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We discuss a model that can accommodate the B-physics anomalies, based on combining two scalar
leptoquarks, R2 and S3, of mass Oð1 TeVÞ, and that we proposed in our previous paper. We update the
analysis of its parameter space and show that a model remains viable and consistent with a number of low
energy and high energy flavor physics constraints. Since the model predicts a nonzero new physics phase,
we discuss the possibility to test its contribution to the neutron electric dipole moment and to the angular
distributions of the exclusive b → cτν̄ decays. We find that the model can provide a significant
enhancement to BðB → Kð�ÞννÞ and provides both the upper and lower bounds to BðB → Kð�ÞμτÞ.
DOI: 10.1103/PhysRevD.106.075023

I. INTRODUCTION

It has been established that the only viable scenario
involving a single Oð1 TeVÞ mediator that can accom-
modate the so-called B anomalies, while remaining con-
sistent with a wealth of measured low energy flavor
observables, as well as with the bounds arising from the
direct searches at the LHC and those deduced from the
high-pT tails of pp → ll, is a scenario with a singlet
vector leptoquark (LQ) state, often referred to as
U1 ¼ ð3; 1; 2=3Þ, where the quantum numbers correspond
to the Standard Model (SM) gauge group [1]. While the
vector LQ is an appealing solution, it creates problems
when building a particular model because the resulting
effective theory is not renormalizable unless a particular
ultraviolet (UV) completion to the theory is specified [2].
This, in turn, necessitates introducing more states, more
parameters, and in order to make a model more predictive a

number of assumptions needs to be made. An alternative to
that scenario is to combine two scalar LQ’s, such as S1 ¼
ð3̄; 1; 1=3Þ with S3 ¼ ð3̄; 3; 1=3Þ [3,4], or R2 ¼ ð3; 2; 7=6Þ
with S3. The advantage of the two scalar LQ scenarios is
that they remain renormalizable; the loop processes can be
easily computed without necessity of introducing an UV
cutoff by hand, so that, once measured, such processes can
be used as constraints. In Ref. [5], a model in which the R2

leptoquark is combined with S3 both with mass Oð1 TeVÞ
has been proposed. In order to make it minimalistic, we
chose the structure of Yukawa couplings,1 such that the
matrices of left-handed couplings toR2 and to S3 are related
via YðS3Þ

L ¼ −YðR2Þ
L , a pattern that can provide a plausible

embedding of the resulting effective theory in a SUð5Þ
unification scenario.
In this paper, we update the analysis presented in Ref. [5]

to show that the proposed scenario is still viable and
consistent with the current experimental data. Furthermore,
we discuss several new observables, including those
relevant to the angular distributions of B → D�ð→
DπÞτν̄ and Λb → Λcð→ ΛπÞτν̄, the measurement of which
can help distinguishing this particular model from the other
ones proposed in the literature. Another novelty is the
analysis of the high-pT tails both of the mono-τ and di-τ
events for various leptoquark masses, which has not been
discussed in our previous paper [5].
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1Yukawa couplings here are couplings between LQ’s and
particular quark and lepton flavors.
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II. MODEL

As mentioned above, we combine R2 with S3 LQs in
order to accommodate both kinds of B anomalies. More
specifically, the observation that the (partial) branching
fractions of the exclusive b → sμμ processes are smaller
than predicted in the SM can be described by couplings to a
S3 LQ, whereas those showing the excess of events based
on the b → cτν̄ transition can be described by couplings
to R2.
To be more specific, the interaction Lagrangian between

the LQ’s and the SM fermions in this model reads

L ⊃ ðYðR2Þ
R ÞijQ̄0

il
0
RjR2 þ ðYðR2Þ

L Þijū0RiR̃†
2L

0
j

þ ðYðS3Þ
L ÞijQ̄0C

i iτ2ðτkSk3ÞL0
j þ H:c:; ð1Þ

where YðR2;S3Þ
L and YðR2Þ

R are the Yukawa matrices, τk are the
Pauli matrices, Sk3 stands for a component of the SUð2ÞL
triplet. In the above expression, we use the notation withfR2 ¼ iτ2R�

2. In the mass eigenstate basis, the above
Lagrangian becomes

L ⊃ þðVYðR2Þ
R E†

RÞijuLilRjR
5
3

2 þ ðYðR2Þ
R E†

RÞijd̄LilRjR
2
3

2

þ ðURY
ðR2Þ
L UÞijūRiνLjR

2
3

2 − ðURY
ðR2Þ
L ÞijūRilLjR

5
3

2

− ðYðS3Þ
L UÞijd̄CLiνLjS

1
3

3 þ
ffiffiffi
2

p
ðV�YðS3Þ

L UÞijūCLiνLjS−
2
3

3

−
ffiffiffi
2

p
ðYðS3Þ

L Þijd̄CLilLjS
4
3

3 − ðV�YðS3Þ
L ÞijūCLilLjS

1
3

3

þ H:c:; ð2Þ

where the superindices in R2 and S3 now refer to the
electric charge. In what follows, we will assume the
components of the R2 doublet and those of the S3
triplet to be mass degenerate, respectively. In our nota-
tion, the mass and flavor eigenstates are related via
uL;R ¼ UL;Ru0L;R, dL;R ¼ DL;Rd0L;R, lL;R ¼ EL;Rl0

L;R,
νL ¼ NLν

0
L, where UL;R, DL;R, EL;R, and NL are unitary

matrices. Therefore, V ¼ ULD
†
L ≡UL and U ¼ ELN

†
L ≡

N†
L are the CKM and the PMNS matrices, respectively.
Concerning the Yukawa matrices, we assume their

structure to be minimalistic and the nonzero values are

YðR2Þ
R E†

R¼

0BB@
0 0 0

0 0 0

0 0 ybτR

1CCA; URY
ðR2Þ
L ¼

0BB@
0 0 0

0 ycμL ycτL
0 0 0

1CCA; ð3Þ

where, as mentioned above, we take YðS3Þ
L ¼ −YðR2Þ

L ,
namely,

YðS3Þ
L ¼ −

0BB@
1 0 0

0 cos θ sin θ

0 − sin θ cos θ

1CCA
0BB@

0 0 0

0 ycμL ycτL
0 0 0

1CCA: ð4Þ

In summary, the new physics (NP) parameters in this model
are mR2

, mS3 , y
bτ
R , ycμL , ycτL , and θ. All of the mentioned

parameters are real except for ybτR , which we allow to be
complex for the reason that will soon become clear.

A. b → cτν̄

At low energies, the above model, when applied to
describing the b → cτν̄ processes, reduces to the effective
theory,

Hb→cτν̄
eff ⊃

4GFffiffiffi
2

p Vcb½gSLðμÞðc̄RbLÞðτ̄RνLÞ

þ gTðμÞðc̄RσμνbLÞðτ̄RσμννLÞ� þ H:c:; ð5Þ

which is to be added to the SM. The effective couplings that
appear in Hb→cτν̄

eff can be easily identified as

gSLðΛÞ ¼ 4gTðΛÞ ¼
ycτL y

bτ�
R

4
ffiffiffi
2

p
GFVcbm2

R2

; ð6Þ

at the scale μ ¼ Λ ≃mR2
. That relation, due to the

renormalization group running, from Λ ≃ 1 TeV down to
the low energy scale μ ¼ mb, translates to gSLðmbÞ ≈ 8.1 ×
gTðmbÞ [6].2 In Ref. [5], we explicitly wrote the contribu-
tion to b → cτν̄ coming from S3, which however is tiny in
this scenario and will be neglected in the following
discussion.

B. b → sμμ

Another type of anomalies, namely those relevant to the
exclusive processes based on b → sμμ, are described in this
framework by

Hb→sμμ
eff ⊃−

4GFλtffiffiffi
2

p ½δC9ðμÞO9ðμÞþδC10ðμÞO10ðμÞ�þH:c:;

ð7Þ

where λt ¼ VtbV�
ts, and

O9 ¼
e2

ð4πÞ2 ðs̄LγμbLÞðμ̄γ
μμÞ;

O10 ¼
e2

ð4πÞ2 ðs̄LγμbLÞðμ̄γ
μγ5μÞ: ð8Þ

2More specifically, the relation gSLðΛÞ ¼ 4gTðΛÞ gets modi-
fied due to renormalization group running from Λ ≃ 1 TeV
down to μ ¼ mb. Since gSLðmbÞ ¼ 1.56gSLðΛÞ, and gTðmbÞ ¼
0.77gTðΛÞ, one then obtains gSLðmbÞ ≈ 8.1 × gTðmbÞ.
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After matching the amplitude obtained by using the
Lagrangian (2) with the one based on the low energy
effective theory (7), one finds

δC9 ¼ −δC10 ¼
πv2

λtαem

ðYðS3Þ
L ÞbμðYðS3Þ

L Þsμ�
m2

S3

¼ −
πv2

λtαem

sin 2θjycμL j2
2m2

S3

: ð9Þ

This closes our discussion about the model proposed in
Ref. [5] and its relation to the couplings gSLðmbÞ and δC9.

III. PHENOMENOLOGICAL ANALYSIS—UPDATE

A. RDð�Þ

We should first remind the reader that the quantities
based on b → cτν̄, for which the experimental hints of
lepton flavor universality violation (LFUV) have been
reported, are defined as

RDð�Þ ¼ BðB → Dð�Þτν̄Þ
BðB → Dð�Þlν̄Þ

����
l∈fe;μg

: ð10Þ

Both quantities have been recently measured [7], and the
new experimental averages are [8]

Rexp
D ¼ 0.340� 0.030; Rexp

D� ¼ 0.295� 0.014;

RSM
D ¼ 0.293� 0.008; RSM

D� ¼ 0.248� 0.001; ð11Þ

where we also give the SM predictions in order to
emphasize that Rexp

Dð�Þ > RSM
Dð�Þ , which is often referred to

as the B anomalies in charged currents, thus significant to a
little over 4σ. A similar tendency has been observed in a
corresponding ratio involving BðBc → J=ψlν̄Þ [9]. It
should be noted that a similar LFUV effect has been
recently tested at LHCb through Λb → Λcτν̄, and the
resulting experimental value RΛc

¼ 0.242� 0.076 [10],
due to its large uncertainty, is consistent with
RSM
Λc

¼ 0.333� 0.013, even though it may appear different
from what has been observed with decays involving
mesons. In order to obtain the allowed range of values
for gSL, we use the most recent determination of RSM

Dð�Þ ,
obtained after combining the lattice QCD results for the
relevant form factors in the high q2 region with those
extracted from experimental analysis at low q2’s [11].
Notice also that in this work, we use expressions and
the values of the ratios of tensor form factors and the
(dominant) axial form factor [A1ðq2Þ] from Ref. [12]. A
lattice QCD computation of the tensor form factors would
be very welcome. From Fig. 1, we see that for all currently
viable values of gSL , that are consistent with R

exp
Dð�Þ , one must

have Im½gSL � ≠ 0. That is why we emphasized after Eq. (4)
that one of the couplings entering the expression for gSL in
Eq. (6) should be complex, which we chose to be ybτR .

B. Constraints on gSL from high pT tails of pp → τν

In recent years, we witnessed a revival of the idea, first
proposed in Ref. [15], to search for the presence ofOðTeVÞ
LQ’s from the experimental information on the high pT
tails of pp → ll. That indeed turns out to be a source of
interesting constraints on the corresponding Yukawa cou-
plings [16]. In Ref. [17], it was proposed to bound the
couplings relevant to the explanation of the RDð�Þ anomaly
from the high pT tail of pp → τν processes accompanied
by the low-pT jets. Further details regarding that analysis
were provided in Ref. [18], where the same set of
experimental data were used and the similar bounds on
NP couplings obtained.
More specifically, one is focused on the high-pT tails in

which σðpp → τ�νÞ can be written in terms of the partonic
cross sections (σ̂) and the luminosity functions Lqiq̄j ,
summed over all flavors, namely,

σðpp → τþνÞ ¼
X
ij

Z
1

0

dτ
τ
Lqiq̄jðτÞ½σ̂ðτsÞ�ij; ð12Þ

Lqiq̄j ¼ τ

Z
1

y

dx
x
ðfqiðx; μFÞfq̄jðτ=x; μFÞ þ qi ↔ q̄jÞ; ð13Þ

where the known partonic distribution functions fqiðx; μFÞ
depend on the factorization scale μF, that is conveniently
taken to be the partonic center of mass energy

ffiffiffî
s

p
. Note also

that the kinematic variable τ ¼ ŝ=s ¼ m2
τ�ν=s.

The channel of interest for our discussion is cb̄ → τþντ,
that in Refs. [17,18] was assumed to be described/

FIG. 1. 1σ, 2σ, and 3σ regions of complex values for gSL ≡
gSLðmbÞ allowed by Rexp

Dð�Þ, cf. Eqs. (5), (6). Red and green circles
correspond to the constraints on this coupling obtained from
analysis of the high-pT tail of pp → τν, as obtained from the
LHC data [13,14]. See text for more details.
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parametrized by the low energy effective theory (5), which
then contributes to the partonic cross via,

σ̂ðŝÞ ¼ jVcbj2G2
Fŝ

18π

�
3

4
jgSL j2 þ 4jgT j2

�
; ð14Þ

in addition to the SM contribution, which in this analysis is
treated as a background. In our case, the two couplings are
related, cf. Eq. (6). After recasting to our problem the
bounds on W0 obtained from 139 fb−1 by ATLAS [14], we
get the bound on gSL ¼ 4gT , which upon evolving down to
μ ¼ mb amounts to

jgSL j ≤ 0.51; ð15Þ

represented by the red circle in Fig. 1.
Since the LQ masses that we work with are not far away

from the high-pT tails accessed in experiments, one should
also use the propagating LQ, and check on the difference
with respect to the bounds on gSL obtained by treating LQ
as static. Using the Lagrangian specified in Sec. II, for the
partonic cross section, we obtain

dσ̂ðcb̄→ τþντÞ
dt̂

¼ 1

192πŝ2

"
g4jVcbj2 t̂2
ðŝ−m2

WÞ2

þ sin2θjVcs cosθ−Vcb sinθj2jyLcτj4t̂2
4ðt̂−m2

S3
Þ2 þjyLcτj2jyRbτj2û2

ðû−m2
R2
Þ2

þg2 sinθRe½ðVcs cosθ−Vcb sinθÞV�
cb�jyLcτj2 t̂2

ðŝ−m2
WÞðt̂−m2

S3
Þ

#
; ð16Þ

with a similar expression for bc̄ → τ−ν̄τ, where the first
term within the brackets corresponds to the SM contribu-
tion, followed by the S3 and R2 contributions, and finally,
the last term is interference between S3 and the SM
contributions. Note that the fermion masses in the above
expression have been neglected. It appears that, for our
phenomenological application, the R2 term indeed domi-
nates because the S3 term is suppressed with respect to R2

by Vcs cos θ − Vcb sin θ, in which the first term is small due
to a tiny cos θ and the second one due to the smallness of
Vcb. One can therefore write

σ̂ðŝÞ≃jyRbτj2ðjyLcτj2þjyLcμj2Þ
192πm2

R2

�
xþ2

xð1þxÞ−
2logð1þxÞ

x2

�
; ð17Þ

where x ¼ ŝ=m2
R2
. Again, after recasting the results by

ATLAS [14] and using the above expressions, we obtain

ðjyLcτj2 þ jyLcμj2ÞjyRbτj2 < 5.95; ð18Þ

which then can be combined into gSL via Eq. (6), and
evolved down to μ ¼ mb. For the benchmark mass,
mR2

¼ 1.3 TeV, we then find

jgSL j ≤ 0.88; ð19Þ

shown by a green circle in Fig. 1. Note that this bound,
obtained by including the propagating R2, is far less
stringent than the one deduced from the data after integrat-
ing out R2, cf. Eq. (15). Of course, if the LQ is taken to be
heavier, such as mR2

≳ 5 TeV, the bounds obtained from
the effective theory would be much closer to the one in
which the propagating LQ is considered, cf. also Ref. [19].
More details on this analysis and the notation employed
above can be found in Ref. [20].
In summary, from the current data by ATLAS regarding

the monotau high-pT tails, and by including the propaga-
tion of the R2 LQ of mR2

¼ 1.3 TeV, one cannot obtain a
very useful constraint on the NP couplings appearing in
Eq. (5). However, by assuming data to be Gaussianly
distributed, one can make a simple projection to an
integrated 3 ab−1 of the LHC data and arrive at
jgSL j ≤ 0.41, which would indeed be a powerful constraint.
In Fig. 1, the dashed circles correspond to the projected
bounds both by using the effective and propagating R2

of mR2
¼ 1.3 TeV.

C. RKð�Þ

As for the b → sll decays, the LFUV ratios are [21]

R
½q2

1
;q2

2
�

Kð�Þ ¼ B0ðB → Kð�ÞμμÞ
B0ðB → Kð�ÞeeÞ ; ð20Þ

where B0 stands for the partial branching fraction taken
over the common interval, ½q21; q22�, conveniently chosen as
to stay away from the region in which the c̄c resonances
dominate the dilepton spectra. We include the most recent
value for R½1.1;6�

K [22], and for completeness, we also quote
R½1.1;6�
K� [23],

Rexp
K ¼ 0.847� 0.042; Rexp

K� ¼ 0.71� 0.10: ð21Þ

These values are smaller than predicted in the SM, R½1;6�
Kð�Þ ¼

1.00ð1Þ [24]. This apparent LFUV, Rexp
Kð�Þ < RSM

Kð�Þ , is attrib-
uted to a deficit of the muon pairs in the final state with
respect to the SM prediction. Another novel b → sμμ result
is the most recent LHCb measurement, BðBs → μμÞ ¼
ð3.09þ0.48

−0.44Þ × 10−9 [25], which after combining with the
other two LHC experiments leads to

BðBs→μμÞ¼ 2.85ð33Þ×10−9jexp; 3.66ð14Þ×10−9jSM;
ð22Þ

showing that the measured value is about 2σ smaller than
predicted in the SM [26]. These three quantities [RK , RK� ,
BðBs → μμÞ] are then used to determine [1]
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δC9 ¼ −δC10 ¼ −0.41� 0.09; ð23Þ

also consistent with the global fit analyses [27]. To make
this result consistent with Eq. (9), and knowing that λt < 0,
one should have sin 2θ < 0. The factor sin 2θ provides a
desired suppression of the b → sμμ decays with respect to
b → cτν̄. Indeed, from the fit with data we obtain jθj ≈ π=2,
i.e., slightly larger than but close to�π=2. The contribution
of this model to the Bs − B̄s mixing amplitude comes from
the S3 box diagram, and it is proportional to sin2ð2θÞ, thus
again bringing a desired suppression since we know that the
SM contribution saturates the measured ΔmBs

. More
precisely, the S3 contribution to ΔmBs

is ∝ sin22θ½ðycμL Þ2þ
ðycτL Þ2�2=m2

S3
.

D. Updating the parameter space of our R2-S3 model

Besides RDð�Þ , RKð�Þ , and BðBs → μμÞ discussed so far in
this section, and which are the most important constraints
on the parameters of this model, the following quantities
are used as further constraints:

(i) The Bs − B̄s mixing is included by considering
RðΔmBs

Þ ¼ ΔmBs
=ΔmSM

Bs
. We combine the im-

proved experimental value with the lattice QCD
result by HPQCD [28] and obtain RðΔmBs

Þexp ¼
1.027ð68Þ. We also performed the full scan of
parameter space using the FLAG value for the
corresponding hadronic matrix element as computed
with Nf ¼ 2þ 1 dynamical quark flavors, which
corresponds to RðΔmBs

Þexp ¼ 0.897ð69Þ [29] and
found no significant impact to the selected parameter
space, except for the slightly different value of χ2min.

(ii) We require the results to be consistent with

Rðμ=eÞ exp
Dð�Þ ¼ 0.977ð43Þ [30], which is obtained by

combining Rðμ=eÞ exp
D ¼ 0.995ð45Þ [31] with

Rðμ=eÞ exp
D� ¼ 1.04ð5Þ [32]. Note that in this model

only S3 can contribute to Rðμ=eÞ
Dð�Þ ¼ BðB → Dð�Þμν̄Þ=

BðB → Dð�Þeν̄Þ.
(iii) We also impose the measured BðB → τνÞ ¼

1.09ð24Þ × 10−4 [33] as a constraint, where we
use fB ¼ 190.0� 1.3 MeV [29]. When needed
we take the CKM couplings from Ref. [34].

(iv) Tests of LFUV in the kaon leptonic decays can
also be used as constraints to the S3 LQ. We con-
sider rðe=μÞK ¼ ΓðK → eν̄Þ=ΓðK → μν̄Þ and rðτ=μÞK ¼
Γðτ→Kν̄Þ=ΓðK→μν̄Þ; the measured values of
which [33] are compared to the SM values, rðe=μÞ expK =
rðe=μÞSMK ¼ 1.004ð4Þ, rðτ=μÞ expK =rðτ=μÞSMK ¼ 0.972ð14Þ
and represent a rather powerful constraint,
cf. Ref. [30]. Similarly, the ratio rðτ=μÞDs

¼ BðDs →
τν̄Þ=BðDs → μν̄Þ is converted to a constraint when
comparing to rðτ=μÞ expDs

=rðτ=μÞSMDs
¼ 1.027ð52Þ [33].

(v) Experimental bounds on the lepton flavor violating
(LFV) decay modes Bðτ → μγÞ < 4.4 × 10−8,

Bðτ → ϕμÞ < 8.4 × 10−8 [33] provide the signifi-
cant constraints too. Note that both R2 and S3
contribute to the latter mode, cf. Ref. [35], while
the expression for the LQ contribution to Bðτ → ϕμÞ
can be found in [36]. We also use BðB → Kμ−τþÞ <
2.8 × 10−5 [33,37] in our scan of the param-
eter space.

(vi) In Ref. [5], we provided the expressions for
Rð�Þ
νν ¼ BðB → Kð�Þνν̄Þ=BðB → Kð�Þνν̄ÞSM, which

should respect the experimental bounds Rνν < 3.9
and R�

νν < 2.7 [38].
(vii) The complete expressions for the scalar LQ con-

tributions to BðZ → llÞ have been derived in
Ref. [39], and they are used in this analysis, together
with the experimental values for the branching
fractions given in Ref. [33].

(viii) Finally, we take into account the bounds on the
couplings derived from the high-pT tails after
recasting the bounds on a heavy Higgs boson
decaying to two τ-leptons obtained from 139 fb−1

of data by ATLAS, reported in Ref. [40]. By
focusing on the region of mττ ≥ 700 GeV, and by
using the propagating R2 of mR2

¼ 1.3 TeV, we
obtain rather stringent bounds on the couplings,
which can be conveniently written as

1.75ðybτR Þ4 þ 0.29ðybτR Þ2 þ 7.96ðycτL Þ4
þ 3.43ðycτL Þ2 ≤ 25.9: ð24Þ

Notice that in obtaining this result, we use the
experimental bounds from Ref. [40] to 2σ.

A careful reader would notice that with respect to
Ref. [5], where mR2

¼ 0.8 TeV has been used to present
the results, here we take mR2

¼ 1.3 TeV. This choice is
made in order to be consistent with the most recent bounds
regarding the LQ production processes in the direct
searches at the LHC, as discussed in Ref. [1]. For the
same reason, we take mS3 ¼ 2 TeV and perform a scan
over the remaining parameters of the model, ybτR , ycμL , ycτL ,
and θ ∈ ðπ=2; πÞ ∪ ð−π=2; 0Þ, by imposing all of the
constraints discussed so far. In Fig. 2, we show the result
of such a scan in the gSL ≡ gSLðmbÞ plane. We obtain
χ2min ¼ 13.5, and for the best fit values, we get (to 1σ)

Re½gSL � ¼ −0.07ð14Þ; jIm½gSL �j ¼ 0.44ðþ0.09
−0.12Þ: ð25Þ

If we did not use the experimental bounds on the LFV
modes as constraints, our flavor fit would have given two
solutions: one corresponding to a small angle θ ∼ 0,
and another one corresponding to jθj ∼ π=2. In fact,
Bðτ → μϕÞ ∝ cos4 θ, and the corresponding experimental
bound help us select a viable solution, i.e., the one with
jθj ≈ π=2. In Fig. 2, we also plot the current constraint,
jgSL j < 0.55, obtained from the study of the high-pT ditau
tails. In the same plot, we also show the projected bound
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from 3 ab−1 of data, a constraint which on the basis of
current information should be much stronger than the one
based on the high-pT monotau tails.
Before closing this section, we also provide the ranges

for the couplings we obtain after imposing all of the
constraints discussed so far,

ycμL ∈ ð0.16; 0.33Þ1σ; ð0.11; 0.40Þ2σ;
ycτL ∈ ð0.87; 1.40Þ1σ; ð0.64; 1.54Þ2σ;

Re½ybτR � ∈ ð−0.37; 0.02Þ1σ; ð−0.58; 0.15Þ2σ;
jIm½ybτR �j ∈ ð0.83; 1.53Þ1σ; ð0.61; 1.87Þ2σ;

θ ∈
π

2
ð1.01; 1.06Þ1σ;

π

2
ð1.01; 1.12Þ2σ; ð26Þ

where Im½ybτR � has two symmetric solutions (positive and
negative).

IV. MORE OBSERVABLES

A. Contribution to the electric dipole moment of the
neutron

From the fit to the data, we saw that we obtain Im½gSL � ≫
Re½gSL � when accommodating Rexp

Dð�Þ > RSM
Dð�Þ . In other

words, we get a large jIm½ybτR �j, which then calls for a

careful analysis of the observables in which such a complex
phase may play a significant role. We first check whether or
not this phase might be in conflict with the current bound
on the electric dipole moment of the neutron, jdnj < 1.8 ×
10−26 e cm [41]. That issue has recently been addressed in
Ref. [42] in the scenarios in which the SM is extended by
one or more scalar leptoquarks. For our purpose, it is
important to note that the charm quark contribution to dn
can be written as dn ¼ gcTdc, where the tensor charge gcT ,
defined as

hNjc̄σμνγ5cjNi ¼ gcTūNσ
μνγ5uN; ð27Þ

has been recently computed by means of numerical
simulations of QCD on the lattice with Nf ¼ 2þ 1þ 1
dynamical quark flavors [43]. The reported result at
μ ¼ 2 GeV, in the MS renormalization scheme is
gcT ¼ −ð2.4� 1.6Þ × 10−4. We translate the notation of
Ref. [42] to the one used here and write

dc ¼ 0.1 ×Qcemc
1

m2
R2

Im½V�
cby

bτ�
R ycτL �

≃ 0.1 ×Qcemc
4

ffiffiffi
2

p
GFV2

cb

1.7
Im½gSL �; ð28Þ

where in the second line we employed Eq. (6). In the
denominator, 1.7 accounts for the running of gSL to the low
energy scale. By using the charm quark mass value from
Ref. [29], the central value for gcT, and the experimental
bound on jdnj, we arrive at

jIm½gSL �j < 0.76; ð29Þ

which is obviously in good agreement with what we obtain
in Fig. 2 and in Eq. (25). However, we should note that if
instead of the central value we take gcT ¼ −4 × 10−4 then
this constraint translates to jIm½gSL �j < 0.46, which would
eliminate a fraction of the allowed gSL regions in Fig. 2.
This shows why a more precise lattice QCD value of gcT
would be highly beneficial for checking the validity of the
model proposed in Ref. [5] and further discussed here.

B. Contribution to ΔaCP
The difference in the time-integrated CP asymmetries of

D0 → KþK− and D0 → πþπ− has been measured by
LHCb. Their recent result ΔACP ¼ ð−15.4� 2.9Þ × 10−4

[44] has been corrected for the effects of D0 − D̄0 mixing
so that the result for the difference of direct , CP
asymmetries becomes ΔadirCP ¼ ð−15.7� 2.9Þ × 10−4

[45]. The interpretation of this result is still unclear. In
the SM picture, the effect could be attributed to the
(nonperturbative) rescattering of light mesons in the final
state. Otherwise, one would need a NP contribution to
accommodate the measured value [46].

FIG. 2. Results of the flavor fit in the gSL plane, as defined in
Eq. (5) for the transition b → cτν̄τ. The allowed 1σð2σÞ regions
are shown in red (orange). Separate constraints from RD and RD�

to 2σ accuracy are shown by the purple and blue regions,
respectively. The current LHC exclusions are depicted by the
gray regions. We also show the projected bounds expected to be
obtained from the high pT monotau (red curve) and ditau tails
(dashed curve) with 3 ab−1 of data.
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In Ref. [47], the NP contribution to ΔaCP has been
estimated under the assumption of the maximal strong
phases. It was found that jΔaCPj ≲ 1.8jImCNP

8 ðmcÞþ
ImCNP

80 ðmcÞj, where C8;80 are the Wilson coefficients of
the chromomagnetic operators,

H ¼ GFffiffiffi
2

p gsmc

4π2
ūLσμν½C8PR þ C80PL�cTaGμν

a : ð30Þ

In our model, R2 will contribute to cR → uLg, and to one-
loop, we get

CNP
8 ¼ mτVubybτR ycτL

�

4
ffiffiffi
2

p
GFmc

B0
0ð0; m2

R2
; m2

τÞ: ð31Þ

With the structure of couplings chosen in our model,
cf. Eq. (3), there is no one-loop contribution to
cL → uRg, i.e., C80 ¼ 0. By taking mτ=mR2

→ 0, we have
B0
0ð0; m2

R2
; 0Þ → 1=ð2m2

R2
Þ, which then leads to

jΔaCPj ≲ 10−4, thus a very small effect.

C. Contribution to B → Kνν and K → πνν

It is well known that a contribution of the left-handed
current to b → sll implies a similar contribution to B →
Kð�Þνν decays. In our case, that means

Rð�Þ
νν ¼ BðB → Kð�ÞννÞ

BðB → Kð�ÞννÞSM ¼
P

ij jδijCSM
L þ δCij

L j2
3jCSM

L j2 ; ð32Þ

where CSM
L ¼ −6.38ð6Þ [48] and the tree-level contribution

arising from S3 amounts to [30]

X
ii

δCii
L ¼

X
i

πv2

2αemλt

ðYðS3Þ
L ÞbiðYðS3Þ

L Þsi�
m2

S3

;

¼ −
πv2

2αemλt

sin 2θðycμ2L þ ycτ
2

L Þ
m2

S3

; ð33Þ

thus also negative, and therefore, the net effect in the
present model is that Rð�Þ

νν > 1. We get

Rð�Þ
νν ∈ ð1.3; 2.5Þ1σ; ð1.1; 3.4Þ2σ; ð34Þ

the result, which is likely to be probed experimentally at
Belle II [49].
The expressions relevant to the S3 contribution to

BðK → πννÞ have been derived in Ref. [50]. With our
choice of couplings, together with values given in Eq. (26),
that contribution turns out to be very small. We checked
that the same conclusion holds true for the R2 contribution
as well.

D. B → Kμτ and its correlation with τ → μγ and Rð�Þ
νν

Most of the models that can accommodate the LFUV
also predict a nonzero branching fraction of the associated
LFV decay modes [51]. Even more interesting is that in our
model we get both the lower and the upper bounds, namely
and to 1σ,

0.6 × 10−7 ≲ BðB → Kμ�τ∓Þ ≲ 3.1 × 10−7; ð35Þ

currently, however, 2 orders of magnitude lower than the
experimental limit [37]. This prediction can be translated
into similar modes via relations BðB → K�μτÞ≈
1.9 × BðB → KμτÞ, BðBs → μτÞ ≈ 0.9 × BðB → KμτÞ,
and BðΛb → ΛμτÞ ≈ 1.7 × BðB → KμτÞ [52]. It is inter-
esting to note that BðB → KμτÞ is linearly correlated with
Rð�Þ
νν , as show in Fig. 3.
Another interesting LFV mode is τ → μγ, because

in order to accommodate both types of B-anomalies we
needed to switch on the NP couplings to both τ and μ.
Indeed, in this model, we obtain a lower bound which
to 1σ is

Bðτ → μγÞ≳ 1.2 × 10−8; ð36Þ

and its correlation with BðB → KμτÞ, also shown in Fig. 3,
is less pronounced than the one between BðB → KμτÞ
and Rð�Þ

νν .

E. Angular observables in B → D�ð→ DπÞτν and in
Λb → Λcð→ ΛπÞτν

The angular analysis of the exclusive b → cτν̄modes can
help identify several new observables, the measurement of
which could help disentangle the situation and select among
the currently viable scenarios. As an example, we write the
full angular distribution of the baryon decay as [53]

d4B
dq2d cos θτd cos θdϕ

¼ 8π½A1 þA2 cos θ

þ ðB1 þ B2 cos θÞ cos θτ þ ðC1 þ C2 cos θÞcos2θτ
þ ðD3 sin θ cosϕþD4 sin θ sinϕÞ sin θτ
þ ðE3 sin θ cosϕþ E4 sin θ sinϕÞ sin θτ cos θτ�; ð37Þ

where the angles θ and θτ are defined with respect to the
direction of flight ofΛc: θ being the angle ofΛ in theΛπ rest
frame, and θτ is the angle of τ in the τν̄-rest frame. ϕ is the
angle between the τν̄ and the Λπ planes. In the above
expression, the q2-dependent coefficient functions, A1;2,
B1;2, C1;2, D3;4, E3;4, are given in terms of kinematical
quantities and hadronic form factors [53]. Notice that all of
the form factors relevant to any BSM discussion are already
available, as they have all been computed in lattice QCD
away from the zero-recoil point [54]. Forward-backward
asymmetry is defined as
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Afbðq2Þ ¼
1

2

B1ðq2Þ
ΓðΛb → Λcτν̄Þ

; ð38Þ

where the full decay width is given by

ΓðΛb→Λcτν̄Þ¼
ZðmΛb−mΛc Þ2

m2
τ

dq2
�
A1ðq2Þþ

1

3
C1ðq2Þ

�
: ð39Þ

We find that for all of the available gSL values discussed in
the previous section, the shape of Afbðq2Þ becomes different
with respect to that found in the SM. In particular, the point
q20, at which this asymmetry is zero, Afbðq20Þ ¼ 0, is larger
than the one found in the SM. Another quantity that one can
use to monitor the viability of this model is

D4ðq2Þ ¼
D4ðq2Þ

ΓðΛb → Λcτν̄Þ
; ð40Þ

which is strictly zero in the SM and becomes nonzero only if
the NP coupling can take a complex value, such as the case
with our model, Im½gSL � ≠ 0. In Fig. 4, we illustrate the
change in shape of Afbðq2Þ and of D4ðq2Þ once gSL ¼
8.1 × gT is switched to a plausible gSL ¼ 0.5i.
We repeated the same exercise with B → D�τν [55] and

found that the corresponding Afbðq2Þ changes only slightly.
In order to support our observations by numerical values,
we compute

hOi ¼
ZðMΛb−MΛc Þ2

m2
τ

Odq2; ð41Þ

for O ∈ fAfb; D4g, and collect the results in Table I, where
we also give the values for q20 at which Afbðq20Þ ¼ 0 and the
results for the LFUV ratio,

RΛc
¼ BðΛb → Λcτν̄Þ

BðΛb → Λcμν̄Þ
: ð42Þ

From Table I, we see that RΛc
follows the pattern and

RΛc
> RSM

Λc
. This can be tested with a more precise

measurement of RΛc
. Furthermore, in this model, we clearly

observe that

hAfbi > hAfbiSM; jhD4ij > jhD4ijSM; ð43Þ

which is in stark contrast with the models based on
accommodating the B-anomalies by couplings to a U1

vector LQ in which hAfbi ¼ hAfbiSM, and hD4i ¼ 0. It is
important to emphasize that these quantities can be used to
discriminate among various scenarios proposed to explain
B-anomalies.

0.2 0.4 0.6 0.8
0

1

2

3

4

FIG. 3. BðB → KμτÞ is plotted against Rð�Þ
νν ¼ BðB → Kð�Þνν̄Þ=BðB → Kð�Þνν̄ÞSM for the 1σ (red) and 2σ (orange) regions of Fig. 2.

The black line denotes the current experimental limit, R�
νν < 2.7 [38]. We also show the similar correlation between BðB → KμτÞ and

Bðτ → μγÞ obtained in this model.
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V. MASS RANGE FOR THIS SCENARIO TO
REMAIN VALID

So far, in this paper, we chose as a benchmark point the
leptoquark masses mR2

¼ 1.3 TeV and mS3 ¼ 2 TeV, con-
sistent with the lower bounds deduced from the direct
searches at the LHC, as discussed in Ref. [1]. From the low
energy flavor physics observables, we then obtained the
constraints on the couplings of the model, and we pointed

out that the very stringent constraints on the couplings can
also be obtained from the analysis of the high-pT ditau tails
at the LHC. In order to monitor the range of masses
preferred by this scenario, we varied mR2

and mS3 and
applied the same constraints on the couplings as before. We
find that the model is highly sensitive to mR2

, while it is
only slightly sensitive to the variation of mS3 . The result is
shown in Fig. 5, where we see that the current setup of
Yukawa matrices, cf. Eqs. (3) and (4), remain consistent
with the constraints to 2σ ifmR2

≲ 4.3 TeV. In other words,
if the flavor constraints remain unchanged, this scenario
can be tested at the LHC. It is also interesting to note from
Fig. 5 that the effective coupling yeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jycτL ybτ�R j

p
always

remains well below the perturbativity limit, yeff ≤
ffiffiffiffiffiffi
4π

p
.

VI. CONCLUSION

We update the parameter space of the model in which the
SM is extended by Oð1 TeVÞ two scalar LQ’s, R2 and S3,
and show that this model is still a plausible framework to
accommodate the B anomalies while remaining consistent
both with a number of experimental constraints arising
from the low energy observables, as well as with those
deduced from the LHC measurements relevant to the high-
pT tails of pp → ττ and pp → τν. A peculiarity of this
R2-S3 scenario is that there is a complex coupling. We find
that the size of the corresponding imaginary part of the

TABLE I. Values of the observables relevant to
Λb → Λcð→ ΛπÞτν, discussed in the text and computed in the
SM (gSL ¼ 0) and for gSL ≠ 0, as obtained from our scan,
cf. Eq. (25). Second and third uncertainties correspond to the
variation of the central value with respect to the variation of the
real and of the imaginary part of gSL , respectively.

gSLðmbÞ 0 −0.07ðþ0.14
−0.14 Þ þ 0.44ðþ0.09

−0.12 Þi
RΛc

0.333(14) 0.366ð15Þð−0.002þ0.009Þðþ0.015
−0.014 Þ

hAfbi 0.049(8) 0.085ð7Þðþ0.002
þ0.004Þðþ0.014

−0.016 Þ
q20½GeV2� 7.97(7) 8.49ð8Þðþ0.00

þ0.13Þðþ0.27
−0.25 Þ

hD4i 0 0.102ð1Þðþ0.001
−0.002 Þðþ0.016

−0.025 Þ

FIG. 4. Two observables that can be extracted from the angular
distribution of Λb → Λcð→ ΛπÞτν and that have different q2

shapes in the model presented here (depicted in red) from those in
the SM (blue curves). Their values, after integrating in q2 are in
this model larger than in the SM.

FIG. 5. We plot the dependence of the effective coupling yeff ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jycτL ybτ�R j

p
on the variation of the leptoquark mass mR2

. The
orange regions are allowed by the low energy flavor physics
constraints to 1σ and 2σ. The gray area is excluded by the 2σ
limits arising from the study of the high-pT tails of pp → ττ, as
obtained from the currently available LHC data. We also plot the
limit from the case of monotau in the final state.
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model parameter ybτR ∝ gSL results in: (i) a value of the
electric dipole moment of the neutron consistent with the
experimental bound, (ii) too small a contribution to ΔaCP,
difference of the CP asymmetries between D0 → KþK−

and D0 → πþπ−, (iii) a significant change in the observ-
ables that can be deduced from the angular distribution of
B → D�ð→ DπÞτν and Λb → Λcð→ ΛπÞτν and which are
zero in the SM and in scenarios in which the NP couplings
are real. We also find that the forward-backward asymme-
try in the case of Λb → Λcτν becomes significantly differ-
ent from its SM value. Like in the other models built to
accommodate B anomalies and involving LQ’s, we estab-
lish the upper and lower bounds to the exclusive LFV decay
modes based on b → sμ�τ∓. We also checked that the
model gives a negligible contribution to BðK → πννÞ, but it
significantly enhances BðB → Kð�ÞννÞ, cf. (34), which will
soon be experimentally scrutinized at Belle-II. We also find
a clear correlation between BðB → Kð�ÞννÞ and the LFV

decays such as BðB → KμτÞ. Importantly, the model
remains consistent with the current experimental upper
bound on Bðτ → μγÞ.

ACKNOWLEDGMENTS

S. F. and N. K. acknowledge support of the Slovenian
Research Agency under the core funding Grant No. P1-
0035. D. A. F has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under
Grant Agreement No. 833280 (FLAY), and by the Swiss
National Science Foundation (SNF) under Contract
No. 200021-175940. This work has also been supported
in part by Croatian Science Foundation under the project
7118 and the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie
Grant Agreement No. 660881-Hidden.

[1] A. Angelescu, D. Bečirević, D. A. Faroughy, and O.
Sumensari, J. High Energy Phys. 10 (2018) 183; A.
Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo, and
O. Sumensari, arXiv:2103.12504.

[2] L. Di Luzio, A. Greljo, and M. Nardecchia, Phys. Rev. D 96,
115011 (2017); M. Bordone, C. Cornella, J. Fuentes-Martín,
and G. Isidori, J. High Energy Phys. 10 (2018) 148; J.
Fuentes-Martín, G. Isidori, M. König, and N. Selimović,
Phys. Rev. D 101, 035024 (2020); M. Blanke and A.
Crivellin, Phys. Rev. Lett. 121, 011801 (2018); J.
Fuentes-Martin, G. Isidori, J. M. Lizana, N. Selimovic,
and B. A. Stefanek, arXiv:2203.01952; R. Alonso, B.
Grinstein, and J. Martin Camalich, Phys. Rev. Lett. 113,
241802 (2014); J. High Energy Phys. 10 (2015) 184; B.
Grinstein, S. Pokorski, and G. G. Ross, J. High Energy
Phys. 12 (2018) 079; D. Marzocca, J. High Energy Phys. 07
(2018) 121.

[3] D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca, J. High
Energy Phys. 11 (2017) 044.

[4] V. Gherardi, D. Marzocca, and E. Venturini, J. High Energy
Phys. 01 (2021) 138; A. Crivellin, D. Müller, and T. Ota, J.
High Energy Phys. 09 (2017) 040; A. Crivellin, D. Müller,
and F. Saturnino, J. High Energy Phys. 06 (2020) 020.

[5] D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D. A.
Faroughy, and O. Sumensari, Phys. Rev. D 98, 055003
(2018).

[6] M. González-Alonso, J. Martin Camalich, and K. Mimouni,
Phys. Lett. B 772, 777 (2017).

[7] A. Abdesselam et al. (Belle Collaboration), arXiv:
1904.08794.

[8] Y. S. Amhis et al. (HFLAV Collaboration), Eur. Phys. J. C
81, 226 (2021).

[9] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 120,
121801 (2018).

[10] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 128,
191803 (2022).

[11] A. Bazavov et al. (Fermilab Lattice and MILC Collabora-
tions), arXiv:2105.14019.

[12] F. U. Bernlochner, Z. Ligeti, M. Papucci, and D. J.
Robinson, Phys. Rev. D 95, 115008 (2017); 97, 059902
(E) (2018).

[13] M. Aaboud et al. (ATLAS Collaboration), Phys. Rev. Lett.
120, 161802 (2018).

[14] ATLAS Collaboration, Report No. ATLAS-CONF-2021-
025, 2021.

[15] O. J. P. Eboli and A. V. Olinto, Phys. Rev. D 38, 3461
(1988).

[16] D. A. Faroughy, A. Greljo, and J. F. Kamenik, Phys. Lett. B
764, 126 (2017); M. Schmaltz and Y. M. Zhong, J. High
Energy Phys. 01 (2019) 132; A. Greljo and D. Marzocca,
Eur. Phys. J. C 77, 548 (2017); A. Alves, O. J. P. Eboli, G.
Grilli di Cortona, and R. R. Moreira, Phys. Rev. D 99,
095005 (2019); Y. Afik, S. Bar-Shalom, J. Cohen, and Y.
Rozen, Phys. Lett. B 807, 135541 (2020).

[17] A. Greljo, J. Martin Camalich, and J. D. Ruiz-Álvarez, Phys.
Rev. Lett. 122, 131803 (2019).

[18] D. Marzocca, U. Min, and M. Son, J. High Energy Phys. 12
(2020) 035.

[19] S. Iguro, M. Takeuchi, and R. Watanabe, Eur. Phys. J. C 81,
406 (2021).

[20] F. Jaffredo, Eur. Phys. J. C 82, 541 (2022).
[21] G. Hiller and F. Kruger, Phys. Rev. D 69, 074020 (2004).
[22] R. Aaij et al. (LHCb Collaboration), Nat. Phys. 18, 277

(2022).
[23] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys.

08 (2017) 055.
[24] M. Bordone, G. Isidori, and A. Pattori, Eur. Phys. J. C 76,

440 (2016).

DAMIR BEČIREVIĆ et al. PHYS. REV. D 106, 075023 (2022)

075023-10

https://doi.org/10.1007/JHEP10(2018)183
https://arXiv.org/abs/2103.12504
https://doi.org/10.1103/PhysRevD.96.115011
https://doi.org/10.1103/PhysRevD.96.115011
https://doi.org/10.1007/JHEP10(2018)148
https://doi.org/10.1103/PhysRevD.101.035024
https://doi.org/10.1103/PhysRevLett.121.011801
https://arXiv.org/abs/2203.01952
https://doi.org/10.1103/PhysRevLett.113.241802
https://doi.org/10.1103/PhysRevLett.113.241802
https://doi.org/10.1007/JHEP10(2015)184
https://doi.org/10.1007/JHEP12(2018)079
https://doi.org/10.1007/JHEP12(2018)079
https://doi.org/10.1007/JHEP07(2018)121
https://doi.org/10.1007/JHEP07(2018)121
https://doi.org/10.1007/JHEP11(2017)044
https://doi.org/10.1007/JHEP11(2017)044
https://doi.org/10.1007/JHEP01(2021)138
https://doi.org/10.1007/JHEP01(2021)138
https://doi.org/10.1007/JHEP09(2017)040
https://doi.org/10.1007/JHEP09(2017)040
https://doi.org/10.1007/JHEP06(2020)020
https://doi.org/10.1103/PhysRevD.98.055003
https://doi.org/10.1103/PhysRevD.98.055003
https://doi.org/10.1016/j.physletb.2017.07.003
https://arXiv.org/abs/1904.08794
https://arXiv.org/abs/1904.08794
https://doi.org/10.1140/epjc/s10052-020-8156-7
https://doi.org/10.1140/epjc/s10052-020-8156-7
https://doi.org/10.1103/PhysRevLett.120.121801
https://doi.org/10.1103/PhysRevLett.120.121801
https://doi.org/10.1103/PhysRevLett.128.191803
https://doi.org/10.1103/PhysRevLett.128.191803
https://arXiv.org/abs/2105.14019
https://doi.org/10.1103/PhysRevD.95.115008
https://doi.org/10.1103/PhysRevD.97.059902
https://doi.org/10.1103/PhysRevD.97.059902
https://doi.org/10.1103/PhysRevLett.120.161802
https://doi.org/10.1103/PhysRevLett.120.161802
https://doi.org/10.1103/PhysRevD.38.3461
https://doi.org/10.1103/PhysRevD.38.3461
https://doi.org/10.1016/j.physletb.2016.11.011
https://doi.org/10.1016/j.physletb.2016.11.011
https://doi.org/10.1007/JHEP01(2019)132
https://doi.org/10.1007/JHEP01(2019)132
https://doi.org/10.1140/epjc/s10052-017-5119-8
https://doi.org/10.1103/PhysRevD.99.095005
https://doi.org/10.1103/PhysRevD.99.095005
https://doi.org/10.1016/j.physletb.2020.135541
https://doi.org/10.1103/PhysRevLett.122.131803
https://doi.org/10.1103/PhysRevLett.122.131803
https://doi.org/10.1007/JHEP12(2020)035
https://doi.org/10.1007/JHEP12(2020)035
https://doi.org/10.1140/epjc/s10052-021-09125-5
https://doi.org/10.1140/epjc/s10052-021-09125-5
https://doi.org/10.1140/epjc/s10052-022-10504-9
https://doi.org/10.1103/PhysRevD.69.074020
https://doi.org/10.1038/s41567-021-01478-8
https://doi.org/10.1038/s41567-021-01478-8
https://doi.org/10.1007/JHEP08(2017)055
https://doi.org/10.1007/JHEP08(2017)055
https://doi.org/10.1140/epjc/s10052-016-4274-7
https://doi.org/10.1140/epjc/s10052-016-4274-7


[25] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 105,
012010 (2022).

[26] M. Beneke, C. Bobeth, and R. Szafron, J. High Energy
Phys. 10 (2019) 232.

[27] B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias,
and J. Virto, J. High Energy Phys. 01 (2018) 093; A. Arbey,
T. Hurth, F. Mahmoudi, D. M. Santos, and S. Neshatpour,
Phys. Rev. D 100, 015045 (2019); M. Ciuchini, M. Fedele,
E. Franco, A. Paul, L. Silvestrini, and M. Valli, Phys. Rev. D
103, 015030 (2021); W. Altmannshofer and P. Stangl, Eur.
Phys. J. C 81, 952 (2021); see also L. S. Geng, B. Grinstein,
S. Jäger, S. Y. Li, J. Martin Camalich, and R. X. Shi, Phys.
Rev. D 104, 035029 (2021); B. Bhattacharya, A. Datta, D.
London, and S. Shivashankara, Phys. Lett. B 742, 370
(2015).

[28] R. J. Dowdall, C. T. H. Davies, R. R. Horgan, G. P. Lepage,
C. J. Monahan, J. Shigemitsu, and M. Wingate, Phys. Rev.
D 100, 094508 (2019).

[29] Y. Aoki, T. Blum, G. Colangelo, S. Collins, M. Della Morte,
P. Dimopoulos, S. Dürr, X. Feng, H. Fukaya, M. Golterman
et al., arXiv:2111.09849; S. Aoki et al. (Flavour Lattice
Averaging Group), Eur. Phys. J. C 80, 113 (2020).

[30] I. Doršner, S. Fajfer, D. A. Faroughy, and N. Košnik, J. High
Energy Phys. 10 (2017) 188.

[31] R. Glattauer et al. (Belle Collaboration), Phys. Rev. D 93,
032006 (2016).

[32] A. Abdesselam et al. (Belle Collaboration), arXiv:
1702.01521.

[33] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.
Phys. 2020, 083C01 (2020).

[34] J. Charles, A. Höcker, H. Lacker, S. Laplace, F. R. Le
Diberder, J. Malclés, J. Ocariz, M. Pivk, and L. Roos
(CKMfitter Group), Eur. Phys. J. C 41, 1 (2005).

[35] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N.
Košnik, Phys. Rep. 641, 1 (2016).

[36] D. Bečirević, N. Košnik, O. Sumensari, and R. Zukanovich
Funchal, J. High Energy Phys. 11 (2016) 035.

[37] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys.
06 (2020) 129.

[38] J. Grygier et al. (Belle Collaboration), Phys. Rev. D 96,
091101 (2017); 97, 099902(A) (2018).

[39] P. Arnan, D. Becirevic, F. Mescia, and O. Sumensari, J.
High Energy Phys. 02 (2019) 109.

[40] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 125,
051801 (2020).

[41] C. Abel et al. (nEDM Collaboration), Phys. Rev. Lett. 124,
081803 (2020).

[42] W. Dekens, J. de Vries, M. Jung, and K. K. Vos, J. High
Energy Phys. 01 (2019) 069.

[43] C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath,
K. Hadjiyiannakou, K. Jansen, G. Koutsou, and A. Vaquero
Aviles-Casco, Phys. Rev. D 102, 054517 (2020).

[44] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122,
211803 (2019).

[45] A. Lenz and G. Wilkinson, Annu. Rev. Nucl. Part. Sci. 71,
59 (2021).

[46] Y. Grossman and S. Schacht, J. High Energy Phys. 07
(2019) 020.

[47] G. F. Giudice, G. Isidori, and P. Paradisi, J. High Energy
Phys. 04 (2012) 060; G. Isidori and J. F. Kamenik, Phys.
Rev. Lett. 109, 171801 (2012); J. Lyon and R. Zwicky,
arXiv:1210.6546.

[48] W. Altmannshofer, A. J. Buras, D. M. Straub, and M. Wick,
J. High Energy Phys. 04 (2009) 022.

[49] F. Dattola (Belle-II Collaboration), arXiv:2105.05754.
[50] S. Fajfer, N. Košnik, and L. Vale Silva, Eur. Phys. J. C 78,

275 (2018).
[51] S. L. Glashow, D. Guadagnoli, and K. Lane, Phys. Rev. Lett.

114, 091801 (2015); D. Guadagnoli and K. Lane, Phys.
Lett. B 751, 54 (2015).

[52] D. Bečirević, O. Sumensari, and R. Zukanovich Funchal,
Eur. Phys. J. C 76, 134 (2016).

[53] P. Böer, A. Kokulu, J. N. Toelstede, and D. van Dyk, J. High
Energy Phys. 12 (2019) 082; N. Penalva, E. Hernández, and
J. Nieves, Phys. Rev. D 100, 113007 (2019); X. L. Mu, Y.
Li, Z. T. Zou, and B. Zhu, Phys. Rev. D 100, 113004 (2019);
D. Becirevic and F. Jaffredo, arXiv:2209.13409.

[54] W. Detmold, C. Lehner, and S. Meinel, Phys. Rev. D 92,
034503 (2015); A. Datta, S. Kamali, S. Meinel, and A.
Rashed, J. High Energy Phys. 08 (2017) 131.

[55] D. Becirevic, S. Fajfer, I. Nisandzic, and A. Tayduganov,
Nucl. Phys. B946, 114707 (2019); D. Bečirević, M. Fedele,
I. Nišandžić, and A. Tayduganov, arXiv:1907.02257; C.
Bobeth, M. Bordone, N. Gubernari, M. Jung, and D. van
Dyk, Eur. Phys. J. C 81, 984 (2021); A. Carvunis, A.
Crivellin, D. Guadagnoli, and S. Gangal, Phys. Rev. D 105,
L031701 (2022); C. P. Burgess, S. Hamoudou, J. Kumar,
and D. London, Phys. Rev. D 105, 073008 (2022); B.
Bhattacharya, A. Datta, S. Kamali, and D. London, J. High
Energy Phys. 07 (2020) 194.

MODEL WITH TWO SCALAR LEPTOQUARKS: R2 AND … PHYS. REV. D 106, 075023 (2022)

075023-11

https://doi.org/10.1103/PhysRevD.105.012010
https://doi.org/10.1103/PhysRevD.105.012010
https://doi.org/10.1007/JHEP10(2019)232
https://doi.org/10.1007/JHEP10(2019)232
https://doi.org/10.1007/JHEP01(2018)093
https://doi.org/10.1103/PhysRevD.100.015045
https://doi.org/10.1103/PhysRevD.103.015030
https://doi.org/10.1103/PhysRevD.103.015030
https://doi.org/10.1140/epjc/s10052-021-09725-1
https://doi.org/10.1140/epjc/s10052-021-09725-1
https://doi.org/10.1103/PhysRevD.104.035029
https://doi.org/10.1103/PhysRevD.104.035029
https://doi.org/10.1016/j.physletb.2015.02.011
https://doi.org/10.1016/j.physletb.2015.02.011
https://doi.org/10.1103/PhysRevD.100.094508
https://doi.org/10.1103/PhysRevD.100.094508
https://arXiv.org/abs/2111.09849
https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1007/JHEP10(2017)188
https://doi.org/10.1007/JHEP10(2017)188
https://doi.org/10.1103/PhysRevD.93.032006
https://doi.org/10.1103/PhysRevD.93.032006
https://arXiv.org/abs/1702.01521
https://arXiv.org/abs/1702.01521
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1140/epjc/s2005-02169-1
https://doi.org/10.1016/j.physrep.2016.06.001
https://doi.org/10.1007/JHEP11(2016)035
https://doi.org/10.1007/JHEP06(2020)129
https://doi.org/10.1007/JHEP06(2020)129
https://doi.org/10.1103/PhysRevD.96.091101
https://doi.org/10.1103/PhysRevD.96.091101
https://doi.org/10.1103/PhysRevD.97.099902
https://doi.org/10.1007/JHEP02(2019)109
https://doi.org/10.1007/JHEP02(2019)109
https://doi.org/10.1103/PhysRevLett.125.051801
https://doi.org/10.1103/PhysRevLett.125.051801
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1007/JHEP01(2019)069
https://doi.org/10.1007/JHEP01(2019)069
https://doi.org/10.1103/PhysRevD.102.054517
https://doi.org/10.1103/PhysRevLett.122.211803
https://doi.org/10.1103/PhysRevLett.122.211803
https://doi.org/10.1146/annurev-nucl-102419-124613
https://doi.org/10.1146/annurev-nucl-102419-124613
https://doi.org/10.1007/JHEP07(2019)020
https://doi.org/10.1007/JHEP07(2019)020
https://doi.org/10.1007/JHEP04(2012)060
https://doi.org/10.1007/JHEP04(2012)060
https://doi.org/10.1103/PhysRevLett.109.171801
https://doi.org/10.1103/PhysRevLett.109.171801
https://arXiv.org/abs/1210.6546
https://doi.org/10.1088/1126-6708/2009/04/022
https://arXiv.org/abs/2105.05754
https://doi.org/10.1140/epjc/s10052-018-5757-5
https://doi.org/10.1140/epjc/s10052-018-5757-5
https://doi.org/10.1103/PhysRevLett.114.091801
https://doi.org/10.1103/PhysRevLett.114.091801
https://doi.org/10.1016/j.physletb.2015.10.010
https://doi.org/10.1016/j.physletb.2015.10.010
https://doi.org/10.1140/epjc/s10052-016-3985-0
https://doi.org/10.1007/JHEP12(2019)082
https://doi.org/10.1007/JHEP12(2019)082
https://doi.org/10.1103/PhysRevD.100.113007
https://doi.org/10.1103/PhysRevD.100.113004
https://arXiv.org/abs/2209.13409
https://doi.org/10.1103/PhysRevD.92.034503
https://doi.org/10.1103/PhysRevD.92.034503
https://doi.org/10.1007/JHEP08(2017)131
https://doi.org/10.1016/j.nuclphysb.2019.114707
https://arXiv.org/abs/1907.02257
https://doi.org/10.1140/epjc/s10052-021-09724-2
https://doi.org/10.1103/PhysRevD.105.L031701
https://doi.org/10.1103/PhysRevD.105.L031701
https://doi.org/10.1103/PhysRevD.105.073008
https://doi.org/10.1007/JHEP07(2020)194
https://doi.org/10.1007/JHEP07(2020)194

