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A framework based on a class of Abelian gauge symmetries is proposed in which the masses of only the
third generation quarks and leptons arise at the tree level. The fermions of the first and second families
receive their masses through radiative corrections induced by the new gauge bosons in the loops. It is shown
that the class of Abelian symmetries which can viably implement this mechanism are flavor nonuniversal in
nature. Taking the all-fermion generalization of the well-known leptonic Lμ − Lτ and Le − Lμ symmetries,
we construct an explicit renormalizable model based on twoUð1Þwhich is shown to reproduce the observed
fermion mass spectrum of the Standard Model. The first and second generation fermion masses are loop
suppressed while the hierarchy between these two generations results from a gap between the masses of two
vector bosons of the extended gauge symmetries. Several phenomenological aspects of the flavorful new
physics are discussed and lower limits on the masses of the vector bosons are derived.
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I. INTRODUCTION

Masses of the elementary fermions in the Standard Model
(SM) are incalculable parameters of the theory and their
values are determined entirely from the observations only.
This leaves several unanswered questions about the
observed pattern of the masses and mixings of quarks
and leptons [1]. One of the elegant ways to understand the
peculiar hierarchical masses of the charged fermions is to let
only the third generation fermions become massive at the
leading order while the masses of the first two generations
arise through quantum corrections. In this way, the masses
of the first and second generation fermions may be made
completely or partially calculable parameters of the theory.
Such an approach was considered in [2–4] soon after the
inception of the SM. Subsequent attempts in this direction
include generating radiative masses through loops involving
new scalars and fermions [5–15], new scalars and top-quark
[16] and new gauge bosons in the extended gauge theo-
ries [17,18].
In this paper, we explore a framework in a similar

direction but based on a different class of gauge symmetry
leading to very different results both qualitatively and

quantitatively. The extended gauge symmetry is Abelian
and it ensures that only the third generation quarks and
leptons get masses at the leading order. Subsequently, the
masses of the first and second generation fermions are
induced by radiative corrections through the vector bosons
of extended symmetry and heavy massive fermions in the
loop and, therefore, are suppressed. The masses of the first
two generation fermions become calculable parameters
albeit they are expressed in terms of some undetermined
parameters of the theory which are not required to take
arbitrarily small values. Through general analysis, we show
that the new Abelian gauge symmetry must be flavor
nonuniversal to the basic mechanism to work viably. In
turn, this leads to flavorful new physics in both the quark
and lepton sectors offering phenomenologically rich pos-
sibilities. We construct an explicit model based on two
Uð1Þs which are generalizations of the well-known leptonic
Lμ − Lτ and Le − Lμ symmetries and are applied to all the
fermions of a given generation. It is shown through detailed
numerical studies that the model is capable of reproducing
the realistic fermion mass spectrum and it overcomes many
inviable predictions found in a recent proposal along a
similar direction but based on a different gauge sym-
metry [17].
The rest of the paper is organized as follows. The basic

mechanism is discussed in Sec. II. An explicit model based
on it is outlined in Sec. III. In Sec. IV, we give example
solutions which reproduce the observed fermion mass
spectrum and discuss the various phenomenological impli-
cations in Sec. V. The study is summarized in Sec. VI.
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II. GENERAL FRAMEWORK

We first discuss the basic mechanism leading to the
massive third generation at the tree level and radiative
masses for the lighter generations. Consider a toy frame-
work with three generations of chiral fermions, f0Li and f

0
Ri

(i ¼ 1, 2, 3), and a pair of vectorlike fermions F0
L;R. The

fermions are charged under a Uð1Þ gauge symmetry with
the following interaction term:

−Lgauge ¼ gXXμðqLαf̄0Lαγμf0Lα þ qRαf̄0Rαγ
μf0RαÞ; ð1Þ

where α ¼ 1;…; 4, f0Lα ¼ ðf0Li; F0
LÞ, f0Rα ¼ ðf0Ri; F0

RÞ and
qL4 ¼ qR4.
The mass Lagrangian in this basis is written as

−Lm ¼ f̄0LαM
ð0Þ
αβ f

0
Rβ þ H:c:; ð2Þ

where the 4 × 4 tree-level mass matrix Mð0Þ has a
particular form

Mð0Þ ¼
�

03×3 ðμÞ3×1
ðμ0Þ1×3 mF

�
: ð3Þ

Here, μ ¼ ðμ1; μ2; μ3ÞT and μ0 ¼ ðμ01; μ02; μ03Þ. The above
form of M results into a pair of massive and two massless
fermions. For heavy vectorlike fermions, i.e., mF ≫ μi; μ0i,
the effective 3 × 3 mass matrix can be obtained as

Mð0Þ
ij ¼ −

1

mF
μiμ

0
j: ð4Þ

The above matrix is of rank one and has two vanishing
eigenvalues. In this way, only the third generation is
arranged to acquire a tree level mass in the underlying
framework.
To compute higher order corrections to tree-level masses,

we obtain the physical basis using

f0L;R ¼ UL;RfL;R; ð5Þ

where the unprimed fields are in physical basis and UL;R are
4 × 4 unitary matrices which can be obtained using

U†
LM

ð0ÞUR ¼ D≡ Diagð0; 0; m3; m4Þ: ð6Þ

The gauge interactions in Eq. (1), in the new basis, becomes

−Lgauge¼ gXXμððQLÞαβf̄LαγμfLβþðQRÞαβf̄RαγμfRβÞ; ð7Þ

where

QL;R ¼ U†
L;RqL;RUL;R; ð8Þ

and qL ¼ DiagðqL1; qL2;…Þ and so on. The matrices QL;R

are not diagonal in general.
At 1-loop order, the fermions of the first and second

generations can receive masses through diagrams involving
the gauge boson and massive fermions in the loop. The one-
particle-irreducible two-point function evaluated in the
Feynman-’t Hooft gauge gives the following results.

Σαβðp ¼ 0Þ ¼ σLαβPL þ σRαβPR; ð9Þ

with

σLαβ ¼
g2X
4π2

X
γ

ðQRÞαγðQLÞγβmγB0½M2
X;m

2
γ �;

σRαβ ¼
g2X
4π2

X
γ

ðQLÞαγðQRÞγβmγB0½M2
X;m

2
γ �; ð10Þ

where

B0½M2; m2�≡ Δϵ −
M2 ln M2 −m2 ln m2

M2 −m2
; ð11Þ

is Passarino-Veltmann function and

Δϵ ¼
2

ϵ
þ 1 − γ þ ln 4π; ð12Þ

is divergent part of loop integration when ϵ → 0. The
explicit derivation of the above result is given in
Appendix A.
The 1-loop corrected fermion mass matrix obtained

using Eqs. (6), (10) can be written as

M ¼ Mð0Þ þ δM; ð13Þ

where

δM ¼ ULσ
RU†

R: ð14Þ

In general, the loop contributions δM has divergent terms
proportional to Δϵ. The renormalizability requires that the
3 × 3 upper-left block of δM should be finite as there are
no counterterms that could remove the divergences.
Denoting the divergent part of δM as δMdiv, we find

δMdiv ∝ ULQLDQRU
†
R ¼ qLMð0ÞqR; ð15Þ

where the last equality follows from Eqs. (6), (8). UsingM
given in Eq. (3) and since qL;R are diagonal matrices, one
finds

ðδMdivÞij ¼ 0: ð16Þ
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Therefore, the 3 × 3 upper-left block of δM is finite as it is
expected from the renormalizabilty [2,19].
The finite part of δM is of our main interest and it can be

simplified to

ðδMÞαβ ¼ g2X
4π2

qLαqRβ
X
γ

ðULÞαγðU�
RÞβγmγb0½M2

X; m
2
γ �;

ð17Þ
where

b0½M2; m2�≡ −
M2 ln M2 −m2 ln m2

M2 −m2
: ð18Þ

Further simplification is possible in the seesaw approxi-
mation,mF ≫ μi; μ0i. In this case, UL;R can be written in the
following form [20]

UL;R ≃
� UL;R −ρL;R
ρ†L;RUL;R 1

�
; ð19Þ

where ρL ¼ −m−1
F μ and ρ†R ¼ −m−1

F μ0 are 3 × 1 and 1 × 3
are matrices, respectively. UL;R are 3 × 3 matrices that
diagonalize Mð0Þ given in Eq. (4). Explicitly,

U†
LM

ð0ÞUR ¼ Diagð0; 0; m3Þ: ð20Þ

Using the definition Eq. (4), the above equation can also be
written as

ðULÞi3ðU�
RÞj3m3 ¼ Mð0Þ

ij ¼ −
1

mF
μiμ

0
j: ð21Þ

Substituting Eqs. (19), (20) in Eq. (17), we find

ðδMÞij≃
g2X
4π2

qLiqRjðULÞi3ðU�
RÞj3m3ðb0½M2

X;m
2
3�

−b0½M2
X;m

2
F�Þ;

¼ g2X
4π2

qLiqRjM
ð0Þ
ij ðb0½M2

X;m
2
3�−b0½M2

X;m
2
F�Þ; ð22Þ

with i, j ¼ 1, 2, 3 and repeated indices are not summed. The
second line in the above equation follows from Eq. (21).
The correction to the remaining elements, after some
straightforward algebraic simplification, are obtained as

ðδMÞi4 ≃
g2X
4π2

qLiqR4μi

�
b0½M2

X;m
2
F� þ

X
j

jμ0jj2
m2

F
b0½M2

X;m
2
3�
�
;

ðδMÞ4i ≃
g2X
4π2

qL4qRiμ0i

�
b0½M2

X;m
2
F� þ

X
j

jμjj2
m2

F
b0½M2

X;m
2
3�
�
;

ðδMÞ44 ≃
g2X
4π2

qL4qR4mF

�
b0½M2

X;m
2
F� −

m2
3

m2
F
b0½M2

X;m
2
3�
�
: ð23Þ

Using the above results, the 1-loop corrected fermion
mass matrix, Eq. (13), can be parametrized as

M ¼
� ðδMÞ3×3 ðμ̃Þ3×1

ðμ̃0Þ1×3 m̃F

�
; ð24Þ

with

ðδMÞij ¼ ðδMÞij; μ̃i ¼ μi þ ðδMÞi4;
μ̃0i ¼ μ0i þ ðδMÞ4i; m̃F ¼ mF þ ðδMÞ44: ð25Þ

In the seesaw approximation, δMij ≪ μ̃i; μ̃0i ≪ m̃F, the
effective 3 × 3 mass matrix for the lighter fermions can
then be written as

M ¼ δM −
1

m̃F
μ̃μ̃0: ð26Þ

Comparing the above with Eq. (4), it is noticed that the
second term is similar to Mð0Þ with original elements
replaced by their 1-loop corrected values. This contribution
is still of rank-1 and contributes only to the masses of the
third generation. The first term can induce masses for
the first and/or second generation fermions depending on
the chosen Uð1Þ charges.
It is important to note that the flavor universal Uð1Þ

symmetry cannot induce radiative masses for the lighter
generations. This can be understood as the following. For
qL1 ¼ qL2 ¼ qL3 and qR1 ¼ qR2 ¼ qR3, one finds δM ∝
Mð0Þ from Eq. (22) and μ̃ ∝ μ, μ̃0 ∝ μ0, m̃F ∝ mF from
Eq. (23). Altogether, this implies M ∝ Mð0Þ and hence the
1-loop corrected mass matrix remains of rank one.
Therefore, a flavor nonuniversal Uð1Þ is necessarily
required in order to generate the masses for the first and
second generation fermions. We find that this observation of
ours is in conflict with the results of [18] which uses flavor
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universal Uð1ÞB−L to induce radiative masses for the first
generation fermions.
It can be also noted that for a generic choice of Uð1Þ

charges, δM could lead to masses of a similar magnitude for
the first and second generation fermions. To generate only
the second generation fermion masses at 1-loop, one can
choose qL1 ¼ qR1 ¼ 0. As it can be seen from Eq. (22), this
leads to a massless first generation and loop-suppressed
mass for the second generation. Masses for the first
generation fermions can be induced similarly by introduc-
ing another flavored Uð1Þ under which the first generation
fermions are nontrivially charged. The mass hierarchy
between the first and second generations can be arranged
by choosing hierarchical masses for the gauge bosons of
two Uð1Þ s. For example, the loop integration factor for
MX ≫ mF ≫ m3 can be simplified as

b0½M2
X;m

2
3� − b0½M2

X;m
2
F� ≃ −

m2
F

M2
X
ln

m2
F

M2
X
: ð27Þ

Therefore, two Uð1Þs with MX2
≫ MX1

can lead to
hierarchical masses of first and second generations even
though both are generated at 1-loop. A suitable choice of
Uð1Þ charges which can achieve this is discussed in the
next section.

III. A MODEL

As discussed in the last section, the proposed mecha-
nism requires at least two Uð1Þ symmetries under which
the three generations of the SM quarks and leptons are
charged nonuniversally. Therefore, we choose GF ¼
Uð1Þ1 ×Uð1Þ2 as an extended gauge symmetry for
the model. In addition to three generations of the
SM quarks and leptons, QLi ∼ ð3; 2; 1

6
Þ, uRi ∼ ð3; 1; 2

3
Þ,

dRi ∼ ð3; 1;− 1
3
Þ, LLi ∼ ð1; 2;− 1

2
Þ, and eRi ∼ ð1; 1;−1Þ,

we introduce three copies of a pair of the Higgs doublets,
i.e., Hui ∼ ð1; 2;− 1

2
Þ, Hdi ∼ ð1; 2; 1

2
Þ, and SM singlets

ηi ∼ ð1; 1; 0Þ. We also introduce a pair of vectorlike
fermions in each sector, namely TL;R ∼ ð3; 1; 2

3
Þ, BL;R ∼

ð3; 1;− 1
3
Þ, and EL;R ∼ ð1; 1;−1Þ. In the above, the quan-

tities in the brackets denote the transformation properties
under ðSUð3ÞC; SUð2ÞL; Uð1ÞYÞ.
Under the new GF ¼ Uð1Þ1 × Uð1Þ2 symmetry, all the

first, second and third generation fermions and scalars have
charges (0,1), ð1;−1Þ, and ð−1; 0Þ, respectively. In this
way,Uð1Þ1 can be identified as “2–3 symmetry” andUð1Þ2
as “1–2 symmetry.” They are generalizations of Lμ − Lτ

and Le − Lμ symmetries, respectively, discussed in the
literature in the context of leptons [21–23]. The vectorlike
fermions are neutral under the GF. The fermion and scalar
fields and their charges under the SM and GF are
summarized in Table I. It is straightforward to check that
theGF is nonanomalous since a pair of families of fermions

and scalars have equal and opposite charges under
each Uð1Þ.

A. Charged fermion masses

The most general renormalizable couplings between the
fermions and scalars invariant under the SM gauge sym-
metry and GF can be written as

−LY ¼ yuiQLiHuiTRþ y0uiTLη
�
i uRiþ ydiQLiHdiBR

þ y0diBLη
�
i dRiþ yeiLLiHdiERþ y0eiELη

�
i eRiþH:c::

ð28Þ
The direct couplings between two SM fermions and Higgs
are forbidden by GF. The masses of vectorlike fermions are
parametrized as

−Lm ¼ mTTLTR þmBBLBR þmEELER þ H:c: ð29Þ

The spontaneous breaking of GF through the vacuum
expectation values (VEVs) of ηi and Hui;di gives rise to
4 × 4 mass matrices for the charged fermions identical to
the one given in Eq. (3). Explicitly,

Mu;d;e ¼
�

0 ðμu;d;eÞ3×1
ðμ0u;d;eÞ1×3 mT;B;E

�
; ð30Þ

where

μui ¼ yuivui; μdi ¼ ydivdi; μei ¼ yeivdi; ð31Þ

μ0ui ¼ y0uihηii; μ0di ¼ y0dihηii; μ0ei ¼ y0eihηii; ð32Þ

and vui ≡ hHuii, vdi ≡ hHdii. The repeated indices do not
imply summation in the above. The above VEVs are chosen

TABLE I. The SM and GF charges of various fermions and
scalars of the model. Here, i ¼ 1, 2, 3 denote three generations
and their respective charges under new Uð1Þ are represented as
fq1; q2; q3g.
Fields ðSUð3Þc × SUð2ÞL × Uð1ÞYÞ Uð1Þ1 Uð1Þ2
QLi ð3; 2; 1

6
Þ f0; 1;−1g f1;−1; 0g

uRi ð3; 1; 2
3
Þ f0; 1;−1g f1;−1; 0g

dRi ð3; 1;− 1
3
Þ f0; 1;−1g f1;−1; 0g

LLi ð1; 2;− 1
2
Þ f0; 1;−1g f1;−1; 0g

eRi
ð1; 1;−1Þ f0; 1;−1g f1;−1; 0g

Hui ð1; 2;− 1
2
Þ f0; 1;−1g f1;−1; 0g

Hdi ð1; 2; 1
2
Þ f0; 1;−1g f1;−1; 0g

ηi (1,1,0) f0; 1;−1g f1;−1; 0g
TL, TR ð3; 1; 2

3
Þ 0 0

BL, BR ð3; 1;− 1
3
Þ 0 0

EL, ER ð1; 1;−1Þ 0 0
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such that they break GF entirely and SUð2ÞL ×Uð1ÞY into
Uð1Þem. The most general potential of the model is given in
Appendix B. It is shown that there exist a large number of
parameters which may allow the desired solution for the
VEVs although we do not study the potential minimization
in detail. The effective 3 × 3 mass matrix in each sector,
analogous to Eq. (4), can be written as

Mð0Þ
u;d;e ≡ −

1

mT;B;E
μu;d;eμ

0
u;d;e: ð33Þ

The above matrices are of rank one and give masses to the
third generation charged fermions.
Following the procedure outlined in the previous

section and Eq. (26), the 1-loop corrected effective

3 × 3 mass matrices for the charged fermions can be
obtained as

Mf ¼ δMf þMð0Þ
f ; ð34Þ

where f ¼ u, d, e and the second term is written using
Eq. (33). In comparison to general result given in Eq. (26),
note that the second term is same as the tree level effective
mass matrix. The loop corrections do not modify the
parameters μi, μ0i, and mF as the vectorlike fermions are
neutral under the GF. δMf contains 1-loop correction
induced by the gauge bosons of both the Uð1Þs. Using the
given Uð1Þ1;2 charges and Eq. (22), we find

δMf ¼
Nfg21
4π2

ðb0½M2
Z1
; m2

f3� − b0½M2
Z1
; m2

F�Þ

0
BBB@

0 0 0

0 ðMð0Þ
f Þ

22
−ðMð0Þ

f Þ
23

0 −ðMð0Þ
f Þ

32
ðMð0Þ

f Þ
33

1
CCCA

þ Nfg22
4π2

ðb0½M2
Z2
; m2

f3� − b0½M2
Z2
; m2

F�Þ

0
BBB@

ðMð0Þ
f Þ

11
−ðMð0Þ

f Þ
12

0

−ðMð0Þ
f Þ

21
ðMð0Þ

f Þ
22

0

0 0 0

1
CCCA: ð35Þ

Here, gi is the gauge coupling and MZi
is the mass of the

gauge boson of Uð1Þi. Nf ¼ 3 (Nf ¼ 1) for f ¼ u, d
(f ¼ e) is the factor due to color degrees of freedom. mf3

and mF are masses of the third generation fermion and
vectorlike fermion, respectively, in each sector.
The charged fermion mass matrixMf defined in Eq. (34)

along with expressions (33) and (35) gives the 1-loop
corrected mass matrix in the model. Each of the 1-loop
generated contributions in δMf are of rank one and induce
masses for the first and second generation fermions
individually. The hierarchy among the masses of the lighter
generations can be arranged by choosingMZ1

≪ MZ2
. This

suppression is common for all the charged fermions.
Note that in determining Eq. (35), we have considered 1-

loop corrections only from the gauge boson loops. In the
present model, radiative corrections also arise from the
emission and absorption of scalar bosons in the loop. Such
a contribution requires mixing between the scalar fields ηi
and Hui;di as they exclusively couple to the right and left
chiral fermions, respectively. These corrections can be
made suppressed by choosing the scalar masses much
greater than theMZ1

[17] and/or by assuming small mixing
between ηi and Hui;di fields [18]. We assume that such
suppression is arranged and do not consider the radiative
corrections from the scalar bosons.

We have also assumed that there are no kinetic mixings
between different Uð1Þ. Presence of such a mixing, for
example ϵF1μνF2

μν where F1;2 are the field strengths of
Z1;2 bosons, can allow the first-generation fermions to
receive masses from the 1-loop diagrams involving Z1

boson. This can be understood from the fact that an
effective coupling of order ϵg1 gets induced between the
first-generation fermions and Z1 when the kinetic mixing
term is rotated away to obtain the physical gauge bosons
(see for example [24]). Both the first and second gener-
ations receive mass from Z1 loop in this case, however, the
former is suppressed by an additional factor of ϵ2.
Therefore, the presence of kinetic mixing is not expected
to spoil the hierarchies between the first two generations in
this model if ϵ ≪ MZ1

=MZ2
.

B. Neutrino masses

Although our main aim is to explain charged fermion
mass hierarchies, we also comment on the possibility of
neutrino mass generation within this model. Most simply,
the naturally small neutrino masses can be accommodated
by introducing three RH neutrinos, singlet under both the
SM gauge symmetry and GF, and allowing Majorana
masses for them. The gauge invariant renormalizable
interactions can be parametrized as
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−Lν ¼ yDijLLiHuiνRj þ
1

2
MRijν

T
RiC

−1νRj þ H:c: ð36Þ

Electroweak symmetry breaking gives rise to the Dirac
neutrino mass matrix, MDij ¼ yDijvui. For MR ≫ MD, the
usual type I seesaw mechanism [25–27] can be realized and
the light neutrino mass matrix is given by

Mν ¼ −MDM−1
R MT

D: ð37Þ

Unlike the charged fermions, all the three neutrino masses
can arise at the tree level in general. This is a welcome
feature as the intergeneration hierarchies in the neutrino
masses are not as strong as that in the charged fermion
masses. All the elements of the Dirac neutrino Yukawa
coupling matrix yD can be of Oð1Þ leading to an anarchic
structure for Mν. This, in turn, can explain the relatively
feeble hierarchy in the neutrino masses and the large
mixing in the lepton sector [28,29].

IV. EXAMPLE SOLUTIONS

We investigate the viability of the proposed framework
in reproducing charged fermion masses and quark mixing
by finding numerical values for the parameters μfi, μ0fi,mT ,
mB, mE, and MZ1;2

. It can be noted from Eq. (28) that yui,
y0ui, y

0
di, yei, and y0ei can be chosen real by rotating away

their phases through redefinitions of the various quarks and
lepton fields. Similarly, one of the ydi can also be made real.
An analogous treatment in Eq. (29) leads to real mT , mB,
and mE. Moreover, we assume that all the VEVs are real.
Altogether, this implies 25 real parameters (real μui, μ0ui,
μd3, μ0di, μei, μ

0
ei, mT , mB, mE, MZ1

, MZ2
and complex μd1,

μd2) which can be used to determine 13 observables (9
charged fermion masses, 3 angles and a Dirac CP phase of
the quark mixing matrix). The number of parameters is
greater than the number of observables and hence one
expects to get viable solutions. Nevertheless, considering
that masses and mixing observables are complex nonlinear
functions of the input parameters and the latter are expected
to take not-so-hierarchical values in the present model, it is
not obvious that viable solutions would exist.

We determine the 25 real parameters of the underlying
framework through the usual χ2 function minimization
technique. The χ2 function (see for example [30] for the
definition and details) consists of 13 observables, the mean
values and standard deviations of which are listed in
Table II. For definiteness on the mass scale of new physics,
we take three different values for MZ1

and obtain a
benchmark solution for each. The optimized values of
the remaining parameters are listed in Table III for each
solution. All the solutions provide an excellent fit to the
observables and reproduce their central values with a total
χ2 ≪ 1 in all three cases. We do not include neutrino
masses and lepton mixing in the fit as they are given by an
entirely different set of parameters, see Eq. (37), which are
arbitrary. The latter can be chosen to reproduce viable
neutrino masses and mixing parameters.
The example solutions given in Table III indicate that the

model can reproduce a realistic charged fermion spectrum
irrespective of the scales of Uð1Þ1;2 breaking. As discussed
earlier, the mass gap between Z1 and Z2 is determined by
the mass hierarchies between the first and second gener-
ation fermions and one findsM2

Z2
=M2

Z1
≃Oð102Þ, however,

the absolute scale of MZ1
is not fixed. We impose MZ1

≤
mT;mB;mE while performing the numerical fits. It is found
that mT ≪ mB;mE is required in order to generate
mt ≫ mb;mτ. The parameters μfi, f ¼ u, d, e, are gen-
erated through electroweak symmetry breaking, see
Eq. (31), for which we impose jyfij <

ffiffiffiffiffiffi
4π

p
and

vui; vdi < 174 GeV. As a result, all the μfi are found to
be of Oð100Þ GeV or less. On the other hand, μ0fi are
induced by the VEVs of SM singlet but Uð1Þ1;2 charged
fields and their determined values are close to the breaking
scale of Uð1Þ1;2. The most noteworthy feature of each of
the solutions obtained in Table III is that there are no large
hierarchies within the values of various μfi or μ0fi. This
implies that the dimensionless parameters of the underlying
framework can be of the same magnitude. Despite this, the
observed difference of five orders of magnitude between
the masses of the first and third generation fermions is
achieved through the radiative mass generation mechanism.

TABLE II. Values of charged fermion masses and CKM parameters extrapolated at MZ used in the fits to obtain
the example solutions. The values of the charged fermion masses and quark mixing parameters are taken from
[31,32], respectively.

Observable Value Observable Value

mu 1.27� 0.50 MeV me 0.487� 0.049 MeV
mc 0.619� 0.084 GeV mμ 1.027� 0.103 MeV
mt 171.7� 3.0 GeV mτ 1.746� 0.174 GeV
md 2.90� 1.24 MeV jVusj 0.22500� 0.00067
ms 0.055� 0.016 GeV jVcbj 0.04182� 0.00085
mb 2.89� 0.09 GeV jVubj 0.00369� 0.00011

JCP ð3.08� 0.15Þ × 10−5
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V. PHENOMENOLOGICAL ASPECTS

The model has rich phenomenological implications due
to the presence of two flavorful Uð1Þ gauge symmetries
and additional vectorlike pair of quarks and leptons. For all
the solutions listed in the previous section, one finds Z1 as
the lightest among all the new particles. We, therefore,
discuss various constraints on Z1 boson arising from the
processes involving quark and lepton flavor changing
neutral currents (FCNCs).
In the physical basis of quarks and leptons, the couplings

of Z1;2 can be determined from Eqs. (7), (19) as:

−LZ1;2
¼

X
k¼1;2

gkððXðkÞ
fL
Þ
ij
fLiγμfLj þ ðXðkÞ

fR
Þ
ij
fRiγμfRjÞZkμ;

ð38Þ
where f ¼ u, d, e. The 3 × 3 coupling matrices are given by

XðkÞ
fL

¼ U†
fL
qðkÞfLUfL; ð39Þ

and similar expression for XðkÞ
fR

can be obtained by replacing

L → R. In the present framework, we have qð1ÞfL ¼ qð1ÞfR
¼

Diagð0; 1;−1Þ and qð2ÞfL ¼ qð2ÞfR
¼ Diagð1;−1; 0Þ for all f as

specified earlier. The unitary matrices UfL and UfR are
obtained from diagonalizing the 1-loop corrected mass
matrices Mf such that U†

fL
MfUfR ¼ Diagðmf1 ; mf2 ; mf3Þ.

Since the underlying Uð1Þ symmetries are nonuniversal,

XðkÞ
fL

and XðkÞ
fR

are nondiagonal in general. This can lead to
large flavor violations both in the quark and lepton sectors.

The numerical values of various XðkÞ
fL

and XðkÞ
fR

for one of the
benchmark solutions are given in Appendix C for reference.

A. Quark flavor violation

Due to its nonvanishing off-diagonal couplings with the
quarks, the Z1 boson contributes to the meson-antimeson
mixing at the tree level itself. To estimate these contribu-
tions for K0 − K̄0, B0

d − B̄0
d, B0

s − B̄0
s and D0 − D̄0, we

follow the effective operator based analysis (see for example
[33]) and parametrize the new contributions in terms of the
well-known Wilson coefficients (WCs). Subsequently, we
use the limits on these coefficients obtained from a fit to
experimental data by UTFit collaboration [33] to derive
constraints on the mass scale of Z1 boson.
For K0 − K̄0 mixing, the effective Hamiltonian for

ΔS ¼ 2 is written as Heff ¼
P

5
i¼1 C

i
KQi þ

P
3
i¼1 C̃

i
KQ̃i

TABLE III. Optimized values of various input parameters obtained for three example solutions. All the values are
in GeV.

Parameters Solution 1 (S1) Solution 2 (S2) Solution 3 (S3)

MZ1
104 106 108

MZ2
2.8708 × 105 1.4470 × 107 1.9110 × 109

mT 1.1000 × 104 1.1000 × 106 1.1003 × 108

mB 3.0754 × 105 2.4839 × 107 1.4015 × 109

mE 2.8128 × 105 4.9462 × 107 6.7820 × 108

μu1 1.8023 × 101 −1.6702 × 101 1.5410 × 101

μu2 3.0901 × 102 3.0969 × 102 −0.6860
μu3 1.4763 −0.5133 2.8599 × 102

μ0u1 −3.9573 × 103 3.3923 × 105 −3.8518 × 107

μ0u2 3.5446 × 103 −3.9343 × 105 −3.7762 × 107

μ0u3 −2.8507 × 103 29653 × 105 −3.7718 × 107

μd1 2.3809 × 101 þ i 6.7460 −1.0402 × 101 þ i 6.7204 4.6117þ i 4.3534
μd2 1.4422 × 102 þ i 2.6938 × 101 2.7279 × 101 − i 1.2285 × 102 −0.1868 − i 0.8509
μd3 5.6345 −2.1306 1.0439 × 102

μ0d1 −6.1152 × 102 8.8600 × 104 −2.2724 × 107

μ0d2 3.7385 × 103 3.4743 × 105 2.4618 × 107

μ0d3 −7.5116 × 102 1.2636 × 105 −1.9748 × 107

μe1 8.1306 × 101 −7.6362 × 101 −0.9180
μe2 2.7874 × 101 −1.5295 × 102 −9.6383
μe3 −1.1628 3.2793 −2.2318 × 101

μ0e1 −1.2295 × 103 −1.9688 × 105 2.7449 × 107

μ0e2 −3.9625 × 103 −3.8735 × 105 −3.5794 × 107

μ0e3 3.9792 × 103 2.9732 × 104 2.0714 × 107
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where explicit form of operators are listed in [33,34]. When
Z1 is integrated out, its contribution to theWilson coefficients
Ci
K and C̃i

K is obtained, at the scale μ ¼ MZ1
, as [35]

C1
K ¼ g21

M2
Z1

½ðXð1Þ
dL
Þ
12
�2; C̃1

K ¼ g21
M2

Z1

½ðXð1Þ
dR
Þ
12
�2;

C5
K ¼ −4

g21
M2

Z1

ðXð1Þ
dL
Þ
12
ðXð1Þ

dR
Þ
12
: ð40Þ

The remainingCi
K and C̃i

K havevanishing values at μ ¼ MZ1
.

For a precise comparison with the experimental values, these
coefficients need to be evolved fromμ ¼ MZ1

to μ ¼ 2 GeV.
We perform such running using the renormalization group
equations (RGE) given in [34]. It is found that RGE effects
induce nonzero C4

K while the C2;3
K and C̃2;3

K have vanishing
values at the low scale. The RGE evolved values are listed in
Table IV and compared with the corresponding experimen-
tally allowed ranges extracted from a fit performed by the
UTFit collaboration [33].
In case of Bq − B̄0

q (q ¼ d, s) mixing, the relevant WCs
at μ ¼ MZ1

are [35]

C1
Bd

¼ g21
M2

Z1

½ðXð1Þ
dL
Þ
13
�2; C̃1

Bd
¼ g21

M2
Z1

½ðXð1Þ
dR
Þ
13
�2;

C5
Bd

¼ −4
g21
M2

Z1

ðXð1Þ
dL
Þ
13
ðXð1Þ

dR
Þ
13
; ð41Þ

and

C1
Bs

¼ g21
M2

Z1

½ðXð1Þ
dL
Þ
23
�2; C̃1

Bs
¼ g21

M2
Z1

½ðXð1Þ
dR
Þ
23
�2;

C5
Bs

¼ −4
g21
M2

Z1

ðXð1Þ
dL
Þ
23
ðXð1Þ

dR
Þ
23
: ð42Þ

These coefficients are run down to μ ¼ Mb ¼ 4.6 GeV
following [36]. Similarly, for the charm mixing governing
the D0 − D̄0 oscillations, the WCs at the scale MZ1

are
given by

C1
D ¼ g21

M2
Z1

½ðXð1Þ
uL Þ12�2; C̃1

D ¼ g21
M2

Z1

½ðXð1Þ
uR Þ12�2;

C5
D ¼ −4

g21
M2

Z1

ðXð1Þ
uL Þ12ðXð1Þ

uR Þ12: ð43Þ

They are also evolved to the relevant low scale μ ¼ 2.8 GeV
using the RGE equations given in [33].
We list the values of all the WCs at their relevant

hadronic scales for the three benchmark solutions and
compare them with the corresponding experimental limits
in Table IV. It is noticed that constraints from meson-
antimeson mixings put a strong limit on the mass of Z1

boson since the latter typically has Oð1Þ off-diagonal

TABLE IV. Strength of various Wilson coefficients relevant for meson-antimeson mixing estimated for three
example solutions and corresponding experimentally allowed range at 95% confidence level. For the later we use the
results from [33]. All the values are in GeV−2. The values indicated in bold are excluded by experimental limits.

Wilson coefficient Allowed range S1 S2 S3

ReC1
K ½−9.6; 9.6� × 10−13 −9.5 × 10−10 −5.4 × 10−14 6.2 × 10−18

ReC̃1
K ½−9.6; 9.6� × 10−13 −1.6 × 10−9 −1.6 × 10−13 2.8 × 10−17

ReC4
K ½−3.6; 3.6� × 10−15 6.2 × 10−9 5.0 × 10−13 −7.5 × 10−17

ReC5
K ½−1.0; 1.0� × 10−14 5.4 × 10−9 4.2 × 10−13 −5.9 × 10−17

ImC1
K ½−9.6; 9.6� × 10−13 5.9 × 10−25 9.5 × 10−30 1.7 × 10−33

ImC̃1
K ½−9.6; 9.6� × 10−13 −1.0 × 10−24 −3.8 × 10−29 3.9 × 10−31

ImC4
K ½−1.8; 0.9� × 10−17 9.5 × 10−26 1.5 × 10−29 −5.3 × 10−31

ImC5
K ½−1.0; 1.0� × 10−14 8.3 × 10−26 1.3 × 10−29 −4.2 × 10−31

jC1
Bd
j <2.3 × 10−11 1.6 × 10−12 9.9 × 10−18 5.8 × 10−22

jC̃1
Bd
j <2.3 × 10−11 2.9 × 10−12 3.8 × 10−18 1.0 × 10−18

jC4
Bd
j <2.1 × 10−13 5.1 × 10−12 1.6 × 10−17 6.7 × 10−20

jC5
Bd
j <6.0 × 10−13 9.1 × 10−12 2.6 × 10−17 1.0 × 10−19

jC1
Bs
j <1.1 × 10−9 8.3 × 10−11 2.8 × 10−15 3.0 × 10−19

jC̃1
Bs
j <1.1 × 10−9 2.0 × 10−10 5.8 × 10−14 4.2 × 10−17

jC4
Bs
j <1.6 × 10−11 3.1 × 10−10 3.3 × 10−14 9.8 × 10−18

jC5
Bs
j <4.5 × 10−11 5.5 × 10−10 5.4 × 10−14 1.5 × 10−17

jC1
Dj <7.2 × 10−13 2.0 × 10−10 2.9 × 10−15 6.5 × 10−19

jC̃1
Dj <7.2 × 10−13 3.5 × 10−9 2.7 × 10−13 2.8 × 10−17

jC4
Dj <4.8 × 10−14 3.2 × 10−9 1.1 × 10−13 1.7 × 10−17

jC5
Dj <4.8 × 10−13 3.7 × 10−9 1.2 × 10−13 1.9 × 10−17
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couplings with the quark flavors, see Appendix C for
example. It can be seen that both the solutions S1 and S2
are disfavored implying MZ1

> 103 TeV for phenomeno-
logically consistent solutions. This also implies that the
model cannot account for the neutral current B-anomalies
which generically require MZ1

≤ 2 TeV [37,38].

B. Lepton flavor violation

The flavorful Z1 mediate charged lepton flavor violating
processes like μ to e conversion in nuclei and li → 3lj at
tree level. The processes like li → ljγ arise at 1-loop
through Z1 and the charged leptons in the loop. In this
subsection, we estimate the constraints on Z1 from all these
processes.
In the field of nucleus, the muons can undergo transition

to electrons through flavor violating coupling of μ and e
with Z1 boson. The strongest limit on such a process has
been obtained by SINDRUM II experiment which uses
197Au nucleus [39]. The branching ratio for this process
computed in [40] is given by

BR½μ → e� ¼ 2G2
F

ωcapt
ðVðpÞÞ2ðjgðpÞLV j2 þ jgðpÞRV j2Þ; ð44Þ

where VðpÞ is an integral involving proton distribution in a
given nucleus, ωcapt is muon capture rate by the nucleus and

gðpÞLV;RV ¼ 2gðuÞLV;RV þ gðdÞLV;RV: ð45Þ

For Z1 mediated contributions and MZ1
≫ mμ, the above

couplings are given by [35]

gðfÞLV ∼
ffiffiffi
2

p

GF

g21
M2

Z1

ðXð1Þ
eL Þ12

1

2
½ðXð1Þ

fL
Þ
11
þ ðXð1Þ

fR
Þ
11
� ð46Þ

withf ¼ u,d. Similarly, gðfÞRV is given by replacementL ↔ R
in the above expression. Substituting Eqs. (46), (45) in (44)
and using VðpÞ ¼ 0.0974m5=2

μ , ωcapt ¼ 13.07 × 106 s−1 for

197Au from [40], we estimate BR½μ → e� for the obtained
solutions and list them in Table V. We also give the latest
experimental limit on BR½μ → e� in the same table for
comparison.
Next, we estimate the branching ratios of μ → 3e,

τ → 3μ, and τ → 3e following [35,42]. The relevant decay
width, estimated neglecting subleading terms proportional
to mlj , is given by

Γ½li→ 3lj�≃
g41m

5
li

768π3M4
Z1

½4ReððXeVÞjiðXeAÞjiðXeVÞ�jjðXeAÞ�jjÞ

þ3ðjðXeVÞjij2þjðXeAÞjij2ÞðjðXeVÞjjj2
þjðXeAÞjjj2Þ�; ð47Þ

where

XeV;eA ¼ 1

2
ðXð1Þ

eL � Xð1Þ
eR Þ; ð48Þ

are couplings for vector and axial-vector currents, respec-
tively. Using the above expression, the evaluated numbers
for BR½li → 3lj� are given in Table V along with the latest
limits from experiments.
Unlike the previous decays, the decays like li → ljγ arise

at 1-loop level. Nevertheless, we estimate these decays
considering relatively strong limits on BR½μ → eγ�. The
corresponding decay width is given by [43]

Γ½li → ljγ� ¼
αg41
4π

�
1−

m2
lj

m2
li

�3 m4
li

M4
Z1

mliðjcγLj2þjcγRj2Þ: ð49Þ

Here,

cγL ¼
X
k

Qk½ðXð1Þ
eR Þ�jkðXð1Þ

eR ÞikyRR þ ðXð1Þ
eL Þ�jkðXð1Þ

eL ÞikyLL

þ ðXð1Þ
eR Þ�jkðXð1Þ

eL ÞikyRL þ ðXð1Þ
eL Þ�jkðXð1Þ

eR ÞikyLR�; ð50Þ

and cγR can be obtained with replacement L ↔ R in the
coupling matrices appearing in the above expression. Qk

TABLE V. Estimated values of various charged lepton flavor violating observables for the three benchmark
solutions and the present experimental limits at 90% confidence level. The latter are taken from [41]. The values
indicated in bold are excluded by experimental limits.

LFV observable Limit S1 S2 S3

BR½μ → e� <7.0 × 10−13 7.2 × 10−7 4.0 × 10−15 3.7 × 10−22

BR½μ → 3e� <1.0 × 10−12 7.9 × 10−9 6.0 × 10−17 2.5 × 10−25

BR½τ → 3μ� <2.1 × 10−8 2.3 × 10−8 1.7 × 10−18 1.1 × 10−24

BR½τ → 3e� <2.7 × 10−8 9.2 × 10−11 6.5 × 10−19 4.2 × 10−28

BR½μ → eγ� <4.2 × 10−13 2.0 × 10−11 1.3 × 10−19 3.5 × 10−27

BR½τ → μγ� <4.4 × 10−8 9.3 × 10−13 7.1 × 10−20 3.1 × 10−27

BR½τ → eγ� <3.3 × 10−8 3.9 × 10−13 2.1 × 10−21 4.0 × 10−29
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denotes electric charge of lk lepton. The explicit expres-
sions of the loop functions yLL, yRR, yLR, and yRL can be
found in [43]. Numbers estimated for BR½μ → eγ�,
BR½τ → μγ�, and BR½τ → eγ� using the above expressions
are listed in Table V for three example solutions.
It can be seen from Table V that the strongest constraints

on the flavorful Z1 interactions arise from μ to e transition
and processes like li → 3lj as they arise at the tree level.
The process μ → eγ also puts a comparable limit onMZ1

. It
is seen that MZ1

up to 10 TeV is ruled out by these LFV
processes disfavoring the benchmark solution S1. A com-
parison between the various numbers in Table IV and V
indicates that the LFV constraints are less stringent than
those arising from meson-antimeson oscillations.

C. Direct and electroweak constraints

The quark and lepton flavor violations put strong lower
bounds on the masses of new particles which more or less
supersede the direct search constraints. For example, the
latest results from the LHC lead toMZ1

> 5.15 TeV for Z1

with Oð1Þ flavor diagonal couplings with the SM fermions
[44]. The limit increases to MZ1

> 7.20 TeV if Z1 has
generic diquark couplings [45]. Similarly, the current direct
search constraints on the vectorlike fermions imply mB >
1.57 TeV [46,47] and mT > 1.31 TeV [48,49]. It can be
seen from Table III and results of the previous subsections
that these constraints are much weaker than the ones
imposed by FCNCs.
Another class of constraints arise in the model due to

Z − Z1;2 mixing as the Higgses are charged under both the
SM and extended gauge symmetries. Analogous to [50],
this mixing can be parametrized by mixing angles

sin θ1;2 ¼
g1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
�

MZ

MZ1;2

�
2

; ð51Þ

where g and g0 are the strengths of SUð2ÞL and Uð1ÞY
gauge interactions, respectively. In the present framework,
the fermion mass hierarchy implies θ2 ≪ θ1 ≪ 1 and the
dominant effects arise due to Z − Z1 mixing. The latter
leads to the flavor nonuniversal couplings to the SM
fermions for Z boson also. However, these couplings are
suppressed by a factor of M2

Z=M
2
Z1

in comparison to those
of Z1.
The Z − Z1 mixing modifies the ρ parameter which is

precisely measured along with the other electroweak
observables. At the leading order in θ1, the shift in the ρ
parameter can be obtained as [51]

Δρ ¼ g21
g2 þ g02

�
MZ

MZ1;2

�
2

: ð52Þ

A global fit result, ρ ¼ 1.00039� 0.00019 [32], then
implies MZ1

≥ 4.5 TeV for g1 ¼ 1. Nonzero Z − Z1

mixing also modifies the couplings of Z with neutrinos
which can be constrained by the invisible decay width of Z
boson. This constraint translates to MZ1

=g1 ≥ 0.95 TeV
[52]. The flavor nonuniversal couplings of Z to leptons
induced by Z − Z1 mixing give rise to lepton flavor
universality violation in Z decays. The latter is severely
constrained by LEP measurements which implies R ¼
0.999� 0.003 [32] where R is a ratio of partial decay
widths of Z decaying into a pair of electrons and muons. At
the leading order in θ1, the shift in R from unity due to the
new physics contributions is given by [52]

ΔR≃4g1 sinθ1
gcosθW −3g0 sinθW

ðgcosθW −g0 sinθWÞ2þ4g02sin2θW
: ð53Þ

The LEP constraint then leads to MZ1
=g1 ≥ 1.3 TeV.

In summary, the constraints from the direct searches and
electroweak precision observables are at least two orders of
magnitude weaker than those from quark and lepton flavor
violating interactions. Various limits discussed in this
section suggest a lower bound, MZ1

=g1 > 103 TeV, for
the generic viable solutions obtained in the present model.

VI. SUMMARY AND OUTLOOK

We explore a mechanism for the radiative induction of the
masses for the first and second generation charged fermions.
It uses extended Abelian gauge symmetry which prevents
tree-level masses for all the SM fermions. The third
generation fermions can acquire masses with the help of
an additional vectorlike family through the seesawlike
mechanism. Subsequently, the radiative corrections induced
by spontaneous breaking of extended gauge symmetry can
give rise to masses for the remaining fermions explaining
their hierarchical spectrum. It is shown that, for the under-
lying mechanism to work viably, the SM fermions should
have flavor nonuniversal charges under the new symmetry.
Using this general setup, we give an explicit model based

on Uð1Þ1 ×Uð1Þ2 symmetry which is a generalization of
well-known Lμ − Lτ and Le − Lμ symmetries, respectively.
The breaking of Uð1Þ1 (Uð1Þ2Þ induces radiative masses
for the second (first) generation fermions and the hierarchy
among the masses of the first two families can be attributed
to the hierarchy between the breaking scales of two Uð1Þs.
We give three example numerical solutions which repro-
duce the observed charged fermion masses and quark
mixing parameters and discuss various constraints from
the quark and lepton flavor violations, direct searches and
electroweak precision observables on the obtained solu-
tions. Although the radiative mass generation mechanism
does not fix unambiguously the scale of new physics, the
current constraints imply that the new particles must be
heavier than 103 TeV. The requirement of reproducing
viable fermion mass spectrummore or less fixes the relative
mass scales of new vector bosons and vectorlike fermions.
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Although the main motivation for the radiative mass
generation mechanism is to make the masses of funda-
mental fermions calculable parameters of the theory, the
results obtained in this paper still involve a large number of
free parameters. Unlike in the SM, the fundamental
parameters of the model do not span a wide range of
magnitude. However, their large number and nonunique
values make the model less predictive. One way to improve
upon this is to accommodate the Uð1Þ1 ×Uð1Þ2 symmetry
in a larger flavor symmetry based on a single gauge group
or to use only one Uð1Þ with appropriate flavor nonuni-
versal charges. For the latter, a systematic scan of the
fermion spectrum based on anomaly-free charges, similar
to the one performed recently in [53] in the context of 5D
models, would be required. Another interesting possibility
is to restrict vertically by unifying various SM quarks and
leptons in some irreducible representations of a grand
unified theory. Both these approaches can lead to a
reduction in the number of free parameters and may provide
more predictive models. These alternatives shall be
explored in our future works.
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APPENDIX A: CALCULATION OF 1-LOOP
SELF-ENERGY CORRECTION
TO THE FERMION MASSES

The gauge interactions in Eq. (7) can be written as

−Lgauge ¼ gXXμf̄αγμCαβfβ; ðA1Þ

with the coupling defined as

Cαβ ¼ ðQLÞαβPL þ ðQRÞαβPR: ðA2Þ

The 1-loop fermion self energy correction induced by the
gauge boson in the loop is shown in Fig. 1. The amplitude
of this diagram is given by

−iΣαβðpÞ ¼
X
γ

Z
d4k
ð2πÞ4 ð−igXγ

μC†αγÞ ið=kþ =pþmγÞ
½ðkþpÞ2 −m2

γ þ iϵ�
× ð−igXγνCγβÞΔμνðkÞ; ðA3Þ

with

ΔμνðkÞ ¼
−i

k2 −MX
2þ iϵ

�
ημν− ð1− ζÞ kμkν

k2− ζM2
X

�
: ðA4Þ

We set p ¼ 0 in order to go on the mass shell for the
massless fermion and compute the loop contribution in the
Feynman-’t Hooft gauge (ζ ¼ 1) in dimensional regulari-
zation scheme. As the denominator is an even function of k,
the terms proportional to odd number of k0s in numerator
vanishes. Therefore,

Σαβð0Þ ¼ −ig2Xμϵ
X
γ

½ðQLÞ†αγPR þ ðQRÞ†αγPL�

×
Z

ddk
ð2πÞd

dmγ

k2 −m2
γ þ iϵ

1

k2 −MX
2 þ iϵ

Cγβ ðA5Þ

where, d ¼ 4 − ϵ and we have used the following relations
in order to obtain Eq. (A5).

γμC†αγ ¼ ½ðQLÞ†αγPR þ ðQRÞ†αγPL�γμ; ðA6Þ

γμγμ ¼ d: ðA7Þ

Using Q†
L;R ¼ QL;R [see Eq. (8)], Eq. (A5) can be

simplified to

Σαβð0Þ¼
dg2X
16π2

X
γ

mγ½ðQLÞαγðQRÞγβPRþðQRÞαγðQLÞγβPL�

×
ð2πμÞϵ
iπ2

Z
ddk

1

k2−m2
γ þ iϵ

1

k2−MX
2þ iϵ

ðA8Þ

The integration in the above can be evaluated and expressed
in terms of Passarino-Veltmann function B0 [54] leading to
a final expression

Σαβð0Þ ¼
g2X
4π2

X
γ

mγ½ðQLÞαγðQRÞγβPR

þ ðQRÞαγðQLÞγβPL�B0½M2
X;m

2
γ � ðA9Þ

with
FIG. 1. Gauge boson induced fermion self-energy correction at
1-loop.
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B0½M2
X;m

2
γ � ¼

ð2πμÞϵ
iπ2

Z
ddk

1

k2 −m2
γ þ iϵ

1

k2 −MX
2 þ iϵ

¼ 2

ϵ
þ 1 − γ þ ln 4π −

M2
X ln M2

X −m2
γ ln m2

γ

M2
X −m2

γ
:

ðA10Þ

The above result is used in Eq. (9) to determine explicitly
the radiative contributions to the fermion mass matrices.

APPENDIX B: SCALAR POTENTIAL

The most general renormalizable scalar potential of the
model, invariant under the SM gauge symmetry and GF, is
written as:

V ¼ m2
uiH

†
uiHui þm2

diH
†
diHdi þm2

ηiη
†
i ηi þ fðmudηÞijkϵijkηiHujHdk þ ðmηÞijkϵijkηiηjηk þ H:c:g

þ ðλuÞijH†
uiHuiH

†
ujHuj þ ðλdÞijH†

diHdiH
†
djHdj þ ðληÞijη†i ηiη†jηj

þ ðλudÞijH†
uiHuiH

†
djHdj þ ðλuηÞijH†

uiHuiη
†
jηj þ ðλdηÞijH†

diHdiη
†
jηj

þ ðλ̃uÞijH†
uiHujH

†
ujHui þ ðλ̃dÞijH†

diHdjH
†
djHdi

þ ðλ̃udÞijH†
uiHujH

†
djHdi þ ðλ̃uηÞijH†

uiHujη
†
jηi þ ðλ̃dηÞijH†

diHdjη
†
jηi

þ fðλudηÞijη†i Huiη
†
jHdj þ ðλ̃udηÞijη†i Hujη

†
jHdi þ H:c:g; ðB1Þ

where, i, j, k ¼ 1, 2, 3 are flavor indices. The diagonal
elements of all the λ̃ matrices can be chosen zero without
loss of generality. We assume the general VEVs for various
fields, as parametrized in Eqs. (31), (32), which breaks all
symmetries except Uð1Þ corresponding to electromagnet-
ism. Given a large number of parameters in Eq. (B1), we
assume that such minima exist for a suitable choice of their
values.
It can be seen that the potential does not possess any

enhanced global symmetry in its most general form.
Therefore, one does not find any new Goldstone bosons
other than the ones corresponding to the spontaneous
breaking of the SM and GF symmetries which are eaten
by the massiveW�, Z and Z1;2 bosons. The potential has an

SUð3Þ global symmetry if all the quadratic, cubic and
quartic couplings are assumed flavor universal. This
symmetry corresponds to an invariance under a rotation
Φi → UijΦj with Φ ¼ Hu;Hd and η. Moreover, for van-
ishing λ̃ud, λ̃uη, λ̃dη, λudη, λ̃udη, mudη, and mη, the scalar
potential can possess an enhanced ½Uð3Þ�3 symmetry
corresponding to separate rotations for Hu, Hd and η.

APPENDIX C: COMPUTED VALUES
OF FLAVOR VIOLATING COUPLINGS

In this Appendix, we give the numerical values of
various coupling matrices XðkÞ

fL
and XðkÞ

fR
for benchmark

solution 2 (S2).

Xð1Þ
uL ¼

0
B@

−0.9964 0.0597i 0

−0.0597i −0.0008 −0.0528
0 −0.0528 0.9972

1
CA; Xð1Þ

uR ¼

0
B@

−0.1459 0.5747i −0.0023i
−0.5747i −0.1466 −0.7781
0.0023i −0.7781 0.2925

1
CA ðC1Þ

Xð1Þ
dL

¼

0
B@

−0.9262 0.2618i −0.0034i
−0.2618i −0.0706 −0.0576
0.0034i −0.0576 0.9967

1
CA; Xð1Þ

dR
¼

0
B@

−0.2665 0.4497i 0.0021i

−0.4497i −0.6887 −0.2625
−0.0021i −0.2625 0.9552

1
CA ðC2Þ

Xð1Þ
eL ¼

0
B@

−0.9978 0.0460 −0.0105
0.0460 0.1330 0.3423

−0.0105 0.3423 0.8648

1
CA; Xð1Þ

eR ¼

0
B@

−0.9741 0.1551 −0.0375
0.1551 0.1169 0.3547

−0.0375 0.3547 0.8572

1
CA ðC3Þ

Xð2Þ
uL ¼

0
B@

0.0036 0.0594i 0.0047i

−0.0594i 0.9909 0.1053

−0.0047i 0.1053 −0.9944

1
CA; Xð2Þ

uR ¼

0
B@

0.5456 −0.0378i 0.6724i

0.0378i −0.3627 0.5613

−0.6724i 0.5613 −0.1829

1
CA ðC4Þ
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Xð2Þ
dL

¼

0
B@

0.0736 0.2603i 0.0247i

−0.2603i 0.9200 0.1102

−0.0247i 0.1102 −0.9936

1
CA; Xð2Þ

dR
¼

0
B@

0.7233 0.4203i 0.1738i

−0.4203i 0.2262 0.2348

−0.1738i 0.2348 −0.9495

1
CA ðC5Þ

Xð2Þ
eL ¼

0
B@

0.0022 0.0420 −0.0205
0.0420 0.7281 −0.6828
−0.0205 −0.6828 −0.7302

1
CA; Xð2Þ

eR ¼

0
B@

0.0254 0.1418 −0.0704
0.1418 0.6962 −0.6869
−0.0704 −0.6869 −0.7216

1
CA ðC6Þ

It can be seen that both the diagonal and off-diagonal elements are of similar magnitude and no particular pattern or
hierarchies in values is seen. We find similar values for the other two solutions.
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