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The symmetry breaking of grand unified gauge groups in the early Universe often leaves behind relic
topological defects such as cosmic strings, domain walls, or monopoles. For some symmetry breaking
chains, hybrid defects can form where cosmic strings attach to domain walls or monopoles attach to strings.
In general, such hybrid defects are unstable, with one defect “eating” the other via the conversion of its rest
mass into the other’s kinetic energy and, subsequently, decaying via gravitational waves. In this work, we
determine the gravitational wave spectrum from 1) the destruction of a cosmic string network by the
nucleation of monopoles which cut up and “eat” the strings, 2) the collapse and decay of a monopole-string
network by strings that eat the monopoles, 3) the destruction of a domain wall network by the nucleation of
string-bounded holes on the wall that expand and eat the wall, and 4) the collapse and decay of a string-
bounded wall network by walls that eat the strings. We call the gravitational wave signals produced from
the eating of one topological defect by another “gravitational wave gastronomy.” We find that the four
gravitational wave gastronomy signals considered yield unique spectra that can be used to narrow down the
SOð10Þ symmetry breaking chain to the Standard Model and the scales of symmetry breaking associated
with the consumed topological defects. Moreover, the systems we consider are unlikely to have a residual
monopole or domain wall problem.

DOI: 10.1103/PhysRevD.106.075030

I. INTRODUCTION

The Universe is transparent to gravitational waves, even
at very early times. Therefore, the search for a cosmological
gravitational wave background provides a new way of
observing our early cosmic history. Furthermore, the
Hubble scale H for cosmic inflation in the primordial
universe could be as large as 5 × 1013 GeV [1] (for a review
see [2]), implying the early Universe could have reached
energies far beyond that of Earth based colliders. Therefore,
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gravitational wave physics is a unique probe of extremely
high scale physics.
A particularly promising class of sources for primordial

gravitational waves arises from topological defects pro-
duced during certain types of transitions that spontaneously
break a symmetry. Cosmic strings, domain walls, and
textures all produce a gravitational wave power spectrum
with an amplitude that monotonically increases with the
scale of the symmetry breaking [3]. This implies that
gravitational waves from topological defects are a unique
probe of very high scale physics. We are coming into a
golden age of gravitational wave cosmology, with new
experiments using pulsar timing arrays [4–6], astrometry
[7–9], space and ground based interferometry [10–16],
all due to come online in the next few decades, and
probing frequencies from the nanohertz to kilohertz range.
Indeed, the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav) and parkers pulsar tim-
ing array (PPTA) might have already seen evidence of a
primordial gravitational wave background [6,17], which can
be corroborated by future pulsar timing arrays and astrom-
etry [9]. Information about the Universe at very early times
and very high energy could be just over the horizon.
Of particular interest at the high scale is the possibility

that the gauge groups in the Standard Model could unify to
a single gauge group, perhaps through a series of inter-
mediate steps (for a review see [18]). There are two
remarkable hints that this might be the case: First, the
gauge anomalies of the Standard Model miraculously
cancel—a miracle that is necessary for the consistency
of the theory and can be explained by an anomaly-
free unified gauge group that has been spontaneously
broken. Second, the gauge coupling constants in the
Standard Model approximately unify at a scale of around
1015 GeV. On top of these hints, if B − L local symmetry is
embedded in a unified group, then the baryon asymmetry
can be generated through leptogenesis when this Uð1ÞB−L
is spontaneously broken in the early Universe [19].
While elegant, these grand unified theories (GUTs) are

notoriously difficult to test due to the high scales involved.
Many symmetry breaking paths predict topological defects
that are in conflict with present day cosmology unless their
relic abundances are heavily diluted. For example, even a
small flux of monopoles can destroy the magnetic fields of
galaxies or potentially catalyze proton decays [20–23].
Moreover, domain walls, which dilute slowly with the
expansion of the Universe, can come to dominate the
energy density of the Universe which conflicts with
the standard Λ cold dark matter (CDM) cosmology [24].
A solution to these problematic defects is for inflation to

dilute their abundance [25,26], which puts a qualitative
constraint on the cosmological history of the Universe.
Another possibility is for the problematic defects to be
“eaten” by another defect, which is determined solely by
the symmetry breaking. For example, for some symmetry

breaking chains, strings can be cut by the Schwinger
nucleation of monopole-antimonopole pairs [27–29],
which “eat” the string before annihilating themselves.
Similarly, in other symmetry breaking chains, domain
walls can be consumed by the Schwinger nucleation of
strings on their surface or can be cut into pieces of string-
bounded walls by a preexisting string network [30–32] and
later decay via gravitational waves. We call the gravita-
tional wave signatures from the “eating” of one defect by
another “gravitational wave gastronomy.”
We, for the first time, derive the gravitational wave

spectrum that arises from symmetry breaking paths that
form walls bounded by strings. The case where the domain
walls destroy a preexisting string network, and where the
walls are consumed by string nucleation, generate distinct
gravitational wave spectra. The former scenario is particu-
larly interesting since it always occurs in chains that allow
hybrid wall-bounded strings when inflation occurs prior to
string formation.1 The latter scenario arises when inflation
occurs between string and wall formation scales. Moreover,
string nucleation on the wall is a tunneling process
exponentially sensitive to the degeneracy between the cube
of the string tension μ3 and square of the wall tension σ2

and hence requires a coincidence of scales that is unnec-
essary in the first case. We also revisit the gravitational
wave spectrum predicted from monopoles consuming
strings [44–46] and derive, for the first time, the gravita-
tional wave spectrum that arises from strings eating a
preexisting monopole network. This case is, again, par-
ticularly interesting since it always occurs in chains that
allow hybrid monopole-bounded strings when inflation
occurs before monopole formation.2

Overall, we find that all types of hybrid defects generate
distinguishable gravitational wave signals, implying that
gravitational wave gastronomy is a remarkably promising
method for learning information about the symmetry
breaking chain that nature chose to follow. Such a program
is, at the very least, complimentary to other probes of high
scale physics, including searches for lepton number vio-
lation in neutrinoless double beta decay [48,49], searches
for non-Gaussianities in the cosmic microwave background
[50–63], and searches for proton decay [64–71]. Finally, in
the case where monopoles are produced alongside strings,
the possibility was raised that the strings dilute slowly
enough that they can be replenished after there is enough e
foldings of inflation to dilute the monopoles. This results in

1Domain walls bounded by strings can also appear in the
breaking of an approximate Uð1Þ global symmetry, such as with
axions. [33–43]. Unlike gauged defects, these global defects
decay mostly via pseudogoldstone boson emission, not gravita-
tional waves. This work focuses on gauged hybrid defects.

2During the writing of this manuscript, the power spectrum we
predict was independently derived in Ref. [47], which confirms
the results in this paper for the monopole eating strings
gastronomy scenario of Sec. IV.
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potentially observable burst [72] or stochastic signals
[46,73–75]. We show explicit symmetry breaking chains
that can accommodate this signal in Sec. VIII and discuss
how both strings and domain walls can sometimes replenish
after monopoles are diluted away to reform a scaling
network.
The structure of this paper is as follows. In Sec. II we

review the menu of topological defects that can be
generated from symmetry breaking and give an overview
of all possible symmetry breaking paths from the SOð10Þ
GUT group that can generate an observable gravitational
wave signature. Finally, we make more general statements
about all gauge groups by deriving a set of homotopy
selection rules in order to argue that our menu of possible
signals is complete and general. In Sec. III, we review
upcoming prospects for gravitational wave detection,
including possible ways of constraining or detecting high
frequency signals. In Sec. IV we consider the gravitational
wave spectrum of monopoles consuming strings via
Schwinger nucleation and, in Sec. V, strings consuming
a preexisting monopoles network. In Sec. VI we consider
strings consuming domain walls via Schwinger nucleation
and, in Sec. VII, domain walls consuming a preexisting
string network. In Sec. VIII we briefly discuss topological
defects that are washed out by inflation before summarizing
our results and discussing how each gravitational wave
signal from hybrid defects can be distinguished in
Sec. IX. In Appendix A, we discuss that lower dimensional
topological defects appear earlier than the associated
higher dimensional defects in light of homotopy selection
rules as we see in SOð10Þ symmetry breaking chains. In
Appendix B, we derive the action of a disk-shaped domain
wall bounded by a circular cosmic string.

II. TOPOLOGICAL DEFECTS GENERATED
FROM GRAND UNIFIED THEORIES

In this section, we review the menu of topological
defects that can be produced by symmetry breaking chains.
We then derive a set of topological selection rules and
discuss four types of hybrid defects that commonly appear
in SOð10Þ GUTs.

A. Menu of topological defects
in symmetry breaking paths

Let us begin by discussing the full set of defects that can
occur in a symmetry breaking chain. As well as over-
viewing the defects conceptually, we will discuss the
connection between the scale of symmetry breaking and
the physical quantities—the domain wall surface tension,
the string tension, and the monopole mass. We will find
there is substantial flexibility in surface tension of the
domain wall and the monopole mass, up to naturalness
concerns, and only a moderate amount of flexibility in
the relationship of the string tension and the associated
symmetry breaking scales.

Consider a gauge group G spontaneously breaking to H.
In four dimensional spacetime, we have four possible
topological defects that can arise during such a transition.
Depending on the characteristics of the vacuum manifold
M ¼ G=H, one can produce domain walls, cosmic strings,
monopoles, and textures. The vacuum manifold is charac-
terized by its homotopy class, that is, the equivalence class of
the maps from an n-dimensional sphere Sn intoM, denoted
asπnðMÞ.We use the notation I for trivial homotopy groups.
IfM is disconnected, then π0ðMÞ ≠ I, and two dimensional
topological defects (domain walls) are formed through the
symmetry breaking. Similarly, π1ðMÞ ≠ I predicts one
dimensional defects (cosmic strings), π2ðMÞ ≠ I predicts
pointlike defects (monopoles), and π3ðMÞ ≠ I predicts
three-dimensional defects (textures).
Let us begin with a qualitative discussion of domain

walls. A standard Mexican hat potential with a Z2 discrete
symmetry,

VðϕÞ ¼ λσ
4
ðϕ2 − v2σÞ2; ð1Þ

will have a vacuum manifold that satisfies π0ðMÞ ≠ I and
therefore admits domain walls. Consider a kink solution to
the equation of motion between two degenerate vacua,

ϕðxÞ ¼ vσ tanh

� ffiffiffiffiffi
λσ
2

r
vσx

�
: ð2Þ

The surface tension of the wall is

σ ¼
Z

∞

−∞
dx

�
1

2

�
∂ϕðxÞ
dx

�
2

þ VðϕðxÞÞ
�

¼
ffiffiffiffiffiffiffi
8λσ
9

r
v3σ; ð3Þ

which, depending on the value of λσ , can, in principle, vary
from an order of magnitude above v3σ to arbitrarily small
values (for a review see [76]). To avoid committing to a
particular form of a potential, throughout this paper we will
parametrize the flexibility of the relationship between the
surface tension and the symmetry breaking scale as

σ ¼ ϵv3σ: ð4Þ
Note that although ϵ, in principle, can be arbitrarily small,
naturalness will require ϵ≳ g2=4π ≳ 10−3, with the lower
limit arising from Coleman-Weinberg one-loop quantum
corrections, where g ∼ 0.1 is the grand unified gauge cou-
pling associated with the Z2 symmetry above the scale vσ.
Next let us consider the case where the first homotopy

group of the vacuum manifold is nontrivial, that is when
strings can form. Consider a scalar theory with a Uð1Þ
gauge symmetry,

L ¼ jDϕj2 þ VðϕÞ þ 1

4
F2; ð5Þ

where Dμ ¼ ∂μ − ieAμ is the covariant derivative. Again,
we use the same form of the potential
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V ¼ λμ
4
ðjϕj2 − v2μÞ2: ð6Þ

The classical equations of motion have the form

D2ϕþ λμ
2
ðjϕj2 − v2μÞϕ ¼ 0; ð7Þ

∂
μFμν − ieðϕ�Dνϕ −Dνϕ

�ϕÞ ¼ 0; ð8Þ

and admit a nontrivial solution of the form

ϕðrÞ ¼ fðrÞvμeiθ; Ai ¼
1

er
AθðrÞθ̂i; ð9Þ

where Að∞Þ ¼ fð∞Þ ¼ 1 and Að0Þ ¼ fð0Þ ¼ 0. The
string tension can be found by substituting the string
solution into the classical equations of motion into the
Hamiltonian and integrating over the loop,

μ ¼
Z

rdrdϕ

����� ∂ϕ
∂r

����2 þ
���� 14 dϕdθ − iqA0

θϕ

����2þVðϕÞ þ B02

2

�
ð10Þ

¼ 2πv2B

�
2λ

e2

�
; ð11Þ

where B0 is the magnetic field related to the cosmic string.
Note that BðxÞ is a slowly varying function that is equal to 1
when x ¼ 1 and [77]

BðxÞ ∼
�
2.4= lnð2=xÞ x < 10−2

1.04x0.195 10−2 < x ≪ 1
ð12Þ

for x < 1. Since 2λμ=e2 can, in principle, take a large range
of values, there are many orders of magnitude that the
argument of B can take. However, as the function is so
slowly varying, μ ∼ v2μ within an order of magnitude.
Finally, let us consider monopoles which exist in the case

where the second homotopy group of the vacuum manifold
is nontrivial. That is, the vacuum is topologically equivalent
to a sphere. For a simple example, consider a model with an
SUð2Þ gauge symmetry,

L ¼ 1

2
DμϕDμϕ −

1

4
BμνBμν −

λ

4
ðϕ2 − v2mÞ2; ð13Þ

where ϕ is a real SUð2Þ triplet. The ‘t Hooft-Polyakov
monopole [78,79] has the behavior

ϕ ¼ r̂
hðvmerÞ

er
;

Wi
a ¼ ϵaijx̂j

1 − fðvmerÞ
er

;

W0
a ¼ 0; ð14Þ

where, using the shorthand ξ ¼ vmer for the product of vm
with the gauge coupling constant e and radial coordinate r,
the functions f and h are solutions to the equations [78,79]

ξ2
d2f
dξ2

¼ fðξÞhðξÞ2 þ fðξÞðfðξÞ2 − 1Þ; ð15Þ

ξ2
d2h
dξ2

¼ 2fðξÞ2hðξÞ þ λ

e2
hðξÞðhðξÞ2 − ξ2Þ: ð16Þ

The boundary conditions satisfy limξ→0 fðξÞ − 1 ¼
limξ→0 hðξÞ ∼OðξÞ and limξ→∞fðξÞ¼0, limξ→∞ hðξÞ ∼ ξ.
The monopole mass again comes from solving the equations
of motion and then calculating the static Hamiltonian,

E ¼ m ¼ 4πvm
e

Z
∞

0

dξ
ξ2

�
ξ2
�
df
dξ

�
2

þ 1

2

�
ξ
dh
dξ

− h

�
2

þ 1

2
ðf2 − 1Þ2 þ f2h2 þ λ

4e2
ðh2 − ξ2Þ2

�
: ð17Þ

It has the form

m ¼ 4πvm
e

fðλ=e2Þ: ð18Þ

The solution (17) has been calculated numerically for
multiple values, and one finds that for 0.1 < λ=e2 < 101,
fðλ=e2Þ is slowly varying the Oð1Þ function [78].
In conclusion there is a reasonably tight relationship

between the symmetry breaking scale and the string tension
μ ∼ v2μ. However, domain walls can have a significantly
smaller surface tension than the cube of the symmetry
breaking scale, and the monopole mass can be well above
vm. Even still, one should expect from naturalness consid-
erations for all relevant quantities to bewithin a few orders of
magnitude of the relevant powers of the symmetry break-
ing scale.

B. Hybrid defects in grand unified theories

In the previous subsection, we considered the various
types of topological defects that can be generated during a
single symmetry breaking G → H. Now, with the table set,
we consider how a sequence of multiple transitions,

G → H → K; ð19Þ

can give rise to hybrid topological defects composed of two
different dimensional defects. For these hybrid defects, the
bulk topological defect converts its rest mass to the kinetic
energy of the boundary defect, leading to the appearance of
one defect consuming the other. The relativistic motion of
these defects leads to gravitational wave emission and
eventual decay of the composite defect.
Consider first the case when the vacuum manifold H=K

is not simply connected but the full vacuum manifold G=K
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is. Then π1ðH=KÞ ≠ I and strings form at the transition
H → K. However, these strings are topologically unstable
since in the full theory π1ðG=KÞ ¼ I, which does not
permit stable strings below K. The topological instability of
strings manifests itself by the nucleation of magnetic
monopole pairs that cut and eat the string [28,29] (see
Fig. 2). A set of homotopy selection rules proven in
Appendix A show that the monopoles that nucleate on
the string boundaries must always arise from the earlier
phase transition G → H so that π2ðG=HÞ ≠ I and vm ≥ vμ.
The gastronomy scenario of monopoles nucleating and
eating a string network is discussed in Sec. IV.
The requirement that G → H generates monopoles that

can attach to strings implies that if inflation occurs before
monopole formation, then a significant number of monop-
oles can already be in the horizon at the time of string
formation. In this scenario, the magnetic field lines between
monopole and antimonopole pairs squeeze into flux tubes
(strings) after H → K (see Fig. 5) and hence strings
bounded by monopoles form right at the string formation
scale vμ [27–29]. The gastronomy scenario of strings
attaching to and eating a preexisting monopole network
is discussed in Sec. V.
Similarly, consider now the case when the vacuum

manifold H=K is disconnected but the full vacuum mani-
fold G=K is connected. Then π0ðH=KÞ ≠ I and domain
walls form at the transitionH → K. However, these domain
walls are topologically unstable since in the full theory
π0ðG=KÞ ¼ I, which does not permit stable domain walls
below K. The topological instability of walls manifests
itself by the nucleation of string-bounded holes on the wall
(see Fig. 8), which expand and eat the wall [31]. The same
set of homotopy selection rules derived in Appendix A
shows that the strings that nucleate on the wall must always
arise from the earlier phase transition G → H so that
π1ðG=HÞ ≠ I and vμ ≥ vσ . The gastronomy scenario of
strings nucleating and eating a domain wall network is
discussed in Sec. VI.
The requirement that G → H generates strings that can

attach to walls implies that if inflation occurs before string
formation, then a significant number of strings can already
be in the horizon at the time of wall formation. In this
scenario, the space between strings is filled with a wall after
H → K (see Fig. 11), and hence walls bounded by strings
form right at the wall formation scale vσ [31,32]. The
gastronomy scenario of walls attaching to and eating a
preexisting string network is discussed in Sec. VII.
In many GUT symmetry breaking chains to the Standard

Model gauge group GSM, these type of homotopy sequen-
ces occur and hybrid defects form. Indeed, both
π1ðSOð10Þ=GSMÞ ¼ I and π0ðSOð10Þ=GSMÞ ¼ I so that
“at least” one string or domain wall that forms during the
intermediate breaking of SOð10Þ down to GSM must
become part of a composite defect, which can lead to
the gastronomy signals of Secs. IV–VII.

To see how ubiquitous hybrid topological defects are, we
depict in Fig. 1 a sample of possible cosmic histories of
SOð10Þ breaking and the topological defects produced at
each stage. The color of the arrows in Fig. 1 denotes which
type of defect is produced at each stage of breaking, with
strings in blue, walls in green, and monopoles in red. The
chains which produce monopoles that become attached to
strings are shown by the glowing red paths, while the
chains which produce strings that become attached to walls
are shown by the glowing blue paths. The meaning of each
gauge group abbreviation is as follows:

51 ¼ SUð5Þ ×Uð1ÞX=Z5;

5F1 ¼ SUð5Þflipped ×Uð1Þflipped=Z5;

422 ¼ SUð4Þc × SUð2ÞL × SUð2ÞR=Z2;

3221 ¼ SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L=Z6;

3211 ¼ SUð3Þc × SUð2ÞL ×Uð1ÞY × Uð1ÞX=Z6;

321 ¼ SUð3Þc × SUð2ÞL ×Uð1ÞY=Z6: ð20Þ

D refers to D parity, a discrete charge conjugation
symmetry [30,31], Z2 refers to matter parity, and
GSM ¼ 321.

FIG. 1. A sample of SOð10Þ symmetry breaking paths down to
the Standard Model that produce hybrid defects. The color of the
arrows denotes the type of topological defect produced; red
corresponds to magnetic monopoles, blue to cosmic strings, and
green to domain walls. A red (blue) glow on an arrow indicates
that defect becomes part of a monopole-bounded string (string-
bounded wall). For example, monopoles formed at a red arrow
with red glow become attached to strings formed at a blue arrow
with red glow. Likewise, strings formed at a blue arrow with blue
glow become attached to domain walls formed at a green arrow
with blue glow. Note that the lower dimensional (boundary)
defect of a hybrid defect always arises from an earlier stage of
symmetry breaking than the higher dimensional (bulk) defect as
discussed in Appendix A. A dot on a red arrow indicates stable
monopoles form at that stage of symmetry breaking and need to
be inflated away. If other monopoles, strings, or domain walls
exist at this time, then they will also be inflated away. However,
inflated defects can later destabilize the bulk defects and generate
gravitational waves via nucleation of monopoles on strings (red
glow) or string holes on walls (blue glow).
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Note that the sequence for forming strings bounded by
monopoles in Fig. 1 is typically realized by the two-stage
sequence [80]

G ⟶
monopoles

H ×Uð1Þ⟶stringsH; ð21Þ
with π1ðG=HÞ ¼ I. Monopoles form in the first transition
whenG breaks to a subgroup containing aUð1Þ and strings
form and connect to the monopoles when this “same” Uð1Þ
is later broken. Likewise, walls bounded by strings are
typically realized in the two-stage sequence [80]

G ⟶
strings

H × Z2⟶
walls

H; ð22Þ
with π0ðG=HÞ ¼ I. Strings form in the first transition when
G breaks to a subgroup containing a discrete symmetry
[since π1ðG=ðH × Z2ÞÞ ⊇ π0ðH × Z2Þ ≠ IÞ]. The walls
form and connect to the strings when the same discrete
symmetry associated with the strings is broken.
As indicated in Fig. 1, many symmetry breaking paths

from SOð10Þ to the Standard Model yield hybrid defects.
An example chain that produces all hybrid defects dis-
cussed in this paper is SOð10Þ → 5F1 → 3211 → 321Z2 →
321, which we now go over as a concrete example of the
different types of gastronomy signals discussed in this
paper.
In the first breaking, SOð10Þ → 5F1 generates monop-

oles which must be inflated away. The second breaking,
5F1 → 3211, also generates monopoles, but these lighter
monopoles can get connected by the strings formed at the
third breaking, 3211 → 321Z2. Thus, this sequence can
produce gravitational wave gastronomy signals discussed
in Secs. IVand V, with each section corresponding to when
inflation occurs relative to monopole and string formation.
Specifically, if inflation dilutes both heavy and light
monopoles before the strings form, then the string network
evolves as a pure string network until light monopoles
nucleate and eat the string network (Sec. IV). Note that for
the nucleation to occur within cosmological timescales, the
relative hierarchy between the second and third symmetry
breaking chains cannot be too large. However, if inflation
occurs before the formation of the light monopoles, then
the light monopoles connect to strings at the string
formation scale and eat the monopole network (Sec. V).
At the third breaking, in addition to the previous strings,

Z2 strings appear and get filled by the domain wall formed
at the fourth breaking, 321 × Z2 → 321. This sequence can
produce gravitational wave gastronomy signals discussed
in Secs. VI and VII, with each section corresponding to
when inflation occurs relative to string and wall formation.
If inflation dilutes the Z2 strings before the walls form, then
the wall network evolves as a pure wall network until Z2

strings nucleate and eat the wall (Sec. VI). For the wall to
nucleate strings before dominating the energy density of the
Universe requires a relatively small hierarchy between the
third and fourth symmetry breaking scales. However, if

inflation occurs before the Z2 strings form, then the strings
get filled by the domain walls, and the walls proceed to eat
the string network (Sec. VII). In this gastronomy scenario,
no degeneracy between scales is necessary.

III. GRAVITATIONAL WAVE DETECTORS

Topological defects leave a variety of gravitational wave
signals that are, in many cases, detectable by proposed
experiments. This means that gravitational wave detectors
have a unique opportunity to probe the cosmological
history of symmetry breaking. In the nHz to μHz range,
pulsar timing arrays including European Pulsar Timing
Array, PPTA, NANOGrav and square kilometre array
(SKA) [4,5,81,82] and astrometry, including Gaia and
Theia [8,9,83–85], can reach impressive sensitivity over
the next few years. Spaced based interferometry experi-
ments including Laser Interferometer Space Antenna
(LISA) [86] (Tianqin [87,88] and Taiji [89] also cover
similar regions), DECi-hertz Interferometer Gravitational
wave Observatory (DECIGO) [16], and the Big Bang
Observer (BBO) [90], all will probe mHZ to Hz frequen-
cies. Atom interferometry experiments including AEDGE
[91], AION [92] and MAGIS [93] will probe a similar
range. Finally, ground based experiments including aLIGO
and aVIRGO [10,94–96], KAGRA [97], the Cosmic
Explorer (CE) [15], and the Einstein Telescope [13] are,
in principle, sensitive to the frequencies up to around a kHz.
Many topological defects leave quite broad spectra,

which can lead to a boost in the naive sensitivity of a
detector [98]. The integrated sensitivity of a detector to a
specific signal is given by the signal-to-noise ratio

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
Z

fmax

fmin

df

�
h2ΩGWðfÞ
h2ΩsensðfÞ

�
2

s
; ð23Þ

where T is the observation time of the detector, and
ΩsensðfÞ is the sensitivity to a monochromatic gravitational
wave spectrum. To register a detection, the SNR must be
above 1 as indicated by the sensitivity curves of [99], which
we use throughout this work. In some cases the defects are
only visible at frequencies higher than the reach of the
above experiments. This can occur either in the case of
strings consuming a preexisting monopole network or walls
consuming a preexisting string network. Unfortunately, the
strongest projected sensitivity at present for frequencies
above a few kHz is the bound arising from constraints on
the expansion of the Universe during big bang nucleosyn-
thesis and recombination [100]. The current constraint on
the expansion rate of the Universe is generally expressed in
terms of the departure from the Standard Model prediction
of the effective number of relativistic degrees of freedom,

ΔNeff ¼
8

7

�
11

4

�
4=3Ω0

GW

Ωγ
ð24Þ
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where

Ω0
GW ¼

Z
df
f
ΩGWðfÞ: ð25Þ

Note that ΔNeff constraints on the total energy density of
gravitational waves can provide powerful bounds on
defects, which only leave a high frequency, but large
amplitude, gravitational wave spectrum. Current con-
straints on ΔNeff < 0.284 arise from the Planck 2018
dataset using TT, TE, EEþ lowEþ lensing [101]. This
is expected to improve significantly to ΔNeff < 0.03 as a
conservative estimate of the sensitivity of next generation
experiments [102]. A hypothetical experiment limited only
by the cosmic variance limit was found to be sensitive to
changes to the number of relativistic degrees of freedom as
small as [103]

ΔNCVL
eff < 3.1 × 10−6; ð26Þ

which is, in principle, sensitive to gravitational wave spectra
at arbitrary frequency with an amplitude as small as
Oð10−12Þ. Beyond cosmological limits, there are promising
proposals using interferometers [104–108] (103–107 Hz),
levitated sensors [109] (103–104 Hz), and magnetic con-
version [110] (109–1010 Hz), which may probe high fre-
quency gravitational wave cosmology as summarized in
Ref. [100].
We now turn to calculating the gravitational wave

gastronomy signal for strings bounded by monopoles
and walls bounded by strings.

IV. MONOPOLES EATING STRINGS

In this section, we consider the gastronomy signal of
monopoles nucleating on strings. As shown in Sec. II, if
they are related by the same Uð1Þ, then monopoles form
first, (in the initial phase transition that leaves an unbroken
Uð1Þ symmetry), and connect to strings in the second phase
transition (when theUð1Þ is broken). When inflation occurs
after the formation of monopoles but before strings, the
monopole abundance is heavily diluted by the time the
strings form. The absence of monopoles initially prevents
the formation of monopole-bounded strings at the second
stage of symmetry breaking and the strings initially evolve
as a normal string network. Nevertheless, the strings can
later become bounded by monopoles by the Schwinger
nucleation of monopole-antimonopole pairs, which cuts the
string into pieces bounded by monopoles as shown in
Fig. 2. Conversion of string rest mass into monopole kinetic
energy leads to relativistic oscillations of the monopoles
before the system decays via gravitational radiation and
monopole annihilation [47,111,112].
Monopoles can only nucleate if it is energetically

possible. The energy cost of producing a monopole-
antimonopole pair is 2m, where m is the mass of each

monopole, and the energy gained from reducing a string
segment of length l is μl, where μ is the string tension. The
free energy of the monopole-string system is then

E ¼ 2m − μl: ð27Þ

The energy balance between monopole creation and string
length reduction leads to a critical string length ltp, above
which it is energetically favorable for the string to form a
gap of length ltp, separating two monopole endpoints as
shown in Fig. 2. Note that E < 0 gives this turning point
length

ltp ¼
2m
μ

: ð28Þ

The probability for the monopoles to tunnel through the
classically forbidden region out to radius ltp can be
estimated from the WKB approximation. The nucleation
rate per unit string length is

Γm ∝ μe−SE; ð29Þ

where

SE ¼
Z

ltp

0

dl
ffiffiffiffiffiffiffiffiffiffi
2mE

p
∝
m2

μ
: ð30Þ

FIG. 2. Top: free energy diagram for a pair of monopoles
nucleating on a string vs their nucleation separation l. For l > ltp,
the free energy of the system turns negative, and it becomes
energetically possible to nucleate a pair of monopoles in place of
a string segment of length ltp. Bottom: illustration of the
nucleation process. For strings with length l > ltp a string
segment of length ltp is eaten and replaced with a monopole-
antimonopole pair, which forms the boundaries of the cut
string piece.
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More precisely, the tunneling rate per unit string length can
be estimated from the bounce action formalism [31,113]
and is found to be [112]

Γm ¼ μ

2π
expð−πκmÞ; ð31Þ

where κm ¼ m2=μ. As we saw in Sec. II, typically m ∼ vm
and μ ∼ v2μ with little flexibility. Therefore, the exponential
sensitivity of the decay rate (31) implies that if the
hierarchy between the monopole and string breaking
energy scales is large, then κm ≫ 1 and the string is stable
against monopole nucleation on time scales greater than the
age of the Universe. If this occurs, the gravitational wave
spectrum is identical to the standard stochastic string
spectrum, and no gastronomy signal is observable.
Consequently, monopole nucleation typically requires a
moderate coincidence of string and monopole scales,
vm ∼ vμ, so that κ is not extremely large.
The remaining ingredients needed to determine the

gravitational wave power spectrum for a stochastic back-
ground of metastable strings is the string number density
spectrum as a function of the loop size and time, as well as
the gravitational power spectrum for an individual string.
Here, we use the number density of string loops, formed by
the intercommutation of long (“infinite”) strings in the
superhorizon string network, as derived by the velocity-
dependent one-scale model [114–117]. After their forma-
tion, the infinite string network quickly approaches a
scaling regime, with approximately Oð1Þ long strings
per horizon with curvature radius R ≈ t for all time t prior
to nucleation. In the one-scale model, the typical curvature
radius and separation between infinite strings is the same
scale R so that the energy density of the infinite string
network is

ρ∞ ≈
μR
R3

≈
μ

t2
: ð32Þ

Prior to monopole nucleation, string loops break off from
the infinite string network as intercommutation byproducts,
with roughly one new loop formed every Hubble time.
Loops that form at time tk typically are of length lk ≈ αtk,
where α ≈ 0.1 is found in simulations [118,119]. If the
probability of a long string intersection produces a string
loop that is p ∼ 1, and the number of string intersections
per Hubble volume in a time interval dt is dNint ∼ dt=t
[120], then the rate of loop formation per volume at time tk
is of the form

dn
dtk

∼ p
ρ∞
μlk

dNint

dtk
¼ p

αt4k
: ð33Þ

Indeed, the loop number density production rate as
calculated from the one-scale model and calibrated from
simulations is [46,121,122]

dn
dtk

¼
�
FCeffðtkÞ

αt4k

aðtkÞ3
aðtÞ3

�
: ð34Þ

Here, F and Ceff are roughly constants refined from the
one-scale model and simulations. Note that Ceff ≈ 5.4 is the
loop formation efficiency in a radiation dominated era
[46,123,124], and F ≈ 0.1 is the fraction of energy
ultimately transferred by the infinite string network into
loops of size lk [119].
Since the loops are inside the horizon, they oscillate with

roughly constant amplitude and hence redshift ∝ 1=a3, as
shown by the rightmost term of Eq. (34), before decaying
via gravitational radiation emission. Because the length of
new string loops increases linearly with time, the nucleation
probability of monopoles also grows with time, eventually
cutting off loop production if κm is sufficiently small. This
results in a maximum string size

lmax ≈
1

tΓm
≈

ffiffiffiffiffiffi
α

Γm

r
; ð35Þ

which is generally much greater than ltp.
The total power emitted in gravitational waves by string

loops prior to nucleation or by the relativistic monopoles
postnucleation can be estimated from the quadrupole
formula, PGW≈ G

45

P
i;jhQ

…

ijQ
…

iji∼Gðμlkl2kω3Þ2 ∝Gμ2. The
power emitted by the string loops or monopole-bounded
strings should be comparable since the kinetic energy of the
relativistic monopoles originates from rest mass of the
string. Indeed, more precise numerical computations and
calibrations with simulations find the total power emitted
[3,118,125],

PGW ¼ ΓGμ2; ð36Þ

where Γ ≈ 50 for string loops prior to nucleation, and Γ ≈
4 ln γ20 for relativistic monopoles bounded to strings
postnucleation [112]. Here, γ0 ≈ 1þ μl=2m is the monop-
ole Lorentz factor arising from the conversion of string rest
mass energy to monopole kinetic energy.
The power emitted by gravitational waves reduces the

string length, evolving in time as

l ¼ αtk − ΓGμðt − tkÞ; ð37Þ

giving a loop lifetime of order αtk=ΓGμ. The string length
and harmonic number n is set by the emission frequency,
f0 ¼ n=T ¼ 2n=l, where T ¼ l=2 is the period of any
string loop [80,126]. The frequency observed today arises
from redshift of f0 with the expansion of the Universe,

f ¼ 2n
l
aðt0Þ
aðtÞ ; ð38Þ

where t0 is the present time.
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The number density spectrum of string loops then
follows from Eqs. (31), (34), and (37),

N ðl;tÞSchwinger≡dn
dl

ðl;tÞ≈ dn
dtk

dtk
dl

e−Γmlðt−tkÞ

¼ FCeffðtkÞ
t4kαðαþΓGμÞ

�
aðtkÞ
aðtÞ

�
3

e−Γmlðt−tkÞ: ð39Þ

The exponential factor on the right side of (39) is the
monopole nucleation probability, which effectively cuts off
loop production and destroys loops with lengths large
enough to nucleate with significant probability. For
Γmlðt − tkÞ ≪ 1, the probability of nucleation is negligible,
and the string network evolves like a standard stable string
network.3 Note that this cutoff is time dependent,

Γmlðt − tkÞ ¼ Γm
2n
f

aðtÞ
aðt0Þ

ðt − tkÞ: ð40Þ

Although the number density of string loops decreases
when nucleation occurs, as manifested by the exponential
drop in the loop number density of Eq. (39), the number
density of string-bounded monopoles increases. Since
lmax ≫ ltp, a loop that nucleates monopoles will continue
to nucleate and fragment into many monopole-bounded
strings, each with asymptotic size of order l ∼ ltp ≪ lmax.
While the total energy density in these pieces is comparable
to the original energy density of the parent string loop, the
net energy density eventually deposited into gravitational
waves is much less. This is because the lifetime of the
string-bounded monopoles, ∼μltp=ΓGμ2, is much smaller
than the parent loop because their power emitted in
gravitational waves is similar to pure loops, while their
mass is much smaller. The net energy density that is
transferred into gravitational waves is, to a good approxi-
mation, the energy density of the defect at the time of
decay. Since these pieces decay quickly and do not redshift
∝ a3 for as long as pure string loops, their relative energy
density compared to the background at their time of decay
is much less than for pure string loops. Consequently, the
net energy density that goes into gravitational radiation by
monopole-bounded string pieces compared to string loops
is small, and we do not consider their contribution to the
spectrum.
The gravitational wave energy density spectrum gener-

ated from a network of metastable cosmic strings, including
dilution and redshifting due to the expansion history of the
Universe, is

dρGWðtÞ
df

¼
Z

t

tscl

dt0
aðt0Þ4
aðtÞ4

Z
dl

dnðl; t0Þ
dl

dPðl; t0Þ
df0

df0

df
ð41Þ

df0

df
¼ aðtÞ

aðt0Þ
dn
dl

ðl; t0Þ ¼ N ðl; t0ÞSchwinger ð42Þ

dPðl; t0Þ
df0

¼ ΓGμ2l g
�
f
aðtÞ
aðt0Þ l

�
; ð43Þ

where t0 is the emission time, f0 ¼ aðtÞ=aðt0Þf is the
emission frequency, and f is the redshifted frequency
observed at time t. The normalized power spectrum for
a discrete spectrum is [80,122]

gðxÞ ¼
X
n

Pnδðx − 2nÞ; ð44Þ

which ensures the emission frequency is f0 ¼ 2n=l. Note
that Pn ¼ n−q=ζðqÞ is the fractional power radiated by the
nth mode of an oscillating string loop, where the power
spectral index q is found to be 4=3 for string loops
containing cusps [127,128]. Equations (41)–(44) allow
the stochastic gravitational wave spectrum from metastable
strings to be written as

ΩGWðfÞ≡ f
ρc

dρGW
df

ð45Þ

¼ 8π

3H2
0

ðGμÞ2
X∞
n¼1

2n
f

Z
t0

tform

dt

�
aðtÞ
aðt0Þ

�
5

×N Schwinger

�
l ¼ 2n

f
aðtÞ
aðt0Þ

; t

�
Pn: ð46Þ

We numerically compute the gravitational wave spec-
trum, Eq. (46), over a range of string tensions μ and
monopole masses m. Figure 3 shows a benchmark plot of
the gravitational wave spectrum from cosmic strings con-
sumed by monopoles for fixed Gμ ¼ 1 × 10−8 and a
variety of κm ¼ m2=μ. In computing the spectrum, we
sum up 104 normal modes and solve for the evolution of the
scale factor from the Friedmann equations in a ΛCDM
cosmology. The colored contours in Fig. 3 show the effect
of the nucleation rate parameter κm on the spectrum, with
larger κm corresponding to a longer lived string network. In
the limit

ffiffiffiffiffiffi
κm

p ≳ 9, the nucleation rate is so weak that the
string network is stable on cosmological time scales,
reducing to the standard stochastic string spectrum as
shown by the black contour. Larger loops, corresponding
to lower frequencies and later times of formation, vanish
because of Schwinger production of monopole-antimono-
pole pairs, and hence the gravitational wave spectrum is
suppressed at low frequencies, scaling as an f2 power law
in the infrared. The slope is easily distinguishable from
other signals such as strings without monopole pair
production and strings consumed by domain walls, as
discussed in Secs. VI and VII. Importantly, from Fig. 3, we
see that it is possible to detect the f2 slope in the low

3Using a Heaviside function θðΓmlðt − tkÞ − 1Þ or θðΓmlt − 1Þ
to cut off the loop production gives a nearly identical spectrum.
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frequency region of the power spectrum through many
gravitational wave detectors, including NANOGrav, PPTA,
SKA, Theia, LISA, DECIGO, BBO, and CE.
Figure 4 shows the parameter space in the Gμ–

ffiffiffiffiffiffi
κm

p
plane, where the f2 decaying slope can be detected and
distinguished from the standard string spectrum. For a
given (Gμ;

ffiffiffiffiffiffi
κm

p
), we register a detection of the monopole

nucleation gastronomy in a similar manner to the “turning-
point” recipe of [46]: First, ΩGWh2 must exceed the
threshold of detection for a given experiment. Second, to
actually distinguish between the monopole-nucleation gas-
tronomy spectrum and the standard string spectrum, we
require that their percent relative difference be greater than
a certain threshold within the frequency domain of the
experiment. Following [46], we take this threshold at a
conservative 10%. Figure 4 demonstrates that a wide range
of μ and κm can be probed. String symmetry breaking scales
vμ ≡ ffiffiffi

μ
p

between 109 GeV and 1016 GeV and κm between
30–80 can be detected by current and near future gravi-
tational wave detectors. Interestingly, the yellow and blue
dashed boxes show the particular μ and

ffiffiffiffiffiffi
κm

p
that generate a

spectrum that passes through the recent NANOGrav
(yellow) [81] and PPTA (blue) [17] signals.
Last, note that the benchmark spectra of Fig. 3 are similar

to the spectra found in a previous paper [44], but the slope

in the low frequency region is not f3=2, as found in [44], but
f2. The difference comes from the authors of [44] using a
fixed time at which loop production ceases, corresponding
to when the average length of the string loop network
hli ¼ lmax. However, the average length of string loops in
the loop network is dominated by the smallest loops, even
though there exists much larger loops up to l ≈ αt in the
network at any given time. We take into account the
nucleation rate on individual loop basis. This is necessary
due to the shorter nucleation lifetime of longer strings than
shorter strings because the probability of pair production of
monopoles on a string is proportional to the length of the
string. Our results agree with the more recent work of [47].

V. STRINGS EATING MONOPOLES

In this section, we consider the case where strings attach
to, and consume, a preexisting monopole network. The
symmetry breaking chains that allow this are the same as in
Sec. IV, with the difference between the two scenarios
arising from when inflation occurs relative to monopole
formation. For the monopole nucleation gastronomy of
Sec. IV, inflation occurs after monopole formation but
before string formation. For strings attaching to a preexist-
ing monopole network, as considered in this section,

FIG. 3. Representative spectra of gravitational waves emitted
by cosmic strings that are eaten by the nucleation of monopoles
for fixed Gμ ¼ 1 × 10−8. Each colored contour corresponds to a
different value of κm ¼ m2=μ, which parametrizes the ratio
between monopole and string symmetry breaking scales and
sets the nucleation time of the monopoles on the string. Since
nucleation is an exponentially suppressed process, the metastable
string network is typically cosmologically long-lived and behaves
as a pure string network before nucleation. At high frequencies,
ΩGW ∝ f0 like a pure string network, while after nucleation,ΩGW

decays as f2. The black contour shows the pure string spectrum
without monopoles. For κ ≥ 9, the nucleation timescale of
monopoles is greater than the age of the Universe, and the
metastable string network is indistinguishable from the pure
string spectrum. The dotted-yellow and blue boxes highlight the
potential signals of NANOGrav [81] and PPTA [17], respectively.

FIG. 4. The parameter region in the Gμ–
ffiffiffiffiffiffi
κm

p
plane, where the

gravitational wave spectrum from cosmic strings eaten by the
nucleation of monopoles can be detected. For a given ðGμ; ffiffiffiffiffiffi

κm
p Þ,

a detection is registered when ΩGW is greater than the sensitivity
curve of the given detector “and” the relative difference in spectra
between cosmic strings eaten by monopoles and a pure string
spectrum with the same Gμ is greater than 10%. The latter
condition ensures the two signals are sufficiently distinguishable
and the detection of the infrared f2 slope shown, for example, in
Fig. 3 can be achieved. The yellow and blue dashed lines
highlight the potential signals by NANOGrav and PPTA, re-
spectively, as in Fig. 3.
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inflation occurs before monopole and string formation. In
this scenario, the monopole network is not diluted by
inflation, and at temperatures below the string symmetry
breaking scale vμ, the magnetic field of the monopoles
squeezes into flux tubes (cosmic strings) connecting each
monopole and antimonopole pair [28,120]. Note that since
this is not a tunneling process, there does not have to be a
coincidence of scales between vm and vμ as in the case of
monopoles nucleating on strings as discussed in Sec. IV.
Moreover, since “every” monopole and antimonopole get
connected to a string, which eventually shrinks and causes
the monopoles to annihilate, the monopole problem is
absent in such symmetry breaking chains. As shown in
Fig. 1, an example chain where this gastronomy scenario
occurs is 3221 → 3211 → 321. The first breaking produces
monopoles, and the second breaking connects the monop-
oles to strings. Since there are no stable monopoles or
domain walls that are also generated in this breaking
pattern, inflation need not occur after the monopoles form
when 3221 breaks to 3211.
The scenario where strings attach to a preexisting monop-

ole network has been considered before [28,80,129,130], but
only with an initial monopole abundance of roughly one
monopole per horizon at formation as computed originally
by Kibble [131], and with the conclusion that there is no
gravitational wave amplitude.4 Here, we redo the calculation
with the enhanced abundance of monopoles using the
Kibble-Zurek mechanism [132] and take into account
monopole-antimonopole freeze-out that can occur between
monopole and string formation [133]. We find that after
string formation, monopole-antimonopole pairs annihilate in
generally less than a Hubble time with the typical monopole
velocities being nonrelativistic, often leading to no gravita-
tional wave spectrum. However, for some monopole masses
m and string scales vμ, the monopole-bounded strings can be
relativistic and emit a pulse of gravitational waves before
decaying if friction is not severe. Moreover, the greater
number density of monopoles predicted in the Kibble-Zurek
mechanism compared toKibble’s original estimate gives rise
to significantly enhanced gravitational wave amplitude.
We begin with the Kibble-Zurek mechanism, where

the initial number density of monopoles is set by the

correlation length ξm of the Higgs field associated with the
monopole symmetry breaking scale vm. For a Landau-
Ginzburg free energy near the critical temperature Tc of the
phase transition of the form

VðϕÞ ¼ ðT − TcÞmϕ2 þ 1

4
λϕ4; ð47Þ

the initial number density of monopoles is approximately
[134]

nmðTcÞ ¼
1

ξ3m
≈
λ

2
HT2

c; ð48Þ

where H is the Hubble scale. Note that the monopole
formation density calculated by Zurek, (48), is roughly a
factor of ðMPl=TcÞ2 ≈ ðMPl=vmÞ2 ≫ 1 greater than the
original estimate by Kibble. Note that MPl ¼ 1=

ffiffiffiffi
G

p
is

the Planck mass.
After formation, the monopole-antimonopole pairs anni-

hilate, with a freeze-out abundance [133]

nmðTÞ
T3

¼
�

T3
c

nmðTcÞ
þ h2

βm

CMPl

m

�
m
T
−

m
Tc

��−1
; ð49Þ

where C ¼ ð8π3g�=90Þ−1=2, and

βm ≃
2π

9

X
i

bi

�
hei
4π

�
2

lnΛ ð50Þ

counts the particles of charge ei in the background plasma
that the monopole scatters off of. The magnetic coupling is
h ¼ 2π=e, where e is the Uð1Þ gauge coupling constant,
Λ ∼ 1=ðg�e4=16π2Þ is the ratio of maximum to minimum
scattering angles of charged particles in the plasma, and
bi ¼ 1=2 for fermions and 1 for bosons [80,135], with e ∼
0.3 and a comparable number of electromagnetic degrees of
freedom as in the Standard Model, βm ∼ 20. For T ≪ vm,
Eq. (49) asymptotes to a frozen-out abundance nm=T3≃
βmMaxðT; T�Þ=h2CMp, where T� ¼ ð4π=h2Þ2m=β2m is
approximately the temperature when the monopole mean
free path becomes longer than the monopole-antimonopole
capture distance [133].
Below the scale vμ, the magnetic fields of the monopoles

squeeze into flux tubes, with the string length set by the
typical separation distance between monopoles,

l ≈
1

nmðT ¼ vμÞ1=3
: ð51Þ

Equation (51) is valid when the correlation length of the
string Higgs field ξμ ≥ l [80]. If ξμ < l, then the monopole-
bounded strings are straight on scales smaller than ξμ and
Brownian on greater scales, which gives the strings a length
longer than (51). For an initial abundance of strings set by the

FIG. 5. Illustration of monopoles connecting to strings below
the string formation scale vμ. At vμ, the magnetic field of the
monopoles squeezes into flux tubes (strings) with the typical
string length l set by the monopole density at vμ.

4The case where monopoles are only partially inflated away so
that eventually monopoles reenter the horizon was considered
in [111,130]. We do not consider that scenario.

GUTs, HYBRID TOPOLOGICAL DEFECTS, AND … PHYS. REV. D 106, 075030 (2022)

075030-11



Kibble-Zurek mechanism, ξμ=lðT ¼ vμÞ ≈ ð2βm=λμh2Þ1=3,
which coincidentally, is usually of order or just marginally
less than unity. Nevertheless, since the string correlation
length grows quickly with time ∝ t5=4 [80,131], the string-
boundedmonopole becomes straightened out within roughly
a Hubble time of string formation and ends up with a length
close toEq. (51). ForTc ¼ vm ≲ 1017 GeV, l is far below the
horizon scale. Consequently, l is not conformally stretched
by Hubble expansion and only can decrease with time by
energy losses from friction and gravitational waves.
Because the string rest mass is converted to monopole

kinetic energy, the initial string length (51) determines
whether or not the monopoles can potentially move
relativistically. Relativistic monopoles can emit a brief
pulse of gravitational radiation before annihilating, while
nonrelativistic monopoles will generally not. Energy con-
servation implies the maximum speed of the two mono-
poles on each string is roughly

vmax ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1þ μl

2m

�
−2

s
∼Min

� ffiffiffiffiffi
μl
m

r
; 1

	
: ð52Þ

The density plot of Fig. 6 shows the parameter space in the
vμ − vm plane, where vmax ∼ 1 (in red) and the monopoles
can reach relativistic speeds according to Eq. (52). Initially,
however, monopole friction can prevent the monopoles
from reaching vmax. This is because the relative velocity of
the monopoles induced by the string produces an electro-
magnetic frictional force on the monopoles scattering with
the background plasma. The force of friction between the
monopole and plasma is [29,80]

Ff ≈ −βmT2ve−MrðTÞð1þMrðTÞÞ; ð53Þ

where v is the relative speed between monopole and the
bulk plasma flow. We include the Yukawa exponential
factor, e−Mrð1þMrÞ, to take into account the exchange of
the now massive photon of mass M ≃ evμ=2 at temper-

atures below vμ. Note that rðTÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πT=e2ne

p
is the

inverse plasma mass associated with the screened magnetic
field of the monopole. To a good approximation then,

MrðTÞ ¼ vμ
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30

ζð3Þπg�e

s
≈
vμ
T
; ð54Þ

where g�e is the charged relativistic degrees of freedom in
the thermal bath.
The balance between the string tension and friction is

described by the equation of motion of each monopole,

m
dv
dt

≃ μþ FfðTÞ: ð55Þ

To an excellent approximation, the drag speed, or terminal
velocity, of the monopoles satisfies the quasisteady state

solution dv=dt ≃ 0, which gives the monopole drag speed
as a function of temperature

vdrag ¼
μ

βmT2e−vμ=Tð1þ vμ
T Þ

: ð56Þ

The frictional damping of the monopole motion ends when
vdrag equals vmax, which occurs roughly a Hubble time after
formation because of the decrease in T. However, even in
this brief period of damping, the friction force (53) causes
the string-monopole system to lose energy at a rate

Pf ≈ −βmT2v2e−vμ=T
�
1þ vμ

T

�
; ð57Þ

which can be considerable even in a Hubble time. Above,
v ¼ max ðvdrag; vmaxÞ. For example, near string formation
when T2 ∼ μ, the power lost to friction is roughly
βm=ΓGμv4 ≫ 1 greater than the power lost to gravitational
radiation, PGW ≈ ΓGμ2v6. Note that for the monopole

FIG. 6. The vm − vμ parameter space, where monopoles at-
tached to strings can be relativistic. In the dark blue region at
large vm, the monopoles are sufficiently heavy that the conversion
of string rest mass to monopole kinetic energy cannot accelerate
the monopoles to relativistic speeds, and any gravitational wave
signal is heavily suppressed. In the red region, the monopoles are
light enough that the string can accelerate them to relativistic
speeds, neglecting friction. This region of parameter space can
potentially generate a gravitational wave signal. The black
contours show the typical maximum drag speed of the monopoles
from friction with the thermal bath. For sufficiently large βm, a
model dependent friction parameter, the drag speed prevents the
monopoles from reaching relativistic speeds, and the gravitational
wave signal can be suppressed. In the light blue region, vμ > vm,
which is forbidden for composite monopole-bounded strings.
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nucleation gastronomy of Sec. IV, the monopole nucleation
occurs at a far lower temperature than the string formation
time, and hence Pf ≪ PGW for that gastronomy scenario. In
the gastronomy scenario of this section, where strings eat a
preexisting monopole network, Pf ≫ PGW. Consequently,
the power lost from friction determines the lifetime τ of the
string-bounded monopoles, with

τ ≈ −
E
Pf

����
T≃vμ

≈
μl

βmμv2
≈

8>><
>>:

βml v ¼ vdrag
m
βmμ

v ¼ vmax ≲ 1

l
βm

v ¼ vmax ∼ 1:

ð58Þ

To more precisely determine the monopole-string lifetime,
we integrate Eq. (57) to determine the energy of the string-
monopole system as a function of time and find that for
βm ≳ 3, the energy in the monopole-string system is entirely
dissipated by friction before vdrag reaches vmax and hence
relativistic speeds. The contours of Fig. 6 show the typical
highest speed of the monopoles before losing energy via
friction. Since the energy of the system is entirely dissipated
in around a Hubble time, the largest monopole speed is
typically set by the drag speed when T2 ∼ μ; that is, vdrag ∼
β−1m according to Eq. (56). Consequently, we see analytically
that the terminal velocity of the monopoles is not relativistic
unless βm ∼ 1. If the number of particles interacting with the
monopole in the primordial thermal bath is comparable to the
number of electrically charged particles in the Standard
Model and with similar charge assignments, then βm ∼ 20
and thus the monopole-string system is never relativistic
before decaying. In this scenario, the gravitational wave
signal is heavily suppressed.
If βm ∼ 1, however, which can occur in a dark sector with

fewer charged particles in the thermal bath or with smaller
Uð1Þ charges, then the monopoles reach the speed vmax
before decaying via friction. In this case, the red region of
Fig. 6 indicates where a gravitational wave signal can be
efficiently emitted by the monopoles before annihilating.
Unlike the monopole nucleation gastronomy of Sec. IV, vμ
does not need to be as nearly degenerate with vm for
gravitational waves to be produced. Moreover, since the
lifetime of the string pieces is shorter than Hubble, the
pulse of energy density emitted by relativistic monopoles in
gravitational waves is well approximated by

ρGW;burst ≈ nmðvμÞPGWτ; ð59Þ

where PGW ¼ ΓGμ2 is the power emitted by oscillating
monopoles connected to strings (36). The peak amplitude
of the monopole gravitational wave burst is

ΩGW;burst ¼
ρGW;burst

ρcðvμÞ
Ωr

�
g�0

g�ðvμÞ
�1

3

≈
30π2

g�ðvμÞβm
ΓGμ

�
δ
m
MPl

�2
3

; ð60Þ

where

δ ¼ 1

Cβmh2

�
4π

h2

�
2

Max

�
1;
vμ
m

�
βmh2

4π

�
2
	
; ð61Þ

and ρcðvμÞ is the critical energy density of the Universe at
string formation, which is assumed to be in a radiation
dominated era. The “Max” argument of (61) characterizes
the amount of monopole-antimonopole annihilation that
occurs prior to string formation at T ¼ vμ. For sufficiently
small vμ=m, the freeze-out annihilation completes before
string formation, and the max function of (61) is saturated
at its lowest value of 1. In this conservative scenario,
δ ≈ 10−4β−1m ðe=0.5Þ4.
Similarly, the peak frequency is

fburst∼
1

l

aðtμÞ
aðt0Þ

≈108 Hz

�
vm

1014GeV
δ

10−4
106.75
g�ðvμÞ

�1
3

; ð62Þ

where aðvμÞ and aðt0Þ are the scale factors at string
formation and today, respectively. Note that redoing the
analysis of this section, but with Kibble’s original estimate
for the number density of monopoles, yields a gravitational
wave spectrum that is roughly ðvm=MPlÞ4=3 ≪ 1 sup-
pressed compared to Eq. (60).
With the qualitative features of the monopole burst

spectrum understood, we can turn to a numerical compu-
tation of ΩGW in the case where βm ∼ 1. The gravitational
wave energy density spectrum is

dρGWðtÞ
df

¼
Z

t
dt0

aðt0Þ4
aðtÞ4

Z
dl

dnðl; t0Þ
dl

dPlðl; t0Þ
df0

df0

df
; ð63Þ

df0

df
¼ aðtÞ

aðt0Þ ;
dn
dl

ðl; t0Þ ¼ dn
dtk

dtk
dl

; ð64Þ

dPlðl; t0Þ
df0

¼ ΓGμ2l g
�
f
aðtÞ
aðt0Þ l

�
; ð65Þ

where primed coordinates refer to emission and unprimed
refer to the present so that gravitational waves emitted
from the monopoles at time t0 with frequency f0 will be
observed today with frequency f ¼ f0aðt0Þ=aðtÞ. Note that
tk is the formation time of monopole-bounded strings of
length lðtkÞ,

dn
dtk

≃ nmðtkÞδðtk − tμÞ
�
aðtkÞ
aðtÞ

�
3

ð66Þ
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is the string-bounded monopole production rate, which is
localized in time to the string formation time, tμ≃
CMPl=v2μ. See that dtk=dl is found by noting that the
energy lost by relativistic monopoles separated by a string
of length l is

dE
dt

¼ d
dt

ðμlþ 2mÞ ≈ −βmv2μ: ð67Þ

In the red region of Fig. 6, where a gravitational wave
signal can be generated, μl ≫ 2m (otherwise the mono-
poles would not be relativistic). As a result, monopole-
bounded strings that form at time tk with initial size lðtkÞ
decrease in length according to

lðtÞ ≃ lðtkÞ − βmv2ðt − tkÞ; ð68Þ

so that

dtk
dl

≃
1

βmv2
≈ 1: ð69Þ

The normalized power spectrum for a discrete spectrum is

gðxÞ ¼
X
n

Pnδðx − nξÞ ξ≡ l
T

ð70Þ

and ensures the emission frequency of the nth harmonic is
f0 ¼ n=T, where T is the oscillation period of the monop-
oles. For pure string loops, T ¼ l=2 [ξ ¼ 2, reducing to
Eq. (44)], whereas for monopoles connected to strings, T ¼
2m=μþ l ≃ l [111,112] (ξ ≈ 1). Note that Pn ≈ n−1 is
found [111,112] for harmonics up to n ≈ γ20, where γ0 ≃
ð1þ μl=2mÞ is the Lorentz factor of the monopoles. For
n > γ20, Pn ∝ n−2. Note that Γ ≈ 4 ln γ20.
Integrating the energy density spectrum (63) and normal-

izing by the present day critical density, ρc ¼ 3H2
0=8πG

yields the present day gravitational wave spectrum from
monopoles eaten by strings

ΩGW ¼
X
n

8πðGμÞ2
3H2

0

�
aðtμ − l�Þ
aðt0Þ

�
5
�

aðtμÞ
aðtμ − l�Þ

�
3

× ΓPn
ξn
f

nmðtμÞ
βmv2

; ð71Þ

where

l� ¼
ξn
f

aðtμÞ
aðt0Þ − nmðtμÞ−1

3

βmv2
: ð72Þ

The contours of Fig. 7 show ΩGWh2 for range of a vμ and
vm, where monopoles can oscillate relativistically before
decaying via friction, assuming βmv2 ∼ 1. For frequencies
much lower than the inverse string length, we take the

causality limited spectrum f3 [136]. Figure 7 shows that the
spectral shape goes as f−1 at high frequencies, plateaus
logarithmically for a brief period, and decays as f3 at low
frequencies. The duration of the logarithmic plateau cor-
responds to the number of modes where Pn ∝ 1=n, which is
set by γ0 and hence vmax. As suggested by the estimate
fburst, the frequency at which the spectrum decays typically
occurs at very high frequencies because the separation
length of the monopoles is small when eaten by strings at
T ≃ vμ. Consequently, to observe the monopole burst
gastronomy signal, future gravitational wave detectors near
megahertz frequencies are needed.
Finally, we comment that string loops or open strings

without monopoles also form at the string symmetry break-
ing scale vμ. For ξs ∼ l, as is generally the case, both
simulations and free-energy arguments [80,137,138] suggest
that these pure strings are clustered around the monopole
separation scale l, with the distribution of strings of length
greater than l exponentially suppressed and only making a
subdominant ≲10% of all strings [138]. Essentially, it
becomes exponentially unlikely for a string with length
greater than l to not terminate on two monopoles.
Like the monopole string segments, the dominant energy

loss mechanism for these loops is friction with the plasma.
Here, the friction is mainly due to Aharonov-Bohm
scattering, which exerts a force

FAB ≃ −βsT3vl; ð73Þ

FIG. 7. Representative spectra of gravitational waves emitted
by monopoles that are eaten by strings. Each colored contour
corresponds to a different value of symmetry breaking scales
ðvm; vμÞ. In all cases, we fix βm and the monopole speed v near
unity. The dominant energy loss by the monopoles is from
friction, which causes the monopole-bounded string to decay
within a Hubble time. The emission of gravitational waves thus
occurs in a “burst” and is peaked at high frequencies correspond-
ing to the monopole-antimonopole separation distance when
T ≈ vμ. At high frequencies, ΩGW ∝ f−1, while at low frequen-
cies ΩGW ∝ f3 by causality. The frequency dependence near the
peak of the spectrum interpolates scales as ΩGW ∝ ln f.
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where

βs ≃
2ζð3Þ
π2

X
i

ai sin2ðπνiÞ ð74Þ

counts the particles in the background plasma that expe-
rience a phase change, 2πνi ¼ eiΦ, when moving around
the string of magnetic flux Φ, thereby scattering off the
string via the Aharonov-Bohm mechanism [80,139]. Note
that ai ¼ 3=4 for fermions and 1 for bosons. v is the
relative perpendicular motion of the string with respect to
the plasma.
Just like the monopoles, the frictional force on the strings

initially prevents the string loops, which are subhorizon,
from freely oscillating relativistically [140]. Balancing the
string curvature tension μ and friction force gives the string
drag speed as a function of temperature

vdrag ≈
μ

βsT3l
: ð75Þ

For T2 ∼ μ, βs ≥ 1, and for string lengths of order, the
monopole separation distance (51), the string drag velocity
is initially nonrelativistic for all vμ; vm ≲ 1017 GeV. The
frictional damping of the string motion causes the string
loops to be conformally stretched, lðtÞ ∝ aðtÞ, until vdrag
becomes relativistic, or equivalently, their conformally
stretched size drops below the friction scale Lf ≈
μl=jFABj (see Sec. VII E for a further discussion). This
occurs at time tf ≈ t0maxðβsl0vμ; 1Þ and final string
size lf ≈ l0maxððβsl0vμÞ1=2; 1Þ, where l0 ¼ lðT ¼ vμÞ
is the typical monopole separation at string formation.
However, even after this brief period of damping, the
Aharonov-Bohm friction force (73) still causes the string to
lose energy at a rate μdl=dt ¼ −PAB, where

PAB ¼ −βsT3v2l; ð76Þ

with v ∼ 1. The power lost via Ahronov-Bohm friction
causes the string length to exponentially decrease in size.
These small loops will then completely and quickly decay
via gravitational radiation that, depending on the fraction of
stings in loops, can generate a comparable ΩGW to the
monopole burst spectrum of Fig. 7. Unlike the monopole
bursts, the ultraviolet frequency dependence of the string
burst spectrum will scale approximately as f1−q, where q ¼
4=3 is the power spectral index of string loops with cusps.
This is because for Pn ∝ n−q, the contribution of higher
harmonics, and hence higher frequencies, becomes more
important for smaller q, as discussed in [46,124,141].

VI. STRINGS EATING DOMAIN WALLS

In this section, we consider the case of strings nucleating
on domain walls. As discussed in Sec. II, if they are related

by the same discrete symmetry, then strings form first (in
the initial phase transition that leaves an unbroken discrete
symmetry) and connect to domain walls in the second
phase transition (when the discrete symmetry is broken).
When inflation occurs after the formation of strings but
before domain walls, the string abundance is heavily
diluted by the time the walls form. The absence of strings
initially prevents the formation of string-bounded walls at
the second stage of symmetry breaking, and the walls
initially evolve as a normal wall network. Nevertheless, the
walls can become bounded by strings later by the
Schwinger nucleation of string holes as shown in Fig. 8.
Conversion of wall rest mass into string kinetic energy
causes the string to rapidly expand and eat the wall, causing
the wall network to decay.
Strings can only nucleate on the wall if it is energetically

possible. The energy cost of producing a circular string
loop is μl, where l ¼ 2πR is the length of the string, and the
energy gained from destroying the interior wall is σA,
where A ¼ πR2 is the area of the eaten wall. The free
energy of the string-wall system is then

E ¼ μ2πR − σπR2: ð77Þ

The balance between string creation and domain wall
destruction leads to a critical string radius Rtp, above which
it is energetically favorable for the string to nucleate and

FIG. 8. Top: free energy diagram for a circular string-bounded
hole nucleating on a domain wall vs the string nucleation radius
R. For R > Rtp, the free energy of the system turns negative, and
it becomes energetically possible to nucleate a string in place of a
wall element of area πR2

tp. Bottom: illustration of the nucleation
process. For walls with radii R > Rtp a piece of wall with area
πR2

tp is eaten and replaced with a string, which forms the
boundary of the punctured hole.
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continue expanding and consuming the wall as shown in
Fig. 8. Note that E < 0 gives this turning point radius

Rtp ¼ 2Rc Rc ≡ μ

σ
: ð78Þ

The probability for the string to tunnel through the
classically forbidden region out to radius Rtp can be
estimated from the WKB approximation. The nucleation
rate per unit area is

Γs ∝ σe−SE; ð79Þ

where

SE ¼
Z

Rtp

0

dr
ffiffiffiffiffiffiffiffi
μrE

p
∝
μ3

σ2
: ð80Þ

More precisely, the tunneling rate can be estimated from
the bounce action formalism and is found to be [31,113]

Γs ∼ σ exp

�
−
16π

3
κs

�
; ð81Þ

where κs ¼ μ3=σ2. As a result, the string nucleation rate on
the domain wall is typically exponentially suppressed, and
the domain wall can be cosmologically long-lived if μ3 and
σ2 are disparate, similar to the string and monopole scales
in Sec. IV. For the coincidence of scales μ3 ∼ σ2, the
domain wall network is metastable and may decay before
dominating the energy density of the Universe.
In terms of the symmetry breaking scale, Eqs. (3) and

(11) suggest

κs ¼
9π3

λσ

�
B

�
2λ

e2

��
3
�
vμ
vσ

�
6

ð82Þ

for the fiducial models of Sec. II. Since the homotopy
selection rules require vμ ≥ vσ , nucleation of strings within
cosmological timescales requires Bð2λ=e2Þ ≪ 1, which can
occur for λ ≪ e2.
Before decaying via string nucleation, the evolution of

the metastable domain wall network is that of a pure
domain wall network. The dynamics of a pure domain wall
is well described by the wall Nambu-Goto action [80]

S ¼ −σ
Z

d3ζ
ffiffiffi
γ

p
; ð83Þ

where d3ζ is the infinitesimal world volume swept out by
the domain wall of tension σ, γ ≡ j detðγabÞj is the
determinant of the induced metric on the wall with
γab ¼ gμν

∂Xμ

∂ζa
∂Xν

∂ζb
. Note that XμðξaÞ are the spacetime coor-

dinates of the wall with ξa (a ¼ 1, 2, 3) parametrizing the
wall hypersurface, and gμν ¼ a2ðηÞðdη2 − dx2Þ is the

Friedmann-Robertson-Walker metric in conformal gauge.
For large roughly planar walls with a typical curvature
radius R, the Euler-Lagrange equation of motion of (83) is
[142,143]

dvw
dt

¼ ð1 − v2wÞ
�
kw
R

− 3Hvw

�
; ð84Þ

where vw is the average wall velocity perpendicular to the
wall surface, H is Hubble, and kw is an Oð1Þ velocity-
dependent function that parametrizes the effect of the wall
curvature on the wall dynamics. Conservation of energy
implies

dρw
dt

þHð1þ 3v2wÞρw ¼ −
cwvw
R

ρw; ð85Þ

which is coupled to Eq. (84) via the “one-scale” ansatz,

ρw ≡ σR2

R3
¼ σ

R
: ð86Þ

Equation (86) states that the typical curvature and separation
between infinite walls is the same scale R. cw is an Oð1Þ
constant parametrizing the chopping efficiency of the infinite
wall network into enclosed domainwalls.5 Note that Eq. (85)
does not includegravitationalwave losses,which are small as
long as the walls do not dominate the Universe.
Generally, the tunneling rate is sufficiently suppressed so

that the domain walls reach the steady-state solution of
Eqs. (84)–(86) before decaying, which is the scaling regime
such that R=t ∼ 1 [143]. In the scaling regime, the energy
lost by the infinite wall network from self-intercommuta-
tion balances with the energy gained from conformal
stretching by Hubble expansion so that the network
maintains roughly one domain wall per horizon, similar
to the scaling regime of the infinite string network in
Sec. IV. As a result, the energy density in the domain wall
network before decay evolves with time as

ρw ¼ A
σt2

t3
¼ A

σ

t
; ð87Þ

where A is found to be Oð1Þ from simulations [145]. For
domain walls that are not highly relativistic, the total power
emitted as gravitational radiation for a wall of mass Mw
and curvature radius R follows from the quadrupole
formula [120],

5These enclosed walls, known as “vacuum bags,” are analo-
gous to string loops forming from the intercommutation of a
infinite string network. However, unlike string loops, which can
be long-lived, the vacuum bags collapse under their own tension
and decay quickly. This is because the wall velocity becomes
highly relativistic during collapse causing length contraction of
the wall thickness and hence efficient particle emission of the
scalar field associated with the wall [144].
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PGW ≈
G
45

X
i;j

hQ…ijQ
…

iji ∼ GðMwR2ω3Þ2 ¼ BGσMw: ð88Þ

In the last equation, we take the typical oscillation frequency
ω and curvature R−1 to be comparable. Numerical simu-
lations of domain walls in the scaling regime confirm
Eq. (88) with B ≈Oð1Þ [145–147].
In the scaling regime and prior to nucleation, the energy

density rate lost into gravitational waves by the domain
walls at time t is then

dρw
dt

ðGWÞ ¼ −nwPGW ≃ −AB
Gσ2

t
: ð89Þ

In writing the right-hand side of (89), we use ρw ≃ nwMw
and insert Eq. (87). The energy density injected into
gravitational waves is subsequently diluted with the expan-
sion of the Universe. The total energy density ρGW in the
gravitational wave background is thus described by the
Boltzmann equation,

dρGW
dt

þ 4HρGW ¼ AB
Gσ2

t
θðtΓ − tÞ − x

dρDW
dt

θðt − tΓÞ;
ð90Þ

where x ∈ ½0; 1� is an efficiency parameter characterizing
the fraction of the energy density of the wall transferred into
gravitational waves after strings begin nucleating and
eating the wall, which occurs at time

tΓ ∼
1

σA
eSE ∼

1

σ1=3
exp

16πκs
9

: ð91Þ

Here, we take the wall area A at time tΓ to be ∼t2Γ in
accordance with the scaling regime. When the strings begin
nucleating at tΓ, they quickly expand from an initial radius
Rtp ¼ 2Rc, according to

RsðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

c þ ðt − tΓÞ2
q

; ð92Þ

as shown in Appendix B for circular string-bounded holes.
Consequently, the strings rapidly accelerate to near the
speed of light as they eat the wall. The increase in string
kinetic energy arises from the devoured wall mass. Thus,
shortly after tΓ, most of the energy density of the wall is
transferred to strings and string kinetic energy. Numerical
simulations outside the scope of this work are required to
accurately determine the gravitational waves emitted from
the typical relativistic collisions of the string-bounded
holes, which mark the end of the domain wall network
and hence the determination of x. As a result, we con-
servatively take x ¼ 0 when computing the resulting
gravitational wave spectrum. Nevertheless, we can estimate
the potential effect of nonzero x by taking the sudden decay
approximation for the wall. That is, assuming the

destruction of the wall following nucleation occurs shortly
after tΓ, we may take dρDW=dt ≈ −ρDWδðt − tΓÞ.
The solution to (90), during an era with scale factor

expansion aðtÞ ∝ tν, is then

ρGWðtÞ ¼

8>><
>>:

AB Gσ2
4ν



1 −



tscl
t

�
4ν
�

t ≤ tΓ

ρGWðtΓÞ þ xA σ

tΓ

�

aðtΓÞ
aðtÞ

�
4

t > tΓ:
ð93Þ

Equation (93) demonstrates that the gravitational wave
energy density background quickly asymptotes to a con-
stant value after reaching scaling at time tscl and to a
maximum at the nucleation time tΓ. We thus expect a peak
in the gravitational wave amplitude of approximately

ΩGW;max ≈
ρGWðtΓÞ
ρcðtΓÞ

�
g�0

g�ðtΓÞ
�1

3 ð94Þ

¼ 16π

3
½ðGσtΓÞ2 þ 2xGσtΓ�Ωr

�
g�0

g�ðtΓÞ
�1

3

; ð95Þ

where we take tΓ > tscl, A ¼ B ¼ 1, and a radiation
dominated background at the time of decay with ν ¼ 1

2
.

Note that Ωr ¼ 9.038 × 10−5 is the critical energy in
radiation today [101].
The first term in the second line of (94), the contribution

to the peak amplitude from gravitational waves emitted
prior to nucleation, agrees well with the numerical results
of [145] if tΓ maps to the decay time of unstable walls in the
authors’ simulations. Note that in [145], the domain walls
are global domain walls and are unstable due to a vacuum
pressure difference arising from the insertion of a Z2

breaking term in the domain wall potential. In this work,
we consider gauged domain walls in which such a discrete
breaking term is forbidden.
The second term in (94), the contribution to the peak

amplitude from gravitational waves emitted after nucleation,
has not been considered in numerical simulations. The
postnucleation contribution dominates the prenucleation
contribution if x≳ GσtΓ, which may be important for
short-lived walls. The complex dynamics of string collisions
during the nucleation phase motivates further numerical
simulations.
The frequency dependence on the gravitational wave

amplitude may be extracted from numerical simulations of
domain walls in the scaling regime. The form of the
spectrum was found in [145] to scale as

ΩGWðfÞ ¼
f
ρc

dρGWðt0; fÞ
df

≈ΩGW;max

8>><
>>:



f

fpeak

�
−1

f > fpeak

f

fpeak

�
3

f ≤ fpeak;
ð96Þ
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where

fpeak ∼
1

tΓ

aðtΓÞ
aðt0Þ

ð97Þ

is the fundamental mode of oscillation at the time of decay.
The infrared f3 dependence for f < fpeak arises from
causality arguments for an instantly decaying source [136].
Figure 9 shows a benchmark plot of the gravitational

wave spectrum from domain walls consumed by string
nucleation for fixed σ ¼ ð1012 GeVÞ3 and a variety of
κs ¼ μ3=σ2. In computing the spectrum, we evaluate (96),
in the conservative limit of x ¼ 0. The corresponding dots
above each triangular vertex shows the potential peak of the
spectrum in the x → 1 limit, which corresponds to the
assumption that all of the wall energy at nucleation goes
into gravitational waves. For sufficiently large κs, the
domain wall energy density grows relative to the back-
ground and can come to dominate the critical density of the
Universe at the time of decay. This can lead to gravitational
radiation producing too large ΔNeff , (24), as shown by the
red region. For relatively long-lived walls nucleating prior
to wall domination, it is possible for many gravitational
wave detectors to observe the ΩGW;peak and the character-
istic f−1 ultraviolet slope and f3 infrared slope.

Figure 10, shows the detector reach of ΩGW in the vσ −
κs plane. Here we take ϵ ¼ 1 so that vσ ¼ σ1=3. Since the
triangular shaped spectrum from a domain wall eaten by
strings is sufficiently different compared to a flat stochastic
string background, we register a detection of the string
nucleation gastronomy as long as ΩGWh2 exceeds the
threshold of detection for a given experiment. Figure 10
demonstrates that a wide range of σ and κs can be probed.
Note that most detection occurs when the walls decay
shortly before coming to dominate the Universe as shown
by the diagonal red ΔNeff region. In general, wall

FIG. 9. Representative spectra of gravitational waves emitted
by domain walls that are eaten by nucleation of strings for fixed
σ1=3 ¼ 1012 GeV. Each colored contour corresponds to a differ-
ent value of κs ¼ μ3=σ2, which parametrizes the ratio between
string and wall symmetry breaking scales and sets the nucleation
time of the strings on the wall. Since nucleation is an exponen-
tially suppressed process, the metastable wall network is typically
cosmologically long-lived and behaves as a pure wall network
before nucleation. At high frequencies, ΩGW scales as f−1, while
after nucleation ΩGW decays as f3 by causality [145]. For
sufficiently large κs, the domain wall network is long-lived
enough to dominate the energy density of the Universe at decay
and emits enough gravitational radiation to violate measurements
of ΔNeff , as shown by the red region. Consequently, κs must be
close to unity so that walls decay by string nucleation before wall
domination.

FIG. 10. The parameter region in the vσ − κs plane, where the
gravitational wave spectrum from domain walls eaten by the
nucleation of strings can be detected. We take the fiducial value
ϵ ¼ 1 so that σ ¼ v3σ . For a given ðvσ ; κsÞ, a detection is registered
when ΩGW is greater than the sensitivity curve of the given
detector. In the red region, the energy density emitted by walls
into gravitational radiation is large enough to be excluded by
ΔNeff bounds. Deep in the red region, κs is sufficiently large that
the walls are so long-lived that they dominate the energy density
of the Universe.

FIG. 11. Illustration of strings connecting to walls below the
wall formation scale vσ . The walls fill in the area between strings
because winding the Higgs field ϕ, responsible for the symmetry
breaking at vσ , around a string necessarily generates a disconti-
nuity in ϕ [148,149]. As a result, a structure must abruptly change
ϕ back to ensure the continuity of ϕ. This structure is the domain
wall.
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symmetry breaking scales vσ between 1 and 1013 GeV and
κs between 4–15 can be detected by current and near future
gravitational wave detectors.
In addition, while the infrared (f−3) and ultraviolet (f−1)

wall spectrum is similar to the monopole burst spectrum of
Sec. V, there is a logarithmic plateau at the peak of the
monopole burst spectrum that is absent for the walls and
hence can be used to distinguish both gastronomy signals.
Moreover, in first-order phase transitions, where the bulk of
the energy goes into the scalar shells, the envelope approxi-
mation predicts a similar spectrum (f3 in the infrared, f−1 in
the ultraviolet) [150]. However, more sophisticated analyses
of this type of phase transition appear to predict an UV
spectrum that scales as f−1.5 [151], making it unlikely that a
wall or monopole network eaten by strings can be mimicked
by a first-order phase transition.

VII. DOMAIN WALLS EATING STRINGS

In this section, we consider the gastronomy case where
domain walls attach to, and consume, a preexisting string
network. The symmetry breaking chains that allow this are
the same as in the previous section, with the difference
between the two scenarios arising from when inflation
occurs relative to string formation. For the string nucleation
gastronomy of Sec. VI, inflation occurs after string for-
mation but before wall formation. For walls attaching to a
preexisting string network, as considered in this section,
inflation occurs before string and wall formation. In this
scenario, the string network is not diluted by inflation, and
at temperatures below the wall symmetry breaking scale vσ,
walls fill in the space between strings. Note that since the
attachment of walls to a preexisting string network is not a
nucleation process, there does not have to be a coincidence
of scales between vμ and vσ as in the case of strings
nucleating on walls, as discussed in Sec. VI.
The outline of this section is as follows: First, we derive

the equation of motion for the string boundary of a circular
wall and quantitatively show how the wall tension domi-
nates the string dynamics when the radius R of the hybrid
defect is greater than Rc ≡ μ=σ and how the string
dynamics reduce to pure string loop motion for R ≪ Rc.
We then run a velocity one-scale model on an infinite
string-wall network and show how the walls pull their
attached strings into the horizon when the curvature radius
of the hybrid network grows above Rc. Once inside the
horizon, the domain wall bounded string pieces oscillate
and emit gravitational radiation, which we compute
numerically. We find that power emitted in gravitational
wave asymptotes to the pure string limit PGW ∝ Gμ2, for
pieces of string-bounded walls with radii R ≪ Rc, and to
the expected power emitted by domain walls from the
quadrupole approximation PGW ∝ Gσ2R2, for R ≫ Rc. We
use the numerically computed gravitational wave power to
derive the energy density evolution and the gravitational

wave spectrum of a network of circular string-bounded wall
pieces. We discuss the features of this gastronomy signal
and its experimental detectability with current and future
gravitational wave detectors. Last, we discuss how model
dependent effects, such as friction on the string or wall, can
affect the spectrum.

A. The string-wall equation of motion

Let us begin with the total action of a wall bounded by a
string with wall tension σ and string tension μ,

S ¼ −σ
Z

d3ζ
ffiffiffi
γ

p
− μ

Z
d2ζ

ffiffiffiffi
ϒ

p
: ð98Þ

The parameters of the wall action (left term) are the same
as in Eq. (83). For the string action (right term), d2ζ is
the infinitesimal world sheet swept out by the string, ϒ≡
j detðϒabÞj is the determinant of the induced metric on
the string, and ϒab ¼ gμν

∂Yμ

∂ζa
∂Yν

∂ζb
, where Yμðζ0; ζ1Þ, are the

spacetime coordinates of the string which is fixed to lie at
on the boundary of the wall.
Assuming the wall velocities are not ultrarelativistic, and

the string boundary on the wall is approximately circular,
one can derive the Lagrangian for the string boundary of the
wall to be

L ¼ −2πμjrsðηÞja2ðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
drs
dη

�
2

s
− σπrsðηÞ2a3ðηÞ;

ð99Þ

where rs is the comoving position vector of the string
boundary, η is conformal time, and a the scale factor of the
Universe. See Appendix B for details, including a justifi-
cation of the assumptions. The Lagrangian (99) generates
the following Euler-Lagrange equation of motion:

d2rs
dη2

¼ −
σ

μ

�
1 −

�
drs
dη

�
2
�

3=2
aðηÞr̂s

−
�
1 −

�
drs
dη

�
2
��

r̂s
jrsj

þ 2H
drs
dη

�
; ð100Þ

where H ¼ d ln a=dη ¼ Ha is the conformal Hubble rate.
In the limit that the physical size of the wall,Rs ¼ rsa, is

much smaller than the critical radius, Rc ≡ μ=σ, the
equation of motion for the string-bounded wall reduces
to the standard result of a pure circular string loop [80,140].
However, for jRsj ≥ Rc, the domain wall tension dominates
the string tension, and the string motion becomes more
relativistic. This can also be simply understood by noting
that a wall-bounded string of curvature radius R experi-
ences a wall tension force F ∼ σR and a string tension force
F ∼ μ, which become comparable at R ¼ Rc [32,120].
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Figure 12 shows the numerical solution of Eq. (100) for
the string boundary as a function of the initial string size in
the flat spacetime limit, (a → 1; η → t), or equivalently,
after the loops have entered the horizon. For jRsj ≪ Rc, the
evolution of Rs for the string-bounded wall is identical to
the pure string loop motion (dashed lines) [140]. For string-
bounded walls with jRsj≳ Rc, the evolution deviates from
the pure string loop, with the domain wall accelerating its
string boundary to highly relativistic speeds for most of its
oscillation period. The highly relativistic string boundaries
are responsible for the gravitational wave emission of
string-bounded walls as discussed later in this section.

B. Collapse of the infinite string-wall network

For subhorizon loops, jRsj≲ t, the Hubble term in
Eq. (100) is subdominant compared to the string curvature
term, and hence the motion of the domain wall bounded

string loops approaches the flat spacetime limit. However,
for superhorizon or infinite strings, the effect of the
expansion of the Universe is critical. To understand the
evolution and collapse of the infinite string-wall network,
we implement a one-scale model [114–116] by rewriting
Eq. (100) in terms of the rms comoving velocity, vs ≡
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihvs · vsi
p ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihdr=dη · dr=dηip
of the typical long

string,

dvs
dt

¼ ð1 − v2sÞ
kðR; vsÞ

R
− 2Hv∞; ð101Þ

where

kðvs; RÞ ¼
hð1 − v2s þ R

Rc
ð1 − v2sÞ3=2Þvs · r̂si

vsð1 − v2sÞ
ð102Þ

is the wall-modified curvature parameter. Similarly, the
energy density of the infinite network ρ∞ can be decom-
posed into infinite string ρs ¼ βρ∞ and wall ρw ¼ ð1 −
βÞρ∞ contributions. That is, 0 ≤ β ≤ 1 parametrizes the
relative energy density between strings and walls with
the entire energy density in strings when β ¼ 1 and the
entire energy density in walls when β ¼ 0.6 The energy
density evolution of the infinite string-wall network is then

dρ∞
dt

þ 3Hð1þ wÞρ∞ ¼ −
cv∞
R

ρ∞; ð103Þ

where c is a chopping efficiency parameter, and

w ¼ 2

3
ð1þ v2sÞβ þ

�
1

3
þ v2w

�
ð1 − βÞ − 1 ð104Þ

is the equation of state of the infinite wall-string network
[153,154], with vs and vw the average string and wall
speeds, respectively. Note the wall speed is unimportant to
the wall-string evolution for the following reason: For
R≲ Rc, the strings dominate the energy density and β ≃ 1.
For R≳ Rc, the energy density is initially mostly in the
walls but is quickly converted to string kinetic energy with
vs and then β quickly becoming approximately 1. Thus, for
any R, we expect the wall contribution in Eq. (104) (second
term) to be subdominant to the string contribution (first
term) and set β ≃ 1 for all time, which eliminates vw from
the wall-string dynamics.
The chopping efficiency c of the infinite network

into loops is expected to be an Oð1Þ number [120].

FIG. 12. Evolution of a circular string radiusRs as a function of
time in the flat spacetime limit (i.e., subhorizon strings) when the
string is the boundary of domain wall (solid) and when it is a pure
string loop (dashed). The colored contours show the evolution for
a variety of different string sizes. When the string is small,
compared to Rc ¼ μ=σ, the string dominates the dynamics and
circular string-bounded walls oscillate similarly to pure string
loops of the same size. However, when the string size becomes of
order or greater than Rc, the wall dominates the dynamics of the
string and causes the string to oscillate highly relativistically
compared to pure string loops of the same size. This can be seen
by the increase of the period-averaged velocity squared hv2i,
which increases from approximately 0.5 in the pure string loop
limit to more relativistic values as the size of the string-bounded
wall grows above Rc.

6A similar analysis for a string-monopole network with ZN≥3
strings was considered in [152]. In [152], monopoles are connec-
ted to multiple strings, which allows the monopole-string “web”
to be long-lived and reach a steady-state scaling regime.
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For definiteness, we take the pure string result c ≈ 0.23
inferred from simulations [116]. Last, the “momentum
parameter” k is an Oð1Þ number, which parametrizes the
effect of the string curvature and wall tension on the infinite
string dynamics and vanishes when v∞ matches the rms
velocity v0 of the string loops in flat space [116]. Note that
v0 ¼ 1=

ffiffiffi
2

p
for any pure string loop [80] but is an

increasing function of R=Rc for string-bounded walls, as
shown graphically by Fig. 12. As a result, we approximate
kðv; RÞ by the pure string momentum parameter [116],

kðvs; RÞ ≈
2

ffiffiffi
2

p

π
ð1 − v2sÞð1þ 2

ffiffiffi
2

p
v3sÞ

v0ðRÞ6 − v6s
v0ðRÞ6 þ v6s

; ð105Þ

but with v0 now the R=Rc dependent rms velocity of the
string-bounded walls as computed numerically from
Eq. (100). In the pure string limit, Rc → ∞, Eqs. (101)–
(105) reduce to the standard one-scale model.
The two equations, (101) and (103), are coupled via the

one-scale ansatz,

ρ∞ ≡ μRþ σR2θðt − tDWÞ
R3

¼ μ

R2

�
1þ R

Rc
θðt − tDWÞ

�
;

ð106Þ

where tDW ≈MPlC=v2σ is the wall formation time. The
ansatz (106) amounts to assuming the typical curvature and
separation between infinite string-bounded walls is the
same scale R. Note that while ρ∞ is the total rest mass
energy density of the combined string-wall network, the
allocation of the total energy density is shared among the
two defects.
We evaluate the coupled system of equations (101)–

(105) in time up until the one-scale ansatz breaks down.
This occurs when the curvature radius R of the infinite
strings approaches Rc, at which point the wall tension
dominates the string tension, and the walls pull the infinite
strings with curvature radius R effectively into string-
bounded domain walls of radius R. At this point, we
evaluate Eq. (100) with the initial conditions taken from the
one-scale solution and piecewise connect the two solutions
so that each solution is valid in their respective regimes.
For a given string tension μ and wall tension σ, two

general collapse scenarios arise. One, when the walls form
before R ∼ Rc and the other when they form after, as
represented by the top and bottom panels of Fig. 13,
respectively. If the wall formation time tDW < Rc, then the
walls gradually come to dominate the infinite string
dynamics with vs and R rising slightly before t ¼ Rc, as
shown by the orange and blue curves, respectively. Here,
we define the right-axis vrms as the rms velocity for the
infinite strings vs prior to network collapse, and to the rms
velocity of the wall-bounded string pieces v0, after network

collapse.7 In this scenario, we define the network collapse
time as t� ¼ Rc from which point on we evaluate Eq. (100)

FIG. 13. Evolution of the infinite string-wall network. The blue
curve shows the curvature radius of the string-bounded walls over
time,R=t, while the orange curve shows the string rms velocity vrms.
Top: representative case where tDW < Rc so that walls form before
dominating the string dynamics. For t < Rc, we numerically
compute the modified one-scale model equations. The string-wall
network reaches a scaling regime where R maintains a constant
fraction of the horizon. As t approaches Rc, the walls begin
dominating the dynamics, and the strings move more relativisti-
cally. At t ¼ Rc, infinite string-boundedwalls with curvature radius
R behave like wall-bounded strings of curvature radius R. We
approximate this transition by piecewise connecting the one-scale
model solution to the numerical solution of the Euler-Lagrange
equation of motion for a circular string-bounded wall. For t > Rc,
the infinite network collapses, and the pieces oscillate at constant
physical size before decaying via gravitational waves. Bottom:
same as the top but representative of the case where tDW > Rc so
that walls form already dominating the string dynamics. In this
scenario, vrms of the infinitewall network abruptly increases at wall
formation. We transition from the one-scale to the Euler-Lagrange
solution, when vrms of the infinite strings approximately reaches
vrms of a string-bounded wall piece of the same curvature radius.

7For the one-scale model, the energy density “decreases” as R
“increases.” R increases slightly before t ¼ t� because ρ∞ red-
shifts faster. This is because the equation of state of the wall-
string network briefly behaves more like radiation due to the
sudden increase in vs caused by the walls.
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to determine the dynamics of the string system. If the wall
formation time tDW > Rc, then the walls dominate the
strings upon formation, and vs increases abruptly as shown
in the bottom panel of Fig. 13. In this scenario, we define
the network collapse time as the time when vs approx-
imately matches v0 as determined from Eq. (100), from
which point on we evaluate Eq. (100) to determine the
dynamics of the system. Since the collapse proceeds shortly
after domain wall formation, the collapse time of the
infinite network is effectively at t� ¼ tDW.
In summary, we take the time of collapse of the infinite

string-wall network, and hence the end of loop production,
to be

t� ≡MaxðRc; tDWÞ; ð107Þ

as first proposed by [130]. More realistic simulations
beyond our one-scale analysis and piecewise approxima-
tions are required to more precisely determine t�.
Nevertheless, the sudden increase in vs and R around t�,
according to the one-scale analysis or comparing each term
in the string equation of motion to determine at what time
each term dominates, as done in Sec. VII E, when we
consider friction indicates that the walls begin dominating
the infinite string dynamics near a time of order Eq. (107).
Moreover, the gravitational wave spectrum from wall-
bounded strings is fairly weakly dependent on the precise
value of t� and knowing t� to within a factor of a few is
sufficient to accurately compute the gravitational wave
spectrum as discussed later in this section.

C. Gravitational wave emission from
string-bounded walls

When a string-bounded domain wall piece enters the
horizon, it oscillates at constant amplitude, as shown by the
dotted green curves of Fig. 13, since they are subhorizon
and do not experience the conformal expansion with the
horizon. As they oscillate, the loops emit gravitational
waves with a total power [126]

PGW ¼
X
n

Z
dΩ

dPn

dΩ
ð108Þ

dPn

dΩ
¼ Gω2

n

π

�
Tμν�ðk;ωnÞTμνðk;ωnÞ −

1

2
jTμ

μðk;ωnÞj2
�
;

ð109Þ

where ωn ¼ jkj ¼ 2πn=T is the frequency of the nth
harmonic of the string-bounded wall oscillating with period
T. The stress tensor of the string-wall system is

Tμνðk;ωnÞ ¼
1

T

Z
T

0

dteiωnt

Z
d3xe−ik·xTμνðx; tÞ ð110Þ

Tμνðx; tÞ ¼
Z
string

μjRsjdθγ
dYμ

dt
dYν

dt
δ3ðx −RsðtÞÞ; ð111Þ

where dY=dt ¼ ð1;VsÞ, γ ¼ ð1 − Vs · VsÞ−1=2, and Vs ¼
dRs=dt is the physical velocity of the string.
We calculate the gravitational wave power of the string-

wall system by numerically computing Eqs. (108)–(110)
for circular string-bounded walls, using the numerically
computed time evolution of Rs from the Euler-Lagrange
equation of motion (100). The orange contour of Fig. 14
shows the ratio of the gravitational wave power in the first
harmonic P1 to Gμ2 as a function of R=Rc, where R is the
string oscillation radius. For R ≪ Rc, the string dominates
the dynamics, and the power is independent of loop size, in
agreement with the pure string case. However, for R ≫ Rc,
the domain wall dominates the dynamics, and the power
deviates from the pure string case, increasing quadratically
with R=Rc. Since Rc ≡ μ=σ, this is equivalent to
PGW ∝ Gσ2R2 ∝ GσMDW, in agreement with the quadru-
pole formula expectation for gravitational wave emission
from domain walls.

FIG. 14. Top: the gravitational power PGW emitted by string-
bounded walls as a function of R=Rc. The orange contour shows
the power in the first harmonic P1, while the blue contour shows
the total power. For R ≪ Rc, the string dominates the dynamics,
and we recover the pure string loop limit, namely
PGW=Gμ2 ¼ Γs, where Γs ≈ 50 is a constant and is independent
of string size. For R ≫ Rc, the wall dominates the dynamics, and
we recover the pure domain wall limit, namely PGW ≈ GσMDW.
Bottom: the power spectral index as a function of R=Rc, defined
by Pn ∝ n−q. In the pure string limit, q → 1 and in the pure wall
limit, q → 3=2.
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The bottom panel of Fig. 14 shows the power spectral
index q as a function of R=Rc, where q is defined by the
index Pn ∝ n−q. We numerically determine q by examining
the asymptotic dependence of Pn for n up to ∼300. In the
string dominated regime (R ≪ Rc), q ≃ 1 which agrees
with the pure string result of a “perfectly circular” string
loop [155]. In the domain wall dominated regime
(R ≫ Rc), we find q ≃ 3=2.
Note the mild (logarithmic) divergence in the total power

forR ≪ Rc is an artifact of perfectly circular loops [128,155]
and more realistic loops, which will not be perfectly circular
but have cusps, will moderate the divergence such that Pn ∝
n−4=3 for large n. Although realistic loops are not perfectly
circular, nearly all loop configurations emit similar total
power in gravitational waves [80,128,156], including nearly
circular, but not completely symmetric loops. Indeed,
numerical calculations of nearly circular pure string loops
have P1 nearly identical to our numerical result in the R ≪
Rc limit but have finite total power similar tomost string loop
geometries,Ptot ≈ ð50–100ÞGμ2 [128]. As a result, to match
with a realistic ensemble of loops, which are not perfectly
circular and contain cusps, we cut off the artificial logarith-
mic divergence in theR ≪ Rc regime by normalizing Ptot to
the typical string loop such that Ptot=Gμ2 ≡ Γs ≃ 50. For
R > Rc whenq < 1, we take the total powerPtot ≃ P1=ζðqÞ,
which is the total power forPn ¼ P1n−q. For convenience in
computing the gravitational wave spectrum in the following
subsection, we define the function ΓðRÞ≡ PGWðRÞ=Gμ2 for
string-boundedwalls,whereΓðRÞ is now a function ofR=Rc.
The blue contour of Fig. 14 shows ΓðRÞ as a function of
R=Rc. For R=Rc ≪ 1, Γ → Γs, while for R=Rc ≫ 1,
Γ → 3.7ðR=RcÞ2. Note the power in the large R=Rc regime
is equivalent to PGW ≃ 1.2GσMDW for a circular string-
bounded wall, which agrees well with the numerical power
inferred from simulations of domain walls in a scaling
regime [145].

D. Gravitational wave spectrum
from string-bounded walls

Now that the gravitational wave power emitted by a
string-bounded domain wall is known, we may calculate
the gravitational wave spectrum from a network of circular
string-bounded walls. First, we analytically estimate the
expected amplitude and frequency of the spectrum to gain
intuition before computing it numerically.
Consider first a pure string loop without walls that forms

at time tk with initial length lk ¼ αtk, where α ≃ 0.1 is the
typical fixed ratio between loop formation length and
horizon size found in simulations [118,119]. Once inside
the horizon, these loops oscillate, and their energy density
redshifts ∝ a−3 because their energy E ¼ μl is constant in
the flatspace limit. The loops emit gravitational radiation
with power PGW ¼ ΓsGμ2, where Γs ≈ 50, and eventually
decay from gravitational radiation at time

tΓ ≈
μlk

ΓsGμ2
ðPure string loop lifetimeÞ: ð112Þ

When the pure string loops form and decay in a radiation
dominated era, their energy density at decay is

ρðtΓÞ ≈ μlknðtkÞ
�
tk
tΓ

�
3=2

�
Pure string

decay density

�
; ð113Þ

where nðtkÞ ≈ 1
3
FCeff
αt3k

is the initial number density of loops

of size lk that break off from the infinite string network in a
scaling regime [46,121,122]. As found by simulations,F ≈
0.1 [119] is the fraction of energy ultimately transferred by
the infinite string network into loops of size lk, and Ceff ≈
5.4 is the loop formation efficiency in a radiation domi-
nated era [46,123,124].
As a result, the gravitational wave amplitude arising

from these pure string loops is approximately

ΩðstrÞ
GW ≈

ρðtΓÞ
ρcðtΓÞ

Ωr

�
g�0

g�ðtΓÞ
�1

3

¼ 32π

9
FCeff

ffiffiffiffiffiffiffiffiffi
αGμ
Γs

s
Ωr

�
g�0

g�ðtΓÞ
�1

3

�
Pure string

amplitude

�
;

ð114Þ

where ρcðtΓÞ is the critical energy density of the Universe
at tΓ.
Until t ¼ t�, the strings dominate the dynamics of any

string-bounded walls, and the spectrum must be approx-
imately that of a pure string spectrum with ΩGW given
approximately by Eq. (114), independent of frequency.
Now, consider a near circular string-bounded wall that
forms at time tk ¼ t� with initial circumference lk ¼ αtk. If
lk ≲ 2πRc, then the power emitted and total mass of the
system is effectively identical to the pure string case so that
the ΩGW is again the same as Eq. (114). However, if
lk ≳ 2πRc, then the power emitted and mass of the system
is dominated by the wall contribution of the wall-string
piece. In this case, the wall bounded string decays from
gravitational radiation at time

tΓ ≈
σl2k=4π
ΓðlkÞGμ2

≈
1

Gσ

�
String-bounded

wall lifetime

�
: ð115Þ

When the wall bounded strings form and decay in a
radiation dominated era, their energy density at decay is

ρðtΓÞ≈
σl2k
4π

nðtkÞ
�
tk
tΓ

�
3=2

�
String-bounded

wall decay density

�
; ð116Þ

where nðtkÞ ≈ 1
3
FCeff
αt3k

follows from the infinite string-wall

network being in the scaling regime with F and Ceff
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expected to be similar to the pure string values right before
the infinite network collapses at t�.
As a result, the gravitational wave amplitude arising

from these string-bounded wall pieces is approximately

ΩGW≈
ρðtΓÞ
ρcðtΓÞ

Ωr

�
g�0

g�ðtΓÞ
�

1=3

¼8

9
FCeffα

ffiffiffiffiffiffiffiffiffiffi
Gσtk

p
Ωr


 g�0
g�ðtΓÞ

�1
3

�
String-bounded

wall amplitude

�
:

ð117Þ

The largest amplitude of (117) occurs at the latest formation
time tk, which is t�, the collapse time of the infinite
network. Consequently, a “bump” relative to the flat string
amplitude occurs if

ΩGW

ΩðstrÞ
GW

≈
1

4π

ffiffiffiffiffiffiffiffiffiffiffi
Γsαt�
Rc

s
≈ 0.2

�
α

0.1

�1
2

�
Γs

50

�1
2

�
t�
Rc

�1
2 ð118Þ

is greater than 1 and at a frequency

fpeak ∼
1

lk

aðtΓÞ
aðt0Þ

ð119Þ

since the walls remain the same size once inside the horizon
and dominantly emit at the frequency of the harmonic,
femit ∼ l−1k . Here, lk ≈ αt�.
The estimation of Eq. (118) indicates that if t� ≫ Rc,

then ΩGW features a bump relative to the flat string
spectrum before decaying. Qualitatively, in this limit, the
walls are large enough and hence massive enough to live
much longer than the pure string loops of the same size. As
a result, their energy density before decaying from gravi-
tational radiation is enhanced relative to shorter-lived pure
string loops. For t� ≈ Rc, the spectrum does not feature an
enhancement over the pure string spectrum because the
string-bounded walls are small in size and decay quickly.
Nevertheless, as we will show numerically, the spectrum
still decays as f3, which can still be distinguished from the
f2 decay signal from monopoles eating strings as discussed
in Sec. V. As a result, for any t�, we expect a unique
gravitational wave gastronomy signature from gauge
groups that produce string-bounded walls.
Figure 15 shows the parameter space in the vμ − vσ plane

where we can expect certain gravitational wave signa-
tures from cosmic gastronomy. Here, vμ ≡ μ1=2 and vσ≡
ðσ=ϵÞ1=3, where ϵ≲ 1 is, parameterizes the coupling con-
stant of the scalar field, which breaks the discrete symmetry
associated with the domain wall.
With the qualitative features of the spectrum understood,

we turn to a numerical computation of ΩGW.

FIG. 15. The vσ − vμ parameter space where wall-bounded
strings can generate a gravitational wave signal. In the green
region, the largest string-bounded walls at the network collapse
time t� have a lifetime comparable to pure string loops of the
same size. The energy density they deposit into gravitational
waves when they decay is comparable to pure string loops, and
hence they do not produce a bump in ΩGW relative to the flat pure
string spectrum at high frequencies. In the yellow region, the
largest string-bounded walls at the network collapse time t� are
sufficiently large that their lifetime is long compared to a pure
string loop of the same size. The energy density they deposit into
gravitational waves when they decay is greater than pure string
loops, and a bump in ΩGW can be observed relative to the flat
string spectrum. In the blue region, vμ < vσ , which is forbidden
for composite string-bounded walls. The black contours show the
approximate frequency f�, where ΩGW decays from the pure
string spectrum. The top and bottom panels show the same
regions for ϵ≡ σ=v3σ ¼ 1 and 10−2, respectively.
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The energy lost by oscillating circular loops of length
l ¼ 2πR is

dE
dt

¼ d
dt

�
μlþ σl2

4π

�
¼ −ΓðlÞGμ2: ð120Þ

As a result, loops that form at time tk with initial size
lk ¼ αtk slowly decrease in size according to

Gμðt − tkÞ ¼
Z

αtk

l
dl0

1þ l0
2πRc

Γðl0Þ : ð121Þ

As before, the stochastic gravitational wave energy density
spectrum is

dρGWðtÞ
df

¼
Z

t

tsc

dt0
aðt0Þ4
aðtÞ4

Z
dl
dnðl; t0Þ

dl
dPðl; t0Þ
df0

df0

df
ð122Þ

df0

df
¼ aðtÞ

aðt0Þ
dn
dl

ðl; t0Þ ¼ dn
dtk

dtk
dl

ð123Þ

dPðl; t0Þ
df0

¼ ΓðlÞGμ2lg
�
f
aðtÞ
aðt0Þ l

�
; ð124Þ

where

dn
dtk

¼
�
FCeffðtkÞ

αt4k

aðtkÞ3
aðt0Þ3

�
θðt� − tkÞ ð125Þ

is the loop number density production rate, which follows
from roughly one loop of size αtk breaking off from the
infinite wall-string network every Hubble time and then
redshifting ∝ a−3. Note the Heaviside function θðt� − tkÞ
ensures the gravitational wave spectrum only includes
contributions from loops produced at times before t�.
That is, we set the time at which loop production ends
to the time at which the infinite string-wall network
collapses as computed in Sec. VII B. Also note that the
collapse time of the infinite wall network at t� is not the
same as the time at which the last wall-string loops of size
αt� decay. These subhorizon wall-string loops are long-
lived, shrinking and decaying from gravitational wave
emission as expressed in Eq. (121). In general, loop lifetime
is taken into account on a loop-by-loop basis for all times,
giving rise, for example, to a distribution of loop lengths
arising from the different loop production times,

dtk
dl

¼
1þ l

2πRc

ΓðlÞGμ
�
1þ

αð1þ αtk
2πRc

Þ
ΓðαtkÞGμ

�−1

; ð126Þ

which follows from differentiating Eq. (121) with respect to
tk. Lastly,

gðxÞ ¼
X
n

Pnδðx − ξnÞ ξ≡ l
T

ð127Þ

is the normalized power spectrum for a discrete spectrum,
where 2 ≤ ξ ≤ πwith ξ ¼ 2 corresponding to the pure string
limit (l ≪ 2πRc) and ξ ¼ π corresponding to the ultra-
relativistic limit (l ≫ 2πRc). As discussed in the previous
subsection, we take Pn ¼ n−q=ζðqÞ with q ¼ 4=3 to match
on to more realistic noncircular strings with cusps. Above,
primed coordinates refer to emission and unprimed refer to
the present so that gravitational waves emitted from the
string-bounded wall at time t0 with frequency f0 will be
observed todaywith frequency f ¼ f0aðt0Þ=aðtÞ. Lastly, tk is
solved numerically from Eq. (121).
Integrating the energy density spectrum, (122) over loop

length l and normalizing by the present day energy density,
ρc ¼ 3H2

0=8πG yields the present day gravitational wave
spectrum from domain wall bounded strings,

ΩGW ¼
X
n

8πðGμÞ2
3H2

0

Z
t0

tsc

dt0
aðt0Þ5
aðt0Þ5

�
FCeffðtkÞ

αt4k

aðtkÞ3
aðt0Þ3

�

×Pn
ξn
f

�
1þ ξn

2πRcf
aðt0Þ
aðt0Þ

�
ΓðαtkÞθðt�− tkÞ

ΓðαtkÞGμþαð1þ αtk
2πRc

Þ :

ð128Þ

Figure 16 shows a benchmark plot of the gravitational
wave spectrum from cosmic strings consumed by domain
walls for fixed vμ ≡ ffiffiffi

μ
p ¼ 1012 GeV and a variety of

vσ ≡ ðσ=ϵÞ1=3, where we take ϵ ¼ 1. In computing the
spectrum, we sum up 104 normal modes and solve for the
evolution of the scale factor in a ΛCDM cosmology.
The colored contours in Fig. 16 show the effect of t� on
the spectrum, while the black contour shows the pure string
spectrum, equivalent to the limit t� → ∞. When vσ ≪ vμ,
the walls form before dominating the strings, and the
network collapses at t� ¼ Rc, with the largest wall bounded
strings approximately of size αRc. These wall bounded
string pieces decay approximately with the same lifetime as
pure strings of the same size, implying the spectrum is not
enhanced over the pure string spectrum before decay. The
smaller Rc is, the longer the string network evolves as a
pure string network, which is why the f3 decaying
spectrum in Fig. 16 occurs at lower frequencies the lower
vσ is. Conversely, when vσ ∼ vμ, as shown, for instance, by
the brown vσ ¼ 1011 GeV contour, the walls form already
dominating the strings. The network collapses at t� ¼
tDW ≫ Rc with the largest string-bounded walls approx-
imately of size αtDW. These string-bounded wall pieces
decay much later than pure string loops of the same size,
causing the spectrum to be enhanced over the pure string
spectrum before decay, as shown by the bump near
1011 Hz. Because vσ must be near vμ in this scenario,
the frequency of the bump generally occurs at very high
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frequencies, as shown, for instance, by the yellow region
of Fig. 15.
Finally, note that the spectrum is identical to the

monopole nucleation spectrum of Sec. IV at high frequen-
cies, namely a pure string spectrum, but at low frequencies,
the two gastronomy spectra are distinguishable by the slope
of their infrared tails, which goes as f3 and f2, respectively.

E. Frictional losses and chopping

Until now, we have ignored the effect of string friction
and wall friction on the gastronomy signal from walls
eating strings. In this subsection, we investigate how
friction can affect the evolution of the wall-string network
and hence the gastronomy signal.
First, we consider friction on the strings due to the

Aharonov-Bohm force, Eq. (73). It can be shown
[80,139,157] that the effect of this frictional force on the
string equation of motion, (100) is to replace H → Hþ
aðtÞ=Lf, where Lf ¼ μ=βsT3 is known as friction length,
which is effectively the reciprocal of the friction forceper unit
string mass. There are then four relevant scales (forces per
unit mass) in the string equation of motion, with each
dominating at a different stage in the evolution of the
wall-string network:

ðaÞ 2Hv ðHubbleÞ
ðbÞ βsT3v

μ ðString FrictionÞ
ðcÞ 1

R ðString TensionÞ
ðdÞ σ

μ ¼ 1
Rc

ðWall TensionÞ:

Consider first the network evolution when R < Rc, which is
the pure string limit. In this case, strings will be damped by
friction until the Hubble (a) and friction terms (b) are equal.
For a radiation-dominated era, this occurs at time

tf ¼ M3
Plβ

2
sC3

8μ2
; ð129Þ

where C ¼ ð8π3g�=90Þ−1=2 as before. After tf, the Hubble
(a) and string curvature (c) terms dominate; the strings
oscillate freely and the network reaches the standard scaling
regime. If Rc > tf, then the walls do not dominate the string
network until after the strings reach scaling, and the results of
this section are unchanged. The condition for the wall to
dominate the string dynamics only after tf then occurs when

Rc

tDW
≥
β2=3s

ϵ
ð130Þ

is satisfied. For nearly all ðμ; σÞwith t� ¼ Rc,Rc ≫ tDW, and
hence Eq. (130) is easily satisfied, and the gastronomy signal
discussed in the previous subsection remains unchanged.
However, for t� ¼ tDW, Rc < tDW, and Eq. (130) is

generally not satisfied. In this case, the walls dominate
the string dynamics during the initial string friction era. In
this scenario, the two largest terms in the string equation of
motion around the time of domain wall formation are the
string friction term (b) and the wall tension term (d).
Balancing the two terms gives the string terminal velocity

v ¼ σ

βsT3
≃

ϵ

βs

�
t

tDW

�
3=2

; ð131Þ

valid until v becomes relativistic. Friction prevents the
string-wall system from initially collapsing since the
friction scale of the system,8

Rf ∼ vt ¼ t

�
t

tDW

�
3=2 ϵ

βs
; ð132Þ

can be smaller than R. Specifically, perturbations on the
string larger than Rf remain stuck by friction, while those
smaller than R have been smoothed out by friction and
can move freely. The wall-bounded strings cease expand-
ing conformally when Rf equals the string radius,
R ¼ RðtDWÞðt=tDWÞ1=2, which occurs at radius

FIG. 16. Representative spectra of gravitational waves emitted
by strings that are eaten by domain walls for fixedffiffiffi
μ

p ¼ 1012 GeV. Each colored contour corresponds to a different
value of the wall symmetry breaking scales vσ . Prior to wall
domination at t�, the wall-string network behaves similarly to a
pure string network and ΩGW ∝ f0 at high frequencies. After the
network collapses and the largest string-bounded walls decay,
ΩGW drops as f3 at low frequencies. For tDW < Rc, the largest
wall-bounded string pieces at decay do not live longer compared
to pure string loops of the same size and hence do not deposit
significantly more energy density into gravitational waves com-
pared to pure string loops. There is no bump in ΩGW in this case.
For tDW ≫ Rc, the largest wall-bounded string pieces at decay
have size R ≫ Rc and are long-lived compared to pure string
loops of the same size. These pieces deposit significant energy
into gravitational waves at decay and generate a bump in ΩGW, as
shown by the vσ ¼ 1011 GeV contour.

8We find a more rigorous derivation of the evolution of the
string curvature from the Euler-Lagrange equation of motion
gives the same scaling. Also note the different scaling compared
to pure strings when the string curvature and friction balance,
which gives R ∝ t5=4, known as the Kibble regime [131,149].
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R ≈ RðtDWÞ ×Max

�
1;

�
RðtDWÞβs
tDWϵ

�
1=4

�
: ð133Þ

Unless ϵ ≪ 1 or βs ≫ 1, Eq. (133) occurs at or very close
to the string curvature radius at wall formation, RðtDWÞ,
since RðtDWÞ=tDW < 1 in the friction regime. Thus, when
t� ¼ tDW, the strings oscillate highly relativistically nearly
immediately after wall formation, even with string friction.
Nevertheless, there are still frictional energy losses after the
strings move freely shortly after tDW. The power lost to
Aharonov-Bohm friction for these pieces is given by
Eq. (76). Since the energy of the wall-bounded string piece
is dominated by walls in this case, E ∼ σR2, Eq. (76) can be
integrated to obtain the string-wall size vs time,

RðtÞ ≈ RðtDWÞ −
βsC3=2

σG3=4 ðt
−1=2
DW − t−1=2Þ; ð134Þ

where we take v ∼ 1. For t > tDW, the curvature radius
quickly decreases to its asymptotic size,

Rfinal ≃ RðtDWÞ
�
1 −

βs
ϵ

tDW
RðtDWÞ

�
: ð135Þ

If the term in parenthesis remains of Oð1Þ, then the wall-
bounded string pieces do not appreciably shrink due to
friction and will decay via gravitational radiation. In such a
scenario, the domain wall induced bump in ΩGW right
before decay, a feature of the t� ¼ tDW regime, still occurs
but without the flat f0 part of the spectrum to the right
because the string network is frozen prior to tDW and does
not significantly emit gravitational waves. According to
Eq. (135), the condition for the wall-bounded string pieces
to remain long-lived is then

RðtDWÞ ≳ βs
ϵ
tDW: ð136Þ

In the friction regime, it is generally the case that
RðtDWÞ ≪ tDW, in contrast to the frictionless scaling
regime when R ∼ t at wall formation.9 As a result, if
t� ¼ tDW < tf, then the wall-string system decays quickly

to friction unless βs ≪ 1. If βs ∼ 1 at wall formation, then
the friction dominates and the wall-string system decays via
friction in around a Hubble time, and the gastronomy signal
is suppressed. This may eliminate the bump feature that
occurs in t� ¼ tDW cosmologies, as shown, for example, by
the rightmost contour of Fig. 16. Nevertheless, there can
still be an appreciable gravitational wave pulse from walls
bounded by strings in this scenario. This is because the
number of string-bounded walls in the horizon in the friction
era can be significant, giving rise to a brief, but significant
pulse of gravitational waves similar to the monopole burst of
Sec. V. Moreover, the gastronomy signal for walls eating
strings for the case of t� ¼ Rc is still observable and
distinguishable from other gastronomy signals even without
its bump due to its f3 infrared spectrum.
In addition, after the string friction era, there can be

friction on the walls from scattering with the bulk motion of
the plasma [32,131]. Like string friction, wall friction is
model dependent and gives rise to a temperature dependent
retarding force [32,80],

Fw ∼ −βwT4vR2; ð137Þ

where v is the velocity of the wall relative to the plasma, R
the wall curvature radius, and

βw ∼
X
i

wi
30ζð3Þ
π4

ð138Þ

characterizes the number of relativistic particles that scatter
with the scalar field composing the wall, and where wi ¼ 1
for bosons and 6=7 for fermions. If there are no particles
with mass m ≪ T in the bath that strongly scatter with the
scalar field of the wall, then βw ¼ 0, and the following
discussion is inapplicable. Likewise, if the only particles
that strongly scatter with the wall are of order vμ, such as
scalar field of the wall itself, βw quickly becomes expo-
nentially suppressed and the following discussion is inap-
plicable. If there exists such particles and βw ≳ 1, then the
balance of the friction force (137), with the wall tension
force F ∼ σR, gives the terminal velocity of the walls,

v ∼
4Gσt2

βwc2R
; ð139Þ

in a radiation dominated era. We now follow the discussion
of [32] but further generalize the authors’ results to the case
when t� ¼ tDW, which was not considered previously. The
wall friction scale is

Rf ∼ vt ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
4Gσt3

βwc2

s
; ð140Þ

whereas the string curvature of the infinite string-wall
network scales as R ∼ t in the scaling regime. Perturbations

9If the number of strings in the horizon at string formation time
tμ is sufficiently dilute such that ðGμ=β2sC2Þ1=4 ≲ RðtμÞ=tμ ≲ 1
[114,158], the strings are stretched with the scale factor
RðtÞ=tμ ¼ ξðt=tμÞ1=2, where ξ≡ RðtμÞ=tμ. Since the horizon
grows with t, the abundance of strings in the horizon increases
with time. For sufficiently large string densities within the
horizon, whether initially at tμ or after increasing in the stretching
regime, the curvature radius of strings enters the Kibble regime
with RðtÞ=tμ ∼ ðGμ=β2sC2Þ1=4ðt=tμÞ5=4, independent of whether
the strings start in the stretching regime or Kibble regime. Only at
the very beginning of the stretching regime, if ξ0 ∼ 1, or at the end
of the Kibble regime does R ∼ t, (the latter of which anyway
marks the end of the friction era) can Eq. (136) be satisfied and a
gastronomy signal be observed.
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on the wall larger than Rf remain stuck by friction, while
those smaller than R have been smoothed out by friction
and can move freely. At t ¼ t�, the wall dominates the
string dynamics, and normally, this would cause the walls
to pull the strings into the horizon and oscillate at constant
amplitude as discussed in Sec. VII B. However, the R > Rf

periphery of the wall and hence string boundary (which
goes along for the ride) is conformally stretched until Rf

equals the string radius, R ¼ Rðt�Þðt=t�Þ1=2, which occurs
at time t1 and curvature radius

t1 ∼
t�
δ

Rðt1Þ ∼
t�ffiffiffi
δ

p ; ð141Þ

where

δ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Gσt�
βwC2

s
; ð142Þ

valid for t� ¼ Rc or t� ¼ tDW. At time t1, the wall-bounded
string pieces cease being conformally stretched and oscil-
late at constant size. Nevertheless, the walls lose energy via
friction. The power lost to friction by the walls is

Pf ¼ Fwv ∼ −
βwc2

Gt2
Rðt1Þ2v2; ð143Þ

where v ¼ δ1=2ðt=t1Þ2 for t > t1 using Eqs. (139) and
(141). The integral of (143) gives the energy of the system
as a function of time,

EðtÞ ¼ Eðt1Þ −
1

3
Eðt1Þ

�
t3

t31
− 1

�
; ð144Þ

where Eðt1Þ ∼ σRðt1Þ2 ¼ Gσ2t31=βwC
2 is the initial energy

of the wall at t1. Equation (144) demonstrates that the walls
lose most of their energy in a Hubble time after t1. The
energy loss causes the size of the string-bounded walls to
shrink until they become relativistic, which occurs at
t2 ∼ t1, and, according to (139), at Rðt2Þ ∼ t�. At this point,
Eq. (144) is invalid, and we must return to Eq. (143) to
describe the power lost to friction by the relativistic wall-
string piece. If t� ¼ Rc, then the time at which the walls
become relativistic coincides with the moment the strings
return to dominating the dynamics of the shrinking wall-
bounded string piece, that is, R ≈ Rc when v becomes 1. If
t� ¼ tDW, then R > Rc when v becomes 1, and the walls
still dominate the dynamics. However, it is easy to see that
if the wall still dominates the dynamics for v ∼ 1, then the
curvature radius exponentially drops in time so that even
for the case t� ¼ tDW, the wall-bounded string pieces will
shrink to Rc at t ∼ t1.
But the shrinking can continue further. Once the string

dominates the dynamics and v ∼ 1, the integration of the

power loss, Eq. (143), gives the curvature radius of the
wall-bounded string piece as

RðtÞ ¼
�

1

Rðt2Þ
−
βwc2

Gμ

�
1

t
−

1

t2

��−1
; ð145Þ

which asymptotically shrinks to

Rfinal ¼
Gμt2
βwc2

¼ Rcδ: ð146Þ

For βw ≳ 1, δ ≪ 1 and the wall-bounded string pieces
shrink far below Rc and subsequently decay quickly via
gravitational radiation. In this scenario, the gastronomy
signal is again suppressed, even for t� ¼ Rc, unlike the case
for string friction. However, this is highly model dependent
and requires relativistic particles in the thermal bath to
scatter off the domain wall far past wall formation so that
βw ≳ 1 still at t1. If the only particles that scatter with the
wall have mass compared to vσ , then βw ≪ 1 by t1 so that
the wall friction becomes negligible, and the gastronomy
discussion of the previous subsections are unchanged.
Last, we mention that it is possible that the wall-bounded

string pieces can potentially lose energy from self-inter-
commutation when they oscillate, thereby chopping them-
selves into finer pieces. If this occurs, then the chopping is
likely to stop becoming important once the pieces slice and
dice themselves below R < Rc, at which point the strings
dominate the dynamics, and the wall-bounded string pieces
dynamically behave similar to pure string loops. If this
occurs, it only effects the t� ¼ tDW parameter space where
the wall-bounded string pieces can have curvature radii
R > Rc. Moreover, the final number of chopped pieces of
size Rc will be greater than the usual t� ¼ Rc cosmology
because the total energy in the wall-bounded string pieces
postchopping is similar to prechopping due to energy
conservation.10 Furthermore, for an asymptotic chopped
radius of R ∼ Rc, the lifetime of the chopped wall-bounded
string pieces is comparable to larger pieces with R > Rc
because the gravitational wave power at this radius is
approximately proportional to the wall mass so that the
lifetime is the same for string-bounded walls for any size
R≳ Rc. Thus, because the total energy density and lifetime
of the chopped pieces remains similar to the prechopped
pieces, the bump in the spectrum for t� ¼ tDW cosmologies
should stay roughly the same height, if there was no
chopping, but may be shifted to slightly higher frequencies
because the pieces are smaller than before.

10The total energy density of the system pre- and postchopping
may be somewhat smaller if the chopped pieces inherit a large
translation kinetic energy, which can be redshifted away by the
expansion of the Universe.
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VIII. TOPOLOGICAL DEFECTS WASHED
OUT BY INFLATION

Inflation exponentially dilutes all topological defects. This
is useful for removingmonopoles, for which even small relic
abundances are in tension with present-day cosmology.
However, other topological defects, such as superhorizon
strings and domain walls, dilute slower than the background
radiation and hence can replenish even after enduring many
e–folds of inflation. Examples of symmetry breaking chains
in Fig. 1, where this can occur, are

SOð10Þ → GSM × Z2

SOð10Þ → 3221D

since these chains “simultaneously” produce stable monop-
oles and strings and thus require the strings to be diluted by
inflation too.
Recentwork [72] found that if a string network forms early

in inflation, then the strings can replenish enough such that
bursts emanating from ultrarelativistic cusps can give an
observable signal at frequencies around pulsar timing arrays.
However, there is a limit to how many e–fold strings can be
diluted and still leave an observable signal.
Limits on monopole flux are most stringent for monop-

oles that catalyze baryon number violation. Such bounds on
the flux Φ are at no stricter than [159]

Φ≲ 10−28 cm−2 sr−1 sec−1; ð147Þ

which requires at least 30 e–foldings of inflation to dilute,
whereas strings can replenish after many more e–foldings
[72]—up to about 54.
Domain walls, in principle, can also replenish after being

diluted by inflation. The evolution of a domain wall
network can be estimated by taking a conservative initial
number density to be H3

I (the Kibble or scaling limit) and
the initial mass of a domain wall to be σ=H2

I , where HI is
the value of Hubble during inflation. After formation, the
domain wall is stretched by N e–foldings, and the number
density is diluted by a factor e−3N. Due to the superhorizon
size, the walls are conformally stretched with the evolution
of the curvature radius R stretching with the scale factor
until horizon reentry when HR ¼ 1. After horizon reentry,
that is when the domain wall size is the Hubble size, the
domain walls reach a scaling regime and ρDW ≈ σ=R ∝ 1=t,
which is slower than all other energy densities bar the
vacuum contribution. In order to not dominate the energy
density today and taking H ¼ 1013 GeV, domain walls
require nearly 100 e–foldings. In principle, if a small
amount of the energy budget today is from domain walls,
then a larger fraction could occur during recombination,
implying a larger expansion rate in the early Universe. We
leave the phenomenology of such a possibility to future
work.

IX. SUMMARY

In this work, we have studied the formation, evolution,
decay, and gravitational wave gastronomy signatures of
hybrid topological defects. These objects, composed of two
different dimensional topological defects bounded to each
other, come in two flavors: cosmic strings bounded by
monopoles and domain walls bounded by cosmic strings.
As shown in Fig. 1, these hybrid defects are common in
many breaking chains from SOð10Þ to the Standard Model.
As a result, if the early Universe reached sufficiently high
temperatures, then it is possible that hybrid defects were
once part of our cosmic history.
The relativistic motion of defects, and especially during

the “devouring” of one defect by the other, leads to
interesting gravitational wave signatures. We revisited
the gravitational wave spectrum of strings unstable toward
monopole pair creation in Sec. IV and found a range of
monopole and string symmetry breaking scales that are
observable at near-future gravitational wave detectors,
including within the recent NANOGrav and PPTA signal
region. Similarly, we estimated the gravitational wave
signal from domain walls unstable toward string holes
nucleating on their surface in Sec. VI. In both nucleation
cases, the gravitational wave spectrum prior to nucleation
behaves as a pure string or wall network, respectively. The
frequency dependence of the nucleation gastronomy sce-
narios are summarized in Table I.
Note that since nucleation is an exponentially suppressed

process, the defect can be long-lived, therefore, the scale
size of the topological defect at decay can be large and
hence emit in low frequencies observable at near future
gravitational wave detectors. Nevertheless, while nuclea-
tion gastronomy scenarios typically involve easier to detect
lower frequency gravitational waves, the likelihood of a
nucleation gastronomy may be challenging as it requires a
near degeneracy in symmetry breaking scales of the bulk
and boundary defects.

TABLE I. A summary of the different gastronomy signals and
the characteristic fingerprints of their gravitational wave spectra
at low (IR) and high (UV) frequencies. Since each gastronomy
signal has a unique combination of the spectral index in the IR
and UV, it is possible to map a gravitational wave spectrum to a
given gastronomy scenario and hence a subset of GUT symmetry
breaking chains.

Cosmic course IR UV

Monopoles eating string network
(nucleation)

f2 f0

Strings eating monopole network
(collapse)

f3 ln f → f−1

Strings eating domain wall network
(nucleation)

f3 f−1

Domain walls eating string network
(collapse)

f3 f0
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Other types of cosmological scenarios with hybrid
defects, such as a monopole network becoming connected
to (and eaten by) strings and string loops becoming filled
with (and eaten by) domain walls, do not require any fine-
tuning of the symmetry breaking energy scales. We con-
structed analytic models for these hybrid defects and found
that they predict gravitational waves typically at high
frequencies of order 101–10 Hz, which will be explored
by interferometers in some parts of parameter space, but
will typically need new experimental techniques to detect
the signal. Unlike nucleation, the gravitational wave signals
for these gastronomy scenarios are typically high frequency
because the hybrid defects decay around the time of string
or domain wall formation, respectively. This can occur in
the early Universe when the defects are physically small. If
future high frequency detectors can observe such a signal,
then they may be able to see unique spectral features as
shown in Table I or even a characteristic bump on top of a
pure string spectrum when domain walls eat strings. To
confirm our analytic models describing the hybrid defects
in this paper, numerical simulations will be needed.
Because all four gastronomy spectra are distinguishable

by their UV and IR frequency dependence, a measurement
around the peak of ΩGW can be used to determine the IR
and UV spectral dependence. In some cases this only
requires detecting the spectra over a relative small fre-
quency domain. It may then be possible to infer which of
the four types of cosmic courses generated ΩGW.
Knowledge of the gastronomy course thus elucidates the
hybrid defect which created that signal. Consequently,
knowing that a certain hybrid defect existed in the early
Universe can be used to narrow down the subset of GUT
symmetry chains that produce that hybrid defect.
Moreover, the amplitude and frequency dependence
ΩGW can be used to infer the scales of symmetry breaking
associated with “both” the boundary and bulk defects.
Thus, gravitational wave gastronomy has the ingredients to
infer many fundamental properties of nature.
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APPENDIX A: HOMOTOPY SELECTION RULES

As can be seen from Fig. 1, all hybrid defects from the
breaking of SOð10Þ involve a symmetry breaking chain
where the homotopy group of the first symmetry breaking
step has a higher group number n then the succeeding one,
e.g., for monopole-bounded strings, the monopoles form
prior to strings. In order to show that the feature is a generic
feature of any symmetry breaking group, we derive
homotopy selection rules leading to hybrid defects.
For any groups G ⊃ H ⊃ K, there is a fiber bundle11

H=K → G=K → G=H: ðA1Þ
It leads to the exact sequence of homotopy groups,

���→πnðH=KÞ→πnðG=KÞ→πnðG=HÞ
→πn−1ðH=KÞ→πn−1ðG=KÞ→πn−1ðG=HÞ→ ��� ðA2Þ

with each arrow indicating a homomorphism, whose image
is equal to the kernel of the following homomorphism. For
a topological defect of dimension k in three-dimensional
space, its stability is guaranteed by π2−k. If a defect is stable
at one step of symmetry breaking, then we need a nontrivial
π2−kðH=KÞ or π2−kðG=HÞ, while if it is unstable in the
whole theory, then we need π2−kðG=KÞ ¼ I. This tells us to
study a part of the exact sequence, (n ¼ 2 − k),

I ¼ πnðG=KÞ → πnðG=HÞ → πn−1ðH=KÞ; ðA3Þ

or

πnðG=HÞ → πn−1ðH=KÞ → πn−1ðG=KÞ ¼ I: ðA4Þ

In the first case (A3), the image of the homomorphism
between πnðG=KÞ and πnðG=HÞ is I. Thus, the kernel of
the homomorphism between πnðG=HÞ and πn−1ðH=KÞ is I,
implying the homomorphism is injective and hence
πnðG=HÞ ⊆ πn−1ðH=KÞ. Therefore, any element of
πnðG=HÞ at the first stage of symmetry breaking can be
“undone” by an element of πn−1ðG=KÞ at the second stage
of symmetry breaking, and hence a k-dimensional defect
formed at the first phase transition can be destabilized by a
(kþ 1)-dimensional defect formed at the second phase
transition. For example, a string can be filled with a wall, or
monopoles can be connected by a string to destabilize the
defect.
In the second case (A4), the kernel of the homomorphism

between πn−1ðH=KÞ and πn−1ðG=KÞ is πn−1ðH=KÞ. Thus,
the image of the homomorphism between πnðG=HÞ
and πn−1ðH=KÞ is πn−1ðH=KÞ and hence πnðG=HÞ ⊇
πn−1ðH=KÞ. Therefore, any element of πn−1ðH=KÞ at the
second stage of the symmetry breaking can be undone by an
element of πnðG=HÞ at the first stage of symmetry breaking,

11For a proof, see https://ncatlab.org/nlab/show/principal+bundle.
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and hence a (kþ 1)-dimensional defect formed at the second
phase transition can be destroyed by the production of a
k-dimensional defect formed at the first transition. For
example, a string can be cut by the nucleation of a
monopole-antimonopole pair, or a domain wall can be
punctured by the nucleation of a string-bounded hole.
In summary, the lower dimensional topological defect

(boundary defect) of a hybrid defect forms earlier than the
one-dimensional higher topological defect (bulk defect)
that it attaches to.

APPENDIX B: ACTION OF A STRING-BOUNDED
DOMAIN WALL

Here we derive the Lagrangian, (99), from Sec. VII. Since
the world volumes of the string and wall are invariant under
reparametrizations of the coordinates ζ, we choose a coor-
dinate systemon thewall and string such that ζ0 ¼ η; ζ1 ¼ θ,
ζ2 ¼ ρ,where0 ≤ θ < 2π parametrizes thepolar direction in
the plane of the wall, and 0 ≤ ρ ≤ ρstring parametrizes the
radial direction in the plane of thewall. ρstring is the boundary
of the wall located at the attached string, as shown in Fig. 17.
In this basis, Xμ ¼ ðη;XÞ, Yμ ¼ Xμjρstring , ð∂ρXÞ2 ¼ 1,
and ∂ρX · ∂θX ¼ 0.
The determinant of the induced metric on the wall may

be written as

γ¼a6ðηÞ

���������
1−ð∂ηXÞ2 −∂ηX ·∂θX −∂ηX ·∂ρX

−∂ηX ·∂θX −ð∂θXÞ2 0

−∂ηX ·∂ρX 0 −1

���������
ðB1Þ

¼ a6ðηÞ
γ2⊥;w

ð∂θXÞ2; ðB2Þ

wherewe define γ⊥;w ¼ ð1 − v2⊥;wÞ−1=2 as the Lorentz factor
formotion perpendicular to thewall. In going fromEqs. (B1)
and (B2), we decompose thewall velocity into perpendicular
and tangential motion, ∂ηX ¼ v⊥;wθ̂ × ρ̂þ vk, where vk ¼
ð∂ηX · ∂ρXÞj∂ρXj−1ρ̂þ ð∂ηX · ∂θXÞj∂θXj−1θ̂. As indicated
by Eq. (B2), only the motion perpendicular to the wall is
physical and any use of “vw” in the text means v⊥;w.
Similarly, the determinant of the induced metric on the
string world sheet is

ϒ ¼ a4ðηÞ
���� 1 − ð∂ηYÞ2 −∂ηY · ∂θY

−∂ηY · ∂θY −ð∂θYÞ2
���� ðB3Þ

¼ a4ðηÞ
γ2⊥;s

ð∂θYÞ2; ðB4Þ

where Y ¼ Xðθ; ρstringÞ, and γ⊥;s ¼ ð1 − v2⊥;sÞ−1=2 is the
Lorentz factor for motion perpendicular to the string, which
will dominantly be in the tangent plane of the wall when the
wall dominates the string dynamics. As a result of Eqs. (B2)
and (B4), the combined action of the domain wall and string
system (98) becomes

S ¼ −σ
Z

dη
Z

2π

0

dθ

���� dXdθ
����
Z

ρstring

0

dρ
a3ðηÞ
γ⊥;w

− μ

Z
dη

Z
2π

0

dθ

���� dYdθ
���� a2ðηÞγ⊥;s

: ðB5Þ

Because the eating of the wall by the string converts wall
rest mass energy to string kinetic energy, we expect
γ⊥;s > γ⊥;w ∼ 1,12 and for the string velocity v⊥;s to be
directed in the tangent plane of the wall. As a result, we
analyze Eq. (B5) in the limit γ⊥;w → 1, where the
perpendicular wall velocity is small and subdominant com-
pared to the string velocity. In addition, we take the string
boundary to be a circular loopY ¼ rs of coordinate radius rs
[physical radius Rs ¼ rsaðηÞ], though we do not expect
more realistic loops that are not perfectly circular to behave
quantitatively different since the key relationship between
wallmass and string radius,MDW ∼ σjRsj2, will still hold for
more complicated loop geometries, and it is this energy
which is transferred to the string as kinetic energy. Under

FIG. 17. Coordinate parametrization of a wall-bounded string.
The coordinates ξ1 ¼ ρ and ξ2 ¼ θ are orthogonal and para-
metrize the radial and azimuthal directions in the plane of the
wall, respectively. The string lies on the boundary of the wall at
the coordinate ρstring.

12Simulations of domain walls without strings, which do not
transfer any mass energy into string kinetic energy, only have
perpendicular rms velocities mildly relativistic, v⊥;w ∼ 0.3 [143],
while pure string loops have intermediate rms velocities
v⊥;s ¼

ffiffiffi
2

p
≃ :707. Strings attached to walls become even more

relativistic from the conversion of wall rest mass to string kinetic
energy during the eating process (see Fig. 12), which makes this
approximation better. Only for enclosed domain walls without
strings, or vacuum bags, which collapse relativistically under
their own tension, do we expect v⊥;w to be significant.
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these assumptions, we obtain the Lagrangian for a domain
wall disc with a circular string loop boundary in Eq. (99).
For a nucleated string hole, the string forms the inner

boundaries of a domain wall, and the integration over the
radial coordinate ρ in Eq. (B5) then begins at ρ ¼ ρstring
up to some arbitrary bulk ρ. The effect is thus a relative

minus sign in the Lagrangian Eq. (99) between the string
and domain wall terms. In a nonexpanding universe, or
for subhorizon times and distances, the solution to the
Euler-Lagrange equation of motion is the relativistic
rocket, of Eq. (B5), which is in agreement with results
found in [80].
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