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The contribution of the CP violating three-gluon interaction, proposed by Weinberg, to the short-range
CP-odd nuclear force is evaluated in the nonrelativistic quark model. We first show that the naive leading
contribution generated by the quark exchange process vanishes at sufficiently short distance within the
resonating group method by considering the one-loop level gluon exchange CP-odd interquark potential
induced by the Weinberg operator with massive quarks and gluons. We then estimate the true leading
contribution by evaluating the gluonic correction to the CP-odd interquark potential in the closure
approximation. It is found that the resulting irreducible CP-odd nuclear force is comparable to that
generated by the chiral rotation of the CP-even short-range nuclear force, where the CP-odd mass
calculated with QCD sum rules is used as input. The explicit calculation of the electric dipole moment

(EDM) of the He nucleus yields dg;e ) (w) = —=1.5weMeV. The total *He EDM, accounting for the

intrinsic nucleon EDM,
(tot)
d3He
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I. INTRODUCTION

The particles of the standard model (SM) were all
discovered with the advent of the Higgs boson in LHC
experiments [1,2], but there are still phenomena which
cannot be explained within this framework such as the
matter abundance of the Universe. In this particular case,
CP violation of the fundamental theory is needed to
generate the matter excess over antimatter in the early
era of the Universe [3]. However, the observed baryon-to-
photon ratio, which is the direct translation of the baryon
number asymmetry of the early Universe, is much larger
than the SM prediction [4-6]. Some new physics beyond
the SM containing large CP violation is therefore needed to
cure this problem.

As an ideal experimental probe of the CP violation
beyond the SM, we have the electric dipole moment (EDM)
[7-18]. In addition to its high sensitivity to new physics, it
has other notable advantages such as the measurability in
many systems (neutron, nuclei, atoms, muons, etc), the
small SM background [4,19-24], experimental cost, etc.
There are already experimental results [25-30], as well as
plans which aim to probe new physics scales far beyond the
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the pion-exchange and
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the short-range CP-odd nuclear force, is

(w) = ZOfllf weMeV, with the dominant effect coming from the intrinsic nucleon EDM.

reach of LHC experiment, assuming O(1) couplings and
CP phases [31-44].

To extract the CP violation of the quark-gluon sector, we
need to theoretically analyze the intermediate hadron,
nuclear and atomic level processes. The most difficult task
is the evaluation of the hadron matrix elements of quark-
gluon level operators, due to the nonperturbative physics
of QCD. In the context of the study of the CP violation
beyond the SM, the most interesting ones are the dimension-
four, -five, and -six CP-odd operators which have the lowest
mass dimension in the SM effective field theory [45].
Among them, the less studied one is the dimension-six
CP-odd gluonic interaction (the so-called Weinberg oper-
ator, abbreviated as WO) [46]

1 .
Ly = gy wf e Gy, Gl Gy, (1)

where a, b, and ¢ are the color indices of the adjoint
representation and the Greek alphabets are Lorentz indices,
f4b¢ is the structure constant of the SU(3) Lie algebra. The
contribution of this operator to the EDM is less known than
the other ones since it does not involve quarks so that
calculational techniques based on chiral effective field
theory (yEFT) could not be used. However, this does
not mean that the WO is less important. Indeed, it is
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FIG. 1. Typical process contributing to the WO in SM with
extended Higgs sector.

sensitive to the extension of the SM Higgs sector which
may contain additional CP phases (see Fig. 1) [46—63]. Itis
also induced in many other candidates of new physics
beyond the SM such as the supersymmetric models
[64-78], and other specific models [79-87]. In many
models, the quark chromo-electric dipole moment first
appears, and the WO is subleading (see e.g. Refs. [88,89]).
However, the WO becomes dominant when there are
colored vectorlike quarks with CP violation which only
interact with quarks via gluons, or when light axions are
only coupled to heavy quarks via CP violating interactions.
In these important cases, it is mandatory to quantify the
WO operator contribution to hadronic CP violation. We
note that the SM contribution is strongly suppressed by the
GIM mechanism [90-92].

Let us now briefly review the evaluation of the WO
contribution to observable EDMs, and then state which
hadron level process has to be investigated for the quanti-
fication. The effect of the WO on the neutron EDM was
first estimated using the naive dimensional analysis when it
was first introduced by Weinberg [46]. Soon after this, it
was pointed out that the neutron EDM has two leading
hadron level processes [50,51], namely the reducible one
generated by the chiral rotation of the neutron anomalous
magnetic moment [39,93,94], and the irreducible contact
term. The reducible contribution was then calculated using
QCD sum rules [68,95], and the irreducible one was
evaluated within the quark model [96] (there also exist
other hadron level estimations in the literature [97,98]). The
total EDM of the nucleon is

(20 £ 12) we MeV
(=18 + 11) weMeV

(N =n)
(N =p)

with an estimated uncertainty of 60%. Here w is expressed
in the unit of GeV~2. There are also other interesting
approaches, such as the analysis of higher twist contribu-
tion of the parton distribution functions [99,100], instanton
models [101], etc. The most promising way is to use
lattice QCD, but quantitative results are not yet available
[102—105]. It is also interesting to note that the WO is

vt = { e

flavor blind, and it may be probed with the EDM of other
flavored baryons [106—-109].

For the case of the nuclear and atomic EDMs, the CP-
odd nuclear force also largely contributes, and we expect an
enhancement of the CP violation due to the many-body
effect. It has also recently been pointed out that para-
magnetic systems may also probe it via higher order
electromagnetic interaction [110]. According to yEFT,
the leading contribution of the WO to the CP-odd nuclear
force is given by the short-range nucleon-nucleon inter-
action [111-114]

EC = —C] mNNNNl]/5N (3)

This contact interaction is converted to a CP-odd potential
with a delta function in the coordinate space. In
the practical calculation, the delta function is smeared
using limy_ A%e™""/4zxr — 5(7). By taking A = m,, =
780 MeV, Eq. (3) yields a short-range CP-odd nuclear
force

87 m,R

w

o C 3 R o oMok 1
Ho(R) = o5, _5)) . RS <1+ )
((E - 5y), (4)

where fl and f‘.z denote the spin Pauli matrices of the

nucleons 1 and 2, respectively, and R is their relative
coordinate oriented to the nucleon 1. In this case too, we
have the reducible process generated by the chiral rotation
of the CP-even short-range nuclear force and the irreduc-
ible contact interaction [see Figs. 2(a) and 2(b)]. We also
note that the one-pion exchange process [Fig. 2(c)], which
is a priori subleading in yEFT, was found to not be
negligible for heavy atoms through QCD sum rules
calculation [115].

The reducible contribution may be evaluated like
the nucleon EDM, by chirally rotating the CP-even
contact interaction Lyy =—3CsNNNN with Cg =
—120.8 GeV~? obtained from yEFT analysis [116]. The
contact CP-odd nuclear coupling is then

¢ ="y, (5)
my

with the CP-odd nucleon mass m¢p calculated using QCD

sum rules [68,95]
2 2
S0, (M ) (6)
bs

2
Hir

mcp = _<N|£W|N> = —myw

where mj = (0.8 +0.2) GeV? and M =+/2(1.5+0.5)

[95]. We use the one-loop level running of the QCD
coupling g, = 2.13 +0.03, renormalized at 4 = 1 GeV.
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FIG. 2. Leading yEFT contribution to the CP-odd nuclear force induced by the WO. Diagram (a) represents the chiral rotation of the
CP-even nuclear force (black blob) by the CP-odd nucleon mass (gray blob). Diagram (b) is the irreducible CP-odd nuclear force,
evaluated in this work. Diagram (c) is the one-pion exchange contribution, subleading in yEFT, but not negligible for heavy nuclei.

Permutations are not displayed.

Let us now see concrete values of the nuclear EDM of
3He generated by the WO. The measurement of the EDMs
of the deuteron and the 3He nucleus is expected to be
performed using storage rings [44] with an impressive
projected sensitivity of O(107>?)e cm, so the quantification
of the WO contribution to them is of importance. Since the
deuteron EDM does not receive contribution from the
isoscalar short-range CP-odd nuclear force, we focus on
that of *He. With the reducible short-range CP-odd nuclear
force [see Fig. 2(a)], the EDM of *He nucleus was
estimated to be [114,115,117-120]

A5 (w) =25 weMeV, (7)
where the central value is the result of the calculation with
the Argonne »18 nuclear force [121], and the error bar is
due to other realistic nuclear forces [114,117] and also to
the 50% uncertainty of the QCD sum rules evaluation of
mep [95]. We also show the result of the QCD sum rules
calculation of the CP-odd pion-exchange nuclear force
induced by the WO [see Fig. 2(c)] [115]:

(n)
d3He

(w) = £[0.4-2.3]weMeV, (8)
where the range indicates the theoretical uncertainty band
due to the QCD sum rules. We note that the sign is not
determined. The above contributions from the CP-odd
nuclear force are smaller than the valence nucleon EDM
contribution

A (w) ~ 0.89d, (w) — 0.04d,,(w) = (19 £ 11) we MeV,
)

where the coefficients of the second equality were calcu-
lated with the Argonne »18 nuclear force [117,118,121].

The irreducible contribution [Fig. 2(b)], however, has
never been evaluated, and it is currently introducing a
substantial systematic uncertainty in the analysis of nuclear
and atomic EDMs. The aim of this paper is to calculate this
effect, and to control the systematics of the WO

contribution. The chiral rotation involves a ys, so it is a
mixing of the nonrelativistic and relativistic components of
the Dirac spinor. This may then be considered as a
relativistic effect. On the other hand, the irreducible effect
has no such feature, and it is mainly due to the internal
excitation of the nucleon, so a nonrelativistic framework
may work well in its evaluation.

In this work, we use the nonrelativistic quark model to
calculate the WO contribution to the irreducible CP-odd
nuclear force. The quark model [122] is successful in
describing the spectra of many baryons as well as mesons
with heavy quarks [123—134]. In the context of our study,
the most interesting point is that the short-range baryon-
baryon interaction is also quite well described by the
exchange of nonrelativistic quarks [135-151], and this
mechanism shows good consistency with recent lattice
QCD results [152—155]. Since the irreducible contribution
of the CP-odd nuclear force is also a short-range process,
we expect it to be well described within the same quark
model framework.

This paper is organized as follows. In the next section,
we define the quark model and the resonating group
method (RGM) used in this work to derive the WO
contribution to the short-distance CP-odd nuclear force.
It is first shown that the naive leading contribution
generated by the quark exchange process vanishes at short
distance, and we then estimate the true leading contribution
by evaluating the gluonic correction to the CP-odd inter-
quark potential in the closure approximation. In Sec. I1I, we
calculate the EDM of the *He nucleus and compare with the
contribution generated by the chiral rotation. We finally
conclude in Sec. IV.

II. QUARK MODEL CALCULATION OF THE
CP-ODD NUCLEAR FORCE INDUCED BY THE
WEINBERG OPERATOR

A. CP-odd interquark potential

Let us first show the CP-odd interquark force induced by
the WO. We use the CP-odd potential generated at the one-
loop level (see Fig. 3) as used in the calculation of the
nucleon EDM [96]. The explicit form is given by
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FIG. 3. The interquark potential generated by the WO (gray
blob) at the one-loop level. Thick lines denote the nonrelativistic
constituent quarks.

Nchaxmz - - o e Ml 1
Hepvij = Tgw("i —0;) " pij Py (1 + )

i Mgpij
X (ta)i ® (ta)j
S L. Py
= (6, - 7)) ‘jV(Pij)(fa)i ® (1a);s (10)
ij

where the subscripts 7, j denote the label of the interacting
two nonrelativistic quarks, p;; is their relative coordinate
oriented to the ith quark, &, the spin Pauli matrix and (),
the generator of the SU(3), group both acting on the ith
quark. We note that the divergence due to the nonrenor-
malizability has been regularized using the heavy quark
approximation. The gluon mass m,~ 350 MeV was
adopted respecting the result of Landau gauge lattice

QCD [156]. The strong coupling o, = =y > was already given
when we introduced the CP-odd mass in Eq (6), but in this
work we choose a; = 0.5. If one wishes to calculate the
WO contribution in some new physics model, its running
down to the renormalization point ¢ =1 GeV has to be
taken into account [70,157-163]. We note that the WO (1)
also generates the three-quark interaction in the constituent
quark model, but its contribution is suppressed in the
nonrelativistic approximation, so we neglect it [96].

B. CP-odd nuclear force from resonating group method

Let us now present the formalism to derive the CP-odd
nuclear force. The interaction between two nucleons, each
made of three nonrelativistic constituent quarks, may in
principle be calculated with ab initio six-body calculations
of scattering, using, e.g., the continuum discretized coupled
channel method [164]. However, the ab initio treatment is
computationally very costly, and it is too demanding in
view of the theoretical uncertainty of the quark model. Here
we propose to use the RGM [165-168] which is a good
analytical framework to handle the scattering of composite
systems. One of the most important feature of the RGM is
that the forbidden states due to the antisymmetrization of
constituent fermions may correctly be excluded, and the
use of the harmonic oscillator basis is very practical. The
constituent quarks confined in the nucleon by the harmonic
oscillator or linear potential have an almost Gaussian shape,

so this fits well with the use of the RGM. In fact, the
repulsive core of the two-nucleon system was successfully
derived within the above framework [135-137].

The RGM equation to solve is

/dEAdEBWZ(EA)WI?(EB)(H_ E)
X A[V’A(EA)V/B(EB))(AB(E’)] =0, (11)

where A is the antisymmetrization operator of the quarks

inside the squared bracket. Here EA_B are the internal
coordinates of the clusters (nucleons) A, B. The
Hamiltonian H contains the quark model interactions,
and in our case, the CP-odd interquark interaction Hcpy
[see Eq. (10)] is also present. Here we may use the fact that
the CP-odd nuclear force is small compared to the CP-even
one, and also that it changes the parity. The easiest way to
analyze the scattering with this interaction is to consider the
first order perturbation. For that we just need to solve the
CP-even RGM equation (11) separately for the two
opposite parity states (we consider the lowest s- and
p-waves) and then sandwich the CP-odd force (10) with
them. The final CP-odd internucleon interaction is then

H.;p([_é,ﬁ’) — /d]_é//dk’///N;l/z(ﬁ’l_é//)

-

x Hsp(ﬁ”,ﬁ///)N;l/z(ﬁm,R/), (12)

where
Hy (R B) = Y [ desdpdZiv Evi @) oR - )
i#]
X HCPV.ij-AHl//A (EA)WB(EB)]pé(]_é/ - i)]
(13)

Ny (R.R) = / dE, BBl B (Bo)l, ,0(R - B)
< AllyaEa)ws(s)l, 6k —=8).  (14)

Here i, j run over all nonrelativistic quarks. The above

expressions depend on two external coordinates Rand R’
because the effective internucleon interaction is formally
nonlocal. In this subsection, we assume that the quarks are
confined in nucleons with a common harmonic oscillator
potential and we neglect all other CP-even interactions.
The s- and p-waves, between which the transition is
considered, become therefore trivial. In this setup, it is

convenient to use the Jacobi coordinates for E 4 and EB (see
Fig. 4) since the internal and the relative coordinates may
be separated in the calculation so that we do not need to
treat the center of mass motion explicitly. We also use the
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g4

FIG. 4. The Jacobi coordinates for the two-nucleon system.

local approximation R = R’ which should hold with non-
relativistic systems.

The single nucleon wave function in a nonrelativistic
quark model is expressed as a direct product of color, spin,
isospin, and radial components, entangled so as to anti-
symmetrize the state in the exchange of two arbitrary
quarks. The color part is by assumption a color SU(3)
singlet, and a baryon state is completely antisymmetric. In
this work, we do not consider the internal excitation of the
nucleon in the initial and final states, so the two internal
Jacobi radial functions are both s-waves, as

-

where w = b2 and Q = 3 b2 are the oscillator constants with
b = 0.5 fm. The Jacobi coordinates of the single nucleon
are defined in Fig. 4. Under this approximation, the spin-
isospin part is

=
oy
I
=
v>:u

|spin) ® |isospin) = \/_ Z| 1 ® x2ls ® 13]125,)

0=0,1

® |l ®ml, ® mslijpry),  (16)

where y; and ; (i = 1, 2, 3) are the spin and isospin states
of the ith quark. Here X, and T, are the z-components of the
spin and isospin of the single nucleon, respectively. This
form is derived by summing all three combinations of spin
and isospin couplings respecting the antisymmetry of the
state in the exchange of quarks (see Appendix E of
Ref. [14]). As a consequence of this summation, the spin
and isospin of the coupled two-quark system have the same
|

161(E)2(£)8(E - R))

nlm

= > 11 E) b2 (Ewuin (E)w (R

) — NOTON
=70 =

(D) (EX)

FIG. 5. Schematic diagrams of the norm kernel denoting the
direct (D) and exchange (EX) contributions.

quantum number ¢ =0 or 1. The two-nucleon wave
function is a combination of two single nucleon ones as
given above, and the interchange of the two nucleons is also
antisymmetric, which restricts the total spin S, isospin /,
and orbital angular momentum L to (—1)5t+F = —1,

Let us now calculate the two-nucleon matrix elements.
The norm kernel is given by

N(R.R') = (NN(R)|AINN(R))
= C(NN(R)|1 = 9P3|NN(R'))
= C8(R —R') = 9(NN(R)|P3|NN(R))]. (17)

where P3¢ denotes the exchange of quarks 3 and 6. The
factor 9 appeared due to the symmetry in the quark
exchange, by also taking into account the fact that the
exchange of two quarks between nucleons is equal to the
exchange of single quarks times the exchange of nucleons
which is also antisymmetric. The total normalization C
contains the combinatoric factor arising from other quark
exchanges which equally contribute to the Hamiltonian
matrix elements. Since this overall factor has no observable
effects, we set C = 1 from now on. Processes contributing
to the norm kernel are depicted in Fig. 5.

While the direct term is trivial, the exchange term
requires some calculation. The relevant color and spin-
isospin matrix elements are listed in Table I. For the
calculation of the radial part, we use some approximation.
By using the expansion of the delta function in terms of the
harmonic oscillator basis, the radial component of the two-
nucleon state with fixed R may be rewritten as

Z|nlm l//n,m (18)

nlm

where ., (I_é) is the harmonic oscillator eigenfunction. The radial matrix element of the exchange norm kernel may then

analytically be transformed as [169]

<R|P36|Rl> =

nlmn'l'm’

Z (R|nim)(nlm|Pys|n'I'm') (n'U'm’|R)

- 1 -
anlm R 32r1+l Yim (R/)' (19)

nlm
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TABLE I. List of color and spin-isospin matrix elements of the g 10 _of R2
quark exchange in two-nucleon system needed in the calculation Np—05=0.1=1 (R.R ) RO (R R ) X 4r E
of the norm kernel.

(21)
Type Direct Exchange

. )
cobor 1 P NiiseoroREB) n (R -R) x5

_° <2Q)§R26—2§2R2 ;
\/_

Spin-isospin

S, 1) = (0,0 1 7/9

ES, 13 = Eo, 1% 1 -1/27 (22)

(S.1) = (1,0) 1 ~1/27 o . . 508

($.0)=(.1) 1 31/81 Nt s-1-04-1(R,R)~5(R—R") x 813\/_(29)5 R2e29R
(23)

The exchange of quarks between two nucleons is a short-

range process, so it is possible to approximate the above (oo we used Yoo (I_é) _ (29) Yoo (6,4) and

expression with the lowest lying eigenstates having n = 0. 5 -G
As we wrote above, we also take the local approximation Wlm(R) \/3\/—(29) RY,(0.¢) with the oscillator

R’ = R which will further simplify the calculation of matrix ~ constant Q = W

elements. Let us now see the CP-odd potential kernel. The CP-odd

We explicit show below the forms of the s- and p-wave  jnterquark potential (10) is a color exchanging interaction,

norm kernel with fixed R for the relevant channels: so the apparent leading effect is given by quark exchange

processes. This antisymmetrization then brings five distinct

55 5B 10 2 rocesses as shown in Fig. 6 [135-137]. We note that Type
N;_os_11-0(R.R)~8(R—R)xdn—=") ¢ 208 p g . yp

r=os=t1=0( )8 ) x4x 9 ( /4 > I does not contribute if we use the Jacobi coordinates, since

(20) the CP-odd interaction between internal quarks which are
not exchanged excites the nucleon. We may explicitly write
the matrix elements as

D (NN(L=1,8=0.1)[Hcpy ;AINN(L' =0.8' = 1.1)) = =9[(NN(L = 1. = 0.1)[Hcpy 36P36|[NN(L' = 0.5' = 1.1))
i#]
+4<NN(L — l,S:0,1)|HCPV’45P35|NN(L/ :O,S/ — ],1)>
+4<NN(L - l,S:0,1)|HCPV736P16|NN(L/ :O,S/ — 1,1)>
+4(NN(L =1,8=0,1)[Hcpv36P1a|NN(L' = 0.8 = 1.1))],
(24)

where p;; are the coordinates of the quarks. We note that the In Table II, we give the color and spin-isospin matrix
spin structure of the CP-odd interquark interaction (10) is elements of the potential kernel (the detailed derivation of
proportional to ¢; — ¢ j» which forces the total spin of the  the spin-isospin contribution is given in the Appendix).
two-nucleon system to change (S’ — S), while the orbital ~ Below, we give the analytic forms of the radial components
angular momentum also shifts by one unit (L’ — L), dueto  for each contributing type:

the CP-odd nature. The isospin [ is conserved.

== ===

)

FIG. 6. Schematic diagrams of the potential kernel with several possibilities of quark exchange. Jagged lines represent the CP-odd
two-quark potential (10). Type I does not contribute if we use the Jacobi coordinates because the internal excitation will change the
nucleon to N*.

075021-6
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(NN(L = 1,L, = m)|[V(p36)P36/P36] P36INN(L' = 0, L. = 0))
= (NN(L = 1,L, = m)|[V(p36)P36/P36) P1s|NN(L' = 0, L. = 0))
= (NN(L = 1,L, = m)|[V(p36)P36/p36) P14aINN(L' = 0, L. = 0))

2802 12Q\3 5 z s 7(12(F R+ R
— \éT <_> e~k / deddeRe-29<R%+R%>v<‘g(Rl —Ry) +R

T

(Type 1)
(Type 1I')
(Type IV)

3

2 - - o
> |:_ (Rl _R2) R+R2 50m’ (25)

(NN(L = 1,L, = m)|[V(pss)pas/pas|P3s|INN(L' = 0, L. = 0)) (Type I11)
2802 20\} oos [ e e
P () e [ anahe )R =0 (26)
T T

where V(p) = V(p)/p is defined using Eq. (10), and the R

integral is the integral over the angular variables of R. Here
we explicitly wrote in the parentheses the processes (as
“Type”) from which each matrix element arises (see Fig. 6).
We see that Type III vanishes and that the radial
integrals are the same for Types II, III’, and IV. Owing
to these facts, the total contribution for both 7 =0, 1
channels vanishes [together with the combinatoric factors
of Eq. (24), the color, and spin-isospin matrix elements of
Table II].

The cancellation found above is not accidental, but may
be demonstrated as follows. The CP-odd interquark poten-
tial (10) is strictly composed of color exchange terms, so we
expect that it only works at short distance. We then
have a compact shell of six-quark states, and the major
part of the CP-odd potential matrix elements is given by the
transition between the (0s)® and (0s)’(Op) states in
the harmonic oscillator basis. Since the (0 p) state is
proportional to pe /P we may factorize the matrix
element as

(NN(L =1,L, = m)|[V(pi;)pi;/ pij]
X P, |[NN(L' = 0,L, = 0)) = R(f(R)). (27)

TABLEII. List of color and spin-isospin matrix elements of the
quark exchange in a two-nucleon system needed in the calcu-
lation of the CP-odd potential kernel.

Type Type I  Type III Typelll! Type IV
Color 4/9 -2/9 -2/9 1/9
Spin-isospin

(8,8, 1)=(0,1,0) —=22/27 0 -2/9 10/27
(S,8,1)=(1,0,1) -34/81 -8/27 —10/81 14/81
(S,8,1)=1(0,1,1) 34/81 2/9 8/27 14/81
(8,8,1)=(1,0,0) 22/27 2/9 16/27 10/27

|
where i(k) and j(m) label quarks which are in different
nucleons. (f(R)) is some function of R, but does not
depend on the choice of the quarks as long as quarks i and j
belong to different nucleons. We are now left with the
calculation of the color-spin matrix elements

(NN(S,D)|(t4) ® (t4;)(6; = 6;)Prn| NN(S', 1))
= <NN(S’ I)l[(taiai) ® (taj)
— (tai) ® (14j0,)|Pru|NN(S', 1)). (28)

By noting that the color generator 7, has zero eigenvalue
after summing over the three quarks that are inside a
nucleon, ), 5(¢,;)|N) = 0, we may finally state that the
above color-spin matrix elements, and consequently the
WO matrix elements vanish.

C. Estimation of the leading order contribution

In the previous section, we showed that the quark
exchange contribution generated by the CP-odd interquark
force (10) vanishes. The leading contribution must
then be a color non-exchanging process, and such effect
should arise from the QCD correction to Eq. (10), gen-
erating a direct-type CP-odd nucleon-nucleon interaction.
With nonrelativistic quarks, we have three such processes,
depicted in Fig. 7. In this work, we focus on the
box diagram [Fig. 7(a)] as the representative one, and
we show that it may be matched with the closure
approximation.

The gluonic correction is given by the short-range one-
gluon exchange interaction

1 2 L o\
Moy = | = 20 Gy 5005, () ® ()0 (29
13 Q

where mg ~ 300 MeV is the mass of the nonrelativistic
constituent quark. The effective CP-odd potential for static
quarks generated by Fig. 7(a) is then
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(a) (b) (©

FIG. 7. Leading contribution to the color non-exchanging CP-odd potential between two nonrelativistic quarks (thick lines). The
wiggly lines denote the gluons. The gray blob denotes the WO, which appears as a three-point vertex in the box diagram (a) as well as in
diagram (b), and as a four-point vertex in diagram (c). Permutations are not shown.

N.gsim? [1 . 20 e ] o e 1
Hermunss) = = o ¥ o G 3) + o 873) G = 39| - 5 (1+:2)
CPVqq,ij ] 187‘[[\/ i J 3m2Q J J Jplzj 4 bgut mgpij
P
= VCPqu(p);' (Gi - Gj)- (30)

Here we used the relations (z,); ® (,);- (1,); ® (1,); =51; ® 1;+--- where the ellipses denote the color octet
contribution, and (6; —6;)(6; - 6;) = 6, — 6, + 2i(c; x 6;). We omitted the color octet part since it does not contribute
to the direct as well as the exchange processes at short distance as shown in the previous section, and also the term with
2i(6; x 6;) which cancels when the gluonic corrections acting before and after the CP-odd interaction (10) are summed up.
Here cutoff parameters A’ = 1 GeV and b, = 0.2 fm were also introduced for convergence. We will shortly see that A’
will be matched with the averaged energy of color octet intermediate nucleon states in the closure approximation. We
display in Fig. 8 the Coulomb and color magnetic parts [first and second terms of the square bracket of the first line of
Eq. (30), respectively].

Let us now see the two-nucleon matrix elements. The CP-odd Hamiltonian matrix elements in the first order of
perturbation are given by

Z<W/|HCPV,ij|l//O> _ Z {Z <l//l|Hg.kl|WZ><V/2‘HCPV,U|V/O> i Z <1//'|HCPV,ijl|;//m’>§//m’\Hg.k1|l//0> ’ (31)

i.j i.j.k.0 Lm#0 0™ =m #0 0~ Ew
where y, and y’ are the lowest energy two-nucleon eigenstates of the CP-even Hamiltonian having each other opposite
parities, and m (m') runs over all color octet CP-odd (-even) two-nucleon states. The summations of (i, j) and (k, /) run each
over quarks belonging to the nucleons (1,2). The one-gluon exchange correction may act on all quarks of each nucleons.
However, when the gluons are attached to different quarks than those interacting through the CP-odd interquark force (10),
the factorized SU(3) generators summed over the three quarks of a single nucleon, ) *;_; 5(#,;)|N) = 0, cancel, just like the
case of Eq. (28). We then have i = k and j = /. When we apply the closure approximation, moreover, the sum over
intermediate states with color octet nucleons reduces to the identity operator. The closure approximation of the above CP-
odd two-nucleon matrix element may then be matched with Eq. (30), as

W' [HyiiHervaiilwo) | W' Hepy.iiHyilwo)
> W Hepvilwo) ==Y { s 2 A gv —+ C?Z é,> = = (W Hepvaqiilwo). (32)
0 ¥ W

where (AE) ~ (AE') ~ A’ = 1 GeV is the averaged excitation energy in the transition from the singlet-singlet to octet-octet
two-nucleon states.

Now let us calculate the CP-odd nuclear force according to Eq. (13). Since the interquark potential of Eq. (30) does not
exchange quarks, this is just a double folding:

- 2003 = o 52 72 2 - o =
Hepynn(R) = Z<—) /dedRze_ZQ(R%+R2)HCPqu.ij <—( 1= Ry) + R)

—\ 1 3
ij

= Vepywn(R) 7+ (21 — o). (33)

x| =
P
P
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FIG. 8. Result of the quark model calculation of the CP-odd
nuclear force generated by the WO. We plot separately the
contribution from the Coulomb part and the color magnetic
part of Eq. (30). The delta function of the color magnetic
interaction was smeared using a Yukawa function with the
smearing parameter A = 600 MeV which has the limit
limy_,,A?e™™ /4zp — 6(p). The contribution generated by
the chiral rotation of the CP-even short-range nuclear force is
also displayed for comparison [see Eq. (3) and below]. Note that
we plotted Vepyy, and Vepyyy with a minus sign.

In the nonrelativistic quark model, the spin matrix element
is trivially one, as (N|G|N) = %. We show the result of the
integration in Fig. 8, where the contributions of the
Coulomb and color magnetic parts of Eq. (30) are plotted
separately. By fitting with a simple functional, we obtain

Vepvwn(R) = [—(1.63 MeV /fm)Re R/ (041 fm)
— (0.18 MeV/fm)Re~R/(10 )]y, . Gev2,

(34)

Here R and w are expressed in the unit of fm and GeV~2,

respectively. Let us compare our result with the reducible

contribution generated by the chiral rotation of the CP-even

nuclear force [Fig. 2(a)]. We see that the irreducible CP-

odd nuclear force and that generated by the chiral rotation

of the short-range CP-even nuclear force have opposite
sign, and comparable at R ~ 1.5 fm.

III. EDM OF *He NUCLEUS

Now that we have the CP-odd nuclear force, we may
evaluate the EDM of light nuclei [114,118,120,170,171].
The nuclear EDM is defined as

A
dA - Z
i=1

where |¥,) is the polarized nuclear state along the z-axis,

(Walri Rz [Wa), (35)

NS AN

and 7%,- are the coordinates of the ith nucleon. We calculate

the EDM of the *He nucleus which is expected to be
measured in future storage ring experiments [44]. The *He
EDM may be evaluated exactly in the same way as
Ref. [118] where the Gaussian expansion method [164]
was used, by substituting the CP-odd potential by our
result (34). We then obtain the following EDM

A (w) = ~1.5weMeV, (36)
where we used the Argonne v18 potential [121] for the CP-
even nuclear force. We also inspected the effect of the
three-body force by adding a simple two-range Gaussian
three-nucleon force fitted to reproduce the binding energy
of °He, but the difference was only 3% (lowering the
EDM), so we may safely neglect its effect.

Let us now analyze the total contribution. In view of the
fact that we only considered the first diagram of Fig. 7, and
also by taking into account all the uncertainty of the quark
model, it is fair to attribute a theoretical uncertainty of
100% to our result (36). The sum of the reducible and
irreducible effects then becomes

A5 (1) = 0.5 we MeV, (37)
where we added the error bar of Eq. (7) by quadrature. We
did not consider the pion-exchange contribution (8) for
which the sign is not yet determined, but we may already
say that the pion-exchange contribution is comparable to
the short-range CP-odd nuclear force, even though the
pion-exchange one is formally subleading in yEFT. We
then see that the intrinsic nucleon EDM contribution (9) is
dominant as regards the He EDM. Gathering all, the final
He EDM induced by the WO is

A (w) = 2051} weMeV, (38)
where we added in quadrature the error bar from the
short-range CP-odd nuclear force (37), the pion-exchange
effect (8) for which the upper bound was considered as
the theoretical uncertainty, and the dominant valence
nucleon (9).

IV. SUMMARY

In this paper, we discussed the contribution of the WO to
the CP-odd nuclear force at short distance. This contact
interaction is the leading order effect in yEFT, and its
unknown strength represented so far a substantial system-
atic ambiguity in the analysis of nuclear and atomic EDMs.
After its evaluation using the RGM within the nonrelativ-
istic quark model, we found that the apparent leading quark
exchange process vanishes at short distance. We then
estimated the gluonic correction to the CP-odd interquark
potential in the closure approximation, and the resulting
irreducible CP-odd nuclear force was comparable to the
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reducible one induced by the chiral rotation of the short-
distance CP-even nucleon-nucleon interaction. We then
explicitly calculated the EDM of *He nucleus which is
expected to be measured in future storage ring experiment.
The sum of the reducible and irreducible short-distance
CP-odd nuclear force contributions to the *He EDM was
found to be comparable to that of the pion-exchange
generated by the WO, and much smaller than the intrinsic
nucleon EDM effect. We actually just terminated the first
studies of the leading contribution of the WO and its
systematics at the hadron level.

Now that we know that the contribution of the short-
distance CP-odd nuclear force is small, let us enumerate the
topics which have to be investigated to achieve the
quantification of the WO effect. The first work is to
estimate the effect of the short-range CP-odd nuclear force
to the CP-odd moments of nuclei. Indeed, as we saw in
Eq. (7), this contribution has a large uncertainty band, and
we do not know whether it is really smaller than the
intrinsic nucleon EDM as given in Eq. (2). For heavy
nuclei, the one-pion exchange CP-odd nuclear force
generated by the WO also becomes important, and it
may in some cases be comparable to the nucleon EDM
effect [115,172,173]. This process is also currently affected
by a large uncertainty. We expect it to be quantified by
determining the sign of the pion-pole process generated by

|

Ji J2 3
x| Js Js Js
J7 Js Jo

the WO, and also by fixing the problem of the incon-
sistency of the pion-nucleon sigma-term between phenom-
enology and lattice QCD [174-176].
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APPENDIX: DERIVATION OF THE SPIN-ISOSPIN
MATRIX ELEMENTS OF THE CP-ODD
POTENTIAL KERNEL

We give below the explicit derivations of the spin-isospin
matrix elements of the CP-odd potential kernel for each
type. We follow the convention of Eq. (16). We also use the
modified 9-j symbol

= ([l/1 ® Jalj, ® [ja ® Jsl; ), 11 ® Jal;, ® 72 ® Jsljilj,)

Ji J2 3

=V 2j3+ D)2js+ D(2j7+ D(2js+ 1] ja Js Jo

(A1)
J1 o Js Jo

We first transform the spin-isospin matrix elements of Type II, Type III’, and Type IV which depend on a common

expression.
Type 1I:
<NN<S’ Sz; 1, Iz)|(53z - 56Z)P36|NN(S/7 Sz;l’ Iz)>
1 - N
=7 Yol ®x2)s ® 13l ® [[ra ® 5]y ® 26lils.5.153: = Becl[l1 @ 2l ® 6y ® [[va ® 5] ® 135 s.)
6.6'.0".6"=0,1
X ([[lm @ mals @ n3l ® [[n4 @ n5ly @ nelal s [M[[lm @ 2l @ 16ly @ ([ @ 5] @ m3]il1 1)
| oy fo b
o 1o et o ] xene
0,0'=0,1;2.32'=1/2,3/2
PRy w os) \L Lo
x([[lr1 ® x2lo ® 3]s ® [lra ® x5ly ® x6lils.s.103. — e[t ® 22]s ® 13ls ® [lrs @ 45ly ® x6lwlss.).  (A2)
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Type III':

(NN(S.S::1.1.)|(6:3 = 6:6) P16INN (S, S5 1. 1))

:% >, lnexr, ® 1311 ® [[ra ® x5l ® x6lils.5.105: — G| [[lvs ® x2lor ® 23]

0,0 ,0",6"=0,1

x([[lm @ ml, ®n3]y &[4 ® 15 ® 1]

® [[xa ® x5l ®)(1]%]S’.s,>

Ir2.)

1
2

1., 11{llne ® M2l @ n3]y @ (I @ 15y @ mi]

1

1 1 1
2 2 2

o 1

Q

1
=3 by i
0,6 ,7,0"7=0,1;2.5' = 1/23/2

SRS
(S

Q= N
S NI=
= N—
(S LN STE ST
= O M=
Rl =
M o= 8
L
[STEN ST
(ST ST
Q_ o=
NN =

=
=

O =
O =

xx

Q NI= =
M o= 8
B
Q  NI= D=
[STEN ST

D=
D=

x ([l @ x2lo ® 231 ® [lxa ® x5l ® x6ils.s.103: — F6:|[[l1 @ 2] ® 23]5 @ [[ra ® x5l ® x6)w]ss5.)- (A3)

1 1
2 2

Type 1V:

<NN<S’ Sz;l’lz)l(gk - 56Z)P14|NN(S/7 Sz;l’ Iz)>

= % Z (1 ®x2ls ® 3l ® [[xa ® x5l0 @ x6]

6,6,6",6"=0,1

Is.5.163; — 06| [[[ra ® a2l @ 231 ® [[x1 ® x5]e ® x6li]ss.)

1 1 1
2 2 2

X ([l @ maly @ m3]y @ [[ns @ nsly @ n6lil s [1[[[n4 ® m2lor @ m3]y @ [l @ 11s]r @ m6lils )
1 Lo\ (b (08 3Y (0 b Y ey 1) (7 h
A R A RN VR A 1 A V1 I N P R
6,6,6",6" 7.7=0,1 - % % 7 % % % 7 % % 7 % >y Y g % % I
e\ (AR (04 8 (04
SV R P IE TR P IS S 'l [T S I G Ve
crx) o) \ie e/ Lo
x([[lr1 @ xalo ® 13l ® [[ra ® xs5ly @ x6lils.s.103: — e[l @ 12l ® x3]s ® [[va ® xs5ly ® x6lls s.)- (Ad)
We see that Type II, Type III’, and Type IV depend on a common matrix element
(1 ® x2ls ® 13l ® [lxa ® x5]0 ® K6ls.s.163. = G611 ® 2], ® 3]z ® [lva ® x5]0 ® K6lxlss.)
¥y
S 1 8\ 25+1 -
:(—1)S_SZ< ) 110 1 ([l ®xas ® x3lillos|l[l1 @ x2)s ® 3l5)05
~S. 0 S, 2 L : :
7 02 S
> Y s
—x| 0 1T 1 | ({lra ®xsly ®xslillosll[xa ® x5le ® 62051 |- (A5)
1l
11
72
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We also transform Type III which is irrelevant in this work:

<NN<S’ SZ;I7IZ)|(5z4 _5:15)P35|NN(S/7SZ;I’IZ)>

- > Al ®xl, @3] ® lxa ® x5y ® 6]

0,6 ,6".6"=0,1

s, 164 = G5l @ xalor @ x5l ® [[ra @ w3l @ x6lilss.)

X([[lm @ o], ® 3]y @ [[14 @ 115]y @ m6laly s [M[[[11 @ 2] @ 5]y & [[14 @ 3] w @ 116)111)
1 01 o%% s 4 4\ (o b A (04 4\ (o}
=2 > A VA A PR P A VA IR P4
0,6 ,1,0" 74=0,1;£2=1/2,3/2 % T % % 7 1 % Y % % I % 1T % o %

x([[l1 ®x2ls ® 231 ® [[ra @ x5ly ® X6lils.5.104: — 05| Dh ® x2ls ® 231 ® [[ra @ xs5], ® x6lsls.s.)
| 05 3 (03 o3 3\ [e23) (032) (03
=z 2 (—1)7‘21%%6’”%%%6x%f%x%f%x%%fﬂ(%%%
0,0’ ,1,6" 7,4=0,1;2=1/2,3/2 % r % % # % IR % % I % 1z % o %
b s
S 19 25+1 - S
X (—I)S_SZ<_S 0 s > 52| 0 11 | ({lra ®xsly @ xelsllos = sllllra ® x5]; ® xelx)- (A6)
o b

We may further use the following formulas to derive the final matrix elements of Table II:
(1t ® 151, ® 211l ® 271, ® 1)) = {1 ® s @ 1Ll e ® s ® 21,0 = VA (A7)
(i ® 2ilo @ xalillow|llr: ® xjlo ® xil) = (b ® [ri ® xjlolillowlllx ® i ® xjlos) = Ve, (A8)

. V6
{[lr: ® il @ xalyllowlllle: ® i1 @ aly) = (lew ® li @ xiliillonlllen @ lri @ iy = = (A9)
_ 43

(i @ 1l @ xlillowlllyi ® xjh ® xals) = =l ® i @ xjlilillowlllve @ [vi ® 21112 =3 (A10)
(i ® xjlo ® xililloillllyi ® xjlo ® xils) = (lrx ® [vi @ xjlolullGill [ ® i ® x,lols) = 0. (A1)
(ri ® xjlo ® xalillojl|[lri ® xilo ® xal) = (rx @ i ® xjlolallojlea ® i @ xjloly) =0 (A12)

([lvi ® ¥l ®)(k]%”gi”[b(i ®xih ®)(k]%> =[x ® [1: ®)(j]1}%||5i||b(k ® i ®Zj]1]%> = 2?7 (A13)

([lri @ il ® xilillojlllle: ® 2l ® xly) = (lee ® i @ whilillo Il ® [ri @ 211l = 276’ (A14)

1 1
2 2

where i # j # k # i.
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