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We propose an extra-dimension framework on the orbifold S1=Z2 to understand the origin of the fermion
mass and mixing hierarchies. Introducing the flavor symmetryGFð¼non-Abelian × AbelianÞ as well as the
extra gauged Uð1Þ symmetries through the bulk, we regard the SUð2Þ-singlet and -doublet fermions in the
Standard Model (SM) to be localized at the separate 3-branes and let the extra SUð2Þ-singlet flavored
fermions in the bulk couple to the SM fermions at the 3-branes. The extraUð1Þ symmetries satisfy theUð1Þ
gravitational anomaly free condition, playing a crucial role in achieving the desirable fermion mass and
mixing hierarchies and making the flavored axion naturally light. The singlet scalar fields, the flavon fields,
are responsible for the spontaneous breaking of GF on the two 3-branes, while the SUð2Þ-singlet flavored
fermions are integrated out to give rise to the effective Yukawa couplings for the SM fermions endowed with
the information of GF breaking in the two sectors. The flavored axion from the Peccei-Quinn symmetry is
also proposed for solving the strong CP problem and being a dark matter candidate in our model.
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I. INTRODUCTION

The observed hierarchies in the masses and mixings of
quarks and leptons are one of the most puzzling problems
in particle physics. A plausible explanation is to introduce a
new gauge symmetry which is spontaneously broken at
some ultraviolet (UV) scale and leaves behind its global
subgroup. In this case, in the low-energy effective theory,
the symmetry structure is composed of the Standard Model
(SM) gauge symmetry GSM ¼ SUð3ÞC × SUð2ÞL ×Uð1ÞY
and a remnant global symmetry which plays an essential
role in making desirable flavor structure of quarks and
leptons [1]. It is known that flavor-dependent Uð1Þ gauge
symmetries and/or non-Abelian discrete symmetries can
arise from the isometry of the compactified extra dimen-
sions in string theory. In addition, the compactification
of the extra dimensions can be accompanied by certain
3-branes [four-dimensional (4D) surfaces embedded in
higher-dimensional spaces] [2].
Inspired by some string compactifications, in this paper,

we propose a mechanism for generating the fermion
mass and mixing hierarchies in the extra-dimension frame-
work with the flavor symmetry. The extra gauged Uð1Þ

symmetries are also introduced under the Uð1Þ gravitation
anomaly free condition, and they are crucial to achieve the
desirable fermion mass and mixing hierarchies in this
scenario. These are the features in this work which are
distinguishable from other approaches to tackle the flavor
problem in the extra-dimension framework [3–16]. A simple
toy model with vectorlike leptons for seesaw leptons has
been recently proposed in light of the muon g − 2 anomaly
[17], but without involving a flavor symmetry.
For our purpose,we construct a higher-dimensional theory

compactified on the orbifold S1=Z2 with a global symmetry
group for flavors GF ¼ Uð1Þ × non-Abelian finite group,
which might be originated from certain string compactifi-
cations. A set of SM gauge singlet scalar fields F charged
under GF, the so-called flavon fields, are located at two
3-branes in the extra dimension. In the 4D effective
Lagrangian, the flavor fields act on dimension-four (-three)
operators well sewed by GF ×GSM at different orders to
generate the effective interactions for the SM and the right-
handed neutrinos as follows:

L4D ¼ c̃1O3FX̃ þO4

Xfinite
n¼0

cn

�
F
M5

�
n
Xn; ð1Þ

whereO3ð4Þ are dimension-three (-four) operators, c̃1ðcnÞ are
the complex coefficients of order unity, and X̃ðXnÞ are
dimensionless parameters induced due to the nonlocal effects
by the exchange of bulk messenger fields. F acquires
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vacuum expectation values (VEVs) hF i from some dynam-
ics, thereby breakingGF. The information ofGF breakdown
is transmitted to the two 3-branes via the mediation of bulk
messenger fields, and then the observed SM fermion mixing
and mass can naturally be generated from the 4D effective
theory. The vacuum structure of the flavons plays a crucial
role in achieving the SM fermion mass and mixing hier-
archies. We remark that Eq. (1) is constructed in a super-
symmetric frameworkmainly because the holomorphy of the
superpotential is needed to generate the desirable Yukawa
textures of the charged fermions which lead to the right
hierarchies of the charged-fermionmasses andmixing for the
given flavor symmetrywe consider in thiswork.We take into
account a minimal supersymmetric model with flavon super-
fields where the hierarchy problem concernedwith theHiggs
boson is alleviated.
As a bonus in our scenario, the pseudo-Goldstone modes

coming from the flavon fields are localized on the 3-branes,
becoming candidates for flavored axions Ai (and a QCD
axion) [18] with decay constants determined by hF i.
However, it is well known that nonperturbative quantum
gravitational anomaly effects [19] could spoil the axion
solution to the strong CP problem. In order to keep the
axion solution in our scenario, we need to suppress the
explicit breaking effects of the axionic shift symmetry by
gravity and consistently couple gravity to matter. To this,
we impose the Uð1Þ-mixed gravitational anomaly free
conditions for the extra gauged Uð1Þ symmetries, in turn,
obtaining the constraints on theUð1Þ charges of quarks and
leptons. Moreover, assuming that the low-energy effective
neutrino mass is generated by the usual seesaw mechanism
[20], the seesaw scale can be congruent to a flavored-axion
decay constant where the right-handed neutrinos acquire
Majorana masses when GF is broken.

II. FLAVOR PHYSICS EMBEDDED
INTO 5D THEORY

We consider a 5D theory for flavors compactified on the
orbifold S1=Z2 where the extra dimension on the circle S1 is
identified ywith −y [21]. The orbifold fixed points at y ¼ 0
and y ¼ L, the boundaries of the 5D spacetime, are the
locations of two 3-branes. We assume that all the ordinary
matter fields are localized at either brane, and they are
charged under the flavor symmetry GF. We specify GF ¼
SL2ðF3Þ ×Uð1ÞX where SL2ðF3Þ is the symmetry group of
the double tetrahedron [22].
The metric solution to the 5D Einstein equations

respecting the 4D Poincaré invariance in the xμ direction
is given by

ds2 ¼ e2σðyÞημνdxμdxν − dy2; ð2Þ

where the extra dimension is compactified on an interval
y ∈ ½0; L�, the warp factor is given by σðyÞ ¼ ky with

k ¼
ffiffiffiffiffiffiffiffiffiffiffi
− Λ

6M3
5

q
> 0 and Λ being the bulk cosmological

constant, and the 4D Minkowski flat metric is ημν ¼
diagðþ;−;−;−Þ. Note that, in Eq. (2), we can always
take σð0Þ ¼ 0 by rescaling the xμ coordinates. Then, the 4D
reduced Planck mass MP ≃ 2.43 × 1018 GeV can be
extracted in terms of the 5D Planck mass M5 as

M2
P ¼ M3

5

Z
L

−L
dy e2σðyÞ ¼ M3

5

k
ðe2kL − 1Þ; ð3Þ

where M5 is assumed to be higher than the electroweak
scale, but M5 and k are lower than MP. Then, the scale of
flavor dynamics would be given by the UV cutoff M5.
While the warped background in our scenario does not

play a role in addressing the hierarchy problem studied in
Ref. [21], the supersymmetry (SUSY) can alleviate the
problem. As shown later, warped geometry makes charged-
fermion masses dependent on the warping factor σðLÞ.
Although it is possible to embed a flavor symmetryGF into
flat extra-dimensional framework, we construct our model
in the framework of the warped geometry so that the mass
of bulk messenger fieldsMi should be positive and inverted
ordering (M1 > M2 > M3), which leads naturally to fer-
mion mass hierarchies as shown in Sec. VI. Note that it is
not guaranteed to satisfy the positiveness of Mi as well as
the Uð1Þ-mixed gravitational anomaly free conditions for
the Uð1Þ quantum numbers of the fields assigned in this
model unless they are embedded in warp geometry. The
compactification length L is associated with the VEV of a
massless 4D scalar field. However, this modulus field has
zero potential, and consequently, L is not determined by the
dynamics of the model. As discussed in [23,24], the value
of L can be stabilized with the help of a scalar potential
generated by a newly introduced bulk scalar with inter-
action terms that are localized to the two 3-branes.
However, the study of such a potential to guarantee the
stability is beyond the scope of this paper. As will be shown
later, in our scenario, L can be predicted in terms of a
nonlocal model parameter by flavor physics.
Now, let us consider a concrete model for low-energy

effective theory by introducing bulk fermions propagating
in a 5D space with the metric Eq. (2). They are singlets
under SUð2Þ with hypercharges Yf and masses Mfi , and
interact with the normal matter fields confined at the y ¼ 0
or y ¼ L brane. Bulk fermions with common hypercharges
can be distinguished by quantum numbers of a flavor
symmetry GF that acts on flavor fields in a theory. Hence,
we refer to the bulk fermion as a flavored bulk fermion. To
keep electric charge conservation, we introduce two kinds
of SUð2Þ-singlet flavored bulk fermions Ψfi and their
mirror partners Ffi charged under GSM ×GF, and they are
distinguishable only by the opposite hypercharge of each
other. Here, fi ¼ ui (up-type quark), di (down-type quark),
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and l (charged lepton). While Ψfi interact with the normal
matter fields confined at the y ¼ 0 or L brane, Ffi does not
do so due toUð1ÞY symmetry. The exchange of the flavored
bulk fermions between the two 3-branes can provide
nonlocal interactions between right- and left-handed SM
fermions, as can be seen in Eqs. (28) and (29). This is the
origin of the fermion Yukawa couplings in the 4D effective
Lagrangian.
As shown in Refs. [25,26], there is no anomaly in the five-

dimensional bulk, and the anomaly on the orbifold fixed
points y ¼ 0; L is entirely independent of the shape of the
chiral modes. Hence, in the five-dimensional bulk, the
associated gauge anomalies will be automatically canceled
due to the mirror charges of flavored bulk fermions. Unlike
Ref. [23], in this work, the compactification length L can be
constrained thanks to the introduction of flavored bulk
fermions. Under the flavor symmetry GF, that is,
SL2ðF3Þ ×Uð1ÞX, we assign the lepton bulk fermion

denoted as Ψl (its mirror Fl) to (3;−13X1=2); the u-type
bulk fermions denoted asΨu1 ;Ψu2 , andΨu3 (its mirrors Fui )
to ð1;−6X1Þ, ð10;−6X1Þ, and ð100; 0Þ, respectively; d-type
bulk fermions denoted asΨd1 ;Ψd2 , andΨd3 (its mirrors Fdi )
to ð1;−5X1Þ, ð10;−5X1Þ, and ð100; 3X1Þ, respectively.
And under the SM gauge symmetry, that is, GSM ¼
½SUð3ÞC × SUð2ÞL�Uð1ÞY , we assign Ψl and Fl to ð1; 1Þ−1
and ð1; 1Þ1, respectively, Ψui and Fui to ð3; 1Þ2=3 and
ð3; 1Þ−2=3, respectively, and Ψdi and Fdi to ð3; 1Þ−1=3 and

ð3; 1Þ1=3, respectively. In Table I, for flavon fields F ¼
ΦS;ΘðΘ̃Þ;ΦT; ρ; η; χ; χ̃ and flavored bulk fermions Ψf, we
present the representations of SL2ðF3Þ and quantum charges
under Uð1ÞX1

×Uð1ÞX2
×Uð1ÞXT

.
The brane-localized superpotential for the driving flavon

fields having Uð1ÞR charge þ2 invariant under GSM ×
SL2ðF3Þ ×Uð1ÞX is given at orders up to ð1=M3

5Þ by

Wv ¼ δðyÞfΦS
0ðgs1ΦSΦS þ gs2Θ̃ΦSÞ þ Θ0ðgΘ1

ΦSΦS þ gΘ2
ΘΘþ gΘ3

ΘΘ̃þ gΘ4
Θ̃ Θ̃Þg

þ δðy − LÞ
�
ΦT

0

�
μTΦT þ gTΦTΦT

ϱ

M5

þ gTχΦT
χχ̃

M5

þ
X3
i¼1

gTi
ΦTðΦTΦTÞ

ϱ2

M3
5

�

þ ϱ0

�
μϱϱþ gϱχχχ̃

ϱ

M5

þ gϱ1ðχχ̃Þ2
ϱ

M3
5

þ gϱ2ΦTΦT
ϱ3

M3
5

�
þ η0

�
μηηþ gηηΦT

ϱ

M5

þ gη1ηΦT
χχ̃

M3
5

ϱ

�

þ χ0ðgχχχ̃ − μ2χ þ gχ1ΦTΦT
ϱ2

M2
5

þ gχ2

�
ηηÞ3ΦT

ϱ

M2
5

��
; ð4Þ

where μi are dimensionful parameters, and gi are dimension-
less coupling constants. Note that there are no local higher-
dimensional operators induced by the flavon fields ΦS and
ΘðΘ̃Þ localized at the y ¼ 0 brane due to the charge
assignment of Uð1ÞX. Nonlocal higher-dimensional brane
interactions via the one-loop exchange of the flavored bulk
fermions, such as Eq. (D1), are allowed but absorbed into the
leading-order terms of Eq. (4) by the redefinition of coef-
ficients. Because of the assignment of quantum numbers
under SL2ðF3Þ ×Uð1ÞX × Uð1ÞR, the usual superpotential

term μHHuHd is not allowed, while the following operators
driven by Θ0 and ΦS

0 are allowed due to the separation
achieved by means of an extra dimension,

δðyÞ
�
gS0Φ

S
0

ΦSΘ
M2

5

þ gΘ0
Θ0

�
Θ
M5

�
2
�
HuHd: ð5Þ

WhenΦS
0 and Θ0 get VEVs, the operators (5) generate the μ

term μH ¼ ðgS0hΦS
0i3vSvΘ þ gΘ0

hΘ0iv2ΘÞ=ð2M2
5Þ of the or-

der ofmSv2Θ=M
2
5 withmS being soft SUSYbreakingmass. In

the SUSY limit, the driving fields develop zero vacuum
structures along the flat directions, but they are corrected to
be of ordermSwhen theSUSYbreaking effect lifts up the flat
directions.
The flavor symmetry GF is spontaneously broken by the

nontrivial VEVs of flavons. Note that the Uð1Þ charges of
the fields are determined so as to satisfy the Uð1Þ
gravitation anomaly free condition and the empirical
hierarchies of fermion masses and mixings. For instance,
in a supersymmetric model, the brane-localized super-
potential for flavons with GF invariance is given in
Eq. (4). From the minimization conditions of the F-term
scalar potentials, the VEVs of ΦS and Θ̃ localized at the
y ¼ 0 brane are obtained

TABLE I. Representations and quantum charges of SM singlet
flavon fields and bulk fermions under GF.

Field SL2ðF3Þ Uð1ÞX1
Uð1ÞX2

Uð1ÞXT
Brane (y)

ΦS: ΘðΘ̃Þ 3∶1 1 0 0 0
ΦT : ϱ 3∶1 0 0 1, −1 L
η 20 0 0 0 L
χ, χ̃ 1 0 1;−1 0 L

Ψl 3 −13=2 0 0
Ψu1∶Ψd1 1 −6: −5 0 0
Ψu2∶Ψd2 10 −6: −5 0 0
Ψu3∶Ψd3 100 0: 3 0 0
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hΦSi ¼
vSffiffiffi
2

p ð1; 1; 1Þ; hΘi ¼ vΘffiffiffi
2

p ; hΘ̃i ¼ 0; ð6Þ

and κ ¼ vS=vΘ in supersymmetric limit. For ΦT, ϱ, χðχ̃Þ,
and η localized at the y ¼ L brane,

hΦTi ¼
vTffiffiffi
2

p ð1; 0; 0Þ; hϱi ¼ vϱffiffiffi
2

p ;

hχi ¼ hχ̃i ¼ vχffiffiffi
2

p ; hηi ¼ vηffiffiffi
2

p ð1; 0Þ: ð7Þ

Denoting ΔF ≡ vF=ð
ffiffiffi
2

p
M5Þ and following the procedure

in Ref. [27], we obtain

ΔΘ ¼ ΔS=κ ¼ jδG1 =δG2 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1þ κ2Þ

q
Δχ: ð8Þ

The complex scalar fields are decomposed as follows:

ΦTi
¼ vTffiffiffi

2
p ei

AT
fT

�
1þ hT

vT

�
; ϱ¼ vϱffiffiffi

2
p e−i

AT
fT

�
1þ hϱ

vϱ

�
;

ΦSi ¼
ei

ϕS
vSffiffiffi
2

p ðvS þ hSÞ; Θ¼ ei
ϕθ
vΘffiffiffi
2

p ðvΘ þ hΘÞ;

χ ¼ vχffiffiffi
2

p ei
ϕχ
vg

�
1þ hχ

vg

�
; χ̃ ¼ vχ̃ffiffiffi

2
p e−i

ϕχ
vg

�
1þ hχ̃

vg

�
; ð9Þ

where we have set ΦS1 ¼ ΦS2 ¼ ΦS3 ≡ΦSi, and radial

modes hχ ¼ hχ̃ in the supersymmetric limit, and vg ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2χ þ v2χ̃

q
and fT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2T þ v2ϱ

q
. In addition, pseudo-

Goldstone modes A1 and A2 are expressed in terms of
the angular fields ϕS, ϕθ, and ϕχ as A1 ¼ vSϕSþvΘϕθ

vF
and

A2 ¼ ϕχ with vF ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2S þ v2Θ

p
¼ vΘ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
. Under the

Uð1ÞX transformations, the flavored axion Ai shifts into
Ai → Ai þ Faiξi, where Fai ¼ fai=δ

G
i (i ¼ 1, 2) with

ξ1 ¼ δG2 α and ξ2 ¼ −δG1 α (α is a transformation parameter),
whereas AT shifts into AT → AT þ fTξT .
All ordinary matter and Higgs fields charged under GSM

are localized at either brane. Thanks to the orbifold com-
pactification,we set all elementary fermions froma chiral set.
Then, all SMSUð2Þ singlets such as right-handedquarks (qc)
and right-handed charged leptons (lc) are localized at the
y ¼ L brane, while SUð2Þ doublets such as left-handed
quarks (Qi), left-handed leptons (L), and two electroweak
Higgs HuðdÞ are localized at the y ¼ 0 brane. Under
½SL2ðF3Þ ×Uð1ÞX�Uð1ÞY , we assign the left-handed quark
SUð2ÞL doublets denoted asQ1,Q2, andQ3 to ð1;−8X1Þ1=6,
ð10;−6X1Þ1=6, and ð100; 0Þ1=6, respectively, while the right-
handed up-type quark SUð2Þ singlets are assigned as Uc ¼
fuc; ccg and tc to ð20; 6X1 − 6X2Þ−2=3 and ð10; 11X2Þ−2=3,
respectively, and the right-handed down-type quarks Dc ¼
fdc; scg and bc to ð20; 5X1 − 14X2Þ1=3 and ð10;−3X1þ
18X2Þ1=3, respectively, which are summarized in Table II.
The brane-localized Yukawa superpotentials for up- and
down-type quark fields and lepton fields invariant under
GSM × SL2ðF3Þ ×Uð1ÞX are constructed as

Wu
q ¼ δðyÞ

��
Yu
33Ψc

u3Q3 þ Yu
22Ψc

u2Q2 þ Yu
11Ψc

u1Q1 þ ðYu
21Ψc

u2Q1 þ Yu
31Ψc

u3Q1 þ Yu
32Ψc

u3Q2Þ
ðΦSΦSÞ
M2

5

�
Hu

�

þ δðy − LÞ
�
Ŷt3tcΨu3 þ

�
Yu2ðUcηÞ þ Ỹu2

�
Ucη

ΦTϱ

M2
5

��
Ψu2

þ Ȳu2

�
Ucη

ηη

M2
5

�
Ψu2 þ

�
Yu1

�
Ucη

ΦTϱ

M2
5

�
þ Ỹu1

�
Ucη

ηη

M2
5

��
Ψu1

�
; ð10Þ

Wd
q ¼ δðyÞ

�
½Yd

33Ψc
d3Q3 þ Yd

22Ψc
d2Q2 þ Yd

11Ψc
d1Q1�Hd þ ½ðYd

21Ψc
d2 þ Yd

31Ψc
d3ÞQ1ðΦSΦSÞ þ Yd

32Ψc
d3Q2ðΦSΦSÞ�

Hd

M2
5

�

þ δðy − LÞ
�
Ŷb3bcΨd3 þ Yd2ðDcηÞΨd2 þ Ỹd2

�
Dcη

ΦTϱ

M2
5

�
Ψd2 þ Ȳd2

�
Dcη

ηη

M2
5

�
Ψd2

þ Yd1

�
Dcη

ΦTϱ

M2
5

�
Ψd1 þ Ỹd1

�
Dcη

ηη

M2
5

�
Ψd1

�
; ð11Þ

TABLE II. Representations of quark, lepton, and electroweak
two Higgs HuðdÞ fields under SL2ðF3Þ × Uð1ÞXi

(i ¼ 1; 2; T). All
fields are left-handed particles/antiparticles. All of them have
zero Uð1ÞR.

Field SL2ðF3Þ Uð1ÞX1
Uð1ÞX2

Uð1ÞXT
Brane

Q1, Q2, Q3 1 10 100 −8, −6, 0 0, 0, 0 0, 0, 0 y ¼ 0
Dc, bc 20 10 5, −3 −14, 18 0, 0 y ¼ L
Uc, tc 20 10 6, 0 −6, 11 0, 0 y ¼ L
L 3 − 15

2
0 0 y ¼ 0

ec, μc, τc 1, 100, 10 13
2
, 13

2
, 13

2
41, 31, 27 −2, 1, 1 y ¼ L

Nc 3 − 1
2

0 0 y ¼ 0

HuðdÞ 1 0 0 0 y ¼ 0
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Wl ¼ δðyÞ
�
YLðΨc

lLÞHd þ ðyνðNcLÞ þ ỹνðNcLÞΦSÞ
Hu

M5

þ 1

2
yRðNcNcÞΦS þ

1

2
ðyΘΘþ yΘ̃Θ̃ÞðNcNcÞ

�

þ δðy − LÞ
�
Yeec

�
Ψl

ΦTΦT

M5

�
þ Ỹeec

�
Ψl

ΦTΦT

M5

��
ΦTϱ

M2
5

�
þ Yμμ

cðΨlΦTÞ
ϱ2

M2
5

þ Ỹμμ
c

�
Ψl

ηη

M2
5

�
ϱþ Yττ

cðΨlΦTÞ
ϱ2

M2
5

þ Ỹττ
c

�
Ψl

ηη

M2
5

�
ϱ

�
: ð12Þ

In the above superpontentials, YuðdÞ
ij , ỸuðdÞi, ȲuðdÞi, and YuðdÞi

for i, j ¼ 1, 2, 3, as well asYLðlÞ and Ỹl havemass dimension

−1=2, whereas ŶuðdÞi has mass dimensionþ1=2. Notice that
they are composed of combinations of the flavon fields in
such a way that the associated Yukawa interaction terms are
neutral under the charge assignments of Uð1ÞX × SL2ðF3Þ
given in Table II. Then, after flavons and Higgs fields get
VEVs, the corresponding Yukawa terms result in the masses
of the charged fermions as presented in Eq. (C2) with
Eq. (C1). TheYukawa couplingsyi (ỹi) havemass dimension
zero.
Clearly, it shows that SM fermions localized at the two

branes could form ordinary interactions between left- and
right-handed fermions via the exchange of their flavored
bulk fermions. Then, the action for quark and lepton fields
localized on the branes reads

SY ¼
Z

d4xdy
ffiffiffi
g

p �Z
d2ϑðWu

qþWd
qþWlÞþH:c:

�
; ð13Þ

where ϑ is a Grassmann variable having mass dimension
−1=2. Note that after spontaneous SL2ðF3Þ ×Uð1ÞX
breaking, all other higher-dimensional operators localized
at the two branes can be absorbed by redefining the
coupling constants, and thus they cannot change the
patterns of quark and lepton mass matrices at leading
operators shown in Eqs. (10)–(12).
All ordinary matter and Higgs fields charged under GSM

with þ1 and 0 charges under Uð1ÞR, respectively, are
localized at either brane. Then, all the SM fermion
mixings and masses can be generated by nonlocal effects
involving both branes and local breaking effects ofGF due
to flavon fields. For the orbifold compactification, we set
all elementary fermions from a chiral set, and their group
representations and quantum numbers are summarized in
Table II. From the Uð1ÞXk

× ½SUð3ÞC�2 anomaly coeffi-
cient defined by

δGk δ
ab ¼ 2

X
ψf

Xkψf
TrðTaTbÞ; ð14Þ

in the QCD instanton backgrounds where the Ta are the
generators of the representation of SUð3ÞC to which Dirac

fermion ψf belongs with X-charge, we get δG1 ¼ −9 and
δG2 ¼ −11 with the domain-wall number NDW ¼ 1. In this
model, Uð1ÞX1

×Uð1ÞX2
≡ Uð1ÞX̃ is a pure axial sym-

metry Uð1ÞPQ. Under the Uð1ÞPQ transformation, the

QCD axion field A shifts into A → Aþ fA
NC

α with
fA
NC

¼ faiffiffi
2

p
δGi
≡ FA, where FA is the QCD axion decay

constant, and fA ¼ ffiffiffi
2

p
δG2 fa1 ¼

ffiffiffi
2

p
δG1 fa2 with fa1 ¼

jX1jvF ¼ ffiffiffi
2

p jX1jvχ and fa2 ¼ jX2jvg ¼ jX2jvΘ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
.

Below the Uð1ÞPQ symmetry breaking scale, the effective
interaction of the QCD axion is expressed via the chiral

Uð1ÞX̃ rotation ψf → eiγ5X̃ψf
α=2ψf with X̃ψf

¼ δG2 X1ψf
þ

δG1 X2ψf
as

Leff ⊃
�
ϑeff þ

A1

fa1
δG1 þ A2

fa2
δG2

�
g2s

32π2
GμνaG̃a

μν

≡
�
ϑeff þ

A
FA

�
g2s

32π2
GμνaG̃a

μν; ð15Þ

where Ga
μν is the gluon field strength tensor with a being

an SUð3Þ-adjoint index and G̃a
μν is its dual. The Uð1ÞXi

is
broken down to its discrete subgroup ZNi

in the back-
grounds of the QCD instanton, and the quantities Ni
(nonzero integers) associated with the axionic domain
wall are given by N1 ¼ 2jδG1 j ¼ 18 and N2 ¼ jδG2 j ¼ 11

such that no axionic domain-wall problem occurs at the
QCD phase transition. A color anomaly coefficient NC of
Uð1ÞX̃ × ½SUð3ÞC�2 and an electromagnetic one EA of
Uð1ÞX̃ × ½Uð1ÞEM�2 are defined by NC ≡ 2Tr½X̃ψf

TaTa� ¼
2δG1 δ

G
2 and EA ¼ 2

P
ψf

X̃ψf
ðQem

ψf
Þ2 with Qem

ψf
being the

Uð1ÞEM charge of field ψf, respectively. Then, their ratio
becomesEA=NC ¼ −761=99. On the other hand, an anoma-
lousUð1ÞXT

is embedded only in the lepton sector, as shown
in Table II, with an electromagnetic anomaly coefficient
ET ≡ 2

P
l XlðQem

l Þ2 of the Uð1ÞXT
× ½Uð1ÞEM�2. As

shown inAppendixA, an explicit breaking term can generate
a mass term making the axionlike particle (ALP) a pseudo-
Goldstone boson AT .
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III. 4D EFFECTIVE THEORY
FOR FLAVOR PHYSICS

Consider the 5D action for flavored bulk fermions
Ψfiðx; yÞ with large bulk fermion masses Mfi (f ¼ u; d;l
and i ¼ 1, 2, 3)

SΨ ¼
Z

d4xdy
ffiffiffi
g

p
Ψ̄fi

�
i
2
eMA ΓAD

↔

M þMfiðyÞ
�
Ψfi; ð16Þ

where the 5D metric gMN is decomposed into vierbeins eAM:
gMN ¼ ηABeAMe

B
N , ΓA ¼ ðγμ; iγ5Þ, and ΓA ¼ ðγμ;−iγ5Þ sat-

isfy the Dirac-Clifford algebra fΓA;ΓBg ¼ 2ηAB, where
ηAB is the 5D flat metric ¼ diagðημν;−1Þ. In terms of
Ψfiðx; yÞ, the Kaluza-Klein (KK) wave functions for the
left- and right-handed bulk fermions forming a complete
orthogonal set

ΨfiLðRÞðx; yÞ ¼
e−

3
2
σðyÞffiffiffiffi
L

p
X
n

ψn
fiLðRÞðxÞfniLðRÞðyÞ ð17Þ

are chosen to obey the 4D equation of motion

S ¼
X
n

Z
d4xψ̄n

i ðiγμDμ −mn
fÞψn

fi
; ð18Þ

where mn
f is the 4D mass of the nth KK mode, with the

normalization condition 1
L

R
L
0 dyfmiLðRÞf

n
iLðRÞ ¼ δmn. We

choose a gauge A5 ¼ 0 such that the KK modes are
independent of the gauge fields. We vary the total action
including Eqs. (13) and (16) and obtain the following
equation of motion (EOM) and boundary condition by
requiring δS ¼ 0 for any δΨ̄fi : The EOM is

ie−σγμDμΨfi − γ5∂yΨfi −
1

2
ð∂yσÞγ5Ψfi þMfiΨfi ¼ 0;

ð19Þ
and the boundary condition is given by

δSsurfaceΨ þ δSY ¼ 0; ð20Þ

where δSsurfaceΨ ¼ 1
2

R
d4xe4σδΨ̄fiγ5Ψfijy¼L

y¼0 coming from
Eq. (16). Notice that the action for the quarks and leptons
in Eq. (13) is localized at the branes. Plugging Eq. (17) into
Eq. (19), we obtain

ie−σγμDμψ
n
fi
ðxÞfni ðyÞ

¼ γ5∂yfni ðyÞψn
fi
ðxÞ

þ 1

2
σ0γ5ψn

fi
ðxÞfni ðyÞ −Mfiψ

n
fi
ðxÞfni ðyÞ; ð21Þ

where σ0 ¼ ∂yσ. Using Eq. (18), Eq. (21) can be decom-
posed in terms of left- and right-handed spinors fniL;R,�

∂y þ
1

2
σ0 −Mfi

�
fniRðyÞ ¼ e−σmn

ff
n
iLðyÞ;�

∂y þ
1

2
σ0 þMfi

�
fniLðyÞ ¼ −e−σmn

ff
n
iRðyÞ: ð22Þ

The nonzero KK modes can be obtained by solving the
first-order coupled equations of motion Eq. (22) for the
Dirac component profiles fniLðRÞ, giving the 4D KK mass

spectrum for n ≥ 1, mn
f ∼ ke−kL if kL ≫ 1; see Ref. [28].

At low energies, i.e., when E ≪ 1=L, only the zero mode is
important, while at higher energies E≳ 1=L, all the KK
modes become essential. Since we are interested in the
energy scale much lower than 1=L, the 4D covariant
derivative term in Eq. (21) can be negligible. Then, by
setting Mfi ¼ constant, we approximately get

f0iRðyÞ ≈ f0iRðLÞe
1
2
½σðLÞ−σðyÞ�−Mfi

ðL−yÞ;

f0iLðyÞ ≈ f0iLð0Þe−
1
2
σðyÞ−Mfi

y: ð23Þ

Choosing

δfniLð0Þ ¼ δfniRðLÞ ¼ 0 ð24Þ

as boundary conditions, all the left-handed and right-handed
KK modes of Ψfi would vanish, respectively, at the y ¼ 0

brane and at the y ¼ L brane, without mixing mass terms
between bulk and brane fermions at the branes. In this case,
only the right-handed (left-handed) modes could couple to
the SM fields on the y ¼ 0 (y ¼ L) brane, respectively.
However, when there are mixing mass terms between bulk
and brane fermions like in our case, such boundary con-
ditions are generalized by the variation of the action in
Eq. (20). By adjusting Eq. (24) subject to the boundary
condition in Eq. (20) in the presence of the mixing mass
terms, we obtain, for example, for u-type quarks

ðδSÞb:c ¼
Z

d4x
ffiffiffi
g

p �
δΨc

u1ðx; 0Þ
�
1

2
Ψu1ðx; 0Þ þ Yu

11Q1Hu

�
þ δΨc

u2ðx; 0Þ
�
1

2
Ψu2ðx; 0Þ þ Yu

22Q2Hu þ Yu
21Q1

�
ΦSΦS

M2
5

�
Hu

�

þ δΨc
u3ðx; 0Þ

�
1

2
Ψu3ðx; 0Þ þ Yu

33Q3Hu þ � � �
�
þ δΨu1ðx; LÞ

�
1

2
Ψc

u1ðx; LÞ þ Yu1

�
Ucη

ΦTϱ

M2
5

�
þ � � �

�

þ δΨu2ðx; LÞ
�
1

2
Ψc

u2ðx; LÞ þ Yu2ðUcηÞ þ � � �
�
þ δΨu3ðx; LÞ

�
1

2
Ψc

u3ðx; LÞ þ Ŷt3tc
�
þ H:c:

�
; ð25Þ
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resulting in the boundary conditions for the flavored bulk
fermions shown in Eq. (B1), and similarly for d-type
quarks and leptons in Eqs. (B2) and (B3). As a conse-
quence, in the presence of the mixing mass terms on the
branes, the zero modes of bulk fermions become massive.
Therefore, using the above nontrivial relations between
bulk and brane fermions, we can integrate out the bulk
fermions to get the effective interactions for the brane
fermions in 4D. In the process of integrating out the bulk
fermions, it is sufficient to focus on the zero modes of
the bulk fermions in the following discussion because the
massive KK modes are taken to be much heavier than the
zero modes.
From Eq. (13) with Eqs. (10)–(12), after integration

along y we obtain the 4D action given in Eq. (C3).
Applying Eq. (23) to Eq. (17), we get

ΨfiRðx; 0Þ ≈ ΨfiRðx; LÞe2σðLÞ−Mfi
L;

ΨfiLðx; LÞ ≈ ΨfiLðx; 0Þe−2σðLÞ−Mfi
L: ð26Þ

In order to derive 4D effective Lagrangians for the fermion
Yukawa interactions, we integrate out the bulk fermions in
Eq. (C3) by using Eqs. (B1)–(B3) and (26). Those
equations show that the bulk fermions are given in terms
of the SM fermions, Higgs fields, and flavon fields.
Performing the rescaling of dimensional parameters such as

F → eσðyÞF ; M5 → eσðyÞM5; ψ → e
3
2
σðyÞψ ;

Ŷi → e
1
2
σðyÞŶi; Yf

i → e−
1
2
σðyÞYf

i ð27Þ

(also applied by the replacement of Yf
i → Ỹf

i , Ȳ
f
i , and Yi),

we finally get 4D Yukawa interactions given as

−Lq
4D ¼

�
yu11

�
Ucη

ΦTϱ

M3
5

�
1
þ ỹu11

�
Ucη

ηη

M3
5

�
1

�
Q1Hu þ

�
yu22

�
Uc η

M5

�
100
þ ỹu22

�
Uc ηΦTϱ

M3
5

�
100
þ ȳu22

�
Uc ηηη

M3
5

�
100

�
Q2Hu

þ yu21ðUcηÞ100Q1ðΦSΦSÞ10
Hu

M3
5

þ ỹu21

�
Ucη

ΦTϱ

M3
5

�
100
ðΦSΦSÞ10Q1

Hu

M2
5

þ ȳu21

�
Ucη

ηη

M3
5

�
100
ðΦSΦSÞ10Q1

Hu

M2
5

þ yt33t
cQ3Hu þ yt32t

cQ2ðΦSΦSÞ10
Hu

M2
5

þ yt31t
cQ1ðΦSΦSÞ100

Hu

M2
5

þ yb33b
cQ3H þ

�
yd22

�
Dc η

M5

�
100
þ ỹd22

�
Dc ηΦTϱ

M3
5

�
100
þ ȳd22

�
Dc ηηη

M3
5

�
100

�
Q2Hd

þ
�
yd11

�
Dc ηΦTϱ

M3
5

�
1
þ ỹd11

�
Dc ηηη

M3
5

�
1

�
Q1Hd þ yb32b

c

�
ΦSΦS

M2
5

�
10
Q2Hd þ yb31b

c

�
ΦSΦS

M2
5

�
100
Q1Hd

þ
�
yd21

�
Dc η

M5

�
100
þ ỹd21

�
Dcη

ΦTϱ

M3
5

�
100
þ ȳd21

�
Dcη

ηη

M3
5

�
100

��
ΦSΦS

M2
5

�
10
Q1Hd þ H:c: ð28Þ

−Ll
4D ¼

�
ye

�
L
ΦTΦT

M2
5

�
1
þ ỹe

�
L
ΦTΦT

M2
5

�
3

ΦTϱ

M2
5

�
ecHd þ

�
yμðLΦTÞ10

ϱ2

M3
5

þ ỹμ

�
L
ηη

M3
5

�
10
ϱ

�
μcHd

þ
�
yτðLΦTÞ100

ϱ2

M3
5

þ ỹτ

�
L
ηη

M3
5

�
100
ϱ

�
τcHd þ yνðNcLÞ1

Θ
M5

Hu þ ỹνðNcLÞ3
ΦS

M5

Hu

þ 1

2
ðyΘΘþ yΘ̃Θ̃ÞðNcNcÞ1 þ

1

2
yRΦSðNcNcÞ3 þ H:c: ð29Þ

with well-defined Yukawa-coupling functions

yαij ¼ 4Yf
ijŶαke

−Mfk
L cosh 2σðLÞ;

yαij=M5 ¼ 4Yf
ijYαke

−Mfk
L cosh 2σðLÞ;

yl=M5 ¼ 4YlYLe−MlL cosh 2σðLÞ; ð30Þ

where α ¼ ðd; s; b; u; c; tÞ, f ¼ ðu; dÞ, l ¼ ðe; μ; τÞ, and in
Eq. (27) F ¼ fΦS;ΘðΘ̃Þ; HuðdÞg (at the y ¼ 0 brane),

fΦT; ϱ; η; χ; χ̃g (at y ¼ L), and ψ stands for all fermion
fields localized at both branes. Note that the 4D effective
Lagrangians are derived from Eqs. (28) and (29) after the
flavons acquire VEVs hF i at both branes. Therefore, we
expect that the mediation of bulk messenger fermions via
Eqs. (26) and (B1)–(B3) and vacuum configuration of the
flavon fields play a crucial role in adjusting the quark and
lepton masses and mixings to their observed values.
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IV. HIERARCHIES OF FERMION
MASSES AND MIXINGS

A. Charged fermions

After electroweak symmetry breaking, we get the VEVs
for two Higgs doublets as hHu;di ¼ vu;d, where vu ¼
v sin β=

ffiffiffi
2

p
and vd ¼ v cos β=

ffiffiffi
2

p
with v ¼ 246 GeV.

Given the specific vacuum alignment given by Eqs. (6)
and (7), we obtain the up(down)-type quark mass matrices
and diagonal form of the charged-lepton mass matrix, in
which each entry is proportional to e−Mfi

L cosh 2σðLÞ;
see Eq. (C1).
Under the hierarchy Mf1L > Mf2L > Mf3L > 0, the

quark mixings θqij in the standard form [29] can be obtained
from the diagonalization of the quark mass matrices given
in Eq. (C1);

θqij ≃ 3κ2fðŷ; ŷÞ
				 δ

G
1

δG2

�
2

1þ κ2

�1
2

Δχ

				
½QX1

ðQjÞ−QX1
ðQiÞ�

;

δqCP ¼ argðfðŷ; ŷÞÞ; ð31Þ

where i ≠ j ¼ 1, 2, 3, and QXi
ðqÞ represents the Uð1ÞXi

quantum number Q of field q, and fiðŷ; ŷÞ are functions of
the associated hat Yukawa couplings being of order unity
[cf. Eqs. (1), (30), and (C1)]. Note that in the limit of κ → 0,
there is no quark mixing. Clearly, it shows the quark
mixings only depend on the local effects of GF. For the
charged lepton, the mass ratios are given by

me

mμ
≃ ŷeΔ2

TΔ10
χ =ðŷμΔTΔϱ þ ˆ̃yμΔ2

ηÞΔϱ; ð32Þ

mμ

mτ
≃ ðŷμΔTΔϱ þ ˆ̃yμΔ2

ηÞΔ4
χ=ðŷτΔTΔϱ þ ˆ̃yτΔ2

ηÞ: ð33Þ

In the limit ΔT ∼ Δϱ ∼ Δη, and for order unity ŷα¼e;μ;τ and
ˆ̃yα, those ratios become me

mμ
≃ Δ10

χ Δϱ and mμ

mτ
≃ Δ4

χ .

B. Neutrinos

In this model, the low-energy effective neutrino masses
are generated by the usual seesaw mechanism [20] with the
inclusion of right-handed SUð2Þ-singlet Majorana neutri-
nos Nc. The seesaw scale M should be larger than the
electroweak scale but smaller than M5. The fundamental
gravity scale M5 can be derived in terms of FA or M:

M5 ¼
jδG2 jffiffiffi
2

p FA

Δχ
¼ M

ΔΘ
with M ≡ jδG1 j

FAffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p : ð34Þ

Contrary to the quark and charged-lepton sectors, the
neutrino Yukawa couplings do not depend on the nonlocal
effects of the extra dimension. After seesawing Mν ≃
−mT

DM
−1
R mD where MR and mD are, respectively, right-

handed Majorana and Dirac neutrino mass matrices [see
Eqs. (E1) and (E2)], in a basis where charged-lepton
masses are real and diagonal, we obtain the effective light
neutrino mass matrix

Mν ¼ m0

eiπ

3

0
B@

1 1 1

1 1 1

1 1 1

1
CAþ m0eiπ

1 − e2iϕκ̃2

0
B@

aν − 1
2
aν − 1

2
aν

− 1
2
aν aν − 1 1 − 1

2
aν

− 1
2
aν 1 − 1

2
aν aν − 1

1
CA

þm0eiπ
κ2

1 − e2iϕκ̃2

0
B@

−bν − cνκ̃
1
2
ðbν þ cνκ̃Þ þ dν

1
2
ðbν þ cνκ̃Þ − dν

1
2
ðbν þ cνκ̃Þ þ dν 1

2
ðbν − cνκ̃Þ − dν 1

2
cνκ̃ − bν

1
2
ðbν þ cνκ̃Þ − dν

1
2
cνκ̃ − bν

1
2
ðbν − cνκ̃Þ þ dν

1
CA; ð35Þ

wherem0 ¼ jŷνj2 v2u
M j X2δ

G
1

X1δ
G
2

Δχ j16ð 2
1þκ2

Þ8, and each component

is given by aν, bν, cν, and dν that are functions of κ, κ̃, ϕ,
and other phases.
As a result, the neutrino masses mνi (i ¼ 1, 2, 3)

are obtained by the transformation UT
PMNSMνUPMNS ¼

diagðmν1 ; mν2 ; mν3Þ, where UPMNS is the mixing matrix of
three mixing angles θ12 (solar), θ13 (reactor), θ23 (atmos-
pheric), and three CP-odd phases (one δCP for the Dirac
neutrinos and two φ1;2 for the Majorana neutrinos) [29]. In
the limit κ → 0 (leading to κ̃ → 0 and aν → 2

3
), the light

neutrino masses generated via Eq. (35) become degenerate
with no neutrino mixings [and also no quark mixings; see

Eq. (31)]. Hence, it is reasonable to take a nonzero κ to
generate the observed neutrino mixing angles. Then, the
neutrino mass eigenvalues of Eq. (35) can be expanded in
terms of κ: For normal mass ordering (NO), m2

ν3 ¼ m2
νþ >

m2
ν2 ≡m2

0 > m2
ν1 ¼ m2

ν− with m2
ν� ¼ m2

0ðQν �
ffiffiffiffiffi
Jν

p Þ=Pν,
and for inverted mass ordering (IO), m2

ν2 ≡m2
0 > m2

ν1 ¼
m2

νþ > m2
ν3 ¼ m2

ν−, where Qν, Jν, and Pν are functions of
the parameters in Eq. (35). The limit ỹν → 0 in Eq. (29) is
equivalent to aν → 2

3
ð1 − eiϕκ̃Þ and fbν; cν; dνg → 0, and it

gives rise to the so-called tribimaximal mixing of neutrinos.
Then, the deviation from the tribimaximal mixing [30] can
be presented in terms of κ:
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jθ23 − π=4j ∝ jdνjκ2;
θ13 ∝ jdνjκ2;

θ12 −
1

2
tan−1ð2

ffiffiffi
2

p
Þ ≃ 2

ffiffiffi
2

p j3jaνjðκ2 − κ̃2ÞSν þOðκ3; κ̃4Þj
Rν þ 3jaνjðκ̃2 − κ2

2
ÞSν þOðκ3; κ̃4Þ ;

ð36Þ

where Rν ¼ 1
3
− 3

4
jaνj2 − 2

3
κ̃2 cos2 ϕ, and Sν is a function of

jbνj; jcνj; κ̃, and relevant phases [especially, Sν → 0 and
Oðκ3; κ̃4Þ → 0 for fbν; cνg → 0].

V. FLAVORED AXION

The flavored axion A1 produces the flavor-changing
neutral Yukawa interaction

−Lasd ∼ i
A1

fa1
λðmd −msÞd̄sþ H:c:; ð37Þ

where λ is the Cabibbo angle [29], which gives the
strongest bound on the QCD axion decay constant FA.
From the present experimental upper bound BrðKþ →
πþAiÞ < ð3 − 6Þ × 10−11 at 90% confidence level [31],
we obtain FA ≳ ð0.7 − 1.5Þ × 1010 GeV.
From the Lagrangian terms for the axion and electron

given by

�
∂μA1

2fa1
− 41

∂μA2

2fa2
þ ∂μAT

vt

�
ēγμγ5e; ð38Þ

we can identify the effective axion couplings as g1ee ¼
me=ð

ffiffiffi
2

p jδG1 jFAÞ and g2ee ¼ 41me=ð
ffiffiffi
2

p jδG2 jFAÞ. Thus, the
flavored axions’ A1;2;T interactions with leptons can be
searched for in stellar evolutions in astroparticle physics
[32]. Some stellar cooling hints can be interpreted as axion-
electron couplings 7.2 × 10−14 ≲ jgieej≲ 2.2 × 10−13 [33]
determining the favored values of FA via the Ai couplings
to electrons. Otherwise, the lower limit on FA is set to
about 108 GeV by SN1987A, while the upper bound on
FA is about 1012 GeV from the dark matter abundance.
Combining the stellar cooling hints (from astrophysics)
with the constraint from Kþ → πþ þ A1 process (from
particle physics), we obtain the consistent axion decay
constant as

ð0.7–1.5Þ × 1010 ≲ FA½GeV�≲ 1.9 × 1010: ð39Þ

VI. NUMERICAL RESULTS

In this scenario, there are 16 degrees of freedom [eight
local parameters fΔχ ;ΔΘ;ΔS; κ;Δη;ΔT;Δϱ; tan βg plus
eight nonlocal parameters fσðLÞ;MuðdÞ1;2;3 ;Mlg]. Among
them, 14 parameters are left undetermined after imposing
the two constraints given in Eq. (8). We take ŷðŷÞ ¼ Oð1Þ,

and Mf1 > Mf2 > Mf3 with f ¼ u, d for our numerical
analysis. For a fixed nonlocal parameter, the remaining 13
parameters can be determined from the observables in the
charged-fermion sectors (nine charged-fermion masses,
three mixing angles, and one CP phase in the quark
sector). We perform a numerical simulation using the
linear algebra tools [34] by adopting the empirical results
of the 13 observables in the charged-fermion sectors as
inputs. The numerical results of the model parameters for
Md3L ¼ 28.375 are given as σðLÞ ¼ 18.25, tan β ¼ 3.1,
κ ¼ 0.4, Δχ ¼ 0.52, Δη ¼ 0.51, ΔT ¼ 0.35, Δϱ ¼ 0.34,
Mu1L ¼ 43.875,Mu2L¼ 40.975,Mu3L¼ 33.675,Md1L ¼
35.925, Md2L ¼ 35.295, and MlL ¼ 18.375. From our
numerical analysis, we found that σðLÞ is constrained for a
given set of Δk such that the positiveness and inverted
ordering ofMi are not kept below some value of σðLÞwhile
keeping the required fermion mixing and mass hierarchies.
In addition, they are not kept in the case where the same
flavor symmetry introduced in this model is embedded in
the framework of the flat extra dimension.
Plugging the above results and Eq. (39) into Eq. (34),

we can derive the scale of M5 as ð1 − 2Þ × 1011 GeV≲
M5 ≲ 2.8 × 1011 GeV, leading to the QCD axion mass
ma¼5.44þ2.33

−2.58×10−4 eV. Then, we obtain the axion photon
coupling jgaγγj ¼ 1.13þ0.48

−0.53 × 10−12 GeV−1 for mu=md ¼
0.47, as shown as the red line in Fig. 1. With the help of
Eq. (3), the compactification length L½m� is given by

L½m� ≃ 5.82 × 10−13 ×
e−σðLÞσðLÞ
sinh σðLÞ

�
1011 GeV

M5

�
3

: ð40Þ

For the benchmark given above, the compactification length
of the extra dimension is estimated as L ∼ 10−28m. On the
other hand, in the lepton sector, we can predict δCP precisely
in terms of θ23. Namely, θ23would favor∼51° for δCP ∼ 180°
and θ23 ∼ 45° for δCP ∼ 90° and 270°, as shown in Fig. 2.
We note that the pattern of the light neutrino mass spectrum
NO (mν3 > mν2 > mν1) or IO (mν2 > mν1 > mν3) can be

FIG. 1. Plot of jgaγγj versus ma for Kim-Shifman-Vainshtein-
Zakharov [35] (blue dotted line) and the model (“localized” red
line) in terms of EA=NC ¼ 0 and −761=99, respectively.
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distinguished by themeasurement of 0νββ-decay rate, as can
be seen in Fig. 3.

VII. CONCLUSION

We proposed an extra-dimension scenario to understand
the origin of the fermion mass and mixing hierarchies by
introducing the localized flavon fields and imposing the
flavor symmetry GFð¼ non-Abelian × AbelianÞ through
the bulk. We fixed the charges of the extra gauged Uð1Þ
symmetries by the Uð1Þ gravitation anomaly free condition
and found that they play a crucial role in achieving the
desirable fermion mass and mixing hierarchies and protect-
ing the Peccei-Quinn (PQ) symmetry from quantum gravity
corrections.
We showed how the masses of charged fermions and

quark mixing link to an extra dimension. For neutrino

sectors, their masses and mixing do not depend on an extra
dimension. On the other hand, although the mass of the
flavored axion is not directly related to an extra dimension,
there is a link among the seesaw scale, QCD axion decay
constant, and extra dimension in our scenario.
When the bulk flavor symmetry GF is broken due to the

flavor fields localized at the 3-branes, we showed that the
SUð2Þ-singlet flavored fermions in the bulk are integrated
out to provide the effective Yukawa couplings for quarks
and leptons, inherited with the GF breaking in the two
sectors. We also showed that there is a viable parameter
space for the flavored axion in our model, which is
consistent with the solution to the strong CP problem,
the dark matter relic abundance with a misalignment
mechanism, as well as the bounds from rare meson decays.
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APPENDIX A: A POSSIBLE SOURCE
OF Uð1ÞXT

-EXPLICIT BREAKING

Spontaneous breakdown of the global Uð1ÞXT
symmetry

when vϱ; vT ≠ 0 are much higher than the electroweak scale
leads to a Goldstone mode, such that the global Uð1ÞXT

symmetry is explicitly broken and a possible source of
Uð1ÞXT

-explicit breaking comes from soft breaking terms. In
order for the massless ALP to becomemassive, we introduce
relevant soft breaking terms induced by ΦT and ϱ,

Ssoft ⊃ −
Z

d4x

�
μ1gTΦT

0 ðΦTΦTÞ3 þ μ2gϱχϱ0χχ̃
ϱ

M5

þ μ3gϱTϱ0ðΦTΦTÞ1
�

ϱ

M5

�
3

þ H:c:

�
; ðA1Þ

where μi > 0 havemass dimensions and gT; gϱχ; gϱT < 0 are
dimensionless. Then, we have a simple cosine structure
potential

VðATÞ ≃ 2m2
S

�
μT

vTffiffiffi
2

p þ μϱ
vϱffiffiffi
2

p
��

1 − cos
�
XTAT

fT

��
;

ðA2Þ
where μ1 ≃ μ2 ≃ μ3 ≃mS (soft supersymmetry breaking
mass) was assumed and we set hT;ϱ ¼ 0. The potential
Eq. (A2) is minimized at AT ¼ 0. A mass for the ALP is
obtained,
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FIG. 2. Plot for predictions of δCP as a function of θ23, for NO
(red crosses) and IO (blue asters). For NO, θ23½°� allows [40.1,
51.7], while for IO [42.2, 51.7].
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FIG. 3. Plot for the 0νββ-decay rate as a function of the lightest
neutrino mass mlightest for NO (mlightest ¼ m1 red crosses) and IO
(mlightest ¼ m3 blue asterisks), where the most stringent limit
(90% confidence level) is given by KamLAND-Zen [36].
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m2
AT

¼ 2

�
mSXT

fT

�
2
�
μT

vTffiffiffi
2

p þ μϱ
vϱffiffiffi
2

p
�
; ðA3Þ

whereμT andμϱ aregiven such thatmAT
≲mS is expected iffT ∼ vT and/or∼vϱ. IfμT andμσ becomemuch smaller thanvT and

vϱ, respectively, i.e., jgT j; jgϱχj; jgϱT j ≪ 1, a mass for the ALP could become mAT
≪ mS.

APPENDIX B: BOUNDARY CONDITIONS FOR THE FLAVORED BULK FERMIONS

From Eq. (25), the boundary conditions for the flavored bulk fermions are given for u-type quarks by

Ψu3ðx; 0Þ ¼ −2
�
Yu
33Q3 þ ½Yu

32Q2 þ Yu
31Q1�

�
ΦSΦS

M2
5

��
Hu;

Ψu2ðx; 0Þ ¼ −2
�
Yu
22Q2 þ Yu

21Q1

�
ΦSΦS

M2
5

��
Hu;

Ψu1ðx; 0Þ ¼ −2Yu
11Q1Hu; Ψc

u3ðx; LÞ ¼ −2Ŷt3tc;

Ψc
u2ðx; LÞ ¼ −2

�
Yu2ðUcηÞ þ Ỹu2

�
Ucη

ΦTϱ

M2
5

�
þ Ȳu2

�
Ucη

ηη

M2
5

��
;

Ψc
u1ðx; LÞ ¼ −2

�
Yu1

�
Ucη

ΦTϱ

M2
5

�
þ Ỹu1

�
Ucη

ηη

M2
5

��
: ðB1Þ

Similarly, for d-type quarks and leptons, we also get similar relations for the bulk fermions as follows:

Ψd3ðx; 0Þ ¼ −2
�
Yd
33Q3 þ ½Yd

32Q2 þ Yd
31Q1�

�
ΦSΦS

M2
5

��
Hd;

Ψd2ðx; 0Þ ¼ −2
�
Yd
22Q2 þ Yd

21Q1

�
ΦSΦS

M2
5

��
Hd;

Ψd1ðx; 0Þ ¼ −2
�
Yd
11Q1 þ Yd

12Q2

�
ΦSΦS

M2
5

��
Hd;

Ψc
d3ðx; LÞ ¼ −2Ŷb3bc;

Ψc
d2ðx; LÞ ¼ −2

�
Yd2ðDcηÞ þ Ỹd2

�
Dcη

ΦTϱ

M2
5

�
þ Ȳd2

�
Dcη

ηη

M2
5

��
;

Ψc
d1ðx; LÞ ¼ −2

�
Yd1

�
Dcη

ΦTϱ

M2
5

�
þ Ỹd1

�
Dcη

ηη

M2
5

�
1

�
; ðB2Þ

Ψc
lðx; LÞ ¼ −2

�
ec
�
YeΦT

ΦT

M5

þ Ỹe
ΦTΦT

M3
5

ΦTϱ

�
þ μc

�
YμΦT

ϱ2

M2
5

þ Ỹμ
ηη

M2
5

ϱ

�
þ τc

�
YτΦT

ϱ2

M2
5

þ Ỹτ
ηη

M2
5

ϱ

��
;

Ψlðx; 0Þ ¼ −2YLLHd: ðB3Þ

APPENDIX C: FERMION MASS MATRICES AND QUARK MIXING MATRICES

We present the details of quark and lepton mass matrices obtained in 4D effective theory. From Eqs. (28) and (29), the
up(down)-type quark MuðdÞ and charged-lepton Ml mass matrices are expressed as
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Md ¼

0
BBBBBBBB@

md
11e

i



3
A1
vF

þ14
A2
vg

�
e−Md1

L 0 0

md
21e

i



3
A1
vF

þ14
A2
vg

�
e−Md2

L md
22e

i



A1
vF

þ14
A2
vg

�
e−Md2

L 0

md
31e

i



11

A1
vF

−18A2vg

�
e−Md3

L md
32e

i



9
A1
vF

−18A2vg

�
md

33e
i



3
A1
vF

−18A2vg

�
e−Md3

L

1
CCCCCCCCA

cosh 2σðLÞ;

Mu ¼

0
BBBBB@

mu
11e

i



2
A1
vF

þ6
A2
vg

�
e−Mu1

L 0 0

mu
21e

6i
A2
vg e−Mu2

L mu
22e

6i
A2
vg e−Mu2

L 0

mu
31e

i



8
A1
vF

−11A2vg

�
e−Mu3

L mu
32e

i



6
A1
vF

−11A2vg

�
mu

33e
−11iA2vg e−Mu3

L

1
CCCCCA

cosh 2σðLÞ;

Ml ¼

0
BBBBBB@

me
11e

i



A1
vF

−41A2vgþ2
AT
vt

�
0 0

0 mμ
22e

i



A1
vF

−31A2vg−
AT
vt

�
0

0 0 mτ
33e

i



A1
vF

−27A2vg−
AT
vt

�

1
CCCCCCA
e−MlL cosh 2σðLÞ; ðC1Þ

where A1ð2;TÞ is massless mode vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2T þ v2ϱ

q
, and

md
11 ≃ ðiŷd11ΔTΔϱ − ˆ̃yd11Δ2

ηÞΔη

				 δ
G
1

δG2

				
3
�

2

1þ κ2

�3
2

Δ17
χ vd;

md
21 ≃ −3κ2ŷd21Δη

				 δ
G
1

δG2

				
3
�

2

1þ κ2

�3
2

Δ17
χ vd;

md
22 ≃ −ŷd22Δη

				 δ
G
1

δG2

				
�

2

1þ κ2

�1
2

Δ15
χ vd;

md
31 ≃ 3κ2ŷb31

				 δ
G
1

δG2

				
11
�

2

1þ κ2

�11
2

Δ29
χ vd;

md
32 ≃ 3κ2ŷb32

				 δ
G
1

δG2

				
9
�

2

1þ κ2

�9
2

Δ27
χ vd;

md
33 ≃ ŷb33

				 δ
G
1

δG2
j3
�

2

1þ κ2

�3
2

Δ21
χ vd;

mu
11 ≃ ðiŷu11ΔTΔϱ − ˆ̃yu11Δ2

ηÞΔη

				 δ
G
1

δG2

				
2 2

1þ κ2
Δ8

χvu;

mu
21 ≃ −3κ2ŷu21Δη

				 δ
G
1

δG2

				
2 2

1þ κ2
Δ8

χvu;

mu
22 ≃ −ŷu22ΔηΔ6

χvu;

mu
31 ≃ 3κ2ŷt31

				 δ
G
1

δG2

				
8
�

2

1þ κ2

�
4

Δ19
χ vu;

mu
32 ≃ 3κ2ŷt32

				 δ
G
1

δG2

				
6
�

2

1þ κ2

�
3

Δ17
χ vu;

mu
33 ≃ ŷt33Δ11

χ vu;
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me
11 ≃ ŷeΔ2

TΔ42
χ

				 δ
G
1

δG2

				
�

2

1þ κ2

�1
2

vd;

mμ
22 ≃ ðŷμΔTΔϱ þ ˆ̃yμΔ2

ηÞΔ32
χ Δϱ

				 δ
G
1

δG2

				
�

2

1þ κ2

�1
2

vd;

mτ
33 ≃ ðŷτΔTΔϱ þ ˆ̃yτΔ2

ηÞΔϱΔ28
χ

				 δ
G
1

δG2

				
�

2

1þ κ2

�1
2

vd; ðC2Þ

recalling that the hat Yukawa couplings are of order unity such as 1ffiffiffiffi
10

p ≲ ŷ; ŷ ≲ ffiffiffiffiffi
10

p
.

The 4D action in terms of the flavored bulk fermions at the boundaries reads

SY ¼
Z

d4x
ffiffiffi
g

p ��
Yu
33Ψc

u3ðx; 0ÞQ3 þ Yu
22Ψc

u2ðx; 0ÞQ2 þ Yu
11Ψc

u1ðx; 0ÞQ1 þ ðYu
21Ψc

u2ðx; 0ÞQ1 þ Yu
31Ψc

u3ðx; 0ÞQ1

þ Yu
32Ψc

u3ðx; 0ÞQ2Þ
ðΦSΦSÞ
M2

5

�
Hu þ Ŷt3tcΨu3ðx; LÞ þ

�
Yu2Ucηþ Ỹu2Ucη

ΦTϱ

M2
5

�
Ψu2ðx; LÞ

þ Ȳu2

�
Ucη

ηη

M2
5

�
Ψu2ðx; LÞ þ

�
Yu1Ucη

ΦTϱ

M2
5

þ Ỹu1Ucη
ηη

M2
5

�
Ψu1ðx; LÞ þ

�
Yd
33Ψc

d3ðx; 0ÞQ3 þ Yd
22Ψc

d2ðx; 0ÞQ2

þ Yd
11Ψc

d1ðx; 0ÞQ1 þ ððYd
21Ψc

d2ðx; 0Þ þ Yd
31Ψc

d3ðx; 0ÞÞQ1 þ Yd
32Ψc

d3ðx; 0ÞQ2Þ
ΦSΦS

M2
5

�
Hd þ Ŷb3bcΨd3ðx; LÞ

þ Yd2ðDcηÞΨd2ðx; LÞ þ Ỹd2

�
Dcη

ΦTϱ

M2
5

�
Ψd2ðx; LÞ þ Ȳd2

�
Dcη

ηη

M2
5

�
Ψd2ðx; LÞ þ Yd1

�
Dcη

ΦTϱ

M2
5

�
Ψd1ðx; LÞ

þ Ỹd1

�
Dcη

ηη

M2
5

�
Ψd1ðx; LÞ þ YLΨc

lðx; 0ÞLHd þ ðyνðNcLÞ þ ỹνðNcLÞΦSÞ
Hu

M5

þ 1

2
yRðNcNcÞΦS

þ 1

2
ðyΘΘþ yΘ̃Θ̃ÞðNcNcÞ þ YeecΨlðx; LÞ

ΦTΦT

M5

þ Ỹeec
�
Ψlðx; LÞ

ΦTΦT

M5

ΦTϱ

M2
5

�
þ Yμμ

cΨlðx; LÞΦT
ϱ2

M2
5

þ Ỹμμ
cΨlðx; LÞ

ηη

M2
5

ϱþ Yττ
cΨlðx; LÞΦT

ϱ2

M2
5

þ Ỹττ
cΨlðx; LÞ

ηη

M2
5

ϱþ H:c:

�
: ðC3Þ

Here, using Eq. (17), we get f0iRð0Þ ≈ f0iRðLÞe
1
2
σðLÞ−Mfi

L and f0iLðLÞ ≈ f0iLð0Þe−
1
2
σðLÞ−Mfi

L at the boundaries, which in turn
lead to Ψc

u3ðx; 0Þ ≈Ψc
u3ðx; LÞe2σðLÞ−Mu3

L, Ψu3ðx; LÞ ≈Ψu3ðx; 0Þe−2σðLÞ−Mu3
L, etc. Plugging the above formulas for the Ψ

fields at the boundaries as well as Eqs. (B1)–(B3) into Eq. (C3), we obtain the 4D Yukawa interactions given by Eqs. (28)
and (29) after rescaling the dimensionful parameters Eq. (27).
From the quark mass matrix of Eq. (C1), its left-handed mixing matrix Vf

L with f ¼ u, d reads at leading order [37] with

Vf
L ¼

0
BBBBB@



1 − 1

2
C2
f λ̃

2
�
e−iðϕ

f
2
þϕf

3
Þ −Cf λ̃eiðϕ

f
2
þϕf

3
Þ −Bf λ̃

3e−iϕ
f
2

Cf λ̃e
iðϕf

3
−ϕf

1
Þ



1 − Cf

1
2
λ̃2
�
eiðϕ

f
3
−ϕf

1
Þ −Af λ̃

2eiðϕ
f
2
−ϕf

1
Þ

λ̃3ðAfCfe
iðϕf

1
þϕf

3
Þ þ Bfe

iðϕf
1
þϕf

2
−ϕf

3
ÞÞ Af λ̃

2eiðϕ
f
1
þϕf

3
Þ eiðϕ

f
1
þϕf

2
Þ

1
CCCCCA

þOðλ̃4Þ; ðC4Þ

whereCf λ̃, Bf λ̃
3, and Af λ̃

2 correspond to the mixing angles

θf12, θ
f
13, and θf23, respectively, in the standard parametriza-

tion of the mixing matrix. Then, setting λ̃ ¼ λðCd − CuÞ,
ϕu
3 ¼ ϕd

3 , ϕ
u
2 ¼ ϕd

2 ,
Ad−Au

ðCd−CuÞ2 ¼ A, and Bu−Bd
ðCd−CuÞ3 ¼A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þη2

p
and using Cu

ðCd−CuÞ2 ∼
Au

ðCd−CuÞ2 ∼ λ̃ with the Wolfenstein

parameters λ; A; ρ; η; δqCP [29], one can obtain the quark

mixing matrix VCKM ¼ Vu
LV

d†
L by redefining quark fields

c→ e−iðϕ
d
2
þ2ϕd

3
−ϕu

1
Þc, s→eiðϕ

d
1
−ϕd

2
−2ϕd

3
Þs, t → e−iðϕ

u
1
þϕd

2
þ2ϕd

3
Þt,

and b → e−iðϕ
d
1
þϕd

2
þ2ϕd

3
Þb, and the CP-violating phase

is given by δqCP ¼ ϕd
2 − 2ϕd

3 ¼ tan−1ðη=ρÞ. Subsequently,
the down- and up-type quark masses are obtained for
jMf1Lj > jMf2Lj > jMf3Lj in an analytical approxima-
tion as
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mb ≃ jŷb33j
				X2δ

G
1

X1δ
G
2

				
3
�

2

1þ κ2

�3
2

Δ21
χ e−Md3

L cosh 2σðLÞvd;

ms ≃ jŷd22jΔη

				X2δ
G
1

X1δ
G
2

				
�

2

1þ κ2

�1
2

Δ15
χ e−Md2

L cosh 2σðLÞvd;

md ≃ 2jŷd11jΔTΔϱΔη sinϕd

				X2δ
G
1

X1δ
G
2

				
3
�

2

1þ κ2

�3
2

Δ17
χ e−Md1

L cosh 2σðLÞvd; ðC5Þ

mt ≃ jŷt33jΔ11
χ e−Mu3

L cosh 2σðLÞvu;
mc ≃ jŷu22jΔηΔ6

χe
−Mu2

L cosh 2σðLÞvu;

mu ≃ 2jŷu11jΔTΔϱΔη sinϕu

				X2δ
G
1

X1δ
G
2

				
2 2

1þ κ2
Δ8

χe
−Mu1

L cosh 2σðLÞvu; ðC6Þ

where in the last equations of Eqs. (C5) and (C6) jŷf11jΔTΔϱ ¼ j ˆ̃yf11jΔ2
η and ϕ̃f ¼ ϕf þ π=2 with f ¼ u, d were used for

simplicity. In addition, the ratio of electroweak Higgs field VEVs hHui=hHdi is approximately given in terms of the PDG
[29] value by

tan β ≃
�
mt

mb

�
PDG

				 ŷ
b
33

ŷt33

				
				X2δ

G
1

X1δ
G
2

				
3
�

2

1þ κ2

�3
2

Δ10
χ eðMu3

−Md3
ÞL:

APPENDIX D: HIGHER-DIMENSIONAL OPERATORS

Higher-dimensional operators arising from the one-loop exchange of the flavored bulk fermion pairs Ψc
fΨf and Fc

fFf
read

Wh:o
Ψ;F ⊃ δðy − LÞ

�
λ̃χ

χχ̃

M2
5

ðΨc
fΨfÞ1 þ λ̃η

ðηηÞ3
M2

5

ðΨc
fΨfÞ3 þ λ̃T

ðΦTΦTÞ1ϱ2
M4

5

ðΨc
fΨfÞ1 þ � � � þ ðΨf ↔ FfÞ

�

þ δðyÞ
�
leading-order interactions ×

�Ψc
fΨf

M4
5

�
þ ðΨf ↔ FfÞ

�
; ðD1Þ

which can be absorbed into the leading-order operators by redefinition of the corresponding coefficients.

APPENDIX E: MAJORANA AND DIRAC NEUTRINO MASS TERMS

In the Lagrangian given as Eq. (29), the right-handed Majorana mass term reads with the help of VEV configurations
Eq. (6) as

MR ¼ M

0
BB@

1þ 2
3
κ̃eiϕ − 1

3
κ̃eiϕ − 1

3
κ̃eiϕ

− 1
3
κ̃eiϕ 2

3
κ̃eiϕ 1 − 1

3
κ̃eiϕ

− 1
3
κ̃eiϕ 1 − 1

3
κ̃eiϕ 2

3
κ̃eiϕ

1
CCA; ðE1Þ

where Eq. (8) is used, and κ̃ ≡ κjŷR=ŷΘj and ϕ≡ arg ðŷR=ŷΘÞ. Without loss of generality, setting ŷΘ ¼ 1, a common factor
M in Eq. (E1) can be replaced by the QCD axion decay constant FA as shown in Eq. (34). In addition, the Dirac neutrino
mass term also reads with Eqs. (6) and (7) as
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where Eq. (8) is used, and yαν ≡ j ˆ̃yνα=ŷνj and ϕα ≡ argðyανÞ with α ¼ a, s. yaν , and ysν correspond to the Yukawa coupling of
the antisymmetric and symmetric operators ðNcLÞ3aðsÞΦSHu=M5 given in Eq. (12) which naturally cause the deviation from
the tribimaximal mixing, such that it is responsible for the nonzero θ13 and a deviation of θ23 from the maximal mixing π=4.
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