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We propose an extra-dimension framework on the orbifold S!/Z, to understand the origin of the fermion
mass and mixing hierarchies. Introducing the flavor symmetry G (=non-Abelian x Abelian) as well as the
extra gauged U(1) symmetries through the bulk, we regard the SU(2)-singlet and -doublet fermions in the
Standard Model (SM) to be localized at the separate 3-branes and let the extra SU(2)-singlet flavored
fermions in the bulk couple to the SM fermions at the 3-branes. The extra U(1) symmetries satisfy the U(1)
gravitational anomaly free condition, playing a crucial role in achieving the desirable fermion mass and
mixing hierarchies and making the flavored axion naturally light. The singlet scalar fields, the flavon fields,
are responsible for the spontaneous breaking of G on the two 3-branes, while the SU(2)-singlet flavored
fermions are integrated out to give rise to the effective Yukawa couplings for the SM fermions endowed with
the information of G breaking in the two sectors. The flavored axion from the Peccei-Quinn symmetry is
also proposed for solving the strong CP problem and being a dark matter candidate in our model.
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I. INTRODUCTION

The observed hierarchies in the masses and mixings of
quarks and leptons are one of the most puzzling problems
in particle physics. A plausible explanation is to introduce a
new gauge symmetry which is spontaneously broken at
some ultraviolet (UV) scale and leaves behind its global
subgroup. In this case, in the low-energy effective theory,
the symmetry structure is composed of the Standard Model
(SM) gauge symmetry Ggy = SU(3) x SU(2), x U(1)y
and a remnant global symmetry which plays an essential
role in making desirable flavor structure of quarks and
leptons [1]. It is known that flavor-dependent U(1) gauge
symmetries and/or non-Abelian discrete symmetries can
arise from the isometry of the compactified extra dimen-
sions in string theory. In addition, the compactification
of the extra dimensions can be accompanied by certain
3-branes [four-dimensional (4D) surfaces embedded in
higher-dimensional spaces] [2].

Inspired by some string compactifications, in this paper,
we propose a mechanism for generating the fermion
mass and mixing hierarchies in the extra-dimension frame-
work with the flavor symmetry. The extra gauged U(1)
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symmetries are also introduced under the U(1) gravitation
anomaly free condition, and they are crucial to achieve the
desirable fermion mass and mixing hierarchies in this
scenario. These are the features in this work which are
distinguishable from other approaches to tackle the flavor
problem in the extra-dimension framework [3—16]. A simple
toy model with vectorlike leptons for seesaw leptons has
been recently proposed in light of the muon g — 2 anomaly
[17], but without involving a flavor symmetry.

For our purpose, we construct a higher-dimensional theory
compactified on the orbifold S'/Z, with a global symmetry
group for flavors Gp = U(1) x non-Abelian finite group,
which might be originated from certain string compactifi-
cations. A set of SM gauge singlet scalar fields F charged
under G, the so-called flavon fields, are located at two
3-branes in the extra dimension. In the 4D effective
Lagrangian, the flavor fields act on dimension-four (-three)
operators well sewed by Gy x Ggy; at different orders to
generate the effective interactions for the SM and the right-
handed neutrinos as follows:

finite
- F\n
‘C4D25103’7:X+O4zcn<ﬁ> X, (1)
n=0 5

where O 4) are dimension-three (-four) operators, ¢ (c,)are

the complex coefficients of order unity, and X(X,) are
dimensionless parameters induced due to the nonlocal effects
by the exchange of bulk messenger fields. JF acquires
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vacuum expectation values (VEVs) (F) from some dynam-
ics, thereby breaking G . The information of G breakdown
is transmitted to the two 3-branes via the mediation of bulk
messenger fields, and then the observed SM fermion mixing
and mass can naturally be generated from the 4D effective
theory. The vacuum structure of the flavons plays a crucial
role in achieving the SM fermion mass and mixing hier-
archies. We remark that Eq. (1) is constructed in a super-
symmetric framework mainly because the holomorphy of the
superpotential is needed to generate the desirable Yukawa
textures of the charged fermions which lead to the right
hierarchies of the charged-fermion masses and mixing for the
given flavor symmetry we consider in this work. We take into
account a minimal supersymmetric model with flavon super-
fields where the hierarchy problem concerned with the Higgs
boson is alleviated.

As a bonus in our scenario, the pseudo-Goldstone modes
coming from the flavon fields are localized on the 3-branes,
becoming candidates for flavored axions A; (and a QCD
axion) [18] with decay constants determined by (F).
However, it is well known that nonperturbative quantum
gravitational anomaly effects [19] could spoil the axion
solution to the strong CP problem. In order to keep the
axion solution in our scenario, we need to suppress the
explicit breaking effects of the axionic shift symmetry by
gravity and consistently couple gravity to matter. To this,
we impose the U(1)-mixed gravitational anomaly free
conditions for the extra gauged U(1) symmetries, in turn,
obtaining the constraints on the U(1) charges of quarks and
leptons. Moreover, assuming that the low-energy effective
neutrino mass is generated by the usual seesaw mechanism
[20], the seesaw scale can be congruent to a flavored-axion
decay constant where the right-handed neutrinos acquire
Majorana masses when G is broken.

II. FLAVOR PHYSICS EMBEDDED
INTO 5D THEORY

We consider a 5D theory for flavors compactified on the
orbifold S'/Z, where the extra dimension on the circle S! is
identified y with —y [21]. The orbifold fixed points aty = 0
and y = L, the boundaries of the 5D spacetime, are the
locations of two 3-branes. We assume that all the ordinary
matter fields are localized at either brane, and they are
charged under the flavor symmetry Gr. We specify Gp =
SL,(F3) x U(1)y where SL,(F3) is the symmetry group of
the double tetrahedron [22].

The metric solution to the 5D Einstein equations
respecting the 4D Poincaré invariance in the x* direction
is given by

ds? = 62”(»")11M,,dx”dx” — dy?, (2)

where the extra dimension is compactified on an interval
y €[0,L], the warp factor is given by o(y) = ky with

k= ‘/—6—1"\4;> 0 and A being the bulk cosmological

constant, and the 4D Minkowski flat metric is 7,, =
diag(+,—,—,—). Note that, in Eq. (2), we can always
take 6(0) = 0 by rescaling the x* coordinates. Then, the 4D
reduced Planck mass Mp~2.43 x 10'® GeV can be
extracted in terms of the 5D Planck mass M5 as

L M3
My =g [ ayert 2o, (3
-L

where M5 is assumed to be higher than the electroweak
scale, but M5 and k are lower than Mp. Then, the scale of
flavor dynamics would be given by the UV cutoff Ms5.

While the warped background in our scenario does not
play a role in addressing the hierarchy problem studied in
Ref. [21], the supersymmetry (SUSY) can alleviate the
problem. As shown later, warped geometry makes charged-
fermion masses dependent on the warping factor o(L).
Although it is possible to embed a flavor symmetry G into
flat extra-dimensional framework, we construct our model
in the framework of the warped geometry so that the mass
of bulk messenger fields M; should be positive and inverted
ordering (M; > M, > M3), which leads naturally to fer-
mion mass hierarchies as shown in Sec. VI. Note that it is
not guaranteed to satisfy the positiveness of M; as well as
the U(1)-mixed gravitational anomaly free conditions for
the U(1) quantum numbers of the fields assigned in this
model unless they are embedded in warp geometry. The
compactification length L is associated with the VEV of a
massless 4D scalar field. However, this modulus field has
zero potential, and consequently, L is not determined by the
dynamics of the model. As discussed in [23,24], the value
of L can be stabilized with the help of a scalar potential
generated by a newly introduced bulk scalar with inter-
action terms that are localized to the two 3-branes.
However, the study of such a potential to guarantee the
stability is beyond the scope of this paper. As will be shown
later, in our scenario, L can be predicted in terms of a
nonlocal model parameter by flavor physics.

Now, let us consider a concrete model for low-energy
effective theory by introducing bulk fermions propagating
in a 5D space with the metric Eq. (2). They are singlets
under SU(2) with hypercharges Y, and masses M, and
interact with the normal matter fields confined at the y = 0
or y = L brane. Bulk fermions with common hypercharges
can be distinguished by quantum numbers of a flavor
symmetry G that acts on flavor fields in a theory. Hence,
we refer to the bulk fermion as a flavored bulk fermion. To
keep electric charge conservation, we introduce two kinds
of SU(2)-singlet flavored bulk fermions ¥, and their
mirror partners F;, charged under Ggy X Gp, and they are
distinguishable only by the opposite hypercharge of each
other. Here, f; = u; (up-type quark), d; (down-type quark),
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and [/ (charged lepton). While ¥, interact with the normal
matter fields confined at the y = 0 or L brane, F'y, does not
do so due to U(1), symmetry. The exchange of the flavored
bulk fermions between the two 3-branes can provide
nonlocal interactions between right- and left-handed SM
fermions, as can be seen in Egs. (28) and (29). This is the
origin of the fermion Yukawa couplings in the 4D effective
Lagrangian.

As shown in Refs. [25,26], there is no anomaly in the five-
dimensional bulk, and the anomaly on the orbifold fixed
points y = 0, L is entirely independent of the shape of the
chiral modes. Hence, in the five-dimensional bulk, the
associated gauge anomalies will be automatically canceled
due to the mirror charges of flavored bulk fermions. Unlike
Ref. [23], in this work, the compactification length L can be
constrained thanks to the introduction of flavored bulk
fermions. Under the flavor symmetry Gp, that is,
SL,(F3) x U(1)y, we assign the lepton bulk fermion
|

denoted as P, (its mirror F;) to (3,—13X,/2); the u-type
bulk fermions denoted as ¥, ,'¥,,,, and ¥, (its mirrors F,)
o (1,-6X,), (1',-6X,), and (1”,0), respectively; d-type
bulk fermions denoted as ¥, ¥,,, and ¥, (its mirrors F ;)
to (1,-5X,), (1',-5X,), and (1”,3X,), respectively.
And under the SM gauge symmetry, that is, Ggy =
[SU3)c x SU2) ]y, we assign ¥, and F; to (1,1)_,
and (1,1);, respectively, ¥, and F, to (3,1),; and
(3,1)_y3, respectively, and ¥y, and Fy, to (3,1)_; /5 and
(3,1)/3, respectively. In Table I, for flavon fields F =
Dy, ®(C:)), @7, p, 1, %, ¥ and flavored bulk fermions ¥, we
present the representations of SL, (F3) and quantum charges
under U(1)y, x U(1)y, x U(1)y,

The brane-localized superpotential for the driving flavon
fields having U(1) charge +2 invariant under Ggy X
SL,(F3) x U(1)y is given at orders up to (1/M3) by

W, = 8(y){®f (g, PsPs + g, 0D5) + O (go, PsPs + 9@)2@@ + 90,00 + 95,0 0)}

e
+6(y - L){‘Do (ﬂTq)T + gT(I)T(DTM + ngq)T + ZQT 7 (D7) e )

Q
+ Qo <IuQQ + gg)()()(M

5
3

0 V%4
+ 9o, (x7)? M3 + Go, OrPr M§> + 19 (um + gwcbr M, + gy n®r 5 % Q>

2
. 0
+ x0(9,27 — 12 + 9, PrPr =+ g, ;1;7)3<1>T (4)
M> M2

where p; are dimensionful parameters, and g; are dimension-
less coupling constants. Note that there are no local higher-
dimensional operators induced by the flavon fields ®¢ and
©(0) localized at the y =0 brane due to the charge
assignment of U(1)y. Nonlocal higher-dimensional brane
interactions via the one-loop exchange of the flavored bulk
fermions, such as Eq. (D1), are allowed but absorbed into the
leading-order terms of Eq. (4) by the redefinition of coef-
ficients. Because of the assignment of quantum numbers
under SLy(F3) x U(1)y x U(1), the usual superpotential

TABLE I. Representations and quantum charges of SM singlet
flavon fields and bulk fermions under Gp.

Field SL,(F5) U(l)X] U(])X2 U(I)XT Brane (y)
o 0(0)  3:1 1 0 0 0
;0 3:1 0 0 1, -1 L

n 2 0 0 0 L
XX 1 0 1,-1 0 L

¥, 3 -13/2 0 0

v, ¥, 1 —6: =5 0 0

Y, ¥, 1 —6: =5 0 0

v, : 1” 0: 3 0 0

[

term puyH,H ,; is not allowed, while the following operators
driven by ©, and CD(S) are allowed due to the separation
achieved by means of an extra dimension,

0 0?2
5( )(QSO(D(S) M2 +g®0®O 1‘/15 Hqu' (5)

When @F and ©, get VEVs, the operators (5) generate the y
term py = (gs,(®5)30sv6 + go, (©0) v)/ (2M3) of the or-
der of mgvg /M3 with mg being soft SUSY breaking mass. In
the SUSY limit, the driving fields develop zero vacuum
structures along the flat directions, but they are corrected to
be of order mg when the SUSY breaking effect lifts up the flat
directions.

The flavor symmetry G is spontaneously broken by the
nontrivial VEVs of flavons. Note that the U(1) charges of
the fields are determined so as to satisfy the U(1)
gravitation anomaly free condition and the empirical
hierarchies of fermion masses and mixings. For instance,
in a supersymmetric model, the brane-localized super-
potential for flavons with Gy invariance is given in
Eq. (4). From the minimization conditions of the F-term
scalar potentials, the VEVs of ®g and @ localized at the
y = 0 brane are obtained
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_UYs _ Ve
<‘DS>—\/§(1»1’1)1 <®>_ﬂ’

and k = vg/vg in supersymmetric limit. For @, o, y(¥),
and 5 localized at the y = L brane,

(6)=0. (6)

(®r) :—2(1,0,0)7 (o) :7%,
) =) =7%’ {m) =7”§(170)- (7)

Denoting Ax = vz/(v/2Ms5) and following the procedure
in Ref. [27], we obtain

Ag = Ag/x = 167/85]1/2/ (1 + k) Ay. (8)
The complex scalar fields are decomposed as follows:

AT h v, _ir h
@Ti:\j%e’ﬂ(l—l—v?‘), 027%6 Tr <1—|—vg>’
r e

Ps 0
e'vs s

_%(Us+hs)y 0=

v Ay h V= Sy h-

Xt X s At X
x=—=e 1+—>, r=—re 'g<1+—), 9)

\/i ( Vg \/i Uy

where we have set ®g; = Oy, = g3 = Dy;, and radial

(ve + he),

<[

modes h, = h; in the supersymmetric limit, and v, =

\/v; +v; and fr=/v7 4+ vg. In addition, pseudo-

Goldstone modes A; and A, are expressed in terms of
the angular fields ¢, ¢, and ¢, as A; = ”S"s%;@""’ and
Ay = ¢, with vy = /0% + v3 = vV 1 + k%, Under the
U(1)y transformations, the flavored axion A; shifts into
A; > A+ F,¢&, where F, =f,/67 (i=1, 2) with

|

TABLE II. Representations of quark, lepton, and electroweak
two Higgs H (g fields under SL,(F3) x U(1)y, (i = 1,2, 7). All
fields are left-handed particles/antiparticles. All of them have
zero U(1)g.

Field SLy(F53) U(l)y, U(l)y, U(l)x, Brane
0,0,0, 111 =860 00,0 0,00 y=0
De, b 2’1 5, -3 —14, 18 0,0 y=1L
ue, 1 21 60 —611 00 y—=L
L 3 1 0 0  y=0
e pt, e L1 1 1333 41,31,27 21,1 y=L
N¢ 3 1 0 0 y=0
Hyq) 1 0 0 0 y=0
& = &Saand & = —5a (ais a transformation parameter),

whereas Ar shifts into Ay - Ar + frér.

All ordinary matter and Higgs fields charged under Ggy
are localized at either brane. Thanks to the orbifold com-
pactification, we set all elementary fermions from a chiral set.
Then, all SM SU (2) singlets such as right-handed quarks (¢°)
and right-handed charged leptons (/¢) are localized at the
y = L brane, while SU(2) doublets such as left-handed
quarks (Q;), left-handed leptons (L), and two electroweak
Higgs H,q) are localized at the y =0 brane. Under
[SL,(F3) x U(1)x]y(1),» we assign the left-handed quark
SU(2), doublets denoted as Oy, Q»,and Q5 to (1, =8X ), /¢
(1',-6X,), 6, and (1",0), 6, respectively, while the right-
handed up-type quark SU(2) singlets are assigned as U° =
{u,c} and 1 to (2/,6X; —6X;) 53 and (1, 11X;)_, 3,
respectively, and the right-handed down-type quarks D¢ =
{d,s} and b to (2/,5X, — 14X,),,3 and (1, -3X,+
18X,), 3, respectively, which are summarized in Table II.
The brane-localized Yukawa superpotentials for up- and
down-type quark fields and lepton fields invariant under
Ggm X SLy(F3) x U(1)y are constructed as

DD
Wq = 5@){ {Yé‘z‘Png,s L YLW,0, VW0, + (VW0 + VW0, + Y0, (B S)]Hu}

M3

N - 0]
+ 5()7 - L) { Yt3t6lpu3 + |:Yu2(uc77) + Yu2 (UL’? M_TQ> :| ‘PMZ

_ n (O] -
+ Yu2 <uc;,] W) TuZ + |:Yul < ¢ ]‘;2 > + Yul (
5 5

H
Wg = 5<)’){[Y§13T513Q3 + Y550, + YW5 O1H, + [(Y5,'W5, + Y§,P5) 01 (@5 Ds) + Y, P55 02(PsDs)] d}

U“n%)]‘l‘m}, (10)

5

M3

Q
2

¥ c c v c o % e, M
+6(y - L){Yb3b Vs + Yo (Dn)¥i2 + Y i (D ’7M—T>LP(12 +Yp <D WW>W(12

. Oro 5 .
oo o0}
M3 M3

5
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~ Hu 1 CcATC 1 o N
W = 80 FLBSLIH, + (VL) + 5, (NLY5) 7 4 5 NNV + 3 (560 + 7o @) NN) |

O, D 3
+58(y - L){Yeec <‘Pf ﬂ) + ¥,e (\Pf
Ms

2
+ Y#//tc <‘Pf >Q + Y T (qu)r)

d ~ —_
>, Yu(d)i’ Yu(d)i’ and Yu(d)i
fori,j=1,2,3,aswellas Yra and f/, have mass dimension

In the above superpontentials, Y?j(

—1/2, whereas IA/u(d)i has mass dimension +1/2. Notice that
they are composed of combinations of the flavon fields in
such a way that the associated Yukawa interaction terms are
neutral under the charge assignments of U(1)y x SL,(F3)
given in Table II. Then, after flavons and Higgs fields get
VEVs, the corresponding Yukawa terms result in the masses
of the charged fermions as presented in Eq. (C2) with
Eq. (C1). The Yukawa couplings y; (¥;) have mass dimension
Zero.

Clearly, it shows that SM fermions localized at the two
branes could form ordinary interactions between left- and
right-handed fermions via the exchange of their flavored
bulk fermions. Then, the action for quark and lepton fields
localized on the branes reads

Sy—/d4xdy\/§[/dz8(WZ+Wg+Wf)+H.c. ., (13)

where 9 is a Grassmann variable having mass dimension
—1/2. Note that after spontaneous SL,(F3)x U(1)y
breaking, all other higher-dimensional operators localized
at the two branes can be absorbed by redefining the
coupling constants, and thus they cannot change the
patterns of quark and lepton mass matrices at leading
operators shown in Egs. (10)—(12).

All ordinary matter and Higgs fields charged under Gqy
with +1 and O charges under U(1)g, respectively, are
localized at either brane. Then, all the SM fermion
mixings and masses can be generated by nonlocal effects
involving both branes and local breaking effects of G due
to flavon fields. For the orbifold compactification, we set
all elementary fermions from a chiral set, and their group
representations and quantum numbers are summarized in
Table II. From the U(1)y, x [SU(3),]* anomaly coeffi-

cient defined by

836 =2 "Xy, Tr(TT?),
vy

(14)

in the QCD instanton backgrounds where the 7¢ are the
generators of the representation of SU(3),. to which Dirac

2 + ¥,
M5

OrO7\ (Dro 02
—_— Y ¥, 0,)—
o) () + o) £

M2
nm
Y, — 12
e} (12)
|
fermion y, belongs with X-charge, we get 8¢ = -9 and
65’ = —11 with the domain-wall number Npyw = 1. In this

model, U(1l)y x U(l)y, =U(1)g is a pure axial sym-
metry U(1)po. Under the U(l)pg transformation, the
QCD axion field A shifts into A —>A—|—f—Aa with

fA = \f_"(;c = F,, where F, is the QCD axion decay

constant, and f, = v285f, =Vv25%f, with f, =
Xi|vr = V2[X)|v, and f,, = |Xo]v, = |Xo|veV1 + &2
Below the U(1)pg symmetry breaking scale, the effective
interaction of the QCD axion is expressed via the chiral

U(1)g rotation y; — €i}/5)~(wfa/2lpf with X, = &5X,,, +
87Xy, as
Legs D < eff+f' 6G+fu266)
A 5
= <196ff + ) 3;} G”WGZZH (15)

where Gy, is the gluon field strength tensor with a being
an SU(3)-adjoint index and Gy, is its dual. The U(1)y, is
broken down to its discrete subgroup Zy in the back-
grounds of the QCD instanton, and the quantities N;
(nonzero integers) associated with the axionic domain
wall are given by N; =2|6%| =18 and N, = |65 = 11
such that no axionic domain-wall problem occurs at the
QCD phase transition. A color anomaly coefficient N of
U(l)g x [SU(3)J* and an electromagnetic one E, of
U(1)g x [U(1)gy]* are defined by N = 2Tr[X,, T°T*] =
26765 and Ey =237, X, (0p")? with Q5™ being the
U(1)gy charge of field y ¢, respectively. Then, their ratio
becomes E4 /N = —761/99. On the other hand, an anoma-
lous U(1)y, is embedded only in the lepton sector, as shown
in Table II, with an electromagnetic anomaly coefficient
Er =23 ,X,(07")* of the U(l)y, x [U(1)gy]*. As
shown in Appendix A, an explicit breaking term can generate
a mass term making the axionlike particle (ALP) a pseudo-
Goldstone boson Ar.
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III. 4D EFFECTIVE THEORY
FOR FLAVOR PHYSICS

Consider the 5D action for flavored bulk fermions
¥,;(x,y) with large bulk fermion masses M. (f = u.d.¢
and i =1, 2, 3)

- i <
Sly = /d4Xdy\/ngfl{§ eAMFADM + Mf} (y)}lpfl, (16)

where the 5D metric g,y is decomposed into vierbeins e4;:
Iun = Nagemen, T = (v, iys), and Ty = (7> —iys) sat-
isfy the Dirac-Clifford algebra {I", T2} = 2¢*8, where
n*® is the 5D flat metric = diag(s,,,—1). In terms of
¥i(x,y), the Kaluza-Klein (KK) wave functions for the
left- and right-handed bulk fermions forming a complete
orthogonal set

e —3o(y
Z‘/’f,
are chosen to obey the 4D equation of motion
S = Z / d*xi} (iy, D" — mp)yr (18)

where m;i is the 4D mass of the nth KK mode, with the
normalization condition 7 [ dy fit i) = Omn- We

g o ") (17)

choose a gauge As =0 such that the KK modes are
independent of the gauge fields. We vary the total action
including Eqs. (13) and (16) and obtain the following
equation of motion (EOM) and boundary condition by
requiring 6S = 0 for any 5‘i’f’,: The EOM is

o 1
e yﬂD,qufi - 7/50y‘1"fl~ - 5 (Oyo)yS‘I’fi + Mf,lpfl = O,
(19)
and the boundary condition is given by
sSyrace + 58y = 0, (20)

where sSyTee =1 [ d4xe4"5‘i‘f,»y5‘l’f,-|§ié coming from
Eq. (16). Notice that the action for the quarks and leptons
in Eq. (13) is localized at the branes. Plugging Eq. (17) into
Eq. (19), we obtain

|

ie=y* Dyt (x)f1(y)
=50, /T ()} (%)

+1 oysy (X)f1(y) —

2 My ()f7(y).  (21)

where ¢/ = dyo. Using Eq. (18), Eq. (21) can be decom-
posed in terms of left- and right-handed spinors f7; &,

1
<5y ‘I— EG,

1
<ay 30+ Mf,-> L) = —eTmifip(y).  (22)

_Mf> Fir(y) = e=m}fi (v),

The nonzero KK modes can be obtained by solving the
first-order coupled equations of motion Eq. (22) for the
Dirac component profiles f ;’L( R giving the 4D KK mass

spectrum for n > 1, m} ~ ke "L if kL > 1; see Ref. [28].
At low energies, i.e., when E < 1/L, only the zero mode is
important, while at higher energies E = 1/L, all the KK
modes become essential. Since we are interested in the
energy scale much lower than 1/L, the 4D covariant
derivative term in Eq. (21) can be negligible. Then, by
setting M, = constant, we approximately get

FO () m fO (L)erloL)=ol)=My; (L=),
0 (y) & £9,(0)e0)Mpy, (23)

Choosing

6fiL(0) = 6fix(L) =0 (24)

as boundary conditions, all the left-handed and right-handed
KK modes of ¥;; would vanish, respectively, at the y = 0
brane and at the y = L brane, without mixing mass terms
between bulk and brane fermions at the branes. In this case,
only the right-handed (left-handed) modes could couple to
the SM fields on the y =0 (y = L) brane, respectively.
However, when there are mixing mass terms between bulk
and brane fermions like in our case, such boundary con-
ditions are generalized by the variation of the action in
Eq. (20). By adjusting Eq. (24) subject to the boundary
condition in Eq. (20) in the presence of the mixing mass
terms, we obtain, for example, for u-type quarks

! 1 Dy
(5S)b.c - /d4x\/§ |:5lP;1(x’ O){Elyul(xa()) + Y’i{IQlHu} + 51{152()670){5\1’142()6’ O) + Y52Q2Hu + Y Ql < 5 S)Hu}

1
+ 0¥ (x, 0){§Tu3(x, 0)+Y450:H, + -+ } + 5‘Pu1(x,L){ ¥ (x,L)+ 7Y, <Z/{‘

1
(. L){—‘Pz;z (6.L) + Y a(then) +

2

5

Dro
%))

vt n{pun e+t f el 25)
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resulting in the boundary conditions for the flavored bulk
fermions shown in Eq. (B1), and similarly for d-type
quarks and leptons in Eqs. (B2) and (B3). As a conse-
quence, in the presence of the mixing mass terms on the
branes, the zero modes of bulk fermions become massive.
Therefore, using the above nontrivial relations between
bulk and brane fermions, we can integrate out the bulk
fermions to get the effective interactions for the brane
fermions in 4D. In the process of integrating out the bulk
fermions, it is sufficient to focus on the zero modes of
the bulk fermions in the following discussion because the
massive KK modes are taken to be much heavier than the
zero modes.

From Eq. (13) with Egs. (10)—(12), after integration
along y we obtain the 4D action given in Eq. (C3).
Applying Eq. (23) to Eq. (17), we get

w 7¢ e
_EZD:[)’n(u 1\/;3>

leiR (x, O) ~ LPfiR(xv L)eZU(L>_MfiL’

LPfiL (.X, L) ~ leiL ()C, O)e_za(L)_MfiL. (26)

In order to derive 4D effective Lagrangians for the fermion
Yukawa interactions, we integrate out the bulk fermions in
Eq. (C3) by using Egs. (BI)~(B3) and (26). Those
equations show that the bulk fermions are given in terms
of the SM fermions, Higgs fields, and flavon fields.
Performing the rescaling of dimensional parameters such as

F = O F,
¥, - ey,

i

M5 — e”(y)MS’ 1/ e%”(y)lll’

Y/ = e0)y! (27)

(also applied by the replacement of Y/ — ¥/, ¥/, and Y,),
we finally get 4D Yukawa interactions given as

- N ~ n®re nnn
c Q Hu _|_ |: u <Z/{C > u <uc ) <uc > :| Q Hu
( M3> :| ! y22 M5 1” M3 1" M3 1” 2

: H, .. Pro . H,
+ 35, (UR) 1 Q1 (P D)y Ve +y <L[ M ) ((I)Sq)S)I’Ql M2 5+ 95, (L[ M3> (DsDs)y 0 e
5 " 5

H
+¥531°03H,, + y5,1° Qs (P D)y ﬁ; +¥5,1°0 (s D)y ﬁ;

H

5

nPro i
b b QsH D e D H
Q3 - |:y22 ( M5> 1’ + < M3 ) 1" + < ) 1”:| Q2 ¢

NPT
o),

m

Q2
4 (L
M\ M3

+ |:yr (L(I)T) 17
5

2

with well-defined Yukawa-coupling functions

¥ = 4Y{jf’ake_Mka cosh20(L),
Y&/ Ms = 4Y{jYake_Mka cosh20(L),

yzf’/MS = 4YfYL€_M/L cosh ZO'(L), (30)

where a = (d, s, b, u, c, t),f
Eq. 27) F = {9, 0(0),H

(u,d),¢ = (e,u,7),and in
@} (at the y =0 brane),

. . d.D . d.D
(D ):|Q1Hd+yl372b ( S2S> O,H, + y5,b < st
5 1 M5 1 M5 1

C o Pre DDy
() oot (5), oo (o), () e

O Of ~ O Or\ Dpo
Ll = L + L
4D — |:ye < M% > X Ve < M% M2

1 1 o
= (v0® + ygO)(N°N¢); + EyR(DS(NLNC)Z& +H.c.

(28)
o
] e‘H; + |:y/4<LCDT) M’; + ¥, <LW> ]ﬂcHd
® D
MU “H,+ y,(N°L)y—H, + ,(N°L)y—H,
>1//Q}T daT)y ( )1M5 y ( )3M5
(29)

{®r,0,1,x.7} (at y=L), and y stands for all fermion
fields localized at both branes. Note that the 4D effective
Lagrangians are derived from Egs. (28) and (29) after the
flavons acquire VEVs (F) at both branes. Therefore, we
expect that the mediation of bulk messenger fermions via
Egs. (26) and (B1)—(B3) and vacuum configuration of the
flavon fields play a crucial role in adjusting the quark and
lepton masses and mixings to their observed values.
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IV. HIERARCHIES OF FERMION
MASSES AND MIXINGS

A. Charged fermions

After electroweak symmetry breaking, we get the VEVs
for two Higgs doublets as (H,,) = v, 4, where v, =
vsinf/v/2 and v, = vcosf/\/2 with v =246 GeV.
Given the specific vacuum alignment given by Eqs. (6)
and (7), we obtain the up(down)-type quark mass matrices
and diagonal form of the charged-lepton mass matrix, in
which each entry is proportional to e /i’ cosh26(L);
see Eq. (C1).

Under the hierarchy My L > My L > M; L >0, the
quark mixings 9‘1 in the standard form [29] can be obtained
from the dlagonahzatlon of the quark mass matrices given

in Eq. (Cl);
5G 2 1
G ZA)(
05 + K>
5tp = arg(f(§.9)),

where i # j =1, 2, 3, and Qx,(q) represents the U(1)y,
quantum number Q of field ¢, and f;(¥, ) are functions of
the associated hat Yukawa couplings being of order unity
[cf. Egs. (1), (30), and (C1)]. Note that in the limit of k — 0,
there is no quark mixing. Clearly, it shows the quark
mixings only depend on the local effects of Gf. For the
charged lepton, the mass ratios are given by

[Qx, (Q;)—CQx, (2:)]

El

0f, =3k f(3.9)

(31)

, 1 1 1 )
- eir moem
1 1 1
—b, —c,k
K> . .
+moe W E(by"_cyK) +dy
1
2

|2U_g X559
M X15C

is given by a,, b,, c,, and d, that are functions of «, &, ¢,
and other phases.

As a result, the neutrino masses m, (i=1, 2, 3)
are obtained by the transformation UlyngM, Upyns =
diag(m,, Ly, ,)» where Upyys is the mixing matrix of
three mixing angles 6, (solar), 0,5 (reactor), 6,3 (atmos-
pheric), and three CP-odd phases (one dcp for the Dirac
neutrinos and two ¢, , for the Majorana neutrinos) [29]. In
the limit x — 0 (leading to & — 0 and a, — 3), the light
neutrino masses generated via Eq. (35) become degenerate
with no neutrino mixings [and also no quark mixings; see

where mg = [,

| ( T ;)% and each component

(bu + Cu’z‘) - dv

§\s

PAZAN/(5,A74, + F,A2)A,, (32)

3

T (yﬂATA + y/t )A;/(j\)‘rATAQ + f)rA%)

m‘r

(33)

In the limit Ay ~ A, ~ A,, and for order unity $,_., . and

. those ratios become Be ~ AIOA, and 2~ Ad
my,

B. Neutrinos

In this model, the low-energy effective neutrino masses
are generated by the usual seesaw mechanism [20] with the
inclusion of right-handed SU(2)-singlet Majorana neutri-
nos N¢. The seesaw scale M should be larger than the
electroweak scale but smaller than M5. The fundamental
gravity scale M5 can be derived in terms of F4 or M:

_15EFs _ M

Fa
Ms = == .
> \/EA)( A@ ,/1_+_K2

Contrary to the quark and charged-lepton sectors, the
neutrino Yukawa couplings do not depend on the nonlocal
effects of the extra dimension. After seesawing M, ~
—mEMzlm;, where My and mp, are, respectively, right-
handed Majorana and Dirac neutrino mass matrices [see
Egs. (El) and (E2)], in a basis where charged-lepton
masses are real and diagonal, we obtain the effective light
neutrino mass matrix

with M = |59 (34)

Eq. (31)]. Hence, it is reasonable to take a nonzero k to
generate the observed neutrino mixing angles. Then, the
neutrino mass eigenvalues of Eq. (35) can be expanded in
terms of x: For normal mass ordering (NO), m7, = m%, >
ml%z = mO > m”l = mlzl— with mzzxi = m(z)(Ql/ + \% Jv)/Pzn
2 2 _

and for inverted mass ordering (IO), mfz =my>my =

ml, > ml =mi_, where Q,, J,, and P, are functions of
the parameters in Eq (35). The limit y, — 0 in Eq. (29) is
equivalent to a, — % (1 — ¢’k) and {b,.c,.d,} — 0, and it
gives rise to the so- called tribimaximal mixing of neutrinos.
Then, the deviation from the tribimaximal mixing [30] can
be presented in terms of «:
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023 — m/4] |d»|'<2,
013 |d»|’<2,
2V2[3a,| (k> = &2)S, + O3, &)
R, +3|a,|(R* -5)S, + O3, &)’
(36)

1
912 — Etan_l (2\/5) o~

where R, =1 —3|a,|> — & cos® ¢, and S, is a function of
|b,|, |c,|, &, and relevant phases [especially, S, - 0 and
O3, &) — 0 for {b,,c,} — 0].

V. FLAVORED AXION

The flavored axion A; produces the flavor-changing
neutral Yukawa interaction

A -
Lot i A g~ m)ds + He  (37)

al

where 1 is the Cabibbo angle [29], which gives the
strongest bound on the QCD axion decay constant F,.
From the present experimental upper bound Br(K+ —
7tA;) < (3-6)x 107" at 90% confidence level [31],
we obtain F4 2 (0.7 — 1.5) x 10'° GeV.

From the Lagrangian terms for the axion and electron
given by

0.A 0,A 0d,A
utl 2 WAT \ =
—-41 + >ey”y e, 38)
<2fa] 2f0 W, : (

we can identify the effective axion couplings as ¢;,, =
m,/(V2|8F|F4) and g, = 41m,/(v/2|65|F ). Thus, the
flavored axions’ A;, s interactions with leptons can be
searched for in stellar evolutions in astroparticle physics
[32]. Some stellar cooling hints can be interpreted as axion-
electron couplings 7.2 x 1071 < |g;,.| £ 2.2 x 10713 [33]
determining the favored values of F4 via the A; couplings
to electrons. Otherwise, the lower limit on F4 is set to
about 108 GeV by SN1987A, while the upper bound on
F, is about 10'?> GeV from the dark matter abundance.
Combining the stellar cooling hints (from astrophysics)
with the constraint from KT — 7t 4+ A; process (from
particle physics), we obtain the consistent axion decay
constant as

(0.7-1.5) x 10'° < F,[GeV] £ 1.9 x 10'°.  (39)

VI. NUMERICAL RESULTS

In this scenario, there are 16 degrees of freedom [eight
local parameters {A,, Ag,Ag,k,A,, Ay, A, tanf} plus
eight nonlocal parameters {c(L), M), ,,,M¢}]. Among
them, 14 parameters are left undetermined after imposing
the two constraints given in Eq. (8). We take $(§) = O(1),

and My > M; > M; with f =u, d for our numerical
analysis. For a fixed nonlocal parameter, the remaining 13
parameters can be determined from the observables in the
charged-fermion sectors (nine charged-fermion masses,
three mixing angles, and one CP phase in the quark
sector). We perform a numerical simulation using the
linear algebra tools [34] by adopting the empirical results
of the 13 observables in the charged-fermion sectors as
inputs. The numerical results of the model parameters for
M, L =28.375 are given as (L) = 18.25, tanf = 3.1,
k=04, A, =052, A, =051, Ay =035, A, =0.34,
M, L =43875M,L=40.975M, L =33.675,M,; L =
35.925, My L = 35.295, and M,L = 18.375. From our
numerical analysis, we found that o(L) is constrained for a
given set of A; such that the positiveness and inverted
ordering of M; are not kept below some value of ¢(L) while
keeping the required fermion mixing and mass hierarchies.
In addition, they are not kept in the case where the same
flavor symmetry introduced in this model is embedded in
the framework of the flat extra dimension.

Plugging the above results and Eq. (39) into Eq. (34),
we can derive the scale of Ms as (1 —2) x 10'! GeV<
Ms <2.8 x 10" GeV, leading to the QCD axion mass
m,= 5443;; x 10~*eV. Then, we obtain the axion photon
coupling |g,,,| = 1.1370¢% x 10712 GeV~! for m,/m, =
0.47, as shown as the red line in Fig. 1. With the help of
Eq. (3), the compactification length L[m] is given by

—Lg(L) (10! GeV)3
Lim] ~5.82 x 1015 x & 2E) GV o)
sinh (L) Ms

For the benchmark given above, the compactification length
of the extra dimension is estimated as L ~ 1072%m. On the
other hand, in the lepton sector, we can predict 5cp precisely
in terms of 6,5. Namely, 0,3 would favor ~51° for §-p ~ 180°
and 0,3 ~ 45° for 6-p ~90° and 270°, as shown in Fig. 2.
We note that the pattern of the light neutrino mass spectrum
NO (m,, > m,, > m,) or 10 (m,, > m, > m, ) can be

1.x10™"
5.x10-2F The Model
Particle physics
— N
P P U o A
D T [l L
() N -
g 5x1077 ¢ Astro-ppysics e
= L.

D 1x100k
= 0 Ksvz

5.x107"

5.x107° 1.x10™* 5.x10 0.001 0.005

Axion Mass m, (eV)

FIG. 1. Plot of |g,,,| versus m, for Kim-Shifman-Vainshtein-
Zakharov [35] (blue dotted line) and the model (“localized” red
line) in terms of E,/N. = 0 and —761/99, respectively.
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923 [Deg.]

FIG. 2. Plot for predictions of .p as a function of 0,3, for NO
(red crosses) and 10 (blue asters). For NO, 65;[°] allows [40.1,
51.7], while for 10 [42.2, 51.7].

107

10

OVBB [eV]

10°

NI RTIT AR

M|

M|

10° 10* 10° 10 10"

mlighlest [eV]

in

FIG. 3. Plot for the Ovff-decay rate as a function of the lightest
Neutrino mass Mijgpies; fOr NO (mjigne; = m red crosses) and 10
(Mijghest = M3 blue asterisks), where the most stringent limit
(90% confidence level) is given by KamLLAND-Zen [36].

distinguished by the measurement of Ovf-decay rate, as can
be seen in Fig. 3.

VII. CONCLUSION

We proposed an extra-dimension scenario to understand
the origin of the fermion mass and mixing hierarchies by
introducing the localized flavon fields and imposing the
flavor symmetry Gp(= non-Abelian x Abelian) through
the bulk. We fixed the charges of the extra gauged U(1)
symmetries by the U(1) gravitation anomaly free condition
and found that they play a crucial role in achieving the
desirable fermion mass and mixing hierarchies and protect-
ing the Peccei-Quinn (PQ) symmetry from quantum gravity
corrections.

We showed how the masses of charged fermions and
quark mixing link to an extra dimension. For neutrino

sectors, their masses and mixing do not depend on an extra
dimension. On the other hand, although the mass of the
flavored axion is not directly related to an extra dimension,
there is a link among the seesaw scale, QCD axion decay
constant, and extra dimension in our scenario.

When the bulk flavor symmetry G is broken due to the
flavor fields localized at the 3-branes, we showed that the
SU(2)-singlet flavored fermions in the bulk are integrated
out to provide the effective Yukawa couplings for quarks
and leptons, inherited with the G breaking in the two
sectors. We also showed that there is a viable parameter
space for the flavored axion in our model, which is
consistent with the solution to the strong CP problem,
the dark matter relic abundance with a misalignment
mechanism, as well as the bounds from rare meson decays.
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APPENDIX A: A POSSIBLE SOURCE
OF U(1)y, -EXPLICIT BREAKING

Spontaneous breakdown of the global U(1)y, symmetry
when v, vy # 0 are much higher than the electroweak scale
leads to a Goldstone mode, such that the global U(1)y,
symmetry is explicitly broken and a possible source of
U (1), -explicit breaking comes from soft breaking terms. In
order for the massless ALP to become massive, we introduce
relevant soft breaking terms induced by ®; and o,

. 0
Seoft D — / d4x{/419T‘bg(‘DT‘DT)3 + H290, QX 3
5

o \?
+#390TQO<CDT®T)1<E> +H-C‘}v (A1)

where y; > 0 have mass dimensions and gy, g,,,, g,r < 0 are
dimensionless. Then, we have a simple cosine structure
potential

)
(A2)

where py >~ p, ~ us ~ myg (soft supersymmetry breaking
mass) was assumed and we set hr, = 0. The potential
Eq. (A2) is minimized at A7 = 0. A mass for the ALP is
obtained,
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X 2
o5 o)

where i1 and p, are given such thatm, - < mgisexpectedif f ~ vy and/or ~v,. If 7 and p1,, become much smaller than v and
v,, Tespectively, i.e.,

APPENDIX B: BOUNDARY CONDITIONS FOR THE FLAVORED BULK FERMIONS
From Eq. (25), the boundary conditions for the flavored bulk fermions are given for u-type quarks by
[OR0]
¥,5(x.0) = —2{Y§’3Q3 + Y500 + Y4 IQI]( " S) }HW

OD
¥, (x,0) = —2{Y22Q2 + Y21Q1< ]\S/I S) }HW

5
¥, (x,0) = —=2Y¥ 0,H,,, P, (x, L) = =2V 51,

o (x,1) = - { Y ol ’7)+Yu2(UL’775>+Yu2<UL M)}

Wi (x L) = - { ul <u‘nMS>+Y,,l(w M5>}. (B1)

Similarly, for d-type quarks and leptons, we also get similar relations for the bulk fermions as follows:

d
Pi3(x,0) = —2{Y§3Q3 +[YL,0, +Y 1Q1]< 3 S) }Hch

oD
¥, (x,0) = —2{Y§2Q2+Y ( S S) }Hd,

‘Pdl (X, 0) = —Z{Ylel + Y <(I) )}Hd,

W (x, L) = =2¥,,36°,
c C C I’]V]
lsz(x7L):_2{Yd2 +Yd2<D71 >+Yd2<D ”W)}
5

(4 C ’7]7
le(x,L)——Z{Yd1<D I’IF> +Yd1<D ﬂﬁ>l}’ (B2)
5

5

O o DDy o n o n
viten = -2{e(ron M )*”C<Y”‘I’TM2+YMM§Q ee(reng ) b

‘Pf(x, 0) = _2YLLHd (B3)

APPENDIX C: FERMION MASS MATRICES AND QUARK MIXING MATRICES

We present the details of quark and lepton mass matrices obtained in 4D effective theory. From Eqgs. (28) and (29), the
up(down)-type quark M, and charged-lepton M, mass matrices are expressed as
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i +14 )
mf e ( Mo, L 0 0
AL 44
My = m21el( ALy 42 ) oMo L m‘zizel("fﬂﬁ)e‘MdzL 0 cosh20(L)
A . A A
11—1—18 18 3411842
m3le ( )e_M"3L m%lze ( "”> m§’3el< ' 1’-‘7> e MaL
21462 ) )
m‘f] ( vg e Mu]L O O
A A
617> 622 _
Mu mZIe o MMZL mlztze "’ge MuzL 0 COShZO'(L),
. A A
—11 62L_1122 A
m31e ( vF Lg) e_M“3L mgzel< s (;_,/) mg:;e—lllﬁe_Mu}L
( —4152420L )
mfle ! 0 0
M= ’ "(vAr_"“:_z‘%T) e ™ML cosh26(L), (C1)
0 m22e F 9 O
,»(A_l A_z_A_r)
T vF vg Ut
0 0 msse

where A;(, 7) is massless mode v, = \/v§ + v3, and

d cnd 5 P 2\,
miy = (i3], ArA, = 311 A7)A, 4 <m> Ay,
P72\
mg; = =3k795,A, 5 <1+K2> A vy,
2
. Sl 2 \:
My, = )’§2Ar, E; <1+K2> A}(Svd,
58|11 2 u
ms; = 3k°§3, El (1 +1<2> AP,
2
5 |87 2 \3
mé, =~ 3k%§%, El <1 +K2) A§7vd,
2
8¢ 2 \:
md ~ ob 213 A2lv ,
33=Y33 65" 15 .2) 2 v
o x0T 2
mi = (i94, ArA, — F11AD)A, 55| T Abv,,
R 5612 2
mh, z—31<2yglA,7 5—(13 WA)?UW
2
ng = _5)32A}1A)6(Uu’

o
5
8¢
5

mys = 3’33A Uy

my; =~ 3k Y31

8 2 4 "
(122 o

(2 Vi
[(eze) s

mi, =~ 3k ¥

075029-12



TOWARD A MODEL OF QUARKS AND LEPTONS

PHYS. REV. D 106, 075029 (2022)

5G
m{, ~ yeA2 A;z

mh, ~ (9, A7, + yﬂAz)A”A

miy = (5078, + ¥, A2)A A

3
1+ 2 va>

58 2 \3
S\1+e)

recalling that the hat Yukawa couplings are of order unity such as \/— SP,y<SVI10
The 4D action in terms of the flavored bulk fermions at the boundaries reads

Sy = /d4x\/§{{Y§3‘PZ3(x,O)Q3 + YW, (x,0)0, + VY

oD N -
YW, 0)Q2)%}Hu + Y 31°%,5(x, L) + <Yu2UC’1 + Y, oUe
5

Y c m c c
+Ye (U ’1@)‘{’”2(3@1‘) ( Y, Uy M2 +Yu1?/l

+ Yfllpél (x,0)0; + ((Ytzil‘PZz(x’ 0) + Y§1‘P§3(x, 0))0, + Y§2T§3(x, 0)0,)

+ Y (Dn) ¥ (x, L) + Yo (DC M2 )sz(x L)+ 7Yy (D nM2> P (x, L) + Yy <DC M2 )le (x,L)

+Y, (DL
5

OO
(6O + y50)(N°N®) + Y e, (x, L)
5

l\)l>—‘

2

+ Yﬂﬂc‘l‘f(x L) 2Q + Y TCle(x L)q)

M5

Here, using Eq. (17), we get f%(0) ~
lead to W5 (x,0) &~ W<, (x,

FoR(L)e®
L)eZo-(L) MML, LPM3(X,L)

o
Y ap L
M2 s+ Y 1%, (x, )

Myl and f9, (L
¥3(x. 0)e” <L) wh

I ‘ Hu 1 cN\JC
a0 L) VB O)LH + ((N°L) + 5, (VL)) 1 3 NNe) g

5G 2 3
&S (W) v (€2)
1 Wi (x,0)0) + (Y5, ¥5,(x,0)0) + Y5, ¥5(x, 0) 0,
Do
ﬂvg)\yuz(xl)
) (5.2) + { W (1,004 + VE¥(x.0)0:
M3
D
S S}Hd + Yb';b ‘I’dg(x L)
3
& ¢ q)Tq)T q)TQ c 2
L+ 7,e <TK(X’L) My M2 + Yuu le’(x’L)(DTﬁ%
M2 o+ He. } (C3)

)e —20(L)=M}L at the boundaries, which in turn

, etc. Plugging the above formulas for the ¥

fOL

fields at the boundaries as well as Egs. (B1)-(B3) into Eq. (C3), we obtain the 4D Yukawa interactions given by Eqgs. (28)
and (29) after rescaling the dimensionful parameters Eq. (27).

From the quark mass matrix of Eq. (C1), its left-handed mixing matrix Vf with f = u, d reads at leading order [37] with

(1 e ;12) e i@+4))
C f71e"<¢§—¢f )

B(A,Cre W90 4 B el +01=00))

where C f;l, B f/~13 ,and A f;lz correspond to the mixing angles
6"1"2, 9{ 5, and 953, respectively, in the standard parametriza-
tion of the mixing matrix. Then, setting 1 = AC,;—C,),

§= 0508 = 0% e = A and @I = AV e
and using ( cdfuc 7T cdé ey ~ 7 with the Wolfenstein

parameters A,A,p,n,éqcp [29], one can obtain the quark

-C fzei(¢;’+¢§ )

(1_cf%zz)ef<¢§—¢f> —A 20D |+ O,

—sz’j e_i¢£
(C4)

A f.zzef<¢{ +¢4) oi(d1+4))

mixing matrix Vegy = VY Vf by redefining quark fields
and b — ¢~ @#+93+209p  and the CP-violating phase
is given by §Lp = ¢4 — 2¢¢ = tan~!(n/p). Subsequently,
the down- and up-type quark masses are obtained for
M L| > [M;L| > |M;L| in an analytical approxima-
tion as
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X853
X6
X,55
X85

my, = |§’§3

’\?
(1 - 2>2A)2(1e_Md3L cosh26(L)vy,
K

2 1
= 95,14, ( 2>2A}53_M‘[2LCOShZG(L)Ud,

1+«
X,07 P
X069

mg = 2[99, |ArAA, sin gy,

2 3
(1 - z)sze_Mf’lL cosh26(L)vy, (C5)
K

m, = |§%;|Alte ™t cosh 26(L)v,,

m, = |9%|A,ASe Mt cosh26(L)v,.
X882 2
X85 1+«

m, = 2|5>‘141 |ATAQA17 sin ¢u

Se™Mul cosh26(L)v,, (Co)

where in the last equations of Egs. (C5) and (C6) |5)1'1 |ArA, = |§)1'1 |A7 and g;ﬁf = ¢y + x/2 with f = u, d were used for
simplicity. In addition, the ratio of electroweak Higgs field VEVs (H,)/(H ) is approximately given in terms of the PDG

[29] value by
tan ff ~ <ﬂ>
My /) ppG

APPENDIX D: HIGHER-DIMENSIONAL OPERATORS

X068
X, 85

ob
Y33
ot

Y33

3
K

Higher-dimensional operators arising from the one-loop exchange of the flavored bulk fermion pairs W'¥, and FF
read ‘ ‘

o X e (113 e s (@r®7)10% e
W§% 2 6(y — L){/1 g(lp Wi+ + 1, M§3 (‘P5¥))s +/1TTT€;1(Tfo)1 -+ (Yo Fy)

Yoy
+ 5(y){leading-order interactions x < ]{/[4f> + (¥ < Ff)} (D1)
5

which can be absorbed into the leading-order operators by redefinition of the corresponding coefficients.

APPENDIX E: MAJORANA AND DIRAC NEUTRINO MASS TERMS

In the Lagrangian given as Eq. (29), the right-handed Majorana mass term reads with the help of VEV configurations
Eq. (6) as

1+3ke  —Llke?  —1lke
Mp=M| —ike?  3ke 1-ike? |, (E1)

—1ke?  1-1ke?  Zke

where Eq. (8) is used, and & = k|9z/9e| and ¢p = arg (/e ). Without loss of generality, setting ¢ = 1, a common factor
M in Eq. (E1) can be replaced by the QCD axion decay constant F4 as shown in Eq. (34). In addition, the Dirac neutrino
mass term also reads with Eqgs. (6) and (7) as
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X,6¢
X685

— 45 A8
mp =Yy, 'Y

8 2 4
(1 + Kz) o
1+ 2kyse'®s

x | -« (%yie"’ﬁs + %yﬁe"‘f’a>

—x (% yieits -1 ygemsu)

2 S Ll

—K (%yzel‘#s + %yﬁeid)a)

1- K(%yiei‘/’x - %yﬁei¢ﬂ> , (E2)

- G ySeits _ %ygeicba) 1— K(éyieiass n %ygem) 2kyseits

where Eq. (8) is used, and y¥ = | Sva $,| and ¢, = arg(y?) with a = a, s. y¢, and y; correspond to the Yukawa coupling of
the antisymmetric and symmetric operators (N°L) 3a(s) PsH /M given in Eq. (12) which naturally cause the deviation from
the tribimaximal mixing, such that it is responsible for the nonzero 6,5 and a deviation of 6,5 from the maximal mixing /4.
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