiϕj

iffiffi
2

p
m1

Ga1i2i3h1jp2 − p3j1� ð1þ12030Þ∶ − i
ffiffiffi
2

p
Ga1i2i3

½12�½13�
½23�

− 1
6
Pijkϕiϕjϕk −Pi1i2i3 ð102030Þ∶ − Pi1i2i3

−ðψ̄LHiψR þ ψ̄RH
†
iψLÞϕi Hi1 ½23� þH†

i1
h23i ð102þ1

23þ1
2Þ∶Hi1 ½23�

ð102−1
23−

1
2Þ∶H†

i1
h23i

5Notice that we are using the sans serif fi; j; � � �g to denote the
fermionic internal quantum numbers, to differentiate from the
scalar state labels fi; j; � � �g.

GAUGE INVARIANCE FROM ON-SHELL MASSIVE AMPLITUDES … PHYS. REV. D 106, 076003 (2022)

076003-9



particle labels. Therefore, the uniqueness of the on-shell
amplitude and its permutation symmetry tells us that after
adding the vector indices, the coupling constantCa1a2a3 will
be completely antisymmetric.
This can also be seen by plugging the polarization

vectors obtained in the previous section into the interaction
in the Lagrangian,

−Cabc∂νWa
μWbμWcν; ð56Þ

and the resulting amplitude reads6

M3ð1a1 ;2a2 ;3a3Þ ¼
iffiffiffi
2

p
�
Ca1a2a3

h3jp1j3�½12�h21i
m1m2m3

þ p:t:

�
:

ð58Þ

Here p.t. means permutation terms. We first realize that the
amplitude vanishes for the symmetric part of indices
ða1; a2Þ, i.e.,

Cfa1a2ga3 ¼ 0: ð59Þ

Secondly, by using Schouten identity

j3�½12� þ j1�½23� þ j2�½31� ¼ 0; ð60Þ

and Dirac equations

pjp� ¼ mjpi; hpjp ¼ −m½pj; ð61Þ

we can bring Eq. (58) in the form of Eq. (54), and the
requirement of proportionality to Eq. (54) leads to

C½ab�c ¼ C½bc�a ¼ C½ca�b: ð62Þ

Combining this with Eq. (59) again tells us that Ca1a2a3 is
fully antisymmetric. This leads to the following normali-
zation of the on-shell WWW massive amplitude,

M3ð1a1 ; 2a2 ; 3a3Þ ¼
ffiffiffi
2

p
iCa1a2a3

�h12ih23i½31�
m1m3

þ c:p:t:

�
:

ð63Þ

The similar consideration of the other marginal operator
that one may write down in the Lagrangian,

−Aabcεμνρσ∂
μWν

aW
ρ
bW

σ
c; Aabc ¼ −Aacb; ð64Þ

enforces the following relations,

Aa1a2a3 ¼ Aa2a3a1 ¼ Aa3a1a2 ; ð65Þ

and as a result, the on-shell amplitude vanishes. Actually,
one can verify that in this case, the Lagrangian is a total
derivative. We arrive at Eq. (63) as our only three-vector-
boson on shell massive amplitude. We will further impose
that the coupling constant Cabc to be real, as required by the
optical theorem, which demands the imaginary part of the
forward scattering amplitude to be proportional to the cross
section to every possible final state,

ImMα;α ∼
X
β

σðα → βÞ: ð66Þ

Since the cross section usually starts at the 3-point coupling
to the fourth order for 2 → 2 scattering, this relation
immediately tells that the imaginary part of the of four-
particle amplitudes should start at loop level. By studying all
possible scattering processes, it is possible to show that all
coupling constants in the three-particle amplitudes should
be the case to make the Lagrangian real. In the following
discussion, we impose these constraints on all the couplings.
We can take the high-energy limit by specifying the spin

components along the three-momentum direction and the
resulting polarization amplitudes are functions of ðλ; λ̃; η; η̃Þ
in Eq. (30). Let’s take the helicity configuration (1þ; 2−; 3þ)
as an example,

M3ð1þ; 2−; 3þÞ ¼ M3ð11
2
;1
2; 2−

1
2
;−1

2; 3
1
2
;1
2Þ

¼
ffiffiffi
2

p
iCa1a2a3

�hη12ih2η3i½31�
m1m3

�
þOðmÞ:

ð67Þ

By using the fact that for the total-plus 3-point on-shell
massless amplitudes, the three angular spinors are propor-
tional to each other, we have

½23�
½31� ¼

h1η1i
h2η1i

;
½31�
½12� ¼

h2η3i
h3η3i

; ð68Þ

and it is easy to see that the helicity amplitude becomes

M3ð1þ; 2−; 3þÞ ¼
ffiffiffi
2

p
iCa1a2a3

½13�3
½12�½23� : ð69Þ

Alternatively, we can start from the above on-shell massless
amplitude and invert the procedure to IR deform it to the
massive case (see Appendix D for detail and see also
Ref. [63]). In addition to the above three massless vector
amplitude, the SU(2) covariant massive amplitude in
Eq. (63) naturally consists of massless vector-scalar-scalar
amplitude. After an involved but straightforward calculation,

6Our convention for the amplitudes is the same as Peskin and
Schroeder [82],

Sβ;α ¼ δβ;α þ ið2πÞ4δð4Þðpα − pβÞMβ;α: ð57Þ

but with all the momenta ingoing.
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we can show that

M3ð1þ;20;30Þ¼ i
ffiffiffi
2

p
Ca1a2a3

ðm2
1−m2

2−m2
3Þ

2m2m3

½12�½13�
½23� : ð70Þ

Next, we consider the Wψψ̄ amplitude. The complete
basis for such an amplitude is given by the following four
terms [62],

h12ih13i; ½12�½13�; h12i½13�; h13i½12�; ð71Þ

and it is known that the former two scale as OðE2Þ in the
high-energy limit [61], thus should be dropped when
imposing tree unitarity; the latter two, on the other hand,
scale as OðEÞ and should remain. Now we can match the
basis to the following interaction terms in the Lagrangian

−ψ̄R=WaRaψR − ψ̄L=WaLaψL; ð72Þ

where La, Ra are the Hermitian matrices in the space of
fermion internal quantum numbers with labels fi; j; � � �g,
which we usually suppress, i.e., ψ̄Laψ ≡ ψ̄ iLa

ijψ j, etc. After
the substitution of the following polarization functions,

uRðpÞ ¼ ð0; jp�ÞT; uLðpÞ → ðjpi; 0ÞT;
v̄LðpÞ → ð0; ½pjÞ; v̄RðpÞ → ðhpj; 0Þ; ð73Þ

as shown in Table II, we obtain the on-shell massive
amplitude as

M3ð1a1 ; 2ψ ; 3ψ̄Þ≡M3ð1a1 ; 2; 3̄Þ

¼
ffiffiffi
2

p

m1

ðRa1 ½12�h13i þ La1h12i½13�Þ: ð74Þ

Note that the two terms are related by parity transformation7

λIα → iλ̃−I _α; λ̃I _α → iλ−Iα : ð75Þ

Alternatively, one can obtain the same amplitudes by
starting from the UV massless amplitudes,

M3;Rð1þ1; 2þ1
2; 3−

1
2Þ ¼ ½12�2

½23� ;

M3;Lð1−1; 2−1
2; 3þ1

2Þ ¼ h12i2
h23i ; ð76Þ

and following the procedure outlined in Appendix D to IR
deform them to the massive on-shell amplitudes. It also can
be shown that the IR-unified on-shell massive amplitude in
Eq. (74) contains the following UV fermion-fermion-scalar
massless amplitude,

M3ð10; 2þ1
2; 3þ1

2Þ ¼ −
m2La1 −m3Ra1

m1

½23�: ð77Þ

Note that the coupling factor is proportional to mψ=mW ,
which is indeed in the form that one would expect from the
Higgs mechanism. This is consistent with the understanding
that Higgs mechanism can be thought as IR unification of
different massless UV amplitudes [56].
Now we turn to the interaction terms involved scalars.

The WWϕ amplitude has the following 3-term basis,

h12i2; ½12�2; h12i½21�; ð78Þ

where only the last term satisfies tree unitarity, and it is
symmetric in exchanging the two vector labels, thus the
corresponding (real) coupling constant Fa1a2i3 needs to be
symmetric in fa1; a2g. The Wϕϕ amplitude has a 1-term
basis

h1jp2 − p3j1�; ð79Þ

which already satisfies tree unitarity; it is antisymmetric in
the two external scalar labels, thus the associated (real)
coupling constant Ga1i2i3 needs to be antisymmetric in
fi2; i3g. The ϕϕϕ amplitude has to be a (real) constant
Pi1i2i3 , which satisfies tree unitarity and needs to be totally
symmetric.
On the other hand, the ϕψψ̄ amplitude has the following

basis

h23i; ½23�; ð80Þ

where both terms satisfy tree unitarity. We can write down
the following amplitude,

M3ð1i1 ; 2; 3̄Þ ¼ Hi1 ½23� þH†
i1
h23i; ð81Þ

where we have suppressed the indices fi2; i3g for the
fermionic internal quantum numbers of fψ i2 ; ψ̄ i3g, i.e.,
Hi1 ≡ ðHi1Þi2 i3 etc. The coupling constants in front of
h23i and ½23� are related by Hermitian conjugation because
of the aforementioned optical theorem of Eq. (66). The
relevant three-particle operators in the Lagrangian is as
follows:

7Similar to the massless spinor-helicity variables, one can
check this explicitly by using the formulas in Eq. (C16) and
perform the parity transformation: θ → π − θ;ϕ → ϕþ π. We
can also show that under this transformation, pα _α ¼ λIαλ̃I _α
changes to p _αα ¼ λIαλ̃ _αI which is consistent with the parity
transformation on the momentum ðp0; p⃗Þ → ðp0;−p⃗Þ. The
change of sign of the little group index I is also consistent with
interpretation that it corresponds to the spin eigenstates along the
momentum direction under our choice of standard Lorentz
transformation.
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FabiWaμWbμϕi − GaijWaμ∂
μϕiϕj −

1

3!
Pijkϕiϕjϕk

− ðψ̄LHiψR þ ψ̄RH
†
iψLÞϕi: ð82Þ

It is straightforward to derive the on-shell massive ampli-
tudes from the above, which fixed the normalization of the
coupling constants as given by Table III.

IV. FOUR-PARTICLE AMPLITUDES
AND THE TREE-LEVEL UNITARITY

Now we construct 4-point amplitudes from unitarity and
locality. Locality tells us that when one internal momentum
is going on-shell, the amplitudes have simple poles in terms
of Mandelstam variables, and unitarity requires that the
residue is the product of lower-point amplitudes. To be
more explicit, one can write the 4-point amplitudes as

M4 ¼ M4;f þM4;c; ð83Þ

where M4;f contains the nonlocal parts of different
factorization channels, while M4;c are the possible addi-
tional contact terms. The latter is a linear combination of
all local terms given the particle contents, expressed in

the stripped-contact-term (SCT) basis fMðiÞ
4;cg given by

Ref. [62],

M4;c ¼
X
i

ciM
ðiÞ
4;c; ð84Þ

where ci are polynomials of Mandelstam variables.
Apparently, the slowest-energy growing behavior for these
terms are achieved when ci are constants. On the other
hand, the factorizable part M4;f is fixed by unitarity,

M4;f ¼ −
X
I

X4
i¼2

1

s21i −m2
I
M

fI1;I2;…;I2sI g
3;iL

ϵI1J1

� � � ϵI2sI J2sI M
fJ1;J2;…;J2sI g
3;iR

; ð85Þ

where sij ≡ ðpi þ pjÞ2, and we sum over all possible states
I of mass mI and spin sI as well as all possible
factorization channels. Here again, we take all the momenta
as ingoing, which means that in the real momentum limit,
some of the momenta have negative energy. We have the
following analytical continuation,

λIð−pÞ ¼ −λIðpÞ; λ̃Ið−pÞ ¼ λ̃IðpÞ: ð86Þ

In the above convention, the 3-point amplitudes M3;iL has
momenta p1, pi and −p1 − pi, while M3;iR has momenta
fpjg with j ∈ f1; 2; 3; 4gnf1; ig and p1 þ pi. Notice that
in Sec. III, on-shell massive amplitudes are considered
equivalent if they are related by equations of, but different

forms of 3-point on-shell amplitudes certainly lead to
different formulas for the local terms with different coef-
ficients ci.
In order to obtain the coefficient ci and the coupling

relations, we will take the high-energy limit of the
amplitude M4 at fixed, nonzero angles and impose the
tree-level unitary criterion, which requires that the energy
growing behavior of the four-particle amplitude should be
at most a constant. As discussed in detail in Appendix C,
we can expand the massive spinors for the external states in
the little group space as

λIα ¼ λαζ
−I þ ηαζ

þI; λ̃I_α ¼ λ̃ _αζ
þI þ η̃ _αζ

−I; ð87Þ

and the helicity amplitudes for particle with spin S in a
particular frame can be obtained by extracting the coef-
ficients of ððζþÞSþhðζ−ÞS−hÞI1���I2s . The resulting helicity
amplitudes are functions of ðλi; λ̃i; ηi; η̃iÞ with explicit
formulas as follows:

λi;α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei þpi

p �−s�i
ci

�
; λ̃i; _α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei þpi

p �−si
ci

�
;

ηi;α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei −pi

p �
c�i
si

�
; η̃i; _α ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei −pi

p �
ci
s�i

�
; ð88Þ

where Ei and pi are the energy and the magnitude of
3-momentum for each external particle i, and ci, si are
defined as (see the Appendix B for the discussion of the
phase convention)

ci ¼ cos
θi
2
e

i
2
ϕi ; si ¼ sin

θi
2
e

i
2
ϕi : ð89Þ

We have assumed that the energy of the particle is positive
and for negative energy, the spinors are obtained by the
analytic continuation in Eq. (86) and in all cases,
Ei ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2
i

p
. To simplify the derivation, we will

work in the center-of-mass frame, which is obtained by
setting the angles as follows:

θ1 ¼ 0; θ2 ¼ π; θ3 ¼ θ; θ4 ¼ π − θ;

ϕ1 ¼ ϕ2 ¼ 0; ϕ3 ¼ ϕ; ϕ4 ¼ ϕþ π; ð90Þ

The magnitude of the 3-momenta pi can be obtained using
momentum conservation and on-shell condition as

p1 ¼ p2 ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

m2
1 þm2

2

4E2

�
2

−
m2

1m
2
2

E4

s
;

p3 ¼ p4 ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

m2
3 þm2

4

4E2

�
2

−
m2

3m
2
4

E4

s
; ð91Þ
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where 2E ¼ ffiffiffiffiffiffi
s12

p
is the total center-of-mass energy. All the

helicity amplitudes will be functions of energy E and
scattering angles ðθ;ϕÞ. We will take the fixed-angle high-
energy limit and extract the tree-level unitary conditions by
setting to zero the coefficients of linearly independent
functions of ðθ;ϕÞ with energy growing behavior faster
than OðE0Þ. Table 1 in Ref. [62] shows the SCT basis for
the contact terms, organized by helicity components in
which these contact terms have the fastest energy growing
behavior. We will see that only the contact terms corre-
sponding to dimension-4 operators in an EFT Lagrangian
will survive the tree unitarity constraints.

A. Constraining the 4-point amplitudes

Let us enumerate all the possible 4-point amplitudes.

1. WWWW

We start with the WWWW amplitude. As discussed
above, the factorizable part of the amplitude M4;f can be
obtained by gluing the 3-point on-shell massive amplitudes
together and adding back the simple pole structures
1=ðsij −m2

IÞ. By naive energy scaling counting, the energy
growing behavior of M4;f is at most OðE4Þ, while in
contrast the contact terms of helicity components (þ000),
(þþþ0), and (þþ −0) are at least OðE5Þ, thus the
coefficients ci of these contact terms must vanish. One
example of such contact terms is ½12�½34�h241�h34i, which
is in the (þ000) category. The OðE4Þ energy growing
behavior ofM4;f arises only from (0000) helicity category.
This eliminates the possibility of adding contact terms for
helicity configurations (þþ 00), (þ − 00), (þþþþ), and

(þþþ−), as they are at least OðE4Þ. On the other hand,
we need (0000) contact terms in M4;c, which can be
parametrized as

½12�½34�ðcW4;1h12ih34i þ cW4;2h13ih24iÞ
þ ½13�½24�ðcW4;3h12ih34i þ cW4;4h13ih24iÞ: ð92Þ

The requirement that M4 ¼ M4;f þM4;c satisfies tree
unitarity then uniquely fix the coefficients cW4;i. This
means that we have completely determined the form of
M4;c. [The only helicity configuration for the contact terms
that we have not discussed is (þþþ−), where contact
terms in the category simply cannot exist.] The amplitude is
determined to be

M4ð1a1 ; 2a2 ; 3a3 ; 4a4Þ
¼ M4;sð1a1 ; 2a2 ; 3a3 ; 4a4Þ þM4;sð2a2 ; 3a3 ; 1a1 ; 4a4Þ
þM4;sð3a3 ; 1a1 ; 2a2 ; 4a4Þ; ð93Þ

where the s-channel component is

M4;sð1a1 ; 2a2 ; 3a3 ; 4a4Þ

¼ −
X
b

Ca1a2bCa3a4bNW4;b

ma1ma2ma3ma4ðs12 −m2
bÞ

−
X
i

4Fa1a2iFa3a4ih12ih34i½12�½34�
ma1ma2ma3ma4ðs12 −m2

i Þ
; ð94Þ

and

NW4;b ¼ ðh343i�h4ð2 − 1Þ4� þ h434�h3ð1 − 2Þ3�Þh12i½12�
þ ðh212�h1ð3 − 4Þ1� þ h121�h2ð4 − 3Þ2�Þh34i½34�
þ 2ðh212�ðh343�h14i½14� − h434�h13i½13�Þ þ h121�ðh434�h23i½23� − h343�h24i½24�ÞÞ

þ h12ih34i½12�½34�
�ðm2

a1 −m2
a2Þðm2

a3 −m2
a4Þ

m2
b

þ s12 þ 2s13−m2
a1 −m2

a2 −m2
a3 −m2

a4

�
þ ðh13ih24i½13�½24� − h14ih23i½14�½23�Þðs12 −m2

bÞ: ð95Þ

The t- and u-channels are given by M4;sð2a2 ; 3a3 ; 1a1 ; 4a4Þ
and M4;sð3a3 ; 1a1 ; 2a2 ; 4a4Þ, respectively. The terms on the
right-hand side of Eq. (93), as well as similar expressions
below, are organized according to the internal states of the
factorization channels, as indicated by the particle label that
is summed, or the masses in the propagators. For example,
the first term on the right-hand side of Eq. (93) has a sum of
vector index b, and together with the mass m2

b indicate that
this is the contribution of a vector boson exchange. Notice

that we have absorbed the contact terms into the different
factorization channels in a symmetric way.
Next, the OðE3Þ terms need to vanish as well. Here it is

convenient to calculate in the center of mass frame. We find
that OðE3Þ terms only exist for (þ000).This leads to the
following constraint on the coefficient Cabc of the WWW
amplitudes,

Ca1a2bCa3a4b þ Ca1a3bCa4a2b þ Ca1a4bCa2a3b ¼ 0; ð96Þ
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which has the form of the Jacobi identity. Therefore, we can
identify the totally antisymmetric Cabc as the structure
constants for some compact Lie group G.
We then proceed to consider the OðE2Þ terms, which

only exist for (0000). This leads to the following constraint
for Cabc as well as the coefficients of WWϕ amplitudes
Fabi,

− 4ðFa1a3iFa2a4i − Fa1a4iFa2a3iÞ
¼
X
b

fðCa1a3bCa2a4b − Ca1a4bCa2a3bÞ

× ð3m2
b −m2

a1 −m2
a2 −m2

a3 −m2
a4Þ

þ 1

m2
b

½Ca1a3bCa2a4bðm2
a1 −m2

a3Þðm2
a2 −m2

a4Þ

− Ca1a4bCa2a3bðm2
a1 −m2

a4Þðm2
a2 −m2

a3Þ�g: ð97Þ

This relation agrees with Eq. (7) in Ref. [58]. One can
check explicitly that as long as the constraints in Eqs. (96)
and (97) are satisfied, the amplitude in Eq. (93) behaves as
OðE0Þ, we have extracted all information given by tree
unitarity.

2. WWWϕ

We next consider theWWWϕ amplitude. In this case, the
factorizable partM4;f at high-energy limit grows at most at
OðE2Þ, but the energy-growing behavior of the contact
terms M4;c, if nonvanishing, are at least of OðE3Þ.
Therefore, we don’t need the contact terms in this case,
and the amplitude is fully determined by the factorizable
part M4;f ,

M4ð1a1 ; 2a2 ; 3a3 ; 4iÞ
¼ M4;sð1a1 ; 2a2 ; 3a3 ; 4iÞ þM4;sð2a2 ; 3a3 ; 1a1 ; 4iÞ
þM4;sð3a3 ; 1a1 ; 2a2 ; 4iÞ; ð98Þ

where the s-channel component is given by

M4;sð1a1 ;2a2 ;3a3 ;4iÞ ¼ −i
ffiffiffi
2

p �X
b

Ca1a2bFba3iNW3ϕ;b

ma1ma2ma3ðs12 −m2
bÞ

þ
X
j

2Fa1a2jGa3jih343�h12i½12�
ma1ma2ma3ðs12 −m2

jÞ
�
;

ð99Þ

with

NW3ϕ;b¼h3ð1−2Þ3�h12i½12�þ2ðh121�h23i½23�

−h212�h13i½13�Þþm2
a1 −m2

a2

m2
b

h343�h12i½12�: ð100Þ

Now, tree unitarity requires that the OðE2Þ terms in
Eq. (98) vanish, which turn out to only exist for the (0000)
component. This leads to the following constraints on Cabc,
Fabi as well as the coefficient for the Wϕϕ amplitude Gaij,

X
b

1

2m2
b

½Ca2a3bðm2
b þm2

a2 −m2
a3Þ

× Fba1i − Ca2a1bðm2
b þm2

a2 −m2
a1ÞFaIa3i�

¼ Fa2a3jGa1ij − Fa1a2jGa3ij − Ca1a3bFba2i: ð101Þ

One can check that upon this constraint, the amplitude in
Eq. (98) is OðE0Þ.

3. WWϕϕ

We then turn to the WWϕϕ amplitude. In the high-
energy limit, the factorizable part M4;f is of OðE2Þ, while
contact terms for helicity components (þ000) and (þ − 00)
start at OðE3Þ and OðE4Þ, respectively, thus they are
eliminated by tree unitarity. The contact terms for
(þþ 00) start at OðE2Þ, but terms in M4;f that are in this
helicity category are only OðE0Þ, thus contact terms for
(þþ 00) cannot exist either. On the other hand, for the
(0000) component M4;f is OðE2Þ, while the contact terms
of OðE2Þ can be parametrized as

cW2ϕ2h12i½12�: ð102Þ

The requirement that the OðE2Þ contributions of the full
amplitude vanish completely determines the coefficient
cW2ϕ2 , so that the total amplitude is calculated to be
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M4ð1a1 ; 2a2 ; 3i3 ; 4i4Þ ¼
X
b

�
Ca1a2bGbi3i4NW2ϕ2;b

ma1ma2ðs12 −m2
bÞ

þ 2Fba1i3Fba2i4ðh131�h242� − 2m2
bh12i½12�Þ

ma1ma2m
2
bðs13 −m2

bÞ

þ 2Fba1i4Fba2i3ðh141�h232� − ðs23 þm2
bÞh12i½12�Þ

ma1ma2m
2
bðs23 −m2

bÞ
�
þ
X
j

�
−
2Fa1a2jPji3i4h12i½12�
ma1ma2ðs12 −m2

jÞ

þ 2Ga1ji3Ga2ji4h131�h242�
ma1ma2ðs13 −m2

jÞ
þ 2Ga1ji4Ga2ji3ðh141�h232� − ðs23 −m2

jÞh12i½12�Þ
ma1ma2ðs23 −m2

jÞ
�
; ð103Þ

with

NW2ϕ2;b ¼
�ðm2

a1 −m2
a2Þðm2

i3
−m2

i4
Þ

m2
b

−m2
b þm2

a1 þm2
a2 þm2

i3
þm2

i4
− 2s23

�
h12i½12�

þ 2ðh131�h212� − h121�h232�Þ: ð104Þ

However, fixing cW2ϕ2 is necessary but not sufficient to
make the OðE2Þ terms vanish in the above; we need an
additional constraint on the coupling constants Cabc, Fabi,
and Gaij,

−
X
b

1

m2
b

ðFa1bi3Fa2bi4 − Fba1i4Fba2i3Þ

¼ Ga1i3jGa2i4j −Ga1i4jGa2i3j þ Ca1a2bGbi3i4 ; ð105Þ

which agrees with Eq. (8) in Ref. [58]. One can check that
the constraint above will make the amplitude in Eq. (103)
satisfy tree unitarity. Notice that no constraint has been put

on the coefficient Pijk for the ϕ3 amplitude. Actually, in
order to obtain nontrivial constraint on the pure-scalar
interactions, one need go to higher-point amplitudes [86,87].

4. WψWψ̄

We now turn to the 4-point amplitudes involving fer-
mions. First, we consider the case of WψWψ̄ . In the high-
energy limit at fixed, nonzero angle, the factorizable part
M4;f is growing at most at OðE2Þ while a nonvanishing
M4;c would be at least OðE3Þ. Therefore, the possible
contact terms are forbidden by tree unitarity, and the
amplitude is fully determined by the factorizable part,

M4ð1a1 ; 2i2 ; 3a3 ; 4̄i4Þ ¼
X
b

iCa1a3bNW2ψ2;b

ma1ma3ðs13 −m2
bÞ

þ
X
i

2Fa1a3ih13i½13�ððHiÞi4 i2 ½24� þ ðH†
i Þi4 i2h24iÞ

ma1ma3ðs13 −m2
jÞ

−
2

ma1ma3

X
j

�
1

ðs23 −m2
j Þ
½La1

i4 j
La3
ji2
h23i½14�ð½13�ma1 − h143�Þ þ Ra1

i4 j
Ra3
ji2
h14i½23�ð½13�ma3 þ h321�Þ

þmjðLa1
i4 j
Ra3
ji2
h13i½14�½23� þ Ra1

i4 j
La3
ji2
h14ih23i½13�Þ� þ 1 ↔ 3

�
; ð106Þ

with the numerator factor as follows:

NW2ψ2;b ¼ Lb
i4 i2

�
h2ð1− 3Þ4�h13i½13� þ 2ðh313�h12i½14� þ h131�h23i½34�Þþm2

a1 −m2
a3

m2
b

h13i½13�ðmi4h24i−mi2 ½24�Þ
�

þRb
i4 i2
ð4ð1− 3Þ2�h13i½13�− 2ðh313�h14i½12� þ h131�h34i½23�Þþm2

a1 −m2
a3

m2
b

h13i½13�ðmi4 ½24�−mi2h24iÞÞ: ð107Þ

The OðE2Þ terms only exist for (0 − 0þ) and (0þ 0−), and for them to vanish we arrive at the following constraints,

iCa1a3bL
b ¼ ½La1 ; La3 �; iCa1a3bR

b ¼ ½Ra1 ; Ra3 �: ð108Þ

As Cabc has been identified in Eq. (96) as structure constants in some Lie group G, the above commutation relations
indicates that La and Ra are generators in some representations of G.
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Upon identifying the commutation relations, the amplitude in Eq. (106) behaves as OðE0Þ for all helicity components
except for (0þ 0þ), which are OðEÞ. Tree unitarity then imposes another constraint

2Fa1a3iðHiÞi4 i2 −mi2fLa1 ; La3gi4 i2 −mi4fRa1 ; Ra3gi4 i2 þ
X
j

2mjðLa1
i4 j
Ra3
ji2
þ La3

i4 j
Ra1
ji2
Þ

¼
X
b

iCa1a3b
ðm2

a1 −m2
a3Þ

m2
b

ðmi2L
b
i4 i2

−mi4R
b
i4 i2
Þ; ð109Þ

which ensures that the full amplitude is OðE0Þ.

5. Wψϕψ̄

Next, we study theWψϕψ̄ amplitude. Similar to the above case, the full amplitude is fully determined by the factorizable
partM4;f , which in the high-energy limit is growing at most atOðEÞ. On the other hand,M4;c is at leastOðE2Þ, thus set to 0
by tree unitarity. The amplitude is listed as follows:

M4ð1a; 2i2 ; 3i; 4̄i4Þ ¼
X
j

ffiffiffi
2

p

ma

 
1

s12 −m2
j

h
h12i

�
mj½14�ðHiÞi4 j þ ðmi4 ½14� þ h431�ÞðH†

i Þi4 j
�
La
ji2

þ ½12�
�
mjh14iðH†

i Þi4 j þ ðma1 ½14� − h124�ÞðHiÞi4 j
�
Ra
ji2

i
þ 1

s23 −m2
j

h
La
i4 j
½14�
�
mjh12iðH†

i Þji2 þ ðma1 ½12� − h142�ÞðHiÞi4 j
�

þ Ra
i4 j
h14i

�
mj½12�ðHiÞji2 þ ðmi4 ½12� þ h231�ÞðH†

i Þji2
�i!

þ
X
b

ffiffiffi
2

p
Fbai

mam2
bðs13 −m2

bÞ
½Lb

i4 i2
ð2m2

bh12i½14� þ h131�ðmi2 ½24� −mi4h24iÞÞ

þ Rb
i4 i2
ð2m2

bh14i½12� þ h131�ðmi2h24i −mi4 ½24�ÞÞ�

þ
X
j

ffiffiffi
2

p
iGajih131�ððHjÞi4 i2 ½24� þ ðH†

jÞi4 i2h24iÞ
maðs13 −m2

jÞ
: ð110Þ

The OðEÞ contributions come from the (0þ 0þ) helicity components, and for them to vanish we need to impose the
following relation, X

b

1

m2
b

Fabiðmi4R
b
i4 i2

−mi2L
b
i4 i2
Þ ¼ iGaijðHjÞi4 i2 − ðLaHiÞi4 i2 þ ðHiRaÞi4 i2 ; ð111Þ

which ensures that the full amplitude is tree unitary.

6. Amplitudes for other processes

For all of the other four-particle processes,M4;f is alreadyOðE0Þ, thus the only possible contact term is the constant term
in the ϕϕϕϕ amplitude. There are no nontrivial relations obtained in these processes, but for completeness, we list them
below. First, the amplitude for Wϕϕϕ is given by

M4ð1a; 2i2 ; 3i3 ; 4i4Þ ¼ M4;sð1a; 2i2 ; 3i3 ; 4i4Þ þM4;sð1a; 4i4 ; 2i2 ; 3i3Þ þM4;sð1a; 3i3 ; 4i4 ; 2i2Þ; ð112Þ

with s-channel contribution as

M4;sð1a; 2i2 ; 3i3 ; 4i4Þ ¼ i
ffiffiffi
2

p �X
b

Fbai2Gbi3i4ð2h131�m2
b þ h121�ðm2

b þmi2
3
−m2

i4
ÞÞ

m2
bmaðs12 −m2

bÞ
−
X
j

Gaji2Pji3i4h121�
maðs12 −m2

jÞ
�
: ð113Þ
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The ϕϕϕϕ amplitude reads

M4ð1i1 ; 2i2 ; 3i3 ; 4i4Þ ¼ M4;sð1i1 ; 2i2 ; 3i3 ; 4i4Þ þM4;sð2i2 ; 3i3 ; 1i1 ; 4i4Þ þM4;sð3i3 ; 1i1 ; 2i2 ; 4i4Þ − Ki1i2i3i4 ; ð114Þ

where the s-channel contribution is given by

M4;sð1i1 ; 2i2 ; 3i3 ; 4i4Þ ¼ −
X
a

Gai1i2Gai3i4 ½m2
aðs13 þm2

a −m2
i1
−m2

i2
−m2

i3
−m2

i4
Þ þ ðm2

i1
−m2

i2
Þðm2

i3
−m2

i4
Þ�

m2
bðs12 −m2

aÞ

−
X
j

Pi1i2jPi3i4j

ðs12 −m2
jÞ
; ð115Þ

and Ki1i2i3i4 is the constant contact term, which needs to be totally symmetric because of Bose symmetry.
Finally, we have the ϕψϕψ̄ amplitude as

M4ð1i1 ;2i2 ;3i3 ; 4̄i4Þ¼
X
j

�
1

s12−m2
j

ððHi3Þi4 jðH†
i1
Þji2ðmi2 ½24�−h214�ÞþðH†

i3
Þi4 jðHi1Þji2ðmi4 ½24�þh432�Þ

×ðHi3Þi4 jðHi1Þji2mi2 ½24�þðH†
i3
Þi4 jðH†

i1
Þji2ðmi2h24iÞþ1↔3

	

−
X
a

iGai1i3

m2
aðs13−m2

aÞ
½La

i4 i2
ð2m2

ah214�−ðm2
aþm2

i1
−m2

i3
Þðmi2 ½24�−mi4h24iÞÞ

þRa
i4 i2
ð2m2

ah412�−ðm2
aþm2

i1
−m2

i3
Þðmi2h24i−mi4 ½24�ÞÞ�þ

X
j

Pji1i3ððHjÞi4 i2 ½24�þðH†
jÞi4 i2h24iÞ

ðs13−m2
jÞ

; ð116Þ

and the ψψ̄ψψ̄ amplitude reads

M4ð1i1 ; 2̄i2 ; 3i3 ; 4̄i4Þ ¼
�X

a

1

m2
aðs12 −m2

aÞ
½ðLa

i4 i3
ðmi3 ½34� −mi4h34iÞ þ Ra

i4 i3
ðmi3h34i −mi4 ½34�ÞÞ

× ðLa
i2 i1
ðmi1 ½12� −mi2h12iÞ þ Ra

i2 i1
ðmi1h12i −mi2 ½12�ÞÞ

−2m2
aðLa

i4 i3
Ra
i2 i1
h23i½14� þ La

i2 i1
Ra
i4 i3
h14i½23� þ La

i2 i1
La
i4 i3
h13i½24� þ Ra

i2 i1
Ra
i4 i3
h24i½13�Þ�

−
X
i

ððHiÞi2 i1 ½12� þ ðH†
i Þi2 i1h12iÞððHiÞi4 i3 ½34� þ ðH†

i Þi4 i3h34iÞ
s12 −m2

i

�
þ 1 ↔ 3: ð117Þ

B. Interpretation of the constraints

We see that tree unitarity completely fixes the 4-point
amplitudes in terms of 3-point amplitudes, with the
exception of the additional parameter Kijkl as the constant
scalar contact term. Moreover, tree unitarity puts additional
constraints to all parameters of 3-point amplitudes except
for the ϕϕϕ interaction Pijk. We obtain the relations in
Eqs. (96), (97), (101), (105), (108), (109), and (111). It is
easy to see that Eqs. (96) and (108) indicate that the totally
antisymmetric coupling constants Cabc are structure con-
stants of some Lie group G, and the Wψψ̄ coupling matrix
La and Ra are generators of some representations of the
same Lie group. The other relations put constraints on
WWϕ couplings Fabi, Wϕϕ couplings Gaij and the ϕψψ̄
couplingsHi. To see the meaning of these relations clearly,
we define the following coupling matrices,

Ta
ij ¼ iGaij; Ta

ib ¼ −Ta
bi ¼

i
mb

Fabi;

Ta
bc ¼ iCabc

m2
a −m2

b −m2
c

2mbmc
: ð118Þ

Then Eqs. (97), (101), (105) become

iCabeTe
cd ¼ Ta

ck̃
Tb
k̃d
− Tb

ck̃
Ta
k̃d
; ð119Þ

iCabdTd
ic ¼ Ta

ik̃
Tb
k̃c
− Tb

ik̃
Ta
k̃c
; ð120Þ

iCabcTc
ij ¼ Ta

ik̃
Tb
k̃j
− Tb

ik̃
Ta
k̃j
; ð121Þ

where the index k̃ runs over both the vector indices fag and
the scalar indices fig. We will see that this corresponds to

GAUGE INVARIANCE FROM ON-SHELL MASSIVE AMPLITUDES … PHYS. REV. D 106, 076003 (2022)

076003-17



all of the scalar states in the UV, including the longitudinal
components of the massive vector bosons. This motivates
us to group Ta

ij, T
a
ib, and Ta

bc together as an anti-symmetric
matrix Ta

ĩ j̃
, and the above is just

iCabcTc
ĩ j̃
¼ ½Ta; Tb�ĩ j̃: ð122Þ

In other words, the interactions between the vector and
scalar states together form a generator of the representation
of the Lie group G. If a generator a belongs to the Abelian
invariant subgroup of G, the structure constant Cabc
vanishes for all b, c and we can have additional Stü
ckelberg mass terms for the corresponding Abelian vector
bosons.
Similarly, for the fermion Yukawa interactions, one can

generalize Hi to Hĩ, by the following definition when ĩ is a
vector index a,

ðHaÞij ≡ i
ma

ðmjLa −miRaÞij: ð123Þ

After the extension, the relations in Eqs. (109) and (111)
then become

LaHb −HbRa −HiTa
ib −HcTa

cb ¼ 0; ð124Þ

LaHi −HiRa −HjTa
ji −HbTa

bi ¼ 0; ð125Þ

which can be combined into the following identity,

LaHĩ −HĩR
a −Hj̃T

a
j̃ ĩ
¼ 0: ð126Þ

This tells us that the coupling matrices ðHĩÞij are rank-3
invariant tensors of Lie group G, where the indices ĩ, i and j
transform in the representation associated with Ta, La, and
Ra, respectively. It means that the three-particle on-shell
amplitudes involving the fermions, physical scalar states
and the longitudinal components of the massive gauge
boson respect the symmetry generated by Lie group G.
One can understand the definitions in Eqs. (118) and

(123) at the Lagrangian level, which we discuss in
Appendix E; see also Refs. [88,89] where similar relations
are derived using current conservation. However, there is a
much more straightforward, on-shell way to arrive at these
definitions. In Table III we presented the 3-point UV
massless amplitudes contained in the high-energy limit
of the IR massive amplitudes. In particular, the same
massless vector-scalar-scalar helicity amplitude in the
UV can be generated by three different massive amplitudes
in the IR,

M3ð1þ;20;30Þ

¼

8>>><
>>>:
i
ffiffiffi
2

p
Ca1a2a3

ðm2
1
−m2

2
−m2

3
Þ

2m2m3

½12�½13�
½23� fromM3ð1a1 ;2a2 ;3a3Þ

−
ffiffiffi
2

p Fa1a2i3
m2

½12�½13�
½23� fromM3ð1a1 ;2a2 ;3i3Þ

−i
ffiffiffi
2

p
Ga1i2i3

½12�½13�
½23� fromM3ð1a1 ;2i2 ;3i3Þ

;

ð127Þ

i.e., the longitudinal modes of the vector states in the IR
amplitudes can be identified with scalar external states in the
UV. Now, in the spirit of the Goldstone boson equivalence
theorem [59,90,91], we want to unify all the scalar states in
the UV, including the physical scalar and the longitudinal
components of vector states in the IR, under a universal
coupling and a single group representation of the gauge
symmetry, then the redefinition in Eq. (118) is completely
natural. Note that the definition of Eq. (118) has also taken
into account the factor of −i between the amplitude of
longitudinal component of massive vector boson in the
high-energy limit and corresponding Goldstone boson
amplitude. Conversely, our ability to use the redefinition
in Eq. (118) to arrive at the unified commutation relation of
Eq. (122) suggests a spontaneously broken symmetry, as the
(longitudinal components of) vector states and scalar states
are clearly distinct in the IR, which are only unified in the
UV. Similarly, for 3-pt amplitudes involving fermions, the
massless scalar-fermion-fermion amplitude in the UV can
be obtained by two distinct massive amplitudes in the IR,

Mð10; 2þ1
2; 3þ1

2Þ

¼
�− m2La1−m3Ra1

m1
½23� from M3ð1a1 ; 2ψ ; 3ψ̄ Þ

Hi1 ½23� from M3ð1i1 ; 2ψ ; 3ψ̄Þ
: ð128Þ

Again, imposing the Goldstone boson equivalence in the
UV makes the definition in Eq. (123) completely natural,
which again manifests the existence of a spontaneously
broken symmetry that unifies the vector and scalar states.
One can also compare our general setting with the

special case of the electroweak theory in the SM. For
example, Ref. [69] studied the 4-point bosonic amplitudes
in the electroweak theory. As we are considering all
external states to be massive, to compare with their results
we need to decouple the photons in Ref. [69], i.e., setting
the coupling to photons e ¼ 0, and as a result the W and Z
boson have the same mass: mZ ¼ mW . Then relevant
coupling constants are identified as

−
1ffiffiffi
2

p Cabc → eW for WþW−Z;

−
2Fabi

mamb
→

� eZZH
mZ

for ZZh
eWWH
mW

for WþW−h
; Gaij → 0; ð129Þ
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and the tree-unitarity relations in Eq. (97) and Eq. (101)
becomes

e2WWH ¼ 2e2W; eWWHeZZH ¼ 2e2W; eWWH ¼ eZZH:

ð130Þ

Our results of the bosonic 4-point amplitudes as well as the
above relations agree with Ref. [69]. We see that the above
relations are the result of a spontaneously broken sym-
metry, where the vector and scalar states are unified under
the same group representation.
Another example is Ref. [61], which, in addition to the

electroweak sector in SM, also considered a single gen-
eration of fermions, and studied the 4-point ψcψZh
amplitude, which is a special case of our consideration
with the following values for the coupling constants,

2

ma
Fabi→−c00ZZh;

ffiffiffi
2

p

ma
Ra→

1

mZ
cLR0ψcψZ;

ffiffiffi
2

p

ma
La→

1

mZ
cRL0ψcψZ;

Gaij→0; Hi→−cRRψcψh; H†
i →−cLLψcψh: ð131Þ

Then Eq. (111) becomes

ðcLR0ψcψZ − cRL0ψcψZÞ
�
mψ

2mZ
c00ZZh − cRRψcψh

�
¼ 0: ð132Þ

Again, our amplitude in Eq. (110) agrees with Ref. [61]
upon the proper identification of the coupling constants,
and we agree on the above relation as well. We see clearly
that the above relation comes from the constraint that the
Yukawa coupling needs to be an invariant tensor, again a
consequence of a spontaneously broken symmetry.

V. CONCLUSION AND OUTLOOK

In this paper, we have considered the most general
3-point on-shell massive amplitudes with energy scaling at
most OðEÞ, involving an arbitrary, finite number of scalar,
spinor, and vector particle states defined as irreducible
representations of the little group. Starting from 3-point
on-shell amplitudes, we have calculated the full 4-point
amplitudes from unitary and locality, which lead to the
formulas to construct the 4-point on-shell amplitudes in
Eq. (83) and Eq. (85). The contact terms are further
determined by the requirement of tree unitarity, which
states that the energy growing behaviors of n-point
amplitudes in the fixed-angle high-energy limit should
not exceed OðE4−nÞ. For 4-point amplitudes, the leading
energy growing behavior should be at most a constant.
Moreover, the requirement of tree unitarity further
imposes relations on the 3-point couplings constants
and the masses of the particles. In Table IV, we summarize
the processes and relations obtained in this approach and
they coincide with Ref. [59]. We can see that the fastest
energy growing behaviors happen in the longitudinal
modes of the massive vectors, which is consistent with
the fact that the Stü eckelberg scalars are always asso-
ciated with derivatives. As discussed in Sec. IV B and
Appendix E, the relations can be understood from the
point of view of the Lie algebra. This includes the Jacobi
identity for the triple-vector couplings, commutation
relations for vector-fermions couplings, and the predic-
tions of the Higgs mechanism for the scalar-vector and
scalar fermion couplings. They all converge to the gauge
invariance from the UV interactions with possible mod-
ifications by the vector mass terms of the invariant Abelian
subgroups.

TABLE IV. Summary of couplings, processes and the corresponding relations considered in the paper. The superscripts in the particle-
type labels in the processes indicate the helicities of the corresponding particles in the high-energy limit, and we also indicate the energy
growing behaviors for each case. Relations among the coupling constants and the masses are schematically displayed in the last column.

Particles Couplings Processes Relations

WWW Cabc Wð�ÞWð0ÞWð0ÞWð0ÞOðE3Þ Jacobi identity, Eq. (96)

Wð0ÞWð0ÞWð0ÞWð0ÞOðE2Þ
Wð0ÞWð0ÞWð0ÞϕOðE2Þ
Wð0ÞWð0ÞϕϕOðE2Þ

Cabc ∼
mbmc

m2
a−m2

b−m
2
c
Ta
bc, Lie algebra for Ta,

Eqs. (97), (101), and (105)

WWϕ Fabi Wð0ÞWð0ÞWð0ÞWð0ÞOðE2Þ
Wð0ÞWð0ÞWð0ÞϕOðE2Þ
Wð0ÞWð0ÞϕϕOðE2Þ

Fabi ∼maTb
ia, Lie algebra for Ta,

Eqs. (97), (101), and (105)

Wϕϕ Gaij Wð0ÞWð0ÞWð0ÞϕOðE2Þ
Wð0ÞWð0ÞϕϕOðE2Þ

Gaij ∼ Ta
ij, Lie algebra for Ta

Eqs. (101) and (105)

Wψψ̄ La
ij ; R

a
ij Wð0Þψ ð�ÞWð0Þψ̄ ð∓ÞOðE2Þ Lie algebra for La, Ra, Eq. (108)

ϕψψ̄ Hi
ij Wð0Þψ ð�ÞWð0Þψ̄ ð�ÞOðEÞ

Wð0Þψ ð�Þϕψ̄ ð�ÞOðEÞ
Hi

ij part of an invariant tensor,
Eqs. (109) and (111)
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From the study, we have shown that the on-shell massive
and massless amplitudes are manifestly little group covariant
and they further unleash the power of quantum mechanics
and special relativity. With analytical continuation into
complex momenta, we are able to discuss 3-point on-shell
massive spin amplitudes and massless helicity amplitudes.
The requirement of little group covariance puts strong
constraints on the possible structures and especially for
the massless case, it uniquely determines the helicity
amplitudes. In this paper, we have seen that the tree unitarity
at the 3-point on-shell massive amplitudes level already
constrains the coupling constants, like that 3-vector cou-
plings Cabc should be fully antisymmetric. As also illus-
trated in Appendix D, 3-point on-shell massive amplitudes
can be obtained from the IR deformation of the correspond-
ing massless helicity amplitudes, and one interesting obser-
vation is that the spurious poles in the massless vector
amplitudes turn into vector mass singularities in the on-shell
massive amplitudes. It further induces the energy growing
behaviors in the longitudinal modes of the massive vectors.
In other words, this translates the requirement of consistent
factorization for the 4-point massless amplitudes into the
requirement of no faster energy growing behaviors than it
should be in the tree unitary theory.
Our study can be generalized in several ways. Firstly, one

can go beyond the 4-point scattering amplitudes and
determine the form of the scalar potential from tree
unitarity. As we have seen, tree unitarity at 4-point does
not impose any constraints on the ϕϕϕ coupling or the
ϕϕϕϕ contact term apart from being totally symmetric,
and the relations that they satisfy can only be derived at the
5-point level. A computation of all 5-point processes when
all external states are bosonic, and at least one of them is a
scalar, should fully determine the relations satisfied by the
scalar self-interactions. Secondly, it would be nice to
explore how Higgsless theories can be embedded in the
on-shell formalism and in that cases, no scalar degrees of
freedom are involved and one needs Kaluza-Klein towers
of massive vectors and fermions [92,93]. Finally, one can
try to include the massive spin-3=2 and spin-2 particles to
see what nontrivial tree-unitary theory can be obtained.
Last but not least, efforts have been made to extend the

color-kinematics duality and the modern double copy
program to include massive gauge bosons [94–99]. The
variety of coupling relations that we present here greatly
extends the meaning of “color” relations in the usual sense
of color-kinematics duality, which may help us understand
the possible double copy structures of spontaneously
broken gauge theories.
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APPENDIX A: NOTATIONS AND CONVENTIONS

In this appendix, we collect the notations and conven-
tions used throughout the paper. We will use the mostly
minus metric,

ημν ¼ diagð1;−1;−1;−1Þ: ðA1Þ

Our momenta are parametrized as

pμ ¼ ðE; p⃗Þ ¼ ðE; px; py; pzÞ: ðA2Þ

Note that we will take all the momenta ingoing, which
means that E can be either positive or negative. The matrix
generators of the Lorentz group in the vector representation
are given as follows [82]:

ðJ μνÞρσ ¼ iðηρμδνσ − δμσηρνÞ: ðA3Þ

To be more explicit, the expressions for the rotation
generators J1 ¼ J 23; J2 ¼ J 31; J3 ¼ J 12 and the boost
generators Ki ¼ J 0i read

J1 ¼ −i

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA; J2 ¼ −i

0
BBB@

0 0 0 0

0 0 0 −1
0 0 0 0

0 1 0 0

1
CCCA;

J3 ¼ −i

0
BBB@

0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

1
CCCA; K1 ¼ i

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1
CCCA;

K2 ¼ i

0
BBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCCA; K3 ¼ i

0
BBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1
CCCA: ðA4Þ

The finite Lorentz transformation can be obtained by the
exponential mapping

Λρ
σ ¼ ðe−i

2
ωμνJ μνÞρσ ðA5Þ

with the rotation angles as θ1 ¼ ω23; � � � and the boost
parameters (rapidities) as ηi ¼ ω0i. For the spinor repre-
sentation in the Weyl basis of Dirac matrices, the generator
matrices are:
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Jk ¼ 1

2

�
σk 0

0 σk

�
; Kk ¼ −

i
2

�
σk 0

0 −σk

�
: ðA6Þ

We know that SLð2; CÞ is the double cover of the proper,
orthochronous Lorentz group SO(3,1), similar to the fact
that the SU(2) is the double cover of the rotation group
SO(3) [100]. This can be seen by defining the 2 × 2 matrix
for each four-momentum,

pα _α ¼ pμσ
μ
α _α; p _αα ¼ pμσ̄

μ _αα; ðA7Þ
where the sigma matrices are defined as

σμ ¼ ð12×2; σ⃗Þ; σ̄μ ¼ ð12×2;−σ⃗Þ; ðA8Þ
with σi as Pauli matrices. The four-momentum vector can
be obtained by exploring the following identity [101],

Tr½σμσ̄ν� ¼ Tr½σ̄μσν� ¼ 2ημν; ðA9Þ

which yields

pμ ¼ 1

2
pα _ασ̄

μ _αα ¼ 1

2
p _αασμα _α: ðA10Þ

From the same identity, it can also be shown that the
determinant of the momentum matrix gives the scalar
product of the momentum

detpα _α ¼
1

2
εαβε _α _βpα _αpβ _β ¼ pμpμ; ðA11Þ

which can be generalized to any two momentum vectors,

p1α _αp _αα
2 ¼ 2p1 · p2: ðA12Þ

For any L ∈ SLð2; CÞ, the momentum matrix pα _α

transforms as

p → L†pL; ðA13Þ

which leaves the determinant invariant. This establishes
the connection between Lorentz group and SLð2; CÞ. We
can also see that L and −L gives the same Lorentz
transformation. The SLð2; CÞ indices α; _α can be raised or
lowered by the antisymmetric tensor εαβ and its inverse
εαβ,

ε12 ¼ ε21 ¼ 1; ε12 ¼ ε21 ¼ −1; εαβε
βγ ¼ δγα; ðA14Þ

and the same definition applies to ε _α _β; ε _α _β.

APPENDIX B: MASSLESS SPINOR-HELICITY
VARIABLES

For massless particles, p2 ¼ 0, and the matrix pα _α has
rank one, which can be always factorized as direct product
of two spinors,

pα _α ¼ λαλ̃ _α: ðB1Þ

For real momenta in the Minkowski space, pα _α is
Hermitian, and we have

λ̃ _α ¼ �ðλαÞ�; ðB2Þ

with the sign determined by whether the energy is taken to
be positive (þ) or negative (−). It is clear that the helicity
variables λ; λ̃ satisfy the massless Weyl equations,

pα _αλ̃
_α ¼ 0; p _ααλα ¼ 0: ðB3Þ

From the definition, it is also clear that given a particular
momentum p, λ, and λ̃ are not uniquely determined but up
to a scaling,

λ → wλ; λ̃ → w−1λ̃; ðB4Þ

with w ∈ C being a nonzero complex number. In fact, there
is no continuous way to define λ as a function of p⃗ [17], as
will be seen later on from the concrete formulas. The
angular and square spinor products are defined as follows:

h12i≡ hλ1λ2i ¼ λα1λ2α ¼ εαβλ
α
1λ

β
2;

½12�≡ ½λ̃1λ̃2� ¼ λ̃1_αλ̃
_α
2 ¼ ε _α _βλ̃

1_βλ̃2_α: ðB5Þ

For particle i, we also define the “half-brackets” [61],

jii ¼ λiα; hij ¼ λαi ; ji� ¼ λ̃ _αi ; ½ij ¼ λ̃i _α; ðB6Þ

and the spinor products can also be understood as follows:

h12i ¼ h1jαj2iα; ½12� ¼ ½1j _αj2� _α: ðB7Þ

Note that in our convention, for the real momenta with
same sign of energy, we have the following relation,

h12i ¼ −½12��; ðB8Þ

as can be directly verified by using the definition Eq. (B5)
and Eq. (B2). By using the fact that any fully anti-symmetric
rank-2 tensor is proportional to the Levi-Civita tensor ε, we
can obtain the identities

λ1½αλ2β� ¼ h12iεαβ; λ̃1½ _αλ̃2_β� ¼ −½12�ε _α _β: ðB9Þ

We have some useful identities,

hiji½ji� ¼ hijpjji� ¼ 2pi · pj; ðB10Þ

and the Schouten-identity,
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h12ij3i þ h23ij1i þ h31ij2i ¼ 0

½12�j3� þ ½23�j1� þ ½31�j2� ¼ 0; ðB11Þ

which can be proved by using the fact that the spinor
space is two-dimensional and any two spinors can provide a
basis as long as their angular/square inner product is not
vanishing.
For the parametrization ðE; θ;ϕÞ in the real momenta (let

us assume the energy is positive for the moment, E > 0),

px ¼ E sinθ cosϕ; py ¼ E sinθ sinϕ; pz ¼ E cosθ:

ðB12Þ

Then

pα _α ¼
�
Eð1 − cos θÞ −E sin θe−iϕ

−E sin θeiϕ Eð1þ cos θÞ;

�

¼ 2E

�
ss� −c�s�

−cs cc�

�
; ðB13Þ

where we have defined

c≡ cos
θ

2
e

i
2
ϕ; s≡ sin

θ

2
e

i
2
ϕ: ðB14Þ

We can choose the spinor-helicity variables as8

λα ¼
ffiffiffiffiffiffi
2E

p �−s�

c

�
; λ̃ _α ¼

ffiffiffiffiffiffi
2E

p �−s
c�

�
: ðB15Þ

It is straightforward to verify that the spinors λα; λ̃
_α are the

eigenvectors of the helicity operator with eigenvalues of

− 1
2

�
þ 1

2

�
,9

hO ¼ 1

2
σ⃗ · ˆp⃗ ¼ 1

2

�
cos θ sin θe−iϕ

sin θeiϕ − cos θ

�
; ðB16Þ

which confirms that λðλ̃Þ carries helicity weight − 1
2
ðþ 1

2
Þ.

The presence of functions sin θ
2
and cos θ

2
indicates that the

spinor-helicity variables are not continuous function of the
momenta.
For massless spin-1 particles, the polarization vectors

can be written as

ϵ−α _α¼ ϵ−μ σ
μ
α _α ¼

ffiffiffi
2

p λαμ̃ _α

½λ̃ μ̃� ; ϵþα _α ¼ ϵþμ σ
μ
α _α ¼

ffiffiffi
2

p μαλ̃ _α
hμλi ; ðB17Þ

where μ; μ̃ are any reference spinors linearly independent of

λ, λ̃, which is reflecting the gauge redundancy. Indeed, any
transformation of μ̃ can be written as [7]

μ̃ → μ̃þ zμ̃þ z0λ̃; ðB18Þ

with z and z0 being complex numbers. Since the polariza-
tion vector is invariant under the scaling of μ̃, it becomes

ϵ−α _α → ϵ−α _α þ
ffiffiffi
2

p
z0

1þ z
pα _α

½λ̃ μ̃� ; ðB19Þ

which is just the residual gauge transformation preserving
the condition pμϵ

μ ¼ 0. For example, we can choose

μα ¼
�
c�

s

�
; μ̃ _α ¼

�
c

s�

�
; ðB20Þ

which correspond to the explicit formulas for polarization
vectors,

ϵþμ¼ 1ffiffiffi
2

p ð0;cosθcosϕ− isinϕ;cosθsinϕþ icosϕ;−sinθÞ;

ϵ−μ¼ 1ffiffiffi
2

p ð0;cosθcosϕþ isinϕ;cosθsinϕ− icosϕ;−sinθÞ:

ðB21Þ

The n-point helicity amplitudes are not continuous
functions of the momenta, but rather the functions of the
spinor-helicity variables,

Mnðλa; λ̃aÞ ðB22Þ

where a ¼ 1;…; n denotes the particle indices and satisfy
the covariant constraint,

Mnðωaλa;ω−1
a λ̃aÞ ¼ ðωaÞ−2haMnðλa; λ̃aÞ: ðB23Þ

Let us consider the geometry of n-particle momentum
conservation,

Xn
a¼1

pμ
a ¼ 0 ⇔

X
a

λaαλ̃a _α ¼ 0: ðB24Þ

We can think of this condition as imposing a constraint on
the spinor vector space fλaαg or fλ̃a _αg. The condition can be
fully explored by projecting into two linearly independent
spinors. For n ¼ 3, this is easy to solve, as we can choose
either λa or λ̃a as generic. For example, in the first case, we
can project into the j1i subspace and the nonvanishing of
h12i; h13i implies the proportionality of j2� and j3�.
Similarly, in the other case, nonvanishing of ½12�; ½13�
implies the proportionality of j2i and j3i. Finally we have
two solutions,

8Here we have adopted a phase convention commonly used in
quantum mechanics [102].

9Note that _α is the upper index.
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Generic λ ⇒ λ̃1 ¼ h23iξ̃; λ̃2 ¼ h31iξ̃; λ̃3 ¼ h12iξ̃;
Generic λ̃ ⇒ λ1 ¼ ½23�ξ; λ2 ¼ ½31�ξ; λ3 ¼ ½12�ξ; ðB25Þ

with ξ; ξ̃ being some reference spinors. For the three-particle amplitudes, we have

M3 ¼
� h12ih3−h1−h2h23ih1−h2−h3h31ih2−h3−h1 ; h1 þ h2 þ h3 < 0

½12�h1þh2−h3 ½23�h2þh3−h1 ½31�h3þh1−h2 ; h1 þ h2 þ h3 > 0
; ðB26Þ

where we also demand that the amplitudes have a smooth
limit in Minkowski signature where the brackets also go
to zero.

APPENDIX C: MASSIVE SPINOR VARIABLES

The massive spinor variables are a bit more complicated
than the massive case, where the little group is SU(2)
instead of ISO(2). Consequently, the spinor variables carry
the little group index I, which transform as the fundamental
representation of SU(2),

pα _α ¼ λα
I λ̃I _α ¼ jpIi½pIj; ðC1Þ

which can be thought of as the sum of two rank-1 matrices
λ1αλ̃1_α, λ2αλ̃2_α. For general complex momenta, the spinor
variables transform under the fundamental representation
of W ∈ SLð2; CÞ,

λI → λJðW−1ÞJI; λ̃I → WI
J λ̃J: ðC2Þ

We adopt the following analytic continuation,

λIð−pÞ ¼ −λIðpÞ; λ̃Ið−pÞ ¼ λ̃IðpÞ: ðC3Þ

The case of real momenta for positive energy can be
obtained by imposing

ðλIαÞ� ¼ λ̃I _α; ðC4Þ

which implies

ðλ̃I _αÞ� ¼ −λαI : ðC5Þ

Note that the little group index I is naturally raised or
lowered, which is consistent with the fact that the funda-
mental representation of SU(2) is self-conjugate. We can
regard the massive spinor variables as two matrices (I is the
column index in λ and row index in λ̃).
Unlike the massless case, the on-shell condition p2 ¼ m2

is not manifest in this decomposition, but rather a constraint
on the spinor variables,

detp ¼ det λ × det λ̃ ¼ m2: ðC6Þ

Without loss of any generality, we can always choose

det λ ¼ m; det λ̃ ¼ m; ðC7Þ

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − p⃗2

p
. With this convention, we have the

following identities,

λα
IλβI ¼ mεαβ; λ̃I _αλ̃I _β ¼ mε _α _β;

λαIλα
J ¼ −mεIJ; λ̃I _αλ̃J

_α ¼ −mεIJ: ðC8Þ

By using the above formulas, it is straightforward to obtain
the spinor version of the Dirac equations,

pα _αλ̃
_αI ¼ mλIα; pα _αλ

αI ¼ −mλ̃I_α: ðC9Þ

We can always expand the spinor variables in the bases of
the little group space as

λIα ¼ λαζ
−I þ ηαζ

þI; λ̃I _α ¼ λ̃ _αζ
þ
I þ η̃ _αζ

−
I ; ðC10Þ

where the eigenvectors of the z-component spin operator
with eigenvalues of � 1

2
are given by

ζþI ¼
�
1

0

�
; ζ−I ¼

�
0

1

�
; ðC11Þ

which satisfies

ζ−IζþI ¼ 1: ðC12Þ

By using the above identity, the momentum matrix can be
written in terms of the expansion spinors λðλ̃Þ, ηðη̃Þ,

pα _α ¼ λαλ̃ _α − ηαη̃ _α; ðC13Þ

and the on-shell condition becomes

hληi ¼ m; ½λ̃ η̃� ¼ m: ðC14Þ

Similar to the massless case, the real momentum matrix
for positive energy can be parametrized as
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pα _α ¼
�
E − p cos θ −p sin θe−iϕ

−p sin θeiϕ Eþ p cos θ

�

¼ ðEþ pÞ
�

ss� −c�s�

−cs cc�

�
þ ðE − pÞ

�
cc� c�s�

cs ss�

�
;

ðC15Þ
with p ¼ jp⃗j, and the on-shell condition is E2 − p2 ¼ m2.
It is not difficult to see that the following choices of the
spinor variables can do the job,

λα¼
ffiffiffiffiffiffiffiffiffiffiffi
Eþp

p �−s�
c

�
; λ̃ _α¼ λ�α¼

ffiffiffiffiffiffiffiffiffiffiffi
Eþp

p �−s
c�

�
;

ηα¼
ffiffiffiffiffiffiffiffiffiffiffi
E−p

p �
c�

s

�
; η̃ _α¼−η�α¼−

ffiffiffiffiffiffiffiffiffiffiffi
E−p

p �
c

s�

�
; ðC16Þ

which satisfy the on-shell condition in Eq. (C14) as can be
verified directly. In the high-energy limit, we have

λ ∼Oð
ffiffiffiffi
E

p
Þ; η ∼O

�
mffiffiffiffi
E

p
�
; ðC17Þ

and λ, λ̃ coincide with Eq. (B15) of the massless case. The
polarization vectors for the spin-1 particles transform as
symmetric rank-2 tensors under the SU(2) little group and
they can be constructed by the tensor-product of λI and λ̃I ,

ϵα _α ≡ ϵI1I2α _α ¼
ffiffiffi
2

p

m
λfI1α λ̃I2g_α ¼

8<
:

ffiffi
2

p
m λI1α λ̃

I2
_α ; I1 ¼ I2

1
m ðλI1α λ̃I2_α þ λI2α λ̃

I1
_α Þ; I1 ≠ I2

:

ðC18Þ
where we have adopted the same convention as [61]. The
longitudinal and transverse polarization components can be
extracted as the coefficients of ζþI1ζ−I2 , ζþI1ζþI2 , ζ−I1ζ−I2
and they are found to be

ϵ0α _α ¼ ϵ
−1
2
;1
2

α _α ¼ λαλ̃ _α þ ηαη̃ _α
m

; ϵ−α _α ¼ ϵ
−1
2
;−1

2

α _α ¼
ffiffiffi
2

p λαη̃ _α
m

;

ϵþα _α ¼¼ ϵ
1
2
;1
2

α _α ¼ −
ffiffiffi
2

p ηαλ̃ _α
m

: ðC19Þ

Plugging in the formulas in Eq. (C16), we find the explicit
formulas for polarization vectors as follows:

ϵ0μ ¼ 1

m
ðp; Ep sin θ cosϕ; Ep sin θ sinϕ; Ep cos θÞ;

ϵ�μ ¼ 1ffiffiffi
2

p ð0; cos θ cosϕ ∓ i sinϕ; cos θ sinϕ

� i cosϕ;− sin θÞ: ðC20Þ

The amplitudes for massive particles are functions of λI; λ̃I ,
which are fully symmetric rank 2S tensors for spin S
particles.

APPENDIX D: MASSIVE AMPLITUDES
AS IR-DEFORMATION OF THE MASSLESS

AMPLITUDES

Under our parametrization of massive spinor variables,
in the high-energy limit, they approach the massless spinor-
helicity variables as follows:

λα
I → λαζ

−I þO
�

mffiffiffiffi
E

p
�
; λ̃I _α → λ̃ _αζ

þ
I þO

�
mffiffiffiffi
E

p
�
: ðD1Þ

This may provide a way to think that the massive
amplitudes as appropriate IR-deformation of the UV
massless amplitudes, especially for particles with spins.
For scalar particles, the transformations under the little
group are trivial and they don’t provide too much insight.
We also confine ourselves to the on-shell three-particle
amplitudes and leave the higher-point amplitudes for the
future. In addition, we are satisfied with considering about
the relevant and marginal interactions. This corresponds to
the total helicity of the 3-point massless amplitudes smaller
than or equal to one,

jhj ¼ jh1 þ h2 þ h3j ≤ 1; ðD2Þ

as the mass dimensions of the associated couplings are
given by

½gh� ¼ 1 − jhj: ðD3Þ

The first nontrivial example involves the fermion-fermion-
scalar amplitudes and as shown in Eq. (B26), there are two
kinds of marginal on-shell amplitudes,

Mð1−1
2;2−

1
2;30Þ ¼ h12i; Mð1þ1

2;2þ1
2;30Þ ¼ ½12�: ðD4Þ

The IR deformation is straightforward,

h12i → h12iζ−I1 ζ−J2 → h1I2Ji≡ h12i; ðD5Þ

where symmetrization is implicitly assumed. In Ref. [56],
this has been denoted as “bolding”. Similarly, for plus-
helicity amplitude, we have

½12� → ½12�: ðD6Þ

The case of massive spin-1 particles is more interesting,
as it is famously known that an extra degree of freedom is
needed to go frommassless to massive. Wewill pursue it by
first noticing the following properties of the massless spinor
variables for total-plus 3-point on-shell amplitudes,

j1i ¼ ½23�
½12� j3i ¼

½23�
½31� j2i; ðD7Þ

which can be expressed as
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½23�
½31� ¼

h1ηi
h2ηi ;

½12�
½23� ¼

h3ηi
h1ηi ;

½31�
½12� ¼

h2ηi
h3ηi ; ðD8Þ

where η is any reference spinor linearly independent with
angle-bracket on-shell spinors j1i, j2i, j3i. The first set of
on-shell massless amplitudes we are interested in are

Mð10;2þ1;30Þ¼ ½12�½23�
½31� ; Mð10;2−1;30Þ¼ h12ih23i

h31i ;

ðD9Þ

and for simplicity, we have set the coupling constant to one.
We can deform them to the massive amplitudes involving
two vectors and one scalar by employing the relations in
Eq. (D8). Naturally, we will choose η as the expansion
spinor variables of different particles with on-shell con-
straint as in Eq. (C14). To be more specific, for the total-plus
helicity amplitude, the procedure reads

½12�½23�
½31� →

½12�h1η2i
m2

→
ffiffiffi
2

p h12i½12�
m2

; ðD10Þ

and similarly for the CPT conjugate amplitude, we have

h12ih23i
h31i →

h12i½1η2�
m2

→
ffiffiffi
2

p h12i½12�
m2

: ðD11Þ

Remarkably, the two helicity amplitudes are unified into one
massive object, and the spurious poles in the massless
amplitudes have turned into mass singularities for the
massive amplitudes.
The final example we are presenting here is three vector

on-shell amplitude, and up to permutation and CPT
conjugation, the relevant one is

Mð1þ1; 2þ1; 3−1Þ ¼ ½12�3
½23�½31� ; ðD12Þ

and the deformation gives us two mass singularities,

½12�3
½23�½31� →

½12�h3η1ih3η2i
m1m2

→
ffiffiffi
2

p ½12�h31ih32i
m1m2

: ðD13Þ

The systematic way to IR-deform the on-shell massless
amplitudes to massive ones has been explored recently
in Ref. [63].

APPENDIX E: CONSTRAINTS OF THE
COUPLING CONSTANTS FROM THE

LAGRANGIAN

In Ref. [59], the Lagrangian of the most general tree
unitary theory with a finite spectrum of spin-0, 1=2, and 1
states is given as

L¼−
1

4
ðFa

μνÞ2þ q̄Rið=∂þ i=AaR̄aÞqRþ q̄Lið=∂þ i=AaL̄aÞqL

þ1

2
½ð∂μþ iAaμT̄aÞπ̄�2−Vðπ̄Þ− q̄LYðπ̄ÞqR− q̄RY†ðπ̄ÞqL

þ
XN0

a¼1

1

2
ðMa

0Þ2
�
Aaμþ

1

Ma
0

∂μθa

�
2

; ðE1Þ

where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ − fabcAb

μAc
ν is the field strength

tensor for the gauge field Aa
μ, and T̄, L̄, and R̄ are the

generators associated with the representation for the sca-
lars, left-handed and right-handed fermions, respectively. It
is written in the following basis, which we will call the
“gauge basis”, of scalars and vector states:

(i) The generators of the broken group G, and con-
sequently the basis of the vector bosons, are organ-
ized according to invariant subgroups of G. In
particular, the structure constants fabc are in the
“Cartesian” basis such that fadefbde ¼ 0 for a ≠ b.
This tells us that if the index a belongs to the invariant
Abelian subgroup, the structure constants fabc vanish
for all the indices b, c.

(ii) The generators T̄a associated with the scalars are
block diagonalized so that each diagonal block
corresponds to an irreducible representation of G.

The NV vector fields are labeled by a, and the indices 1 ≤
a ≤ N0 are for the invariant Abelian subgroups that have an
explicit mass term, the explicit mass matrix being diagon-
alized to be ðM2

0Þab ¼ δabðMa
0Þ2. θa with a running from 1

to N0 are the redundant scalars in the Stü ckelberg
formalism for the massive invariant Abelian vectors. All
the other physical or Stückelberg scalars are grouped by
π̄p ¼ πp þ ηp with p ¼ N0 þ 1;…; N̄S, where the con-
stants ηp are the vacuum expectation values (vev’s). Vðπ̄Þ
and Yðπ̄Þ are quartic and linear functions of π̄, respectively.
The full set of constraints on the coupling constants in

Eq. (E1) include not only the Lie algebra for the structure
constants fabc and the generators T̄, L̄; and R̄,

fabefcdeþ facefdbeþ fadefbce ¼ 0; ½T̄a; T̄b� ¼ ifabcT̄c;

½L̄a; L̄b� ¼ ifabcL̄c; ½R̄a; R̄b� ¼ ifabcR̄c; ðE2Þ

but also the following conditions on the scalar interactions

V;pðηÞ ¼ 0; ðE3Þ

T̄aλ̄b − T̄bλ̄a ¼ ifabcλ̄c; ðE4Þ

V;pðπ̄ÞðT̄aπ̄Þp ¼ 0; ðE5Þ

L̄aYðπ̄Þ − Yðπ̄ÞR̄a − Y;pðπ̄ÞðT̄aπ̄Þp ¼ 0; ðE6Þ
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where we have defined NV column vectors in the N̄S-scalars
space

λ̄ap ¼
�
δapMa

0; 1 ≤ p ≤ N0

iT̄a
pqηq; N0 < p ≤ N̄S;

: ðE7Þ

and the generators T̄ in the N0-scalars subspace are zero,
i.e., T̄pq ¼ 0 for p; q ¼ 1;…; N0. Eq. (E3) states that the
scalar potential has a local minimum at π̄p ¼ ηp, while
Eqs. (E4), (E5), and (E6) guarantee that the various coupling
constants involved are invariant tensors of G. At the current

stage, one can already diagonalize the fermion mass terms
so that we have

YðηÞ ¼ Y†ðηÞ ¼ δijmi: ðE8Þ

The field variables in Eq. (E1) in general do not
correspond to the mass eigenstates of the bosons that we
use in the on-shell calculations. The Lagrangian corre-
sponding to our parameterization of the coupling constants
in the “mass basis” is given by

L ⊃ −
1

4
ð∂μWaν − ∂νWaμÞ2 − Cabc∂νWaμW

μ
bW

ν
c þ

XNV

a¼1

1

2
m2

aWaμW
μ
a

þ ψ̄Rið=∂þ i=WaRaÞψR þ ψ̄Lið=∂þ i=WaLaÞψL −
X
i

miðψ̄ iLψ iR þ ψ̄ iRψ iLÞ

þ 1

2
∂μϕi∂

μϕi −
1

2

XNS

i¼1

m2
iϕ

2
i þ FabiWaμWbμϕi −GaijWaμ∂

μϕiϕj

−
1

6
Pijkϕiϕjϕk −

1

24
Kijklϕiϕjϕkϕl − ðψ̄LHiψR þ ψ̄RH

†
iψLÞϕi; ðE9Þ

where we have NS physical massive scalar states. We have
neglected all 4-point interactions except for ϕ4, as the
others will be determined by the 3-point interactions by
unitary and locality. The parameters in the two Lagrangians
can be related by performing appropriate transformations
for the scalar and vector fields. The vector boson mass
matrix in Eq. (E1) is given by

ðM2Þab ¼
XN̄S

p¼N0þ1

ðiT̄aηÞpðiT̄bηÞp þ
XN0

a¼1

ðMa
0Þ2δab: ðE10Þ

The above symmetric matrix can be diagonalized by some
orthogonal transformation Oab on the vector fields,

ðOM2O−1Þab ¼ M2
aδab: ðE11Þ

After the transformation, we can work out the linear mixing
terms between the vector and scalar states and this will give
us the Goldstone boson fields as follows:

σa ¼
XN0

b¼1

OabMb
0

ma
θb þ

XNS

p¼N0þ1

iOabD̄b
pqηq

ma
πp ¼ QapΠp;

ðE12Þ

where we have grouped the scalar fields θa, πp into one
array Πp with

Πp ¼ θp; p ¼ 1; � � �N0; Πp ¼ πp;

p ¼ N0 þ 1; � � � N̄S; ðE13Þ

and the rotation matrix is given by

Qap ¼
8<
:

OapM
p
0

ma
; 1 ≤ p ≤ N0

iOabD̄b
pqηq

ma
; N0 < p ≤ N̄S

: ðE14Þ

One can see that Qap ¼ ðOab=maÞλ̄bp, and QapQbp ¼ δab.
We can treat Qap as NV orthonormal vectors in the scalar
space, expressed in the gauge basis. Then one can find
another NS ¼ N̄S − NV orthonormal vectors Qip, such that
Qĩq, which includes both Qap and Qip, forms a new,
complete orthonormal basis in the scalar space. The
physical scalar bosons are then given by

ϕi ¼ QipΠp; ðE15Þ

and together with the Goldstone bosons σa they form a new
scalar basis Φĩ, which is related to the gauge basis by the
rotation

Φĩ ¼ QĩqΠq; ðE16Þ

where the square matrix Qĩq is orthogonal. (One of course
has the freedom to choose Qip so that the mass matrix of
the physical scalars are diagonalized.)
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We have thus figured out the rotation matrices Oab and
Qĩp needed to transform the vector and scalar states to their
mass basis. To arrive at Eq. (E9) where all Goldstone
scalars are eliminated, we need to use the form invariance
of Eq. (E1) under gauge transformations. The actual
transformations used to relate field variables in Eqs. (E1)
and (E9) are [59]

θp≡ϕiQipþ
XNV

a¼1

maQapσa; π̄p ¼ ½eiσ·T̄ �pqðηqþQiqϕiÞ;

Aaμ ¼ ½eσ·f�abOcbWcμ−
�
eσ·f

σ ·f

	
ab
∂μσb;

qR¼ eiσ·R̄ψR; qL ¼ eiσ·L̄ψL; ðE17Þ

where we have defined

ðσ · fÞab ≡ σcOcdfabd; ðE18Þ

and for any generator T̄r of representation Rr in the gauge
basis,

σ · T̄r ≡ σaOabT̄b
r : ðE19Þ

Notice that the fermion masses remain diagonalized as a
consequence of Eq. (E6). Upon the above transformations,
the mass basis couplings in Eq. (E9) can be expressed in
terms of the gauge basis couplings in Eq. (E1) as

Cabc¼fa
0b0c0Oaa0Obb0Occ0 ; Ra¼OabR̄b; La¼OabL̄b;

Gaij¼−iTa
ij; Fabi¼−

i
2
ðmaTb

iaþmbTa
ibÞ; Hi¼QipY;p;

ðE20Þ

where the scalar generator Ta
ij in the mass basis is given by

Ta
ĩ j̃
¼ OabQĩpQj̃qT̄

b
pq: ðE21Þ

Now we can figure out the constraints corresponding to
Eqs. (E2), (E4), and (E6) in the mass basis. The coupling
matrices T, L, R, will still satisfy the commutation relations
with Cabc as the structure constants,

CabeCcdeþCaceCdbeþCadeCbce¼0; ½Ta;Tb�¼ iCabcTc;

½La;Lb�¼ iCabcLc; ½Ra;Rb�¼ iCabcRc: ðE22Þ

In addition, by using

OabQĩpλ̄
b
p ¼ maδ

aĩ; ðE23Þ

we can rewrite Eq. (E4) in the mass basis as follows:

Ta
ibmb−Tb

iama ¼ 0; Ta
cbmb−Tb

cama ¼ iCabcmc; ðE24Þ

which leads to

Fabi ¼ −imaTb
ia; Ta

bc ¼ iCabc
m2

a −m2
b −m2

c

2mbmc
: ðE25Þ

To summarize, the generator Ta
ĩ j̃

can be completely

expressed in terms of Cabc, Gaij, Fabi and the gauge boson
masses, as in Eq. (118). Similarly, Eq. (E6) leads to
Eqs. (123) and (126).
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