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A framework based on a class of Abelian gauge symmetries is proposed in which the masses of only the
third generation quarks and leptons arise at the tree level. The fermions of the first and second families
receive their masses through radiative corrections induced by the new gauge bosons in the loops. It is shown
that the class of Abelian symmetries which can viably implement this mechanism are flavor nonuniversal in
nature. Taking the all-fermion generalization of the well-known leptonic L, — L, and L, — L, symmetries,
we construct an explicit renormalizable model based on two U(1) which is shown to reproduce the observed
fermion mass spectrum of the Standard Model. The first and second generation fermion masses are loop
suppressed while the hierarchy between these two generations results from a gap between the masses of two
vector bosons of the extended gauge symmetries. Several phenomenological aspects of the flavorful new
physics are discussed and lower limits on the masses of the vector bosons are derived.
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I. INTRODUCTION

Masses of the elementary fermions in the Standard Model
(SM) are incalculable parameters of the theory and their
values are determined entirely from the observations only.
This leaves several unanswered questions about the
observed pattern of the masses and mixings of quarks
and leptons [1]. One of the elegant ways to understand the
peculiar hierarchical masses of the charged fermions is to let
only the third generation fermions become massive at the
leading order while the masses of the first two generations
arise through quantum corrections. In this way, the masses
of the first and second generation fermions may be made
completely or partially calculable parameters of the theory.
Such an approach was considered in [2—4] soon after the
inception of the SM. Subsequent attempts in this direction
include generating radiative masses through loops involving
new scalars and fermions [5—15], new scalars and top-quark
[16] and new gauge bosons in the extended gauge theo-
ries [17,18].

In this paper, we explore a framework in a similar
direction but based on a different class of gauge symmetry
leading to very different results both qualitatively and
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quantitatively. The extended gauge symmetry is Abelian
and it ensures that only the third generation quarks and
leptons get masses at the leading order. Subsequently, the
masses of the first and second generation fermions are
induced by radiative corrections through the vector bosons
of extended symmetry and heavy massive fermions in the
loop and, therefore, are suppressed. The masses of the first
two generation fermions become calculable parameters
albeit they are expressed in terms of some undetermined
parameters of the theory which are not required to take
arbitrarily small values. Through general analysis, we show
that the new Abelian gauge symmetry must be flavor
nonuniversal to the basic mechanism to work viably. In
turn, this leads to flavorful new physics in both the quark
and lepton sectors offering phenomenologically rich pos-
sibilities. We construct an explicit model based on two
U(1)s which are generalizations of the well-known leptonic
L,—L,and L, — L, symmetries and are applied to all the
fermions of a given generation. It is shown through detailed
numerical studies that the model is capable of reproducing
the realistic fermion mass spectrum and it overcomes many
inviable predictions found in a recent proposal along a
similar direction but based on a different gauge sym-
metry [17].

The rest of the paper is organized as follows. The basic
mechanism is discussed in Sec. II. An explicit model based
on it is outlined in Sec. III. In Sec. IV, we give example
solutions which reproduce the observed fermion mass
spectrum and discuss the various phenomenological impli-
cations in Sec. V. The study is summarized in Sec. VI.
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II. GENERAL FRAMEWORK

We first discuss the basic mechanism leading to the
massive third generation at the tree level and radiative
masses for the lighter generations. Consider a toy frame-
work with three generations of chiral fermions, f7; and f;
(i =1, 2, 3), and a pair of vectorlike fermions F ’L.R. The
fermions are charged under a U(1) gauge symmetry with
the following interaction term:

_ﬁgauge = gXXy(qLa.]_NLayﬂf/La + QRa}}eayﬂf;Qa)’ (1)
where a =1,....4, f,, = (f1.;» F1.)s fre = (fri» Fr) and

qr4 = qR4-
The mass Lagrangian in this basis is written as

~Loy = FleMY frs + He., (2)

where the 4 x4 tree-level mass matrix M© has a

particular form
MO — < 033 ()31 > (3)
()i1x3  mp
Here, pu = (uy,pp, p13)" and p' = (4}, p, p5). The above
form of M results into a pair of massive and two massless

fermions. For heavy vectorlike fermions, i.e., mg > u;, .,
the effective 3 x 3 mass matrix can be obtained as

o _ 1
Mij ——m—Fﬂiﬂ}- (4)

The above matrix is of rank one and has two vanishing
eigenvalues. In this way, only the third generation is
arranged to acquire a tree level mass in the underlying
framework.

To compute higher order corrections to tree-level masses,
we obtain the physical basis using

f/L,R = uL.RfL,R’ (5)

where the unprimed fields are in physical basis and U/} g are
4 x 4 unitary matrices which can be obtained using

U MOUL = D = Diag(0, 0, my, my). (6)
The gauge interactions in Eq. (1), in the new basis, becomes
—Lgauge = gXXy((QL)aﬂfLay”fLﬁ + (QR)aﬂJ_CRayﬂfR/f)’ (7)

where

Qrr= uz,RQL.RuL,Rv (8)

and ¢; = Diag(q;. ¢z, -..) and so on. The matrices Q; ¢
are not diagonal in general.

At 1-loop order, the fermions of the first and second
generations can receive masses through diagrams involving
the gauge boson and massive fermions in the loop. The one-
particle-irreducible two-point function evaluated in the
Feynman-’t Hooft gauge gives the following results.

Zyp(p=0)= Gé/;’PL + GsﬂPRv )

with
Ix
"gﬁ = TTHZ(QR)ay(QL)yﬂmyBO[M%O m%]’
1%
2
g
55/} = T;Z(QL)ay(QR)yﬁmyBO[Mgﬁ m;%] (10)
1%
where

M?1n M? — m?In m?
()

BO[Mz’ mZ] = Ae -
is Passarino-Veltmann function and

2
A, =Z+1—y+In4n, (12)
€

is divergent part of loop integration when e¢ — 0. The
explicit derivation of the above result is given in
Appendix A.

The 1-loop corrected fermion mass matrix obtained
using Egs. (6), (10) can be written as

M=MO 1 5M, (13)

where
SM = U, "l (14)
In general, the loop contributions 6 M has divergent terms
proportional to A,. The renormalizability requires that the
3 x 3 upper-left block of 6 M should be finite as there are

no counterterms that could remove the divergences.
Denoting the divergent part of oM as 6 Mg;,, we find

Mgy, x Uy QLDQRU;Q = g, Mg, (15)
where the last equality follows from Egs. (6), (8). Using M
given in Eq. (3) and since ¢ p are diagonal matrices, one

finds

(5Mdiv)ij =0. (16)
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Therefore, the 3 x 3 upper-left block of 6 M is finite as it is
expected from the renormalizabilty [2,19].

The finite part of M is of our main interest and it can be
simplified to

2
9 2 : *
(6M)a/} = 4;2 qL(lQR[)’ (UL)(Iy(uR)ﬂym]/bO [Mg(" m;%]’
4

(17)
where

M?1n M? — m%1n m?
M? —m? (18)

Further simplification is possible in the seesaw approxi-
mation, mp > ;. p’. In this case, U, r can be written in the
following form [20]

bo[Mz,mz} = —

2 ( ULr _pL,R) (19)
LR= ; )

pz,RUL.R 1
where p;, = —my'y and pl, = —myp'y/ are 3 x 1 and 1 x 3

are matrices, respectively. U, p are 3 X 3 matrices that
diagonalize M) given in Eq. (4). Explicitly,

W
<5M>l4 —4 2qL1(’IR4ﬂz <bO[MvaF +Z :

Ui MUy = Diag(0,0, ms). (20)

Using the definition Eq. (4), the above equation can also be
written as

\ 0 1
(UL)i3(UR)j3m3 = Mz(‘j) = _m_Fﬂiﬂ}- (21)

Substituting Eqgs. (19), (20) in Eq. (17), we find

2
(6M); 2225 41161 (UL) () s (bo[ M5 ]

—bo[MgfvaDv
2

_ 9

= s aduidrMy (bo[My.m3] = bo[M3.m3]). (22)

with i, j = 1, 2, 3 and repeated indices are not summed. The
second line in the above equation follows from Eq. (21).
The correction to the remaining elements, after some
straightforward algebraic simplification, are obtained as

E
bo M%,mﬂ

&
u

(OM),; = = 2%4%1# (bO[Mg(’mF E |J bo[M%. m }>
F

2

2
g m
(OM)a = 25 e (Dol 3] = 2 b3 3] ). 23)
F

Using the above results, the 1-loop corrected fermion
mass matrix, Eq. (13), can be parametrized as

oM il
./\/l _ <( . )3><3 (/‘33><1 >’ (24)
(/4 )1><3 mp
with
(6M);; = (6M);}, i = pi + (6M) 4,
iy = pi + (6 M)y, g =mp+ (6M)y.  (25)

In the seesaw approximation, dM;; < ji;, ji; < fitp, the
effective 3 x 3 mass matrix for the lighter fermions can
then be written as

1
M = M — — jji’. (26)
mrg

|

Comparing the above with Eq. (4), it is noticed that the
second term is similar to M) with original elements
replaced by their 1-loop corrected values. This contribution
is still of rank-1 and contributes only to the masses of the
third generation. The first term can induce masses for
the first and/or second generation fermions depending on
the chosen U(1) charges.

It is important to note that the flavor universal U(1)
symmetry cannot induce radiative masses for the lighter
generations. This can be understood as the following. For
qr1 =412 = 413 and ggr| = qro = qr3, ONC finds 6M
MO from Eq. (22) and ji « pu, y' « ', nip < mp from
Eq. (23). Altogether, this implies M o« M(®) and hence the
I-loop corrected mass matrix remains of rank one.
Therefore, a flavor nonuniversal U(1) is necessarily
required in order to generate the masses for the first and
second generation fermions. We find that this observation of
ours is in conflict with the results of [18] which uses flavor
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universal U(1),_; to induce radiative masses for the first
generation fermions.

It can be also noted that for a generic choice of U(1)
charges, oM could lead to masses of a similar magnitude for
the first and second generation fermions. To generate only
the second generation fermion masses at 1-loop, one can
choose g;; = qg; = 0. As it can be seen from Eq. (22), this
leads to a massless first generation and loop-suppressed
mass for the second generation. Masses for the first
generation fermions can be induced similarly by introduc-
ing another flavored U(1) under which the first generation
fermions are nontrivially charged. The mass hierarchy
between the first and second generations can be arranged
by choosing hierarchical masses for the gauge bosons of
two U(1) s. For example, the loop integration factor for
My > mp > ms can be simplified as

2 2 2 2 mg . mp
bo[MX,m»;]—bo[MX,mF]ﬁ——ln—. (27)
| M3
Therefore, two U(l)s with My > My can lead to
hierarchical masses of first and second generations even
though both are generated at 1-loop. A suitable choice of
U(1) charges which can achieve this is discussed in the

next section.

III. A MODEL

As discussed in the last section, the proposed mecha-
nism requires at least two U(1) symmetries under which
the three generations of the SM quarks and leptons are
charged nonuniversally. Therefore, we choose Gp =
U(1), xU(1), as an extended gauge symmetry for
the model. In addition to three generations of the
SM quarks and leptons, Qp;~ (3.2,3), ug;~(3,1.3),
dri~(3,1,=%), Ly~ (1,2,-1), and eg; ~(1,1,-1),
we introduce three copies of a pair of the Higgs doublets,
ie., Hy,~(1,2,-Y), H;~(1,2,4), and SM singlets
n;~(1,1,0). We also introduce a pair of vectorlike
fermions in each sector, namely T z ~ (3, 1,%), By g~
(3.1,—4), and E; g ~ (1,1,—1). In the above, the quan-
tities in the brackets denote the transformation properties
under (SU(3).,.SU(2),,U(1)y).

Under the new G = U(1), x U(1), symmetry, all the
first, second and third generation fermions and scalars have
charges (0,1), (1,—1), and (—1,0), respectively. In this
way, U(1), can be identified as “2-3 symmetry” and U(1),
as “1-2 symmetry.” They are generalizations of L, — L,
and L, — L, symmetries, respectively, discussed in the
literature in the context of leptons [21-23]. The vectorlike
fermions are neutral under the G. The fermion and scalar
fields and their charges under the SM and G are
summarized in Table 1. It is straightforward to check that
the G is nonanomalous since a pair of families of fermions

TABLE 1. The SM and Gy charges of various fermions and
scalars of the model. Here, i = 1, 2, 3 denote three generations
and their respective charges under new U(1) are represented as

{91, 92, a3}

Fields (SU(3), x SU(2), x U(l)y)  U(1), U(l),
0, (3.2.h {0,1,-1} {1,-1,0}
Ug, (3.1.3) {0,1,-1} {1,-1,0}
dg, 3.1,-} {0,1,-1} {1,-1,0}
Ly, (1,2,-1) {0,1,-1} {1,-1,0}
ex, (1,1,-1) {0,1,-1} {1,-1,0}
H, (1.2,-} {0,1,-1} {1,-1,0}
H, (12,4 {0,1,-1} {1,-1,0}
ni (1,1,0) {o,1,-1} {1,-1,0}
T., Tg (3,1,%) 0 0

By, By 3.1,-1) 0 0

E;, Ex (1,1,-1) 0 0

and scalars have equal and opposite charges under

each U(1).

A. Charged fermion masses

The most general renormalizable couplings between the
fermions and scalars invariant under the SM gauge sym-
metry and G can be written as

—Ly =yuiQriH i Tr +Yui T ugi +Y4iOriHaiBr
+ VB dgi + yeiLyiHaiEr + Yo ELn; e +Hee..
(28)
The direct couplings between two SM fermions and Higgs

are forbidden by G . The masses of vectorlike fermions are
parametrized as

~L,, = myT, Tg +mpB Bg +mpgE Eg +Hc. (29)

The spontaneous breaking of G through the vacuum
expectation values (VEVs) of #; and H,, 4 gives rise to
4 x 4 mass matrices for the charged fermions identical to
the one given in Eq. (3). Explicitly,

My — < / 0 (ﬂu,d,e)Bxl)’ (30)
<'“u,d.,e)1x3 mrp.E
where
Hui = YuiVuis Hai = YaiVdis Hei = YeiVais (31)
i = Yuilli)s  pai = Yaili)s  pei = yeilmi), (32)

and v,; = (H,;), vy; = (Hy;). The repeated indices do not
imply summation in the above. The above VEVs are chosen
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such that they break G entirely and SU(2), x U(1), into
U(1),- The most general potential of the model is given in
Appendix B. It is shown that there exist a large number of
parameters which may allow the desired solution for the
VEVs although we do not study the potential minimization
in detail. The effective 3 x 3 mass matrix in each sector,
analogous to Eq. (4), can be written as

0 _ 1

:uu,d,el’l;,d,e' (33)

mr pE

The above matrices are of rank one and give masses to the
third generation charged fermions.

Following the procedure outlined in the previous
section and Eq. (26), the I-loop corrected effective
|

3 x 3 mass matrices for the charged fermions can be
obtained as

My =M+ MY, (34)

where f = u, d, e and the second term is written using
Eq. (33). In comparison to general result given in Eq. (26),
note that the second term is same as the tree level effective
mass matrix. The loop corrections do not modify the
parameters y;, u}, and my as the vectorlike fermions are
neutral under the Gp. 6M; contains 1-loop correction
induced by the gauge bosons of both the U(1)s. Using the
given U(1),, charges and Eq. (22), we find

0 0 0
N,g? (0) (0)
oMy = "5 (o [M3, ] = o[, i) | O M)y —(M),
(0) (0)
0 _(Mf )32 (Mf )33
(0) (0)
Nfgz (Mf )11 _(Mf )12 0
1% 2 27 2 2 0 0
"‘4”2 (bo[Mzz’mfﬂ bo[Mz2va]) —(M](c>)21 (M}))22 0 (35)
0 0 0

Here, g; is the gauge coupling and M, is the mass of the
gauge boson of U(l),. Ny=3 (Ny=1) for f=u, d
(f = e) is the factor due to color degrees of freedom. m 3
and mp are masses of the third generation fermion and
vectorlike fermion, respectively, in each sector.

The charged fermion mass matrix M ; defined in Eq. (34)
along with expressions (33) and (35) gives the I-loop
corrected mass matrix in the model. Each of the 1-loop
generated contributions in 6M ; are of rank one and induce
masses for the first and second generation fermions
individually. The hierarchy among the masses of the lighter
generations can be arranged by choosing M; < My, . This
suppression is common for all the charged fermions.

Note that in determining Eq. (35), we have considered 1-
loop corrections only from the gauge boson loops. In the
present model, radiative corrections also arise from the
emission and absorption of scalar bosons in the loop. Such
a contribution requires mixing between the scalar fields #;
and H,, 4; as they exclusively couple to the right and left
chiral fermions, respectively. These corrections can be
made suppressed by choosing the scalar masses much
greater than the M [17] and/or by assuming small mixing
between #; and H,; 4 fields [18]. We assume that such
suppression is arranged and do not consider the radiative
corrections from the scalar bosons.

We have also assumed that there are no kinetic mixings
between different U(1). Presence of such a mixing, for
example eF'y,, F,*” where F,, are the field strengths of
Z,, bosons, can allow the first-generation fermions to
receive masses from the 1-loop diagrams involving Z;
boson. This can be understood from the fact that an
effective coupling of order eg; gets induced between the
first-generation fermions and Z; when the kinetic mixing
term is rotated away to obtain the physical gauge bosons
(see for example [24]). Both the first and second gener-
ations receive mass from Z; loop in this case, however, the
former is suppressed by an additional factor of €.
Therefore, the presence of kinetic mixing is not expected
to spoil the hierarchies between the first two generations in
this model if e < M, /M.

B. Neutrino masses

Although our main aim is to explain charged fermion
mass hierarchies, we also comment on the possibility of
neutrino mass generation within this model. Most simply,
the naturally small neutrino masses can be accommodated
by introducing three RH neutrinos, singlet under both the
SM gauge symmetry and G, and allowing Majorana
masses for them. The gauge invariant renormalizable
interactions can be parametrized as
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TABLE II.

Values of charged fermion masses and CKM parameters extrapolated at M, used in the fits to obtain

the example solutions. The values of the charged fermion masses and quark mixing parameters are taken from

[31,32], respectively.

Observable Value Observable Value
m, 1.27 £ 0.50 MeV m, 0.487 £ 0.049 MeV
m, 0.619 £+ 0.084 GeV m, 1.027 £ 0.103 MeV
m, 171.7 £ 3.0 GeV m, 1.746 £ 0.174 GeV
my 2.90 £+ 1.24 MeV |V sl 0.22500 4 0.00067
my 0.055 £ 0.016 GeV Vel 0.04182 4+ 0.00085
my 2.89 £ 0.09 GeV V.l 0.00369 £ 0.00011
Jep (3.08 £ 0.15) x 107>

I, ! T -1
—L, = ypijLpiH,vgj + = Mg;vg,C vg; + Hec.

5 (36)

Electroweak symmetry breaking gives rise to the Dirac
neutrino mass matrix, Mp;; = yp;;v,;. For Mg > Mp, the
usual type I seesaw mechanism [25-27] can be realized and
the light neutrino mass matrix is given by

M, = -MpMz'M5. (37)
Unlike the charged fermions, all the three neutrino masses
can arise at the tree level in general. This is a welcome
feature as the intergeneration hierarchies in the neutrino
masses are not as strong as that in the charged fermion
masses. All the elements of the Dirac neutrino Yukawa
coupling matrix y, can be of O(1) leading to an anarchic
structure for M,. This, in turn, can explain the relatively
feeble hierarchy in the neutrino masses and the large
mixing in the lepton sector [28,29].

IV. EXAMPLE SOLUTIONS

We investigate the viability of the proposed framework
in reproducing charged fermion masses and quark mixing
by finding numerical values for the parameters y;, /t}-i, mr,
mpg, mg, and Mz . It can be noted from Eq. (28) that y,;,
Viis Yiis Yei» and ¥, can be chosen real by rotating away
their phases through redefinitions of the various quarks and
lepton fields. Similarly, one of the y,; can also be made real.
An analogous treatment in Eq. (29) leads to real my, mpg,
and mg. Moreover, we assume that all the VEVs are real.
Altogether, this implies 25 real parameters (real p,;, p,;.
Hazs Higi» Heis Mois Mg, Mp, Mg, Mz, M7, and complex iy,
o) which can be used to determine 13 observables (9
charged fermion masses, 3 angles and a Dirac CP phase of
the quark mixing matrix). The number of parameters is
greater than the number of observables and hence one
expects to get viable solutions. Nevertheless, considering
that masses and mixing observables are complex nonlinear
functions of the input parameters and the latter are expected
to take not-so-hierarchical values in the present model, it is
not obvious that viable solutions would exist.

We determine the 25 real parameters of the underlying
framework through the usual y* function minimization
technique. The y? function (see for example [30] for the
definition and details) consists of 13 observables, the mean
values and standard deviations of which are listed in
Table II. For definiteness on the mass scale of new physics,
we take three different values for M, and obtain a
benchmark solution for each. The optimized values of
the remaining parameters are listed in Table III for each
solution. All the solutions provide an excellent fit to the
observables and reproduce their central values with a total
7> <1 in all three cases. We do not include neutrino
masses and lepton mixing in the fit as they are given by an
entirely different set of parameters, see Eq. (37), which are
arbitrary. The latter can be chosen to reproduce viable
neutrino masses and mixing parameters.

The example solutions given in Table I1I indicate that the
model can reproduce a realistic charged fermion spectrum
irrespective of the scales of U(1), , breaking. As discussed
earlier, the mass gap between Z; and Z, is determined by
the mass hierarchies between the first and second gener-
ation fermions and one finds M3 /M7 =~ O(10%), however,
the absolute scale of M, is not fixed. We impose M, <
my, mp, mg while performing the numerical fits. It is found
that my < mp, mg is required in order to generate
m; > my,, m,. The parameters yuy;, f = u, d, e, are gen-
erated through electroweak symmetry breaking, see
Eq. (31), for which we impose |y.| < VAr and
Vyui» Vgi < 174 GeV. As a result, all the uy; are found to
be of O(100) GeV or less. On the other hand, p; are
induced by the VEVs of SM singlet but U(1),, charged
fields and their determined values are close to the breaking
scale of U(1),,. The most noteworthy feature of each of
the solutions obtained in Table III is that there are no large
hierarchies within the values of various uy; or y}i. This
implies that the dimensionless parameters of the underlying
framework can be of the same magnitude. Despite this, the
observed difference of five orders of magnitude between
the masses of the first and third generation fermions is
achieved through the radiative mass generation mechanism.
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TABLE III.  Optimized values of various input parameters obtained for three example solutions. All the values are
in GeV.

Parameters Solution 1 (S1) Solution 2 (S2) Solution 3 (S3)
My, 104 10 108

My, 2.8708 x 10° 1.4470 x 107 1.9110 x 10°
mr 1.1000 x 10* 1.1000 x 10° 1.1003 x 108
mpg 3.0754 x 10° 2.4839 x 107 1.4015 x 10°
mg 2.8128 x 10° 4.9462 x 107 6.7820 x 108
Hu 1.8023 x 10! —-1.6702 x 10! 1.5410 x 10!
Huo 3.0901 x 102 3.0969 x 102 —0.6860

Hy3 1.4763 -0.5133 2.8599 x 10?
7 —-3.9573 x 103 3.3923 x 10° —-3.8518 x 107
Ui 3.5446 x 103 -3.9343 x 10° —-3.7762 x 107
7 —2.8507 x 103 29653 x 10° —3.7718 x 107
Hay 2.3809 x 10! +i6.7460 —1.0402 x 10" + i 6.7204 4.6117 4 i4.3534
Haz 1.4422 x 10? 4 i2.6938 x 10! 2.7279 x 10! —i1.2285 x 10% —0.1868 — i 0.8509
"3 5.6345 —2.1306 1.0439 x 10?
Moy —6.1152 x 10? 8.8600 x 10* —2.2724 x 107
7% 3.7385 x 103 3.4743 x 10° 2.4618 x 107
s -7.5116 x 10? 1.2636 x 10° —1.9748 x 107
Het 8.1306 x 10! —7.6362 x 10! —0.9180

Heo 2.7874 x 10! —1.5295 x 107 —9.6383

o3 —1.1628 3.2793 —2.2318 x 10!
Ul —1.2295 x 10° —1.9688 x 10° 2.7449 x 107
75 -3.9625 x 10° —3.8735 x 10° —3.5794 x 107
7 3.9792 x 103 2.9732 x 104 2.0714 x 107

V. PHENOMENOLOGICAL ASPECTS

The model has rich phenomenological implications due
to the presence of two flavorful U(1) gauge symmetries
and additional vectorlike pair of quarks and leptons. For all
the solutions listed in the previous section, one finds Z; as
the lightest among all the new particles. We, therefore,
discuss various constraints on Z; boson arising from the
processes involving quark and lepton flavor changing
neutral currents (FCNCs).

In the physical basis of quarks and leptons, the couplings
of Z,, can be determined from Eqs. (7), (19) as:

Lz, = Z gk((Xﬁ‘]?)ijEyﬂij + (X}];))ijmyﬂij)Zkﬂ,
=12

(38)

where f = u, d, e. The 3 x 3 coupling matrices are given by
k vk

X)) = U}, iU, (39)

and similar expression for X}I;) can be obtained by replacing

L — R. In the present framework, we have q}IL) = q}lk) =

Diag(0.1,~1) and ¢} = ¢} = Diag(1,~1,0) forall f as

specified earlier. The unitary matrices Uy, and Uy, are
obtained from diagonalizing the 1-loop corrected mass
matrices M, such that U;LMfoR = Diag(my ,mg,,my.).
Since the underlying U(1) symmetries are nonuniversal,
Xj(f? and X;f;) are nondiagonal in general. This can lead to
large flavor violations both in the quark and lepton sectors.
The numerical values of various XJ(CI? and Xj(,kR) for one of the
benchmark solutions are given in Appendix C for reference.

A. Quark flavor violation

Due to its nonvanishing off-diagonal couplings with the
quarks, the Z; boson contributes to the meson-antimeson
mixing at the tree level itself. To estimate these contribu-
tions for K — K% BY—BY, BY—B? and D’ - D°, we
follow the effective operator based analysis (see for example
[33]) and parametrize the new contributions in terms of the
well-known Wilson coefficients (WCs). Subsequently, we
use the limits on these coefficients obtained from a fit to
experimental data by UTFit collaboration [33] to derive
constraints on the mass scale of Z; boson.

For K° - K° mixing, the effective Hamiltonian for

AS =2 is written as Hy =3 ,Ce0;+ >3 CLO;
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where explicit form of operators are listed in [33,34]. When
Z, is integrated out, its contribution to the Wilson coefficients
Ci and C'ﬂ( is obtained, at the scale up = My , as [35]

9i

2
1)y 12 ~ 9 1y 12
Cx = @[(XSL i) Cx = ﬁ[(xd,e )l
2
g 1 (1
Ch = 43 X0 (X5 (40)

The remaining C% and C’; have vanishing valuesaty = M.
For a precise comparison with the experimental values, these
coefficients need to be evolved fromu = M tou =2 GeV.
We perform such running using the renormalization group
equations (RGE) given in [34]. It is found that RGE effects
induce nonzero C} while the C?f and C‘ff have vanishing
values at the low scale. The RGE evolved values are listed in
Table IV and compared with the corresponding experimen-
tally allowed ranges extracted from a fit performed by the
UTFit collaboration [33].

In case of B, — Bg (g = d, s) mixing, the relevant WCs
at uy = My, are [35]

2 2
g 1)y 12 > g 1)y 12
Ch, =3 (XDl T =3[0
2
_ Iy (1)
C?S’d - M% (XdL )13<Xdk )13’ (41)

and
1 9% 1)y 12 > 9 (1) 12
CBS = M—%l [( dy )23] ’ CBS = @ [(XdR )23] ’

2
9 1 1
G, = ~43 (X)) (X)) (42)
1
These coefficients are run down to u = M, = 4.6 GeV
following [36]. Similarly, for the charm mixing governing
the D° — D oscillations, the WCs at the scale M, are
given by

2 2
91 ()y 12 1 91 1)y 12
Cl — T 5 Xu £ C — T XM £
D M%] [( L )12] M%l [( R )12}
2
g 1 1
Ch = ~4~ 5 (X)) (X)) (43)

They are also evolved to the relevant low scale y = 2.8 GeV
using the RGE equations given in [33].

We list the values of all the WCs at their relevant
hadronic scales for the three benchmark solutions and
compare them with the corresponding experimental limits
in Table IV. It is noticed that constraints from meson-
antimeson mixings put a strong limit on the mass of Z;
boson since the latter typically has O(1) off-diagonal

TABLE IV. Strength of various Wilson coefficients relevant for meson-antimeson mixing estimated for three
example solutions and corresponding experimentally allowed range at 95% confidence level. For the later we use the
results from [33]. All the values are in GeV~2. The values indicated in bold are excluded by experimental limits.

Wilson coefficient Allowed range S1 S2 S3

ReCk [<9.6,9.6] x 10713 -9.5x1071° —5.4x 10714 6.2 x 10-18
ReCk [-9.6,9.6] x 10713 -1.6x10~° —1.6x 10713 2.8x 10717
ReC} [-3.6,3.6] x 10713 6.2x10° 50 x 10-13 —7.5x% 10-17
ReC% [-1.0,1.0] x 1074 54x107° 42 %1013 -5.9x 107"
ImCl [-9.6,9.6] x 10713 59x107% 9.5 % 10730 1.7 x 1033
ImC [~9.6,9.6] x 10713 —1.0x 1072 38 x 10~ 3.9 % 1031
ImC% [-1.8,0.9] x 10717 9.5 x 10726 1.5x 1072 -53x 1073
ImC% [-1.0,1.0] x 1074 8.3 x 1072¢ 1.3 x 107 —4.2 %1073
|Ch,| <23 x 107" 1.6 x 10712 9.9 x 10718 5.8 x 1022
IC},| <23 x 1071 2.9 x 10712 3.8 x 10718 1.0 x 10-18
IC3,| <2.1x 10713 51x10712 1.6 x 10717 6.7 x 10720
1C3,| <6.0x 1071 9.1 x 10-12 2.6 x 10717 1.0 x 101
Ch| <1.1x 107 83x 107! 2.8 x 10715 3.0x 1071
IC} | <1.1x10°° 2.0 % 10710 58 x 10714 42 % 1077
\C‘é‘.\ <1.6 x 107" 31x10710 33 x 1071 9.8 x 10718
€3, <4.5x 1071 5510710 5.4% 10714 1.5 x 1017
1L <72x10713 2.0x10°1 2.9 x 10715 6.5 %1071
IC}| <72x 1071 35%x10~° 2.7 % 10713 2.8 x 107V
|Ch| <4.8 x 10714 32x107° 1.1x 10713 1.7 x 107"
|C3,| <4.8 x 10713 37 x107° 1.2x 10713 1.9 x 107"
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TABLE V. Estimated values of various charged lepton flavor violating observables for the three benchmark
solutions and the present experimental limits at 90% confidence level. The latter are taken from [41]. The values

indicated in bold are excluded by experimental limits.

LFV observable Limit S1 S2 S3

BR[u — €] <7.0x 1071 7.2 x 1077 4.0 x 10715 3.7 x 1072
BR[u — 3¢] <1.0x 10712 7.9 x 1070 6.0 x 107V 2.5 % 1072
BR[z — 3] <2.1x1078 23x10°8 1.7 x 10718 1.1 x 1072
BR[z — 3¢] <2.7x 1078 9.2x 1071 6.5x 1071 42 x 10728
BR[y — ey] <42 x 1078 2.0 x 1071 1.3x 107" 3.5 % 107%
BR[z = uy] <4.4x 1078 9.3 x 10713 7.1 x 1072 3.1 x 1077
BR[z — e7] <33x 1078 39x 1071 2.1 x 1072 4.0x 1072

couplings with the quark flavors, see Appendix C for
example. It can be seen that both the solutions S1 and S2
are disfavored implying M, > 10° TeV for phenomeno-
logically consistent solutions. This also implies that the
model cannot account for the neutral current B-anomalies
which generically require M, <2 TeV [37,38].

B. Lepton flavor violation

The flavorful Z; mediate charged lepton flavor violating
processes like p to e conversion in nuclei and /; — 3/; at
tree level. The processes like [; — [;y arise at 1-loop
through Z; and the charged leptons in the loop. In this
subsection, we estimate the constraints on Z; from all these
processes.

In the field of nucleus, the muons can undergo transition
to electrons through flavor violating coupling of u and e
with Z; boson. The strongest limit on such a process has
been obtained by SINDRUM II experiment which uses
197Au nucleus [39]. The branching ratio for this process
computed in [40] is given by

2G%

BR[i — ] = — L (VO (|gih) 12 + g 2),  (44)

capt

where V(P) is an integral involving proton distribution in a
given nucleus, @, is muon capture rate by the nucleus and

(p) u) (d)

JLv.rv = 2g(LV,RV + 9Ly ry- (45)

For Z, mediated contributions and My > m,, the above
couplings are given by [35]

Y2 g
HGr My,

(X5 [KD),, + ()] o)

with f = u, d. Similarly, g;‘ef & is given by replacement L <> R

in the above expression. Substituting Egs. (46), (45) in (44)
and using V(%) = 0.0974 m, ey = 13.07 x 10° 57! for

197Au from [40], we estimate BR[u — ¢] for the obtained
solutions and list them in Table V. We also give the latest
experimental limit on BR[y — e] in the same table for
comparison.

Next, we estimate the branching ratios of u — 3e,
7 — 3u, and 7 — 3e following [35,42]. The relevant decay
width, estimated neglecting subleading terms proportional
to my, is given by

4.5
glml,- * *
[l — 31 :W[4Re((XeV)ji(XeA)ji(XeV)jj(XeA)jj)
+3(|(XeV)ji‘2+ |(XeA)ji|2)(‘(XeV)jj|2
+[(Xea) ;1)) (47)
where
1
Xeyen =5 (X £X4). (48)

are couplings for vector and axial-vector currents, respec-
tively. Using the above expression, the evaluated numbers
for BR[/; — 31;] are given in Table V along with the latest
limits from experiments.

Unlike the previous decays, the decays like /; — [;y arise
at 1-loop level. Nevertheless, we estimate these decays
considering relatively strong limits on BR[y — ey]. The
corresponding decay width is given by [43]

(49)

Here,
1)\ * 1 1)y* 1
= ZQkKXEfR))jk(X(eR))ikyRR + (XgL))jk(XE«’L))ikyLL
X
1)\ * 1 1)\* 1
+ (X)X ivme + (X)) 5 (XE) sl (50)

and % can be obtained with replacement L <> R in the
coupling matrices appearing in the above expression. Q;
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denotes electric charge of [, lepton. The explicit expres-
sions of the loop functions y;;, Yrrs YLr» and yg; can be
found in [43]. Numbers estimated for BR[u — ey],
BR[z — uy|, and BR[zr — ey] using the above expressions
are listed in Table V for three example solutions.

It can be seen from Table V that the strongest constraints
on the flavorful Z; interactions arise from y to e transition
and processes like /; — 31; as they arise at the tree level.
The process y — ey also puts a comparable limit on M . It
is seen that M up to 10 TeV is ruled out by these LFV
processes disfavoring the benchmark solution S1. A com-
parison between the various numbers in Table IV and V
indicates that the LFV constraints are less stringent than
those arising from meson-antimeson oscillations.

C. Direct and electroweak constraints

The quark and lepton flavor violations put strong lower
bounds on the masses of new particles which more or less
supersede the direct search constraints. For example, the
latest results from the LHC lead to M > 5.15 TeV for Z,
with O(1) flavor diagonal couplings with the SM fermions
[44]. The limit increases to My > 7.20 TeV if Z; has
generic diquark couplings [45]. Similarly, the current direct
search constraints on the vectorlike fermions imply my >
1.57 TeV [46,47] and my > 1.31 TeV [48,49]. It can be
seen from Table III and results of the previous subsections
that these constraints are much weaker than the ones
imposed by FCNCs.

Another class of constraints arise in the model due to
Z — Z,, mixing as the Higgses are charged under both the
SM and extended gauge symmetries. Analogous to [50],
this mixing can be parametrized by mixing angles

912 My \?
/2 2 <M > ’ (51)
g +4g Zyy

where g and ¢ are the strengths of SU(2), and U(1),
gauge interactions, respectively. In the present framework,
the fermion mass hierarchy implies 8, < #; <1 and the
dominant effects arise due to Z — Z; mixing. The latter
leads to the flavor nonuniversal couplings to the SM
fermions for Z boson also. However, these couplings are
suppressed by a factor of M2/ M%l in comparison to those
of Z 1-

The Z — Z; mixing modifies the p parameter which is
precisely measured along with the other electroweak
observables. At the leading order in 6, the shift in the p
parameter can be obtained as [51]

2 2
g M
92+1’2<MZ>' (52)
g Zis

A global fit result, p = 1.00039 4+ 0.00019 [32], then
implies Mz > 4.5 TeV for g, =1. Nonzero Z-Z,

sin 61,2 =

Ap =

mixing also modifies the couplings of Z with neutrinos
which can be constrained by the invisible decay width of Z
boson. This constraint translates to Mz /g; > 0.95 TeV
[52]. The flavor nonuniversal couplings of Z to leptons
induced by Z —Z; mixing give rise to lepton flavor
universality violation in Z decays. The latter is severely
constrained by LEP measurements which implies R =
0.999 + 0.003 [32] where R is a ratio of partial decay
widths of Z decaying into a pair of electrons and muons. At
the leading order in €, the shift in R from unity due to the
new physics contributions is given by [52]

gcosOy — 3¢ sinfy,

AR ~4g, sin6), (53)

(gcos@y — ¢ sinfy)? +44g>sin*0y,

The LEP constraint then leads to M /g; > 1.3 TeV.

In summary, the constraints from the direct searches and
electroweak precision observables are at least two orders of
magnitude weaker than those from quark and lepton flavor
violating interactions. Various limits discussed in this
section suggest a lower bound, M /g, > 10° TeV, for
the generic viable solutions obtained in the present model.

VI. SUMMARY AND OUTLOOK

We explore a mechanism for the radiative induction of the
masses for the first and second generation charged fermions.
It uses extended Abelian gauge symmetry which prevents
tree-level masses for all the SM fermions. The third
generation fermions can acquire masses with the help of
an additional vectorlike family through the seesawlike
mechanism. Subsequently, the radiative corrections induced
by spontaneous breaking of extended gauge symmetry can
give rise to masses for the remaining fermions explaining
their hierarchical spectrum. It is shown that, for the under-
lying mechanism to work viably, the SM fermions should
have flavor nonuniversal charges under the new symmetry.

Using this general setup, we give an explicit model based
on U(1), x U(1), symmetry which is a generalization of
well-known L, — L, and L, — L, symmetries, respectively.
The breaking of U(1), (U(1),) induces radiative masses
for the second (first) generation fermions and the hierarchy
among the masses of the first two families can be attributed
to the hierarchy between the breaking scales of two U(1)s.
We give three example numerical solutions which repro-
duce the observed charged fermion masses and quark
mixing parameters and discuss various constraints from
the quark and lepton flavor violations, direct searches and
electroweak precision observables on the obtained solu-
tions. Although the radiative mass generation mechanism
does not fix unambiguously the scale of new physics, the
current constraints imply that the new particles must be
heavier than 10° TeV. The requirement of reproducing
viable fermion mass spectrum more or less fixes the relative
mass scales of new vector bosons and vectorlike fermions.
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Although the main motivation for the radiative mass
generation mechanism is to make the masses of funda-
mental fermions calculable parameters of the theory, the
results obtained in this paper still involve a large number of
free parameters. Unlike in the SM, the fundamental
parameters of the model do not span a wide range of
magnitude. However, their large number and nonunique
values make the model less predictive. One way to improve
upon this is to accommodate the U(1), x U(1), symmetry
in a larger flavor symmetry based on a single gauge group
or to use only one U(1) with appropriate flavor nonuni-
versal charges. For the latter, a systematic scan of the
fermion spectrum based on anomaly-free charges, similar
to the one performed recently in [53] in the context of 5D
models, would be required. Another interesting possibility
is to restrict vertically by unifying various SM quarks and
leptons in some irreducible representations of a grand
unified theory. Both these approaches can lead to a
reduction in the number of free parameters and may provide
more predictive models. These alternatives shall be
explored in our future works.
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APPENDIX A: CALCULATION OF 1-LOOP
SELF-ENERGY CORRECTION
TO THE FERMION MASSES

The gauge interactions in Eq. (7) can be written as

_'Cgauge = gXXM}ayﬂca/}f/i’ (Al)
with the coupling defined as
Cap = (QL)apPL + (Qr)pPr- (A2)

The 1-loop fermion self energy correction induced by the
gauge boson in the loop is shown in Fig. 1. The amplitude
of this diagram is given by

X
f;’i f v f @
FIG. 1. Gauge boson induced fermion self-energy correction at
1-loop.

. B d'k . i i(k+p+my)
_lzaﬂ(p) - Zy:/ (2”)4( ngV”Cay) [(k+p)2 _ m}z] + i€]
X (_igxybcyﬂ)A/w(k)’ (A3)
with
—i k,k,
A (k)= sz;Z-f-lG (ﬂﬂu -(1 —C)kg_ﬂng - (A4)

We set p =0 in order to go on the mass shell for the
massless fermion and compute the loop contribution in the
Feynman-’t Hooft gauge ({ = 1) in dimensional regulari-
zation scheme. As the denominator is an even function of k,
the terms proportional to odd number of ks in numerator
vanishes. Therefore,

Z5(0) = _igg(ﬂSZ[(QL)lyPR + (QR)IWPL]

4

'k dm, 1
C AS
X/(Zﬂ')dkz—m}%-f—ié’kz—sz‘Fié‘ mw (A5)

where, d = 4 — ¢ and we have used the following relations
in order to obtain Eq. (AS).

y#Cly = [(QL)i, Pr + (Qr), PLIV, (A6)

"y, =d. (A7)

Using QZ.R = Q; r [see Eq. (8)], Eq. (A5) can be
simplified to

dgk
> 4(0)=
as(0) 1672

Zm}'[(QL)ay(QR)yﬁPR+(QR)ay(QL)yﬁPL]

(2ﬁ/¢)€/ ” 1 1
A8
% in? kz—m%+i€k2—MX2+i€ (A8)

The integration in the above can be evaluated and expressed
in terms of Passarino-Veltmann function B, [54] leading to
a final expression

2
Zap(0) = 125 D m,[(Q1)er( Qs
+(QR>(17(QL>]//3PL]BO[M%(’mﬂ (A9)

with
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27u)¢ 1 1
By[M%., m; _ (2mu)* /ddk
oMy, ;] in? kz—m}%—l—iekz—MXz—&—ie
2 MZ%1n M% — m21n m?
="4+1l-y+ndr———F mzy y
€ My —m;
(A10)

The above result is used in Eq. (9) to determine explicitly
the radiative contributions to the fermion mass matrices.

APPENDIX B: SCALAR POTENTIAL

The most general renormalizable scalar potential of the
model, invariant under the SM gauge symmetry and Gy, is
written as:

V =m2HH,; +m%HyHg + m%i’ﬂﬂi + L (Muay) iju€ijeniH i Har + (my);eipnin e + Hee.}
; + - + bt
+ (lu),-J-HLHmHujHuj + (ﬁd)inLinindej + (/1,7),-,-71;771"1]477]‘
+ (ﬂud)inZiHuiHZdej + (ﬂun)inZiHui’?;ﬂj + (ﬂdﬁinj/ini’?;ﬂj

+ (Zu)inliHujHleui + (4a)

ij

il il
Hd,'dedeHdi

- N .\ - ; . - _ .
+ (’lud)intLiHujHlindi + (lur/)inuiHujrl}ni + (ﬂdn)injj,-de’?}ﬂi

+ {(ﬂudn)ij’?jHui’?}de + (judn)ijﬂjHujnj‘Hdi +H.c.},

where, i, j, k =1, 2, 3 are flavor indices. The diagonal
elements of all the 4 matrices can be chosen zero without
loss of generality. We assume the general VEVs for various
fields, as parametrized in Egs. (31), (32), which breaks all
symmetries except U(1) corresponding to electromagnet-
ism. Given a large number of parameters in Eq. (B1), we
assume that such minima exist for a suitable choice of their
values.

It can be seen that the potential does not possess any
enhanced global symmetry in its most general form.
Therefore, one does not find any new Goldstone bosons
other than the ones corresponding to the spontaneous
breaking of the SM and G symmetries which are eaten
by the massive W*, Z and Z 1.2 bosons. The potential has an
|

~0.9964  0.0597i 0
X = | -0.0597i —0.0008 -0.0528 |;
0 ~0.0528  0.9972
~0.9262 0.2618i —0.0034i
X)) =| -02618i -0.0706 -0.0576 |
0.0034i —0.0576  0.9967
~0.9978 0.0460 —0.0105
xM = 00460 01330 03423 |;
~0.0105 03423 0.8648
0.0036  0.0594i 0.0047i
X2 = -0.0594i 09909 0.1053 |;
~0.0047i 0.1053 —0.9944

X _

(B1)

|

SU(3) global symmetry if all the quadratic, cubic and
quartic couplings are assumed flavor universal. This
symmetry corresponds to an invariance under a rotation

®; —» U;;®; with ® = H,, H; and 5. Moreover, for van-
ishing 7,4, /Nl,m, ;1[1,7, Audn> ;ludn, Myqy, and m,, the scalar
potential can possess an enhanced [U(3)]> symmetry

corresponding to separate rotations for H,, H, and 7.

APPENDIX C: COMPUTED VALUES
OF FLAVOR VIOLATING COUPLINGS

In this Appendix, we give the numerical values of
various coupling matrices X;]? and X}i) for benchmark
solution 2 (S2).

—0.1459
—0.5747i
0.0023i

0.5747i
—0.1466
—0.7781

—0.0023i
—0.7781
0.2925

Xy, = (1)

—0.2665
—0.4497i
—0.0021i

0.4497i
—0.6887
—0.2625

0.0021i
-0.2625
0.9552

(1)
Xy =

-0.9741 0.1551
0.1551 0.1169
—0.0375 0.3547

—0.0375
0.3547
0.8572

(C3)

€R

0.5456
0.0378i
—0.6724i

—0.0378i
—0.3627
0.5613

0.6724i
0.5613
—0.1829

x@ _

ug
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0.0736  0.2603i 0.0247i
X = | —02603i 09200 0.1102 |;
~0.0247i  0.1102  —0.9936
0.0022  0.0420 —0.0205
xP =1 00420 07281 —0.6828 |;
~0.0205 —0.6828 —0.7302

07233 0.4203i 0.1738i

XP) = | -0.4203i 02262 0.2348 (C5)
—0.1738i 0.2348 —0.9495
0.0254  0.1418 —0.0704

x2 =1 01418 06962 —0.6869 (C6)
—0.0704 —0.6869 —0.7216

It can be seen that both the diagonal and off-diagonal elements are of similar magnitude and no particular pattern or
hierarchies in values is seen. We find similar values for the other two solutions.
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