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We discuss domain walls from spontaneous breaking of Abelian discrete symmetries ZN . A series of
different domain wall structures are predicted, depending on the symmetry and charge assignments of
scalars leading to the spontaneous symmetry breaking (SSB). A widely existing type of domain walls are
those separating degenerate vacua which are adjacent in the field space. We denote these walls as adjacency
walls. In the case that ZN terms are small compared with the Uð1Þ terms, the SSB of Uð1Þ generates strings
first and then adjacency walls bounded by strings are generated after the SSB of ZN . For symmetries larger
than Z3, nonadjacent vacua exist, and we regard walls separating them as nonadjacency walls. These walls
are unstable ifUð1Þ is a good approximation. If the discrete symmetry is broken via multiple steps, then we
arrive at a complex structure where one kind of wall is wrapped by another type. On the other hand, if the
symmetry is broken in different directions independently, then walls generated from the different breaking
chains are blind to each other.
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I. INTRODUCTION

Discrete symmetries have been widely discussed in
particle physics. In the Standard Model (SM), the CP
symmetry, which is an approximate Z2 symmetry, is one of
the most famous examples. Discrete symmetries are also
frequently applied in new physics models to restrict
interactions at high energy scales. Typical examples
include, e.g., the matter parity in left-right symmetric
and SOð10Þ grand unified models [1,2], the R parity in
supersymmetric models [3], the ZN symmetry in axionlike
particle models [4], the Abelian and/or non-Abelian dis-
crete symmetries in flavor models [5,6], and modular
symmetries arising from formal theories [7,8].
In many cases, the discrete symmetries are spontane-

ously broken by the nontrivial vacuum structure of the
system. Namely, even though the scalar potential itself is
invariant under the discrete symmetry, if it has a set of

degenerate vacua that are not invariant under the symmetry,
then the spontaneous symmetry breaking (SSB) exists
when the system stays in one specific vacuum. Due to
the thermal corrections, discrete symmetries are generally
restored in the very early Universe. During the cooling of
the Universe along the Hubble expansion, SSB exists. As
there is no preference in the degenerate vacua, spatial
regions not connected by causality are free to nucleate to
any vacua, resulting in a multibubble Universe with differ-
ent cells staying in different vacua. The boundaries of the
cells are two-dimensional topological solitons called
“domain walls” [9].
Domain walls are in general regarded as a problem in

cosmology: their energy density decreases more slowly
than the radiation and cold matter energy densities, thus
they may dominate the Universe at late time, leading to an
accelerated expansion era which is ruled out by observa-
tions [10]. To solve this problem, one may either push the
SSB of discrete symmetries earlier than the inflation or
introduce explicit-breaking terms in the potential [11–13]
(see, e.g., [14,15] for other possible ways). These terms
generate biases between the vacua. They later become
significant as the Universe cools down to a temperature
sufficiently lower than the scale of SSB. Then vacua with
higher energy become unstable and domain walls collapse,
avoiding the cosmological problem. The collapsing domain
walls lead to the production of gravitational waves (GWs),
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which form a stochastic background today, providing us a
way to test discrete symmetries of particle physics.
In the literature, most studies on domain wall evolution

and GW productions focus on the classical Z2 domain walls
as an illustrative example. See Ref. [16] for a recent review,
and lattice simulations are performed in Refs. [17,18].
Numerical simulations on string-wall networks in ZN-
invariant axion models are performed in Refs. [19,20],
and that for a generic set of potentials is recently discussed
in [21]. Phenomenological applications of domain wall-
induced GWs as a way to test new physics have caught
attentions, e.g., those applied to spontaneous R-parity
symmetry breaking using GWs [22], spontaneous CP
violation at scalar-extended electroweak symmetry break-
ing [23,24], Z3-invariant singlet-scalar-extended SM [25],
domain-wall-seeding electroweak phase transition [26],
and Dirac leptogenesis in Z2 symmetry [27]. GW detec-
tions could therefore provide a characteristic signature for a
large range of spontaneous discrete symmetry breaking
scales that are hard to be tested in other experiments.
Reference [28] points out that GW signal induced by
domain walls provides a potential way to test the origin of
lepton flavor mixing. A large range of discrete flavor
symmetry scale, from 1 TeV to 1014 GeV, can be poten-
tially touched by the next-generation GW interferometers,
depending on an adequately chosen bias parameter.
Axionlike particles as a dark matter candidate can be
detected with mass from 10−16 to 106 eV if they are
produced at temperatures below 100 eV [29].
In the last two years, pulsar timing array (PTA) observa-

tories, including NANOGrav [30], European PTA [31], and
Parkes PTA [32], have reported evidences for a common-
spectrum process in the search of GW background [33–35],
and their individual data was reinforced in the analysis of
International PTA [36]. These signals have been interpreted
as a hint of GWs from cosmic domain walls in either Z2

[37] or in the axionlike-particle models [38,39], or in a
model-independent analysis [40].
Recently we explored domain wall properties and the

consequent GW signatures from discrete symmetries
beyond Z2 [41]. A thorough study on Z3 domain walls
has been taken for illustration, where semianalytical results
for the tension and thickness of domain walls are derived.
We pointed out that, as multiple degenerate vacua exist in
the theory, an explicit breaking term leads to multiple
biases between the vacua. Due to these biases, domain
walls separating different vacua collapse at different time in
the early Universe, and the process of domain wall
collapsing is more complicated than the simplest Z2 case.
As a consequence, the GW spectrum from these walls is
different from those in the Z2 case.
In this paper, we continue on the exploration of domain

wall properties from Abelian discrete symmetries beyond
Z2, particularly focusing on classification of ZN domain
walls. Compared with earlier discussions on this topic [42],

We will carry out a broader study on these topological
defects from ZN symmetries for N ¼ 3, 4, 5, 6. A
clarification of domain wall structures for general ZN will
be made. The rest of this paper is organized as follows. We
list scalar potentials for different ZN symmetries in Sec. II.
These potential are critical for domain wall formation. In
Sec. III, we discuss properties of domain walls from ZN
with N ≤ 4. Section IV discusses domain walls formed in
larger ZN symmetries such as Z5 and Z6. General remarks
for domain wall categories formed in ZN symmetries will
be discussed in the end of the same section. We summarize
and conclude in Sec. V. This paper focus on the classi-
fication of ZN domain wall structures, and thus no explicit
breaking (e.g., energy bias terms) will be discussed. We
also assume the CP symmetry is a good symmetry and do
not consider any effect referring to the SSB of CP in the
whole paper.

II. ZN-INVARIANT POTENTIALS

The scalar potential can be determined by either one
single complex scalar or multiple scalars. We discuss these
two possibilities in the following two subsections.

A. Potential with a single complex scalar

We begin with the classical Z2 case. The simplest way to
describe the SSB of a Z2-invariant theory is considering the
renormalizable potential of a real scalar h (h → −h under
Z2 transformation) as

VZ2
¼ −

μ2

2
h2 þ λ

4
h4; ð1Þ

where both μ and λ are real and positive. The minima of
VðϕÞ appears at hffiffi

2
p ¼ v0, v1 with v0;1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2=ð2λÞ

p
.

For ZN with N ≥ 3, a real scalar is not enough. Given a
complex scalar ϕ ¼ 1ffiffi

2
p ðhþ iaÞ, the symmetry requires that

the whole theory is invariant under the transformation

T∶ ϕ → ei
2π
Nqϕϕ; ð2Þ

where qϕ is the charge of ϕ in ZN . Note that if there is a
nontrivial greatest common divisor (gcd) between qϕ and
N, i.e., gcdfqϕ; Ng ¼ n > 1, then the essential symmetry
where ϕ is evolving is ZN=n. Thus, it is enough to consider
just the case gcdfqϕ; Ng ¼ 1, i.e., qϕ coprime with N.
Without loss of generality, we can fix the charge qϕ ¼ 1.
ZN-invariant operators of ϕ must be ϕ�ϕ, ϕN , ϕ�N or their
combinations. Imposing the CP symmetry,

S∶ ϕ → ϕ�; ð3Þ

ϕN and ϕ�N are enforced to appear as combinations
of ϕN þ ϕ�N . The transformations T and S satisfy
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TN ¼ S2 ¼ ðTSÞ2 ¼ 1. While T results in a rotation of
2π=N on the complex plane of the field ϕ, S is a reflection
between the positive and negative imaginary parts. They
generate the dihedral group DN which is isomorphic to
ZN ⋊ ZCP

2 and also denoted as Δð2NÞ. Here, the parity
symmetry ZCP

2 represents the CP symmetry imposed in the
theory. For the group theories of DN , see, e.g., Ref. [43].
We emphasize that DN is a natural consequence of the
Abelian discrete symmetry ZN and the CP symmetry.
In general, the ZN- and CP-invariant potential for a

complex scalar ϕ must take the form

VZN
¼ fðϕ�ϕ;ϕN þ ϕ�NÞ: ð4Þ

Here and below, we do not consider spontaneous CP
violation, which can be achieved with appropriate coef-
ficients arranged. Thus, one of the vacua can be chosen to
be real, and we can further keep it positive with the help of a
redefinition of the field ϕ → −ϕ. We denote this real and
positive vacuum as v0. It is obtained by solving the
equation

∂xfðx; yÞ þ NvN−2
0 ∂yfðx; yÞjfx;yg¼fv2

0
;2vN

0
g ¼ 0: ð5Þ

The rest vacua are obtained by the T transformation of ZN ,
vk ¼ Tkv0. Then, we arrive at N degenerate vacua, i.e.,
hϕi ¼ vk and

vk ¼ v0ei
2π
Nk; ð6Þ

for k ¼ 0; 1;…; N − 1. The S transformation does not give
us any additional vacua. In the complex plane ðh; aÞ, the
potential in Eq. (4) takes a general feature of the bottom of a
classic Coca-Cola bottle. That is the local maximal point at
ϕ ¼ 0 in the central surrounded by N minima separated by
an angle 2π=N. We will show a few examples in Fig. 1, and
the details are given below.
We give some examples of the potential form. For N ¼ 3

and 4, we consider renormalizable potential forms. Namely,
only polynomials of ϕ�ϕ and ϕN þ ϕ�N and the power of
scalar fields in all terms no more than 4 are considered.
They are given by

VZ3
¼ −μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − λ2μðϕ3 þ ϕ�3Þ; ð7Þ

VZ4
¼ −μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − λ2ðϕ4 þ ϕ�4Þ; ð8Þ

where all coefficients are real, the dimensional parameter
μ > 0 is assumed without loss of generality, λ1 > 0 for

FIG. 1. Potential and vacuum properties in Z3 (top-left), Z4 (top-right), Z5 (bottom-left), and Z6 (bottom-right) symmetries. vi and si
are vacua and saddle points, respectively. The general form of the potential is given in Eq. (9) and the special cases with N ¼ 3, 4 are

given in Eqs. (7) and (8). λ2 ¼ 4
ffiffi
2

p
9
λ1=21 in Z3, λ2 ¼ 3

8
λ1 in Z4, λ2 ¼

ffiffi
2

p
50
λ3=21 in Z5, and λ2 ¼ 1

25
λ21 in Z6 are used. μ=

ffiffiffiffiffi
λ1

p
is normalized to 1

in all panels.
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N ¼ 3 (λ1 > jλ2j for N ¼ 4), and the minus sign in front of
λ2 will be convenient to keep a positive v0. These potentials
are the most general Z3- and Z4-invariant potential, which
can gain nontrivial and stable vacua, respectively. Their
dependencies on the scalar are shown in the top panel of
Fig. 1. We indicate vacua vi and saddle points si of the
potential (for i ¼ 1; 2;…; N − 1) in the figure. At N ¼ 3,
all degenerate vacua are adjacent in the field space. At
N ¼ 4, vacua may not be adjacent with each other, e.g., v0
and v2. This case leads to different domain wall properties
as will be detailed discussed in the next section.
For larger ZN with N ≥ 5, the renormalization require-

ment forbids terms such as ϕN . Therefore, the theory is
accidentally enlarged into Uð1Þ. To impose ZN instead of
Uð1Þ to be the symmetry of a theory, one approach is to
treat the potential as an effective theory. In this case, we can
simply write out the potential in the form

Veff
ZN

¼ −μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − λ2μ
4−NðϕN þ ϕ�NÞ; ð9Þ

where only the leading higher-dimensional operator is
considered as seen as the third term on the right-hand
side. This term is in general much smaller than the first two
terms as it is a higher-order correction. In this case, an
approximate Uð1Þ symmetry is preserved before the SSB.
The potential, up to an irrelevant constant term, is approx-
imately rewritten in the form

Veff
ZN

≈ λ1ðjϕj2 − v20Þ2 þ 2λ2μ
4−NvN0 ½1 − cosðNθÞ�; ð10Þ

where in this particular case v0 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2=ð2λ1Þ

p
. The exam-

ples for N ¼ 3, 4, 5, and 6 are given in Fig. 1.
Potentials as in Eqs. (7)–(9) include only one term

ϕN þ ϕ�N , which breaks the Uð1Þ symmetry. For this kind
of potential, the CP symmetry is accidental. Given the
more general from of potential with Hermitian conditions
satisfied, we have,

−μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − λ2μ
4−NðeiαϕN þ e−iαϕ�NÞ; ð11Þ

where the same conditions for μ and λ1, λ2 are satisfied as
before and α is an arbitrary phase. With the phase rotation
ϕ → eiα=Nϕ, we arrive at Eqs. (7)–(9).1 Furthermore, one
can keep λ2 always positive from the phase rotation. In the
following discussion, we always keep all coefficients μ, λ1,
and λ2 positive in these equations.
We further mention a special case, a complex scalar in

Z2. Imposing a CP symmetry, we obtain T2 ¼ S2 ¼ 1 and
TS ¼ ST. The whole symmetry is enlarged into the Klein
symmetry Z2 × ZCP

2 . There are two degenerate vacua, both
are real and connected by Z2 transformation v1 ¼ −v0. In
the domain wall solution, one can always fix the imaginary

part a ¼ 0, and thus the real component h keeps similar
behavior as the real scalar in Z2. We will not extend the
discussion. However, note that by suitably arranging the
potential terms, spontaneous CP violation can be achieved.
It generatesCP domain walls with properties different from
the classical Z2 domain walls. Special examples of CP
domain walls have been discussed in the context of
extension of the SM [23,24]. For general properties of
CP domain walls, we refer to our upcoming work. In the
rest of this paper, we will concentrate on domain walls with
only CP conservation.

B. Potential with more scalars

To construct a UV-complete ZN-invariant theory with
N ≥ 5, more scalars have to be included. We include one
more scalar, labeled as ξ below. Charges of ϕ and ξ in ZN
are denoted as qϕ and qξ. It is hard to make a general
statement as there could be many different ways of charged
assignments in ZN-invariant theory. However, we could
specify several representative examples that may result in
different domain wall structures after the symmetry break-
ing. Below are three categories we will discuss in the paper:

(C1) Charges of ϕ and ξ are coprime with N,
i.e., gcdðqξ; NÞ ¼ gcdðqϕ; NÞ ¼ 1.

(C2) qξ has a nontrivial common divisor of N,
but qϕ is still coprime with N, i.e., gcdðqξ; NÞ > 1
and gcdðqϕ; NÞ ¼ 1.

(C3) Both qϕ and qξ have nontrivial common divisors
with N, i.e., gcdðqϕ; NÞ, gcdðqξ; NÞ > 1. We further
require these two gcds are coprime with each other
without loss of generality, otherwise, the essential
symmetry is not ZN but ZN= gcdðgcdðqϕ;NÞ;gcdðqξ;NÞÞ.

For each category, we consider a special example of
potential with the following ZN and scalar charges arrange-
ments. For the first category, we take the Z5 case as a
typical example, with fN; qϕ; qξg ¼ f5; 1; 2g. In this
example, the general Z5-invariant potential is given by

VC1
Z5

¼ −μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − μ2ξξ
�ξþ λξðξ�ξÞ2

− λϕξ1ðϕ3ξþ ϕ�3ξ�Þ − λϕξ2ðϕξ�3 þ ϕ�ξ3Þ
− λϕξ3μðϕ2ξ� þ ϕ�2ξÞ − λϕξ4μðϕξ2 þ ϕ�ξ�2Þ: ð12Þ

Note that necessary conditions among coefficients in the
potential are required, which will not be repeated below.
For the second and third categories, we take N ¼ 6.
Charges are arranged as follows: fN; qϕ; qξg ¼ f6; 1; 3g
in (C2) and fN; qϕ; qξg ¼ f6; 2; 3g in (C3). In an eco-
nomical consideration, ξ can be assumed as a real scalar.
Renormalizable potentials in these examples are written as

VC2
Z6

¼ −μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − 1

2
μ2ξξ

2 þ 1

4
λξξ

4

− λϕξðϕ3 þ ϕ�3Þξ; ð13Þ
1This phase rotation may induce an explicit CP violation in the

coupling for ϕ with other particles.
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VC3
Z6

¼ −μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − λ2ðϕ3 þ ϕ�3Þ

−
1

2
μ2ξξ

2 þ 1

4
λξξ

4: ð14Þ

The last example gives decoupled scalar potential terms
between ϕ and ξ.
In all these cases, our goal is to explore new features of

domain walls that may be distinguished from those from a
single scalar case. We will consider only the hierarchical
scenario that ξ decouples earlier than ϕ. It is further worthy
to restrict our discussion in the region μ2ξ > 0. For negative

μ2ξ , ξ has a heavy mass mξ ∼
ffiffiffiffiffiffiffiffi
−μ2ξ

q
before it gains a

vacuum expectation value (VEV). After the scale drops
below its mass scale, ξ decouples and we arrive at an
effective potential of a single scalar as in Eq. (9). Therefore,
a negative μ2ξ gives no distinguishable features of domain
walls in a single scalar case.

C. Applications in physical systems

ZN-invariant theories have been introduced as new
physics. While Z2 has a lot of applications, e.g., the R-
parity symmetry in supersymmetric models, left-right
parity in left-right symmetric model and its GUT exten-
sions, those for N ≥ 3 have been widely considered in
several different frameworks. Below we show a few
examples for these applications with N ≥ 3.
One widely studied type including ZN symmetries is the

axion model. QCD axions are proposed to solve the strong
CP problem [44–50], other mechanisms also predicts
axionlike particles [51–54] (see [55] for a recent review).
In the axion framework, a global Uð1Þ Peccei-Quinn (PQ)
symmetry [44] is introduced accompanied with a complex
scalar ϕ ¼ jϕjeiθ. jϕj gains a VEV v0 at very high scale,
breaking Uð1Þ spontaneously. Below the Uð1Þ breaking
scale, the theory is invariant under the PQ phase rotation,
θ → θ þ const at classical level. However, at quantum
level, it is broken due to the chiral anomaly for PQ-charged
quarks. The latter induces a term ∼NθGG̃=32π2, where N
appears as an integer combination of PQ charges of quarks.
As a consequence, a small effective term for the phase θ is
effectively generated

V ⊃
m2

av20
N2

½1 − cosðNθÞ�; ð15Þ

where ma is the axion mass. This is consistent with the
approximation in Eq. (10). It satisfies the shift symmetry
θ → θ þ 2πk=N for k ¼ 0; 1; 2;…; N − 1. Therefore, a ZN
is left unbroken as a residual symmetry after Uð1Þ SSB.
Domain walls arise from axionlike framework have been
well studied [19,56]. In the next section, we will not focus
on walls of this form but treat it as a comparison to other
walls from potentials with large ZN terms present.

Another important application of ZN is in addressing the
fermion flavor puzzles. These puzzles refer to a series
theoretical problems, including but not limited to under-
standing the highly hierarchical structure of charged
fermion masses and origins of different mixing patterns
in quark and lepton sectors. Given a ZN as the horizontal
symmetry in the flavor space, ZN-charged scalars, usually
called flavons, become essential to generated flavored
fermions masses. They gains VEVs, breaking ZN sponta-
neously and generating flavor structures for quark and
lepton Yukawa couplings. Below we show two examples to
see how an Abelian discrete symmetry solves these
problems, one with a single scalar and the other with
multiple scalars. The first example achieves the hierarchy
fermion masses following the Froggatt-Nielsen mechanism
[57], and the second one is helpful to realize two-zero
flavor textures in the fermion mass matrix [58].
The Froggatt-Nielsen mechanism was originally pro-

posed with a global Uð1Þ symmetry [57], and switching it
to ZN is straightforward. The latter has been widely used in
flavor model construction, in particular in leptonic flavor
models when complimentary to a non-Abelian flavor
symmetry (see [5,59,60] for recent reviews). In the follow-
ing, we give a toy model with a scalar flavon ϕ in ZN with
N not specified. By assigning ϕ a unit charge and fermion
charges qFα

and qfβ , Yukawa couplings of fermions are
replaced by higher-dimensional operators involving ϕ,

LY ¼
X
αβ

λαβ

�
ϕ

Λ

�
nαβ

F̄αH
ð∼Þ

fβ þ H:c:; ð16Þ

where Fα is the SM electroweak doublet fermions and fα is
the right-handed fermion singlet with flavor indices α and
β, respectively. H is the SM Higgs, and it does not have to
take a ZN charge here, H̃ ¼ iσ2H�. For the left-handed
doublet F ¼ Q≡ ðudÞL and L≡ ðνlÞL, the right-handed
singlet f ¼ uR; dR and νR, lR, respectively. nαβ is an integer
required by the ZN invariance, nαβ ¼ qFα

− qfβðmod NÞ.
Yukawa couplings are effective consequences after the
scalar ϕ gains the VEV,

ðYfÞαβ ¼ λαβϵ
nαβ ; ð17Þ

where ϵ ¼ hϕi=Λ. By arranging different charges for
different flavors, each entry of the Yukawa coupling matrix
is suppressed by ϵnαβ with a flavor-dependent integer nαβ. In
this toy model, we have ignored couplings between ϕ� and
F̄αHfβ. These terms should be either included in a
complete model or forbidden by imposing additional
symmetries.
The texture-zero approach was developed to calculate

the Cabibbo angle of quark flavor mixing [61–63]. It has
been applied in both quark and lepton Yukawa couplings
(see [6] for a recent review). The approach follows the idea
that if some elements of the fermion mass matrices are
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vanishing, the number of free parameters will be reduced
and there exist some testable relations between the fermion
mass ratios and the observable flavor mixing quantities.
A typical two-zero texture takes the form

Yf ¼

0
BB@

0 Cf 0

C0
f B̃f Bf

0 B0
f Af

1
CCA: ð18Þ

This pattern now is still consistent with the updated flavor
data in both quark and lepton sectors [64–67]. While the
original proposal of texture zeros is for the phenomeno-
logical interest on correlations of fermion masses and
mixing angles, imposing an Abelian discrete symmetry
gives an explanation of its origin [58]. Here we list an
example for how that in Eq. (18) is realized in Z6. We
includes three scalars ϕ1, ϕ2, and ϕ3. These particles, again,
do not take electroweak charges. Charges of these particles
and fermions in Z6 are listed in Table I. General couplings
for fermion masses under gauge symmetries and the
horizontal symmetry up to dimension 5 are given by

LY ¼
X
i;α;β

ðλðiÞf Þαβ
ϕi

Λ
F̄αH

ð∼Þ
fβ þ H:c:; ð19Þ

where the SM Higgs does not take a Z6 charge, i runs for
three copies of scalars, and α, β run for three flavors of
fermions. All YðiÞ

f for i ¼ 1, 2, 3 are 3 × 3 matrices. As the
theories are invariant in Z6, they have to follow the
following forms:

λð1Þf ¼

0
B@

0 × 0

× 0 0

0 0 ×

1
CA; λð2Þf ¼

0
B@

0 0 0

0 0 ×

0 × 0

1
CA;

λð3Þf ¼

0
B@

0 0 0

0 × 0

0 0 0

1
CA; ð20Þ

where a cross represents a nonvanishing entry. After ϕk
gain VEVs, the Yukawa coupling matrix appears as a linear
combination, i.e., Yf ¼ P

λðiÞf ϵi with ϵi ¼ hϕii=Λ, and
thus takes the form of Eq. (18). Note that the zero entries
could gain corrections from higher-dimensional operators.
These corrections can be suppressed by a natural arrange-
ment ϵ ∼ yτ;b ∼ 0.01. To generate an Oð1Þ top Yukawa

coupling, one can simply reassign charges of tR such that
the top-quark Yukawa coupling is generated from a
renormalizable term. Away to fully forbid these corrections
is considering a renormalizable variation of the model that
the three scalars are replaced by three electroweak Higgs
doublets (where the lightest one after mix gives the
Standard Model Higgs) and directly arrange Z6 charges
for them. We refer to [65] for more details of model
building.
In these flavor models, ϵ or ϵi are usually correlated with

fermion masses and mixing angles, which could be
restricted by fitting flavor data. The VEV hϕi, or equiv-
alently the SSB scale of ZN , is undetermined, and usually
assumed at a very high energy scale beyond the capability
of direct searches in laboratory.
In addition, Z3-invariant next-to-minimal supersymmet-

ric Standard Model (NMSSM) has used considered to
forbid unnecessary couplings between the Higgs singlet
and doublets in the superpotential [68]. In the NMSSM, the
VEV of the singlet S generates the μ term in the Higgs
potential, helping to trigger the electroweak symmetry
breaking. Before the electroweak symmetry breaking, the
singlet potential can be written as

V ⊃ m2
SjSj2 þ

�
1

3
κAκS3 þ H:c:

�
þ jκj2jSj4; ð21Þ

which can be matched to the Z3 case in our discussion.

III. DOMAIN WALLS TRIGGERED BY A
COMPLEX SCALAR

Domain walls form after a discrete symmetry is broken.
Given a scalar ϕ with a potential VðϕÞ which is invariant
under transformations of a discrete symmetry, degenerate
vacua hϕi ¼ v0, v1;… exist. A domain wall refers to a
solution of the equation of motion (EOM) for the scalar ϕ
along one spatial dimension

d2ϕ
dz2

¼ ∂VðϕÞ
∂ϕ

ð22Þ

with different vacua on the two sides z → �∞. For
boundary conditions

ϕjz→−∞ ¼ vi; ϕjz→þ∞ ¼ vj; ð23Þ

with i ≠ j, we denote the corresponding domain wall as
vijvj , and this notation will be very useful in N ≥ 3 cases.
For ZN with N ¼ 2, 3, 4 renormalizable potentials of a
single scalar is enough to breaking the symmetry. We call
these symmetries as small ZN symmetries. In this section,
we will discuss domain wall properties from these sym-
metries. Those from larger ZN symmetries will be dis-
cussed in the next section.

TABLE I. An example of charges of scalars and fermions in Z6

to achieve two-zero textures of fermion flavor structures.

Particles ϕ1 ϕ2 ϕ3 F1 F2 F3 f1 f2 f3 H

Z6 charge 3 2 1 0 −2 −1 0 2 1 1
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A. Domain walls from Z2 breaking

The simplest type is a Z2 domain wall. Given a real
scalar or a complex scalar with real component with
potential in Eq. (1) the Z2 domain wall solution of ϕ along
z is

ϕ ¼ v0 tanh
� ffiffiffi

λ

2

r
vz
�
; ð24Þ

which can be denoted as v0jv1 in our notation with
v1 ¼ −v0. There are two important parameters for domain
walls. The first one is the tension of the wall, which
measures the energy stored per unit area on the wall. The
second one is thickness of the wall, which estimates the
typical length scale of the scale variation of ϕðzÞ.
The tension of the wall is calculated via the energy

momentum tensor, Tμν ¼ ∂μϕ
�
∂νϕ − Lgμν. Along the

direction perpendicular to the wall, the (0,0) entry, i.e.,
the energy density component, is

εðzÞ≡ T00 ¼
1

2

�
dϕðzÞ
dz

�
2

þ ΔVðϕðzÞÞ; ð25Þ

where ΔVðϕÞ ¼ VðϕÞ − Vmin. The integration along z
gives

σ ¼
Z

∞

−∞
dzεðzÞ: ð26Þ

This is also called the tension of the wall. In the Z2 case,

this property is calculated to be σ ¼ 4
3

ffiffi
λ
2

q
v3.

The thickness of domain walls in the classical Z2 case is
defined as the factor appearing in the a hyperbolic tangent
function of the scalar profile ∝ tanhðz=δÞ, i.e., δ ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðλv2Þ

p
[69]. This definition leads to

Z
δ=2

−δ=2
dzεðzÞ ≈ 64% × σ: ð27Þ

For domain walls beyond Z2, scalar profiles do not hold a
hyperbolic-tangent behavior any more. However, we can
apply Eq. (27) as a generalized definition of the wall
thickness for all kinds of scalar profiles in domain wall
solutions.

B. Domain walls from Z3 breaking

The Z3 domain wall has been solved explicitly in
Ref. [41]. Here, we give a summary of its main property.
By fixing ϕ ¼ v0 at z ¼ −∞ and ϕ ¼ v1 at z ¼ þ∞, we
are able to obtain the v0jv1 domain wall solution by
solving the EOM of h and a with potential given in Eq. (7).
It is convenient to introduce a dimensionless parameter
β≡ 3λ2=

ffiffiffiffiffiffiffi
8λ1

p
. By performing a normalization of the field

and coordinate

h̄ ¼
ffiffiffiffiffi
λ1

p
μ

h; ā ¼
ffiffiffiffiffi
λ1

p
μ

a; z̄ ¼ μz; ð28Þ

all variables are dimensionless and the system depends only
β. This parameter represents how far a Z3-invariant theory
deviate from the Uð1Þ symmetry. In the limit β → 0, a
global Uð1Þ is recovered.
The EOM of h̄ and ā is numerical solved for fixed values

of β. In Fig. 2, we show the bubble wall solution at
β ¼ 3=4. The path in the complex plane of ϕ is shown in
the left panel. The middle panel gives the scalar profiles as
functions of the spatial coordinate z, which is perpendicular
to the wall. The corresponding energy density stored in the
scalar along z is shown in the right panel. Here the energy
density has been normalized

ε̄ ¼ 1

2
ðh̄02 þ ā02Þ þ ΔV̄; ð29Þ

and ΔV̄ ¼ ΔVλ1=μ4. The tension and thickness of the wall
are derived to be

FIG. 2. Vacuum property and domain walls in Z3 symmetry breaking. The left panel shows a contour plot of a Z3-invariant potential in
the scalar field space. Three degenerate vacua are indicated as v0, v1, and v3 and three saddle points are labeled by s0, s1, and s2. We
obtain the solution for the domain wall v0jv1 , i.e., the soliton solution with vacuum v0 fixed at z → −∞ and v1 at z → þ∞. The path in
the field space is noted as the solid curve in the left panel, field profiles along the coordinate z are shown in the middle panel, and the
field energy density along z are given in the right panel. Fields and coordinate are normalized as in Eq. (28). β≡ 3λ2=

ffiffiffiffiffiffiffi
8λ1

p ¼ 3=4 are
used. Figure copied from Ref. [41].

CLASSIFICATION OF ABELIAN DOMAIN WALLS PHYS. REV. D 106, 075019 (2022)

075019-7



σ ¼ μ3

λ1
σ̄; δ ¼ δ̄

μ
; ð30Þ

where σ̄ and δ̄ are the normalized tension and thickness
defined via

σ̄ ¼
Z

∞

−∞
dz̄ ε̄ðz̄Þ;

Z
δ̄=2

−δ̄=2
dz̄ ε̄ðz̄Þ ¼ 64% × σ̄; ð31Þ

respectively. As σ̄ and δ̄ depend on only one free parameter
β, we can calculate them by scanning β in a wide range.
Dependences of σ̄ and δ̄ on β can be fitted with semi-
analytical formulas.

σ̄ðβÞ ¼ 2.18β0.5 þ 1.8β1.85 þ 4β3;

δ̄ðβÞ ¼ 0.64β−0.5
1þ 3.07β1.37

1þ 0.607β0.5 þ 1.86β1.87
: ð32Þ

These formulas match with the numerical results very well
with relative errors less than 2% for 10−3 ≤ β ≤ 104.
Expressing μ and λ1 in terms of physical observables, σ
and δ can be reexpressed as σ ¼ mav20fðβÞ and
δ ¼ m−1

a gðβÞ, where fðβÞ and gðβÞ are both order-one
functions with expressions given in Eqs. (14) and (17) of
Ref. [41], respectively.
In the case β ≪ 1, i.e., λ2 ≪

ffiffiffiffiffi
λ1

p
, a global Uð1Þ is

approximately conserved at high energy scale. We encoun-
ter a two-step SSB as the temperature decreases during the
Hubble expansion. The first step is the SSB of Uð1Þ, which
happens around the scale v0 ≃ μ=

ffiffiffiffiffiffiffi
2λ1

p
. A well-known

consequence following the Uð1Þ breaking is the formation
of cosmic strings with the string tension ∼πv20 [70]. The
SSB of Uð1Þ leads to a pseudo-Nambu-Goldstone boson
with mass m2

a ≃ 3βm2
h ≪ m2

h. The next step is the SSB of
Z3. It happens when the temperature decreases into the
energy scale comparable with

ffiffiffiffiffiffiffiffiffiffiffiffiffi
maMP

p
with MP the Planck

mass. Around this energy scale, the third term of Eq. (7)
becomes non-negligible with the gradient energy, which is
of order v20H

2 and H the Hubble parameter. After the SSB
of Z3, the phase of ϕ’s VEV is then fixed to one of the three
phases 0, 2π=3, and 4π=3. The energy barrier between
spatial regions with different phases soon forms a domain
wall with tension σ ≃ 2.18

ffiffiffi
β

p
μ3=λ1 ≃ 1.8mav20. Thus, we

arrive at a topological defect of walls bounded by strings
[1,71]. This object is just like a revolving door that each
door on its boundary attaches to the axis in the center.

C. Domain walls from Z4 breaking

We first analyze the vacuum properties of the
Z4-invariant theories. The general renormalizable tree-level
potential is given in (8), which includes only three terms
ϕ�ϕ, ðϕ�ϕÞ2, and ϕ4 þ ϕ�4. All parameters are real and
positive without loss of generality. To ensure the potential
to have a nontrivial stable vacuum, λ1 > 2λ2 has to be

satisfied. It is useful to parametrize β ¼ 2λ2=λ1 with
0 < β < 1. Similar to the Z3 case, β here also characterizes
the level of deviation of the Z4-invariant potential from the
global Uð1Þ symmetry.
There are four solutions for the vacuum, classified as

vk ¼
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2λ1ð1 − βÞp ei
2π
4
k; ð33Þ

for k ¼ 0, 1, 2, 3, as well as four saddle points

sk ¼
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2λ1ð1þ βÞp eiπð2kþ1Þ=4: ð34Þ

These solutions have been geometrically shown in the top-
right panel of Fig. 1 in Sec. II.
Profiles of the scalars from one vacuum tunneling to

another is obtained by solving the EOM of h and a, which
is given by

h̄00ðz̄Þ ¼ ½−1þ h̄2 þ ā2 þ βð3ā2 − h̄2Þ�h̄;
ā00ðz̄Þ ¼ ½−1þ h̄2 þ ā2 þ βð3h̄2 − ā2Þ�ā; ð35Þ

where h̄, ā, and z̄ are normalized fields and coordinate
defined in Eq. (28). For the boundary conditions, however,
we have to distinguish them into two branches.

(i) Two vacua are adjacent in the field space, e.g., v0
and v1, walls denoted as v0jv1 .

(ii) Two vacua are nonadjacent in the field space, e.g., v0
and v2, walls denoted as v0jv2 .

Note that the second branch has not been discussed in the
study of classical Z2 domain wall or Z3. For walls
separating adjacent and nonadjacent vacua, we denote
them as adjacency walls and nonadjacency walls, respec-
tively. We discuss them in the following.
Given the path from v0 to v1 for z from −∞ to þ∞, the

solution of an adjacency wall v0jv1 is determined. The
profiles of h and a along z are given in the middle panel of
Fig. 3. And ε along z is given in the right panel of Fig. 3.
Varying β, we obtain the domain wall tension σ and the
thickness δ as functions of β, as seen in Fig. 4. The
solutions are semianalytically given by

σ̄ðβÞ ¼ 0.67β0.5
�
1þ 0.5

1þ 4β

�
; ð36Þ

δ̄ðβÞ ¼ 0.75β−0.5 þ 0.33β1.2 ð37Þ

at errors less than 2% for 10−4 ≤ β ≤ 1 − 10−4. The
solution has a singularity at β ¼ 1. Discussion in the limit
β → 1 is given in the Appendix. In the limit β ≪ 1, we
encounter domain walls bounded by strings as discussed in
the Z3 case. We have checked that our result of the wall
tension is consistent with those obtained in axionlike
models.
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The nonadjacency wall is more complicated. For
β > 1=3, we have first confirmed a hyperbolic tangent
solution for h if a ¼ 0 is fixed, e.g., the wall solution for
v0jv2 . This is the same as the classical solution obtained in
the Z2 domain walls [69]. Thus, the tension and thickness

of the wall are given by σZ2
¼ 4

3

ffiffi
λ
2

q
v3 and δZ2

¼
� ffiffi

λ
2

q
v
�
−1

[16,69]. Here in our particular case, λ is replaced by
λ ¼ λ1ð1 − βÞ. We derive the normalized tension and
thickness of the wall as

σ̄Z2
ðβÞ ¼ 2

ffiffiffi
2

p

3ð1 − βÞ ; δ̄Z2
ðβÞ ¼

ffiffiffi
2

p
; ð38Þ

respectively. Note that this solution holds only in the
range 1=3 < β < 1.
For 0 < β < 1=3, we observe another solution with the

path and profile shown in dashed curves in Fig. 5. This
solution gives the path v0 → v1 → v2 for z from
−∞ → 0 → þ∞, resulting in a domain wall v0jv1jv2 .
At β ¼ 1=3, σ̄Z2

¼ ffiffiffi
2

p
, which is twice of the tension

calculated via Eq. (36) (see the Appendix for an explicit
proof). Once β < 1=3, σ̄Z2

is larger than the latter. Namely,
the energy stored in the nonadjacency wall v0jv2 is larger

than the total energy stored in the wall v0jv1jv2 . Thus, the
nonadjacency wall becomes unstable. Even if it could form

in some progresses, it will lose energy via splitting into two
adjacency walls:

v0jv2 → v0jv1jv2 → v0jv1 þ v1jv2 : ð39Þ

A new vacuum between the two adjacency walls, i.e., v1 is
generated after the wall splitting. We have numerically
checked that, for β < 1=3 and given an initial path of the
hyperbolic tangent solution with a small shift for a from 0,
the path automatically deviates from the initial values
during the deformation iteration and eventually stablized
at the solution of the dashed curves in Fig. 3. At the same
time, the new vacuum v1, separated by the two adjacency
walls, is populated. Its volume in the three-dimensional
space increases during the expansion of the Universe until
the next stage when explicit-breaking terms dominate the
evolution.

D. Domain walls from larger ZN breaking

We consider domain wall formation from SSB of ZN
with N ≥ 5. For the single-scalar case, the effective
potential is given in Eq. (9). The ϕN term is a non-
renormalizable operator, which in general should be sub-
leading compared with the Uð1Þ-invariant terms in the
potential. We encounter two-step spontaneous symmetry
breaking,

FIG. 3. Vacuum property and domain walls in Z4 symmetry breaking. The solid and dashed curves refer to adjacency wall v0jv1 and
nonadjacency wall v0jv2 , respectively. β≡ 2λ2=λ1 ¼ 3=4 is used. Other conventions are the same as in Fig. 2.

FIG. 4. Dependence of tension and thickness on β for two kinds of Z4 domain walls.
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Approx: Uð1Þ → ZN → 1: ð40Þ

In the first step, ϕ gains a VEV vϕeiθ with an arbitrary
phase θ, leading to the spontaneous breaking of the
approximate Uð1Þ symmetry. Topologically, the SSB of
Uð1Þ leads to the production of cosmic strings. In the
second step, jhϕij is slightly modified to be v0, and more
importantly, the phase of hϕi is fixed at one of the N values
2πk=N for k ¼ 0; 1;…; N − 1. Domain walls form, with
the boundary touching to the strings. Eventually, we arrive
at a topological picture of “revolving doors”: on the axle is
a string, bounded by domain wall doors.
We have numerically checked that, as the ϕN term is

small compared with the Uð1Þ-invariant terms in the scalar
potential, there is no nonadjacency wall solution. This is
consistent with former results on axionlike potential, i.e., in
the form of Eq. (10) [42,72]. Namely, a solution from v2 to
v0 always passes v1. An example in Z5 with potential in

Eq. (9) with λ2 ¼
ffiffi
2

p
50
λ3=21 is given in Fig. 6.

To end this section, we discuss the stability problem of
these walls. Properties of walls in the whole paper are based
on ZN-invariant potentials. It is well known that explicit
breaking is a necessary condition to solve the domain wall
problem if the SSB of discrete symmetries happens below

the inflationary scale. The lifetime of Z2 domain walls
depends on the explicit breaking of the symmetry. The
weaker the explicit breaking is, the longer domain walls
leave. This statement is straightforwardly generalized to
walls from SSB of Z3 [41] and is expected to work for
adjacent walls for larger ZN. The explicit breaking, as a
totally independent term, can be assumed within a suitable
range that the nonadjacent walls collapse before the Big
Bang nucleosynthesis epoch, such that the observation does
not conflict with the standard cosmology. For the scalar
below the SSB and above the wall-collapsing scale, we can
treat these walls as stable topological defects. However,
nonadjacent walls in larger ZN could be unstable with small
ZN effect even no explicit breaking is considered. As a
consequence, nonadjacent walls bounded by strings are
formed. In the Z4 case, the size of Z4 effect is characterized
by a parameter β, and the wall become unstable if β < 1=3.

IV. DOMAIN WALLS TRIGGERED BY
MULTIPLE SCALARS

In a renormalizable theory, one complex scalar is not
enough to achieve the SSB of ZN for N ≥ 5. A UV-
complete theory requires more scalars. Once more scalars
are involved, a general discussion on domain walls

FIG. 5. Comparison of nonadjacency wall v0jv2 and two adjacency walls v0jv1jv2 in Z4 breaking. The same conventions are used as
in Fig. 3 except β ¼ 1=4. The right panel shows that the tension of a nonadjacency wall is greater than the sum of tensions of two
adjacency walls.

FIG. 6. Comparison between the domain wall solution for v0jv1 (solid curve) and that from v0jv1jv2 (dashed curve) in Z5 breaking.

λ2 ¼
ffiffi
2

p
50
λ3=21 is used and the rest conventions are the same as in Fig. 3.

YONGCHENG WU, KE-PAN XIE, and YE-LING ZHOU PHYS. REV. D 106, 075019 (2022)

075019-10



becomes impossible due to the large freedom of charge
assignments of the scalars. In this section, we will focus on
only two scalars ξ and ϕ with charge assignments in three
categories (C1), (C2), and (C3) introduced in Sec. II B.
Following the discussions there, we assume ξ gains a VEV
to trigger the first step of SSB and ϕ leads to the second
step of SSB. Examples of Z5-invariant potential in Eq. (12)
and Z6-invariant potentials in Eqs. (13) and (14) will be
considered as case studies in the following two subsections.
We then generalize the results in the last subsection.

A. Domain walls from Z5 breaking

In (C1), an example of Z5-invariant potential is con-
structed with charges of ϕ and ξ given by 1 and 2,
respectively, as given in Eq. (12):

VC1
Z5

¼ −μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − μ2ξξ
�ξþ λξðξ�ξÞ2

− λϕξ1ðϕ3ξþ ϕ�3ξ�Þ − λϕξ2ðϕξ�3 þ ϕ�ξ3Þ
− λϕξ3μðϕ2ξ� þ ϕ�2ξÞ − λϕξ4μðϕξ2 þ ϕ�ξ�2Þ:

Two energy scales are important for this kind of potential.
They are the Z5 breaking scale denoted by the VEV v0 and
the new scalar ξmass scalemξ. We discuss the domain wall
formation in the following scenario where a hierarchy
between scales is satisfied, mξ ≫ v0. Uð1Þ is an approx-
imately good symmetry at high scale. We again arrive at a
two-step SSB, in which Uð1Þ breaking first and then Z5,
similar to the breaking chain in Eq. (40) in the single
scalar case.
However, the breaking history is totally different from

that in the single scalar case. For positive μ2ξ , renormaliz-
able terms of ξ, not ϕ, trigger the spontaneous breaking of
Uð1Þ directly. ξ gains a VEV vξeiθξ with the absolute value

vξ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ξ=2λξ

q
and an arbitrary phase θξ. It leads to the

spontaneous breaking of the Uð1Þ symmetry, which is
approximately preserved at high scale. The radial compo-

nent along the VEVof ξ gains a mass mξ ∼
ffiffiffiffiffiffiffi
2μ2ξ

q
, leading

to the effectively potential dominated by

Veff
Z5

¼ −μ2jϕj2 þ λ1jϕj4 − λϕξ1jϕj3vξ cosð3θ þ θξÞ
− λϕξ2jϕjv3ξ cosðθ − 3θξÞ − λϕξ3μjϕj2vξ cosð2θ − θξÞ
− λϕξ4μjϕjv2ξ cosðθ þ 2θξÞ þ � � � ; ð41Þ

where the dots represent terms obtained after integrating
out hξ, e.g., ϕ5, ðϕ2e−iθξÞ2 and ðϕ3eiθξÞ2. The final VEVs
are given by hϕi ¼ v0ei2πk=5 and hξi ¼ vξei4πk=5 for
k ¼ 0; 1;…; 4, with v0 as the solution of ∂Veff

Z5
=

∂ϕjθ¼θξ¼0 ¼ 0.

B. Domain walls from Z6 breaking

In Z6 symmetry, we focus on the two examples in (C2)
and (C3). In (C2), ϕ and ξ, respectively, have charges 1 and
3 and the potential is given in Eq. (13):

VC2
Z6

¼ −μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − 1

2
μ2ξξ

2

þ 1

4
λξξ

4 − λϕξðϕ3 þ ϕ�3Þξ:

Although the whole symmetry is Z6, the charged-3 field ξ
transforms only in its subgroup Z2 and hence can be treated
as a real field. Once ξ gains a VEV h ξffiffi

2
p i ¼ �vξ (with

vξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ξ=2λξ

q
), the sub Z2 symmetry is broken, and a

residual Z3 is left. This step of SSB leads to the generation
of Z2 domain walls. ξ in each cosmic cell wrapped by the
wall takes a VEVat eitherþvξ or −vξ. Inside a cell with the
þvξ VEV, the potential is left in the Z3-invariant form

VZ3
¼ −μ2ϕ�ϕþ λ1ðϕ�ϕÞ2 − λϕξvξðϕ3 þ ϕ�3Þ: ð42Þ

As discussed before, ϕ has three degenerate vacua, hϕi ¼
μffiffiffiffiffi
2λ1

p ðβ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p
Þei2πk=3 for k ¼ 0, 1, 2. These vacua are

separated by Z3 domain walls formed following the SSB of
Z3. In the cell with the −vξ VEV, the potential of ϕ is given
by Eq. (42) with a sign difference of the last term. VEVs of
ϕ are given by hϕi ¼ μffiffiffiffiffi

2λ1
p ðβ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p
Þe−i2πk=3 for

k ¼ 0, 1, 2, and they are separated by the Z3 domain walls.
In summary, in the (C2) case we have Z2 domain walls

from the ξ field separating the Universe into hξi ¼ þvξ and
−vξ cells, while in each cell the Z3 domain walls from the ϕ
field further separate the space into hϕi ¼ μffiffiffiffiffi

2λ1
p ðβ þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β2
p

Þe�i2πk=3 cells. The whole picture of the
Universe is like a pomegranate in that it is split into a
few chambers by membranes and each chamber is further
divided into cells by another type of membranes. Note that
the VEVof ϕ induces a shift of the two VEVs of ξ, but does
not induce any bias between them. Therefore, the pome-
granate-like defects keep stable at high scales before
explicit breaking terms dominate the potential.
In (C3), ϕ and ξ have charges 2 and 3. As seen from the

potential in Eq. (13), there is no cross coupling between ϕ
and ξ. The VEVs of ϕ and ξ leads to Z6 spontaneously
broken to Z2 and Z3, respectively. The SSB for Z6 → Z2

generates Z3 domain walls and that for Z6 → Z3 generates
Z2 domain walls. Without considering explicit breaking,
there will no interaction between ϕ and ξ explicitly. These
walls are transparent to each other. Their evolution should
be independent from each other.
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C. Generalization to ZN breaking

We have found complicated domain walls when the SSB
evolves multiple scalars in a renormalizable potential.
Although we take Z5 and Z6 as examples, these complex
domain walls exist in SSB of other Abelian discrete
symmetries. We recall categories (C1), (C2), and (C3) in
Sec. II B, and generalize the discussions to ZN for N ≥ 5.
In (C1), all charges of scalars are coprime with N in a ZN

symmetry. Potential terms of each single scalar preserves
Uð1Þ symmetry. The scalar which triggers the first step of
SSB breaks only the approximate Uð1Þ symmetry. Cross
couplings between different scalars, which are the only
sources breaking Uð1Þ explicitly, trigger the SSB of ZN .
The breaking chain is the same as in Eq. (40), and we arrive
at string-bounded adjacency walls after the two-step SSB.
In (C2), we denote the greatest common divisor as

gcdðqξ; NÞ ¼ N1 (with N1 > 1 as required). ZN acting on ξ
behaves as a ZN=N1

acting on a scalar field with charge
qξ=N1. ZN=N1

is broken after ξ gains a VEV, followed by
the generation of ZN=N1

domain walls. The residual ZN1

symmetry is conserved in each vacua wrapped by the walls.
It is broken later after ϕ gains the VEV, leaving ZN1

walls
wrapped by ZN=N1

walls.
In (C3), all charges of scalars are coprime with each

other, but have nontrivial common divisor with N. These
charge assignments forbid terms ξnξϕnϕ where nξ and nϕ
are positive integers. This property is simply proven as
there is no positive-integer solution for the equation

qξnξ þ qϕnϕ ¼ 0 ðmod NÞ: ð43Þ

As no cross couplings between different scalars, ξ and ϕ
gain VEVs independently and break ZN , to Zgcdðqξ;NÞ and
Zgcdðqϕ;NÞ, respectively. The resulting ZN= gcdðqξ;NÞ and
ZN= gcdðqϕ;NÞ domain walls are transparent with each other.
All these topological defects, together with those from

the single scalar case, are summarized in Table II. In the
multiscalar case, although we have discussed only two
scalars, it is straightforward to extend the discussion by
including more scalars into the picture.

V. CONCLUSION

ZN domain walls with N ≥ 3 are predicted in new
physics involving spontaneous symmetry breaking of
ZN symmetries. The latter is critical in solving the strong
CP problem, addressing the quark and lepton flavor
puzzles and restricting interactions in supersymmetry.
Understanding these domain walls provides us a comple-
mentary view to understand intrinsic physics behind. In this
paper, we studied properties of ZN domain wall structures,
in particular the N ¼ 3, 4, 5, 6 cases. Main properties are
summarized below.
In the Z3 case, as all three degenerate vacua are adjacent

to each other in the field space, only adjacency walls form.
Taking the renormalization into consideration, there is only
a ϕ3 term breaking Uð1Þ. The tension and thickness of the
wall are σ ∼mav20 and δ ∼m−1

a , where v0 is the absolute
value of the VEVandma is the mass of the pseudo-Nambu-
Goldstone boson after the SSB of the approximate Uð1Þ. In
the case of small ϕ3 terms, we obtain topological defects of
domain walls bounded by strings: cosmic strings form
during the SSB of Uð1Þ, and later during the SSB of Z3,
domain walls forms attaching to the string.
In the Z4 case, all types of domain walls discussed in the

Z3 case could be generated from the SSB of Z4. Numerical
simulation shows that adjacency walls satisfy again the
correlations σ ∼mav20 and δ ∼m−1

a . Beyond and what is
more important, we observed and discussed properties of
nonadjacency walls for the first time. These walls are
defined via the domain wall solutions separating two vacua
that are nonadjacent in the field space, e.g., v0 and v2. We
observed that a nonadjacency wall is stable only for large
ϕ4 terms, which is the only renormalizable Uð1Þ-breaking
term in Z4. In the case of small ϕ4 terms, a nonadjacency
wall stores energy greater than twice of energy stored in an
adjacency wall. Then the nonadjacency wall splits into two
adjacency walls and a new vacuum is generated between
the two adjacency walls. We further solve two marginal
cases analytically in the Appendix. One is the stability limit
of vacua, and the other describes the marginal place where
the nonadjacency wall is becoming unstable. In the latter
case, we explicitly prove that the tension of a nonadjacency
wall is twice of that of adjacency walls.

TABLE II. Incomplete classifications of domain walls generated from SSB of ZN-invariant theories for given
potential forms. In the multiscalar case, we have considered only two scalars ξ and ϕ, and ξ gains the VEV earlier
than ϕ, triggering the first step of SSB.

Potential forms Breaking chains Textures of domain walls

Single scalar Large ϕN ZN → 1 Adj. walls Nonadj. walls (N ≥ 4)
Small ϕN Appr. Uð1Þ → ZN → 1 String-bounded adj. walls

Multiscalar C1 Appr. Uð1Þ → ZN → 1 String-bounded adj. walls
C2 ZN → Zgcdðqξ ;NÞ → 1 Walls wrapped by walls
C3

ZN →

	
Zgcdðqξ;NÞ
Zgcdðqϕ;NÞ

. Walls blind among diff. types
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To derive domain walls from larger ZN (for N ≥ 5)
symmetry breaking, one could consider the approach of
either effective potentials with nonrenormalizable ϕN terms
or including one more scalar, e.g., ξ, with suitable charge
alignments. The former approach preserves an approximate
Uð1Þ symmetry and gives topological defects no more than
domain walls bounded by strings. In the latter case,
depending on N and charges arranged for scalars, addi-
tional interesting topological defects may be generated as
summarized below.
In the Z5 case, we arrange charges ofϕ and ξ to be 1 and 2

without loss of generality. Renormalization condition for-
bids any Uð1Þ-breaking terms in the potential of any single
scalar and thus, terms breaking Uð1Þ but preserving Z5 can
begenerated via cross couplings ofϕ and ξ. In this case, once
these two scalars gain VEVs at a different energy scale, the
SSB of aUð1Þ symmetry always happens earlier than that of
Z5.We again arrive at domainwalls bounded by strings. This
case is generalized to ZN with scalar charges qϕ and qξ that
satisfy gcdðqξ; NÞ ¼ gcdðqϕ; NÞ ¼ 1.
In the Z6 case, we found two more different structures of

domain walls which may be generated from the SSB of Z6

with respect to the charge alignment of the scalars. For
charges assigned as qϕ ¼ 1 and qξ ¼ 3 and ξ gains VEV
earlier than ϕ, Z2 domain walls generated first induced by
the VEV of ξ. Each vacua of ξ satisfies a residual Z3

symmetry. After ϕ gains the VEV, Z3 domain walls are
generated, wrapped by Z2 domain walls. This “walls
wrapped by walls” structure can also be generated in other
ZN symmetries if conditions gcdðqξ; NÞ > 1 and
gcdðqϕ; NÞ ¼ 1 are satisfied. On the other hand, if charges
are arranged as qϕ ¼ 2 and qξ ¼ 3 in Z6, no cross couplings
between scalars exist, Z3 domain walls andZ2 domain walls
resulted from ϕ and ξ are generated independently, and they
are transparent with each other. This kind of walls can be
generated in the general case that gcdðqϕ; NÞ; gcdðqξ; NÞ
> 1, and gcdðqϕ; qξÞ ¼ 1 are satisfied.
In Table II, we summarize all these Abelian domain

walls as discussed in the paper. Due to the rich structures of
domain walls, we expect they will have interesting cos-
mological applications, which will be carried out in our
coming works.
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APPENDIX: DOMAIN WALL PROPERTIES IN
SPECIAL CASES IN Z4

Domain walls from Z4 breaking have a lot of interesting
features, which are not taken by Z2 or Z3 domain walls. In
some marginal cases, the domain wall solution can be

analytically solved. In this appendix, we will discuss the
analytical solutions in two special cases. The first one is in
the limit β → 1, which is the limit of the vacuum stability.
The second case is at β ¼ 1=3, which describes the
marginal place where nonadjacency walls are becoming
unstable.

1. In the limit β → 1

We discuss the domain wall solution in the adjacency
branch with β → 1. The EOMs of h and a are given in
Eq. (35) and the boundary condition (BC)s are given
thereafter. As 1 − β ≪ 1, the VEV takes a large value as
jv0j ¼ jv1j ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
. The saddle point js0j ≈ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

p
is much loser to the origin of the h̄ − ā plane. One can
imagine that the path, which begins from v0, passes through
the saddle point s0, and arrives at v1, follows almost a
broken line with a right angle in the h̄ − ā plane. With the
help of this brief picture, we can split the path into two
halves 0 < −z̄ < þ∞ and 0 < z̄ < þ∞. Profiles of h̄ and ā
satisfy the permutation relation h̄ðz̄Þ ¼ āð−z̄Þ. Once pro-
files of two scalars in one half path are obtained, their
profiles in the other half path are obtained following the
permutation relation. Below, we will just focus on the
solution in the second half path, i.e., h̄ðz̄Þ and āðz̄Þ
for 0 < z̄ < þ∞.
In the range 0 < z̄ < ∞, h̄ < 1 ≪ ā is satisfied. One can

simply ignore the contribution of h̄ to the wall, and consider
only ā. The EOM of ā approximately given by

ā00ðz̄Þ ≈ ½−1þ ð1 − βÞā2�ā; ðA1Þ
and the BCs are āðz̄ → 0Þ ≈ 0 and āðz̄ → þ∞Þ≈
1=

ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
. The solution satisfies the tanh function,

āðz̄Þ ≈ 1ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p tanh
�

z̄ffiffiffi
2

p
�
: ðA2Þ

Thus, the thickness and tension of the wall are obtained as

δ̄ ≈
ffiffiffi
2

p
;

σ̄ ¼ 2

Z
∞

0

dz̄

�
1

2
ā02 þ ΔV̄

�
≈

2
ffiffiffi
2

p

3ð1 − βÞ : ðA3Þ

2. At β= 1=3

There is a critical value of β that the nonadjacency
wall begins to be unstable. We give an explicit proof
that β ¼ 1=3 is this value. Below we fix β at this value.
It is straightforward to check that each saddle point is
collinear with two of nonadjacent vacua and is the middle
point of the two vacua in the h̄ − ā plane. In detail,
si ¼ ðvi þ viþ1Þ=2 for i ¼ 0, 1, 2, 3, where v4 ¼ v0 is
identified.
We analytically calculate the domain wall solution with

boundary v0 and v1 on the two sides. With the following
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parametrization, φ̄1 ¼ ðh̄þ āÞ= ffiffiffi
2

p
and φ̄2 ¼ ðā − h̄Þ= ffiffiffi

2
p

,
Eq. (35) is decomposed to two decoupled equations

φ̄00
mðz̄Þ ¼

4

3

�
φ̄2
m −

� ffiffiffi
3

p

2

�
2
�
φ̄m; ðA4Þ

for m ¼ 1, 2. The boundary conditions are rewritten to be
φ̄1jz̄→∓∞ ¼ ffiffiffi

3
p

=2 and φ̄2jz̄→∓∞ ¼ ∓ ffiffiffi
3

p
=2. The solution is

simply given by

φ̄1ðz̄Þ ¼
ffiffiffi
3

p

2
; φ̄2ðz̄Þ ¼

ffiffiffi
3

p

2
tanh

�
z̄ffiffiffi
2

p
�
: ðA5Þ

The tension and thickness of the wall are obtained as σ̄ ¼ffiffiffi
2

p
=2 and δ̄ ¼ ffiffiffi

2
p

, respectively. Note that the tension here
is half of σZ2

ðβ ¼ 1=3Þ ¼ ffiffiffi
2

p
. Therefore, we have proven

that the tension of a nonadjacency wall is twice of the
tension of an adjacency wall.
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