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In spite of the success of the Standard Model of particle physics, there are some theoretical predictions
which are not yet fully established experimentally, as well as some experimental observations which cannot
be fitted within its theoretical framework, thus requiring physics beyond the Standard Model. One of these
is a hypothetical nonluminous form of matter–dark matter. Models with an extended scalar electroweak
sector yield plausible dark matter candidates. In this paper we study a specific model, C-III-a, from a family
of S3-symmetric three-Higgs-doublet models. The model consists of two active SU(2) doublets and an inert
one. The latter is inert due to a Z2 symmetry that survives the breaking of S3, and would accommodate a
dark matter particle. We explore the model numerically, based on theoretical and experimental constraints.
After applying a number of successive checks over the parameter space we found a viable dark matter mass
region in the range ½6.5; 44.5� GeV. This region is drastically different from the Higgs-like dark matter
states that have been proposed: the well-known inert doublet model and models with three scalar doublets,
with one or two inert doublets. Furthermore, the C-III-a model allows for spontaneous CP violation.
This means that the scalar potential explicitly conserves CP. However, in order to generate a realistic
Cabibbo-Kobayashi-Maskawa matrix we need to introduce complex Yukawa couplings.

DOI: 10.1103/PhysRevD.106.075002

I. INTRODUCTION

A variety of models have been proposed in order to
explain dark matter (DM), responsible for around a quarter
of the total mass-energy density of the Universe [1], in
terms of scalar particles. The simplest models of this kind
invoke an SU(2) singlet [2,3] or an inert doublet model
(IDM) [4,5]. Other models with additional SU(2) doublets
have been proposed and studied. Among the latter, there are
some in which the DM stability is provided by a remnant of
the symmetry of the potential. Introducing additional SU(2)
doublets, see Fig. 1, in general leads to more flexibility in
accommodating dark matter:
(1) By having two noninert doublets along with

one inert doublet [6–10], which is the case studied
here;

(2) By having one noninert doublet along with two inert
doublets [11–21].

Ideally, such models should also offer additional mech-
anisms for CP violation. An early model of this kind was
the “IDM2” [6]. It builds on three SU(2) doublets, one of
which is inert, whereas the two others basically constitute a
CP-violating two-Higgs doublet model (2HDM) [24,25].
In the IDM2, the stability of the DM is provided by a Z2

symmetry that is imposed ad hoc.
In a companion paper [10], we explored the possibility

of having DM in models based on a spontaneously broken
S3 symmetry, and studied one of these models in detail.
That model, denoted R-II-1a [26], does accommodate dark
matter, but it has a real vacuum, and preserves CP. Here,
we explore a rather similar model with real couplings, but
with a complex vacuum, referred to as C-III-a, which
violates CP spontaneously.
The paper is organized as follows. In Sec. II we introduce

the S3-symmetric potential, and discuss different dark
matter candidates within the S3-symmetric 3HDM. In
Sec. III the C-III-a model, on which the rest of our paper
is based, is presented by giving the scalar masses, rotations
leading to the physical scalars, scalar gauge couplings and
the Yukawa couplings. It has been shown that the C-III-a
model allows for spontaneous CP violation [26,27]. In
Sec. IV we discuss similarities and differences between the
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C-III-a model and other models within the S3-symmetric
3HDM. We discuss our approach to the numerical analysis
of the model in Sec. V by giving the model input and the
theoretical and experimental constraints. The C-III-a model
scan results are summarized in Sec. V D. In Sec. VI we
present our conclusions.

II. THE S3-SYMMETRIC MODELS

A. The scalar potential

In terms of the S3 singlet (1∶hS) and doublet
(2∶ðh1 h2ÞT) fields, the S3-symmetric potential can be
written as [28–30]:

V2 ¼ μ20h
†
ShS þ μ21ðh†1h1 þ h†2h2Þ; ð2:1aÞ

V4 ¼ λ1ðh†1h1 þ h†2h2Þ2 þ λ2ðh†1h2 − h†2h1Þ2 þ λ3½ðh†1h1 − h†2h2Þ2 þ ðh†1h2 þ h†2h1Þ2�
þ λ4½ðh†Sh1Þðh†1h2 þ h†2h1Þ þ ðh†Sh2Þðh†1h1 − h†2h2Þ þ H:c:� þ λ5ðh†ShSÞðh†1h1 þ h†2h2Þ
þ λ6½ðh†Sh1Þðh†1hSÞ þ ðh†Sh2Þðh†2hSÞ� þ λ7½ðh†Sh1Þðh†Sh1Þ þ ðh†Sh2Þðh†Sh2Þ þ H:c:� þ λ8ðh†ShSÞ2: ð2:1bÞ

There are two coefficients in the potential that could be
complex, thus CP can be broken explicitly. For simplicity,
we have chosen all coefficients to be real. In spite of this
choice there remains the possibility of breaking CP
spontaneously. Notice that the S3-symmetric potential,
when written in terms of the irreducible representations,
explicitly exhibits an inherent Z2 symmetry under which
h1 ↔ −h1 (or equivalently fh2; hSg → −fh2; hSg).
In the irreducible representation, the S3 fields will be

decomposed as

hi ¼
�

hþi
ðwi þ ηi þ iχiÞ=

ffiffiffi
2

p
�
; i ¼ 1; 2;

hS ¼
�

hþS
ðwS þ ηS þ iχSÞ=

ffiffiffi
2

p
�
; ð2:2Þ

where the wi and wS parameters can be complex.

For the S3-symmetric potential, 11 models with real
vacuum expectation values (vevs), and 17 with at least one
vev complex, have been identified [26]; different models
correspond to different regions of parameter space. We list
these models (vacua) in Fig. 2, also indicating whether the
vacuum is real (R-X-y) or complex (C-X-y). Our work will
focus on the C-III-a model, which is an extension of the
R-II-1a model [10]. Both of these models are highlighted in
red in Fig. 2. Along the horizontal axis σ1 and σ2 are the
phases of w1 and w2 in the phase convention where wS
is real.
The parameter λ4 plays an important role. Soft sym-

metry-breaking terms are required whenever we work
with solutions requiring λ4 ¼ 0, since in such cases most
vacua lead to massless scalar states, Goldstone bosons,
arising from the breaking of an O(2) symmetry. The
symmetry of the potential can be softly broken by the
following terms [31]:

R-II-1a

100 GeV

IDM

50 GeV 500 GeV200 GeV

3HDM

SCALAR DM MASS RANGES

IDM2

1000 GeV

3HDMCP

Z2

Z2

Z2

C-III-a

10 GeV 20 GeV5 GeV

FIG. 1. Sketch of allowed DM mass ranges up to 1 TeV in various models. Blue: IDM according to Refs. [22,23], the pale region
indicates a nonsaturated relic density. Red: IDM2 [9]. Ochre: three-Higgs-doublet model (3HDM) without [14,16,18] and with
CP violation [17]. Green: S3-symmetric 3HDM with a non-CP violating scalar sector (R-II-1a) [10] and with a CP violating scalar
sector (C-III-a).
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V 0
2 ¼ μ22ðh†1h1 − h†2h2Þ þ

1

2
ν212ðh†1h2 þ H:c:Þ

þ 1

2
ν201ðh†Sh1 þ H:c:Þ þ 1

2
ν202ðh†Sh2 þ H:c:Þ: ð2:3Þ

In accordance with the previous simplification of couplings
it is natural to assume that the soft terms are real. Although
in this work we do not consider soft symmetry breaking
some of the models presented (for completeness) in
Sec. II C require soft terms.

B. The Yukawa interaction

Whenever the singlet vev, wS, is different from zero we
can construct a trivial Yukawa sector, LY ∼ 1f ⊗ 1h (sub-
scripts “f” and “h” refer to fermions and scalars). In this
case, the fermion mass matrices are

Mu ¼
1ffiffiffi
2

p ðyuijÞw�
S; ð2:4aÞ

Md ¼
1ffiffiffi
2

p ðydijÞwS; ð2:4bÞ

where the y’s are the Yukawa couplings of the appropriate
fermions and are not constrained by the S3 symmetry.
Therefore, in this case the Yukawa couplings are com-
pletely general.
Another possibility is when fermions transform non-

trivially under S3, with a Yukawa Lagrangian written
schematically as LY ∼ ð2 ⊕ 1Þf ⊗ ð2 ⊕ 1Þh, one doublet
and one singlet of S3,

2∶ðQ1 Q2ÞT; ðu1R u2RÞT; ðd1Rd2RÞT and 1∶Q3; u3R; d3R:

Such structure yields the mass matrix for each quark sector
(d and u) of the form

Mu ¼
1ffiffiffi
2

p

0
B@

yu1w
�
S þ yu2w

�
2 yu2w

�
1 yu4w

�
1

yu2w
�
1 yu1w

�
S − yu2w

�
2 yu4w

�
2

yu5w
�
1 yu5w

�
2 yu3w

�
S

1
CA;

ð2:5aÞ

Md ¼
1ffiffiffi
2

p

0
B@

yd1wS þ yd2w2 yd2w1 yd4w1

yd2w1 yd1wS − yd2w2 yd4w2

yd5w1 yd5w2 yd3wS

1
CA:

ð2:5bÞ

Let us briefly consider what happens with the Yukawa
sector in this case. When the DM candidate resides in the
scalar S3 singlet, wS ¼ 0, we need the fermions only to
couple to the S3 doublet, schematically represented by
LY ∼ ð2 ⊕ 1Þf ⊗ 2h. Another possibility is when the
DM candidate resides in the scalar S3 doublet. To keep
notation simple, we shall write the Yukawa sector
LY ∼ ð2 ⊕ 1Þf ⊗ ð2 ⊕ 1Þh, assuming that wS ≠ 0, as the
general form of the fermion mass matrices persists.
However, in order to stabilize the DM candidate one needs
to introduce an additional Z2 symmetry in the Yukawa
sector to decouple a specific inert doublet from the
fermionic sector. Notice that whenever w1 ¼ 0 which is
the case in the model we study, the mass matrices become
block-diagonal. This case does not generate a realistic
CKM matrix. Therefore, we shall require that the quarks
transform trivially under S3 which means that they can only
couple to the S3-singlet Higgs doublet.
We recall that for a scalar doublet to accommodate a DM

candidate it must have a vanishing vev, since otherwise it
would decay via its gauge couplings (e.g., the SWþW− and
SZZ couplings). Such requirement puts severe restrictions
on the Yukawa interactions: as the number of free param-
eters, dependent on the vev, is reduced, it gets complicated
to generate realistic fermionic masses and a complex
Cabibbo-Kobayashi-Maskawa (CKM) matrix. In some
cases realistic quark masses and mixing can only be
generated if the quarks are taken to be S3 singlets and
only couple to the hS doublet.

C. Dark matter candidates in S3-based 3HDM

Some of the S3-symmetric models [26] have vacua
minimized for λ4 ¼ 0. Such models are associated with
unwanted, additional, Goldstone bosons. Soft breaking
terms of the S3 symmetry would have to be introduced
in the potential [31], note that soft breaking is not possible
in the Yukawa sector. When introducing soft breaking
terms, constraints will change. However, we will retain the
nomenclature of the unbroken case from which they

4

1, 2

R-0, R-I-1,R-I-2a,2b,2c,
R-II-1a,1b,1c

C-I-a

C-III-b,c, C-III-f,g,
C-IV-a,b, C-IV-d,e C-V

R-II-2, R-II-3,
R-III

C-III-a, C-III-d,e,
C-III-h,i, C-IV-c,f

4 constrained

FIG. 2. Overview of different vacua of the S3-symmetric
potential. The models in the heavy black box have λ4 constrained
by λ2 þ λ3 and/or λ7. Continuous symmetries arise whenever
λ4 ¼ 0. The model studied here and the one studied in the
companion paper [10] are indicated in red. The exact location of
the boxes, other than the indication of whether or not they are on
any of the axes or at the origin, is arbitrary.
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originate, thus when adding soft-breaking terms to R-I-1,
we denote it r-I-1.
Different S3-symmetric, and softly broken, models

allowing to accommodate DM were identified in Ref. [10].
Most of the models are ruled out due to unrealistic Yukawa
sector. Possible DM candidates are (indicating an inert
doublet and the Yukawa Lagrangian):

(i) R-I-1/r-I-1-μ22: DM ∼ h1 or DM ∼ ðh1; h2Þ,
LY ∼ 1f ⊗ 1h;

(ii) R-II-1a: DM ∼ h1, LY ∼ 1f ⊗ 1h [10];
(iii) r-III-s-ðμ22; ν201Þ: DM∼h2, LY ∼ð2⊕1Þf⊗ ð2⊕1Þh

or LY ∼ 1f ⊗ 1h;
(iv) C-III-a: DM ∼ h1, LY ∼ 1f ⊗ 1h;
(v) c-III-b-μ22: DM ∼ h2, LY ∼ ð2 ⊕ 1Þf ⊗ ð2 ⊕ 1Þh

or LY ∼ 1f ⊗ 1h;
(vi) c-III-c-ðμ22; ν212Þ: DM ∼ hS, LY ∼ ð2 ⊕ 1Þf ⊗ 2h;
(vii) c-IV-a-ðμ22;ν201Þ: DM∼h2, LY ∼ð2⊕1Þf⊗ ð2⊕1Þh

or LY ∼ 1f ⊗ 1h;

An R-I-1-like model was studied in Refs. [11,13].
The vacuum of the model is given by ð0; 0; wSÞ. In order
to stabilize the h2 doublet the authors imposed λ4 ¼ 0.
Moreover, there are 3 pairs of mass-degenerate states,
both neutral and charged, present between the h1 and h2
doublets. The degeneracy was lifted after introducing soft
symmetry-breaking terms. It was found that this model may
give rise to a viable DM candidate.
The R-II-1a model was studied in Ref. [10]. The neutral

scalar eigenstates of the inert doublet (DM candidate), h1,
correspond to mass eigenstates. There is no mixing
between those states and they have opposite CP parities.
Therefore, either of the particles could potentially be a DM
candidate, whichever is lighter. The numerical analysis
led to the conclusion that only one of these particles could
be a good dark matter candidate. The one for which the
mass is proportional to λ4 was excluded. The range
compatible with the applied constraints was identified
to be mDM ∈ ½52.5; 89� GeV. Unlike the case for the
IDM-like models, depicted in Fig. 1, where a viable DM
high-mass region is present, this is not the case for R-II-1a.
The main reason for this fact is that the inert-active scalar
portal of R-II-1a is constrained by the underlying S3
symmetry rendering it impossible to adjust it at higher
DM masses.
In this work we shall consider the C-III-a model. In

contrast to the aforementioned models the C-III-a vacuum
allows for a nontrivial phase. This solution violates CP
spontaneously [26].

III. THE C-III-A MODEL

A. Generalities

The C-III-a vacuum is defined by [26]

fw1; w2; wSg ¼ f0; ŵ2eiσ; ŵSg; ð3:1Þ

which is reminiscent of the R-II-1a vacuum, f0; w2; wSg ∈
Re. The only difference is that w2 is complex. For complex
cases “hat,” ŵi, refers to the absolute value.
The minimization conditions are

μ20 ¼ −
1

2
λbŵ2

2 − λ8ŵ2
S; ð3:2aÞ

μ21 ¼ −ðλ1 þ λ3Þŵ2
2 −

1

2
ðλb − 8 cos2 σλ7Þŵ2

S; ð3:2bÞ

λ4 ¼
4 cos σŵS

ŵ2

λ7; ð3:2cÞ

with

λb ¼ λ5 þ λ6 − 2λ7: ð3:3Þ

The DM candidate resides in the h1 doublet. The Z2

symmetry is preserved for

h1 → −h1; or else fh2; hSg → −fh2; hSg: ð3:4Þ

It is convenient to redefine the decomposition (2.2) of h2
by extracting an overall phase,

h2 ¼ eiσ
�

h0þ2
ðŵ2 þ η02 þ iχ02Þ=

ffiffiffi
2

p
:

�
ð3:5Þ

In the sequel we omit the primes on hþ2 , η2 and χ2.
A trivial Yukawa sector is assumed, LY ∼ 1f ⊗ 1h, and

thus the S3 singlet is solely responsible for masses of
fermions. Making wS a reference point, we define:

tan β ¼ ŵ2

ŵS
: ð3:6Þ

The vevs can be parametrized as:

ŵ2¼v sin β; ŵS¼v cos β; ŵ2
2þ ŵ2

S¼v2: ð3:7Þ

With the following rotation:

Rβ ¼
1

v

0
B@

v 0 0

0 ŵ2 ŵS

0 −ŵS ŵ2

1
CA ¼

0
B@

1 0 0

0 sin β cos β

0 − cos β sin β

1
CA;

ð3:8Þ

we have

KUNČINAS, OGREID, OSLAND, and REBELO PHYS. REV. D 106, 075002 (2022)

075002-4



Rβ

0
B@

0

ŵ2

ŵS

1
CA ¼

0
B@

0

v

0

1
CA: ð3:9Þ

Compared with R-II-1a, this model has one more
parameter. The C-III-a vacuum acquires a nonvanishing
relative phase σ. This comes at the “cost” of an additional
constraint among two quartic terms, Eq. (3.2c). In fact, if
we use this constraint for cos σ ¼ 1, the expressions for μ20
and μ21 coincide between R-II-1a and C-III-a. For conven-
ience we list the R-II-1a minimization conditions:

R-II-1a∶ μ20 ¼
1

2
λ4

w3
2

wS
−
1

2
λaw2

2 − λ8w2
S; ð3:10aÞ

R-II-1a∶ μ21¼−ðλ1þλ3Þw2
2þ

3

2
λ4w2wS−

1

2
λaw2

S; ð3:10bÞ

with λa ¼ λ5 þ λ6 þ 2λ7. However, there is a subtlety,
discussed in Sec. III B 2, that forces σ ≠ 0 for C-III-c.
This special limit will be discussed in Sec. IV.

B. C-III-a masses

1. Charged mass-squared matrix

The charged mass-squared matrix in the fhþ1 ; hþ2 ; hþS g
basis is given by:

M2
Ch ¼

0
B@

ðM2
ChÞ11 0 0

0 ðM2
ChÞ22 ðM2

ChÞ23
0 ðM2

ChÞ23 ðM2
ChÞ33

1
CA; ð3:11Þ

where

ðM2
ChÞ11 ¼ −2λ3ŵ2

2 −
1

2
½λ6 − 10λ7 − 8λ7 cosð2σÞ�ŵ2

S;

ð3:12aÞ

ðM2
ChÞ22 ¼ −

1

2
ðλ6 − 2λ7Þŵ2

S; ð3:12bÞ

ðM2
ChÞ23 ¼

1

2
ðλ6 − 2λ7Þŵ2ŵS; ð3:12cÞ

ðM2
ChÞ33 ¼ −

1

2
ðλ6 − 2λ7Þŵ2

2: ð3:12dÞ

The charged mass-squared matrix is diagonalizable by
Eq. (3.8). The physical scalar states are given by:

hþ ¼ hþ1 ; ð3:13aÞ

Gþ ¼ sin β hþ2 þ cos β hþS ; ð3:13bÞ

Hþ ¼ − cos β hþ2 þ sin β hþS ; ð3:13cÞ

with masses:

m2
hþ ¼ −2λ3ŵ2

2 −
1

2
½λ6 − 10λ7 − 8λ7 cosð2σÞ�ŵ2

S; ð3:14aÞ

m2
Hþ ¼ −

1

2
ðλ6 − 2λ7Þv2: ð3:14bÞ

Positivity of the mass-squared parameters requires the
following constraints to be satisfied:

λ6 < −4λ3 tan2 β þ 2λ7½5þ 4 cosð2σÞ�; ð3:15aÞ

λ6 < 2λ7: ð3:15bÞ

2. Inert-sector neutral mass-squared matrix

The inert sector mass-squared matrix is in the fη1; χ1g
basis given by:

M2
N1 ¼

� ðM2
N1Þ11 ðM2

N1Þ12
ðM2

N1Þ12 ðM2
N1Þ22

�
; ð3:16Þ

where

ðM2
N1Þ11 ¼ −2ðλ2 þ λ3Þsin2σŵ2

2 þ 2λ7½5þ 4 cosð2σÞ�ŵ2
S;

ð3:17aÞ

ðM2
N1Þ12 ¼ ½ðλ2 þ λ3Þŵ2

2 þ 2λ7ŵ2
S� sinð2σÞ; ð3:17bÞ

ðM2
N1Þ22 ¼ −2½ðλ2 þ λ3Þŵ2

2 − 4λ7ŵ2
S�cos2σ: ð3:17cÞ

This mass-squared matrix is diagonalizable

RγM2
N1R

T
γ ¼ M̂2

N1; ð3:18Þ

by

Rγ ¼
�

cos γ sin γ

− sin γ cos γ

�
; ð3:19Þ

where

tanð2γÞ ¼ ½ðλ2 þ λ3Þŵ2
2 þ 2λ7ŵ2

S� sinð2σÞ
ðλ2 þ λ3Þ cosð2σÞŵ2

2 þ λ7½3þ 2 cosð2σÞ�ŵ2
S
:

ð3:20Þ

The physical neutral states are

φ1 ¼ cos γ η1 þ sin γχ1; ð3:21aÞ

φ2 ¼ − sin γ η1 þ cos γ χ1; ð3:21bÞ
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with masses

m2
φ1
¼−2ðλ2þ λ3Þŵ2

2 sin
2ðγ−σÞ

þ λ7ŵ2
S½7þ6 cosð2σÞþ3 cosð2γÞþ2 cosð2γ−2σÞ�;

ð3:22aÞ

m2
φ2
¼−2ðλ2þ λ3Þŵ2

2 cos
2ðγ−σÞ

þ λ7ŵ2
S½7þ6 cosð2σÞ−3 cosð2γÞ−2 cosð2γ−2σÞ�:

ð3:22bÞ

Equations (3.14) and (3.22) allow us to express λ2, λ3, λ6
and λ7 in terms of the four squared masses m2

hþ , m
2
Hþ , m2

φ1
,

andm2
φ2
, as will be done in Appendix A. On the other hand,

if one takes λ’s as input, one finds that,

m2
φi
¼ −ðλ2 þ λ3Þŵ2

2 þ λ7½7þ 6 cosð2σÞ�ŵ2
S ∓ Δ; ð3:23Þ

where

Δ2 ¼ ½ðλ2 þ λ3Þŵ2
2 þ λ7ð2þ 3 cosð2σÞÞŵ2

S�2
þ 9λ27sin

2ð2σÞŵ4
S: ð3:24Þ

To ensure positivity ofm2
φi
, if not taken as an input, we need

to impose a constraint on the λ7 coupling. For cos σ ≠ 0,
we find

λ7 > ðλ2 þ λ3Þ
tan2β
4 cos2σ

: ð3:25Þ

Substituting the results for λ’s from Appendix A into the
expression (3.20), we find

fþðσ; γÞm2
φ1

¼ f−ðσ; γÞm2
φ2
; ð3:26aÞ

with

f�ðσ; γÞ ¼ ½3þ 2 cosð2σÞ� sinð2γ − 2σÞ
þ sinð2γÞ � sinð2σÞ: ð3:26bÞ

In Fig. 3 we show in color regions where m2
φ2

> m2
φ1
.

The red edge is where m2
φ1
=m2

φ2
→ 0. In the white and gray

regions, the ratio is either negative (white) or below 1
(gray). In fact, the latter region is identical to the colored
one, after a solid rotation by 180 degrees, fσ; γg → fπ − σ;
π=2 − γg, equivalent to an interchange of the two coef-
ficients in Eq. (3.26).
One observes from Eq. (3.24) that these states would

become degenerate in the limit1

ðλ2 þ λ3Þŵ2
2 þ λ7½2þ 3 cosð2σÞ�ŵ2

S → 0; ð3:28aÞ

if simultaneously

λ7 sinð2σÞŵ2
S → 0: ð3:28bÞ

However, this limit is only reached for λ2 þ λ3 → 0 and
λ7 → 0, corresponding to massless states.

FIG. 3. The ratio gðγ; σÞ ¼ m2
φ2
=m2

φ1
¼ fþðσ; γÞ=f−ðσ; γÞ is shown for gðγ; σÞ > 1. Contours are shown at 2 (transition from blue to

green), 5 (transition from green to yellow) and 10 (transition from yellow to red). According to Eq. (3.26) the ratio depends on σ only via
the cosine and sine of 2σ, and is thus the same for σ and σ þ π, as illustrated.

1Equation (3.26) suggests that they might be near-degenerate
in the limit σ → ϵ, with ϵ ≪ 1. In this limit

λ2 þ λ3 ≃
1

12ŵ2
2σ

½−ðσ cos 2γ þ 2 sin 2γÞðm2
φ2

−m2
φ1
Þ

− σðm2
φ1

þm2
φ2
Þ�; ð3:27aÞ

λ7 ≃
1

24ŵ2
Sσ

½ðσ cos 2γ − sin 2γÞðm2
φ2

−m2
φ1
Þ þ σðm2

φ1
þm2

φ2
Þ�;

ð3:27bÞ

so degeneracy actually requires m2
φ2

→ m2
φ1

→ 0.
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The mass gap. Eliminating γ from the Eq. (A1), one finds
expressions for λ2, λ3, λ6 and λ7 involving a square root, the
argument of which must be positive:

9ðm2
φ2
−m2

φ1
Þ2 − 4m2

φ1
m2

φ2
tan2σ > 0: ð3:29Þ

For finite values of σ this condition can be rephrased as a
condition on the mass gap

δ ¼ m2
φ2
−m2

φ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

φ1
m2

φ2

q >
2

3
j tan σj; ð3:30Þ

shown in Fig. 4. Indeed, for a fixed value of σ the absolute
mass gap is proportional to the absolute mass scale. This
poses a challenge for the high-mass region, see Fig. 1,
where the electroweak precision data constrain the mass
splitting.

3. Non-inert-sector neutral mass-squared matrix

The neutral mass-squared matrix in the basis of
fη2; ηS; χ2; χSg is given by:

M2
N2S¼

0
BBBBB@
ðM2

N2SÞ11 ðM2
N2SÞ12 ðM2

N2SÞ13 ðM2
N2SÞ14

ðM2
N2SÞ12 ðM2

N2SÞ22 ðM2
N2SÞ14 ðM2

N2SÞ24
ðM2

N2SÞ13 ðM2
N2SÞ14 ðM2

N2SÞ33 ðM2
N2SÞ34

ðM2
N2SÞ14 ðM2

N2SÞ24 ðM2
N2SÞ34 ðM2

N2SÞ44

1
CCCCCA;

ð3:31Þ

where

ðM2
N2SÞ11 ¼ 2ðλ1 þ λ3Þŵ2

2 − 6λ7cos2σŵ2
S; ð3:32aÞ

ðM2
N2SÞ12 ¼ ðλb − 2λ7 cos2σÞŵ2ŵS; ð3:32bÞ

ðM2
N2SÞ13 ¼ λ7 sinð2σÞŵ2

S; ð3:32cÞ

ðM2
N2SÞ14 ¼ −λ7 sinð2σÞŵ2ŵS; ð3:32dÞ

ðM2
N2SÞ22 ¼ 2ðλ7cos2σŵ2

2 þ λ8ŵ2
SÞ; ð3:32eÞ

ðM2
N2SÞ24 ¼ λ7 sinð2σÞŵ2

2; ð3:32fÞ

ðM2
N2SÞ33 ¼ 2λ7 sin2 σŵ2

S; ð3:32gÞ

ðM2
N2SÞ34 ¼ −2λ7 sin2 σŵ2ŵS; ð3:32hÞ

ðM2
N2SÞ44 ¼ 2λ7 sin2 σŵ2

2: ð3:32iÞ

Due to CP nonconservation, the physical scalars will
be combinations of all fields fη2; ηS; χ2; χSg. In order to
identify physical states we start by rotating M2

N2S,

0
BBB@

ϕ1

ϕ2

G0

ϕ3

1
CCCA ¼ I2 ⊗

�
sin β cos β

− cos β sin β

�0BBB@
η2

ηS

χ2

χS

1
CCCA: ð3:33Þ

Upon identifying the Goldstone boson, G0, the remaining
3 × 3 mass-squared matrix in the ϕi basis becomes

M2
ϕ ¼

0
BB@

ðM2
ϕÞ11 ðM2

ϕÞ12 0

ðM2
ϕÞ12 ðM2

ϕÞ22 ðM2
ϕÞ23

0 ðM2
ϕÞ23 ðM2

ϕÞ33

1
CCA; ð3:34Þ

where

ðM2
ϕÞ11 ¼

2

v2
½ðλ1 þ λ3Þŵ4

2 þ ðλb − 4λ7 cos2σÞŵ2
2ŵ

2
S þ λ8ŵ4

S�; ð3:35aÞ

ðM2
ϕÞ12 ¼

−1
v2

½ð2λ1 þ 2λ3 − λbÞŵ3
2ŵS þ ðλb − 8λ7cos2σ − 2λ8Þŵ2ŵ3

S�; ð3:35bÞ

ðM2
ϕÞ22 ¼

2

v2
½ðλ1 þ λ3 − λb þ 2λ7 cos2 σ þ λ8Þŵ2

2ŵ
2
S þ λ7 cos2 σðŵ4

2 − 3ŵ4
SÞ�; ð3:35cÞ

FIG. 4. The mass gap δ vs σ in the neutral inert sector. The
green region is allowed.
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ðM2
ϕÞ23 ¼ v2 λ7 sinð2σÞ; ð3:35dÞ

ðM2
ϕÞ33 ¼ 2v2λ7 sin2σ: ð3:35eÞ

This matrix, M2
ϕ, can be diagonalized in terms of the R0

rotation

0
BB@

H1

H2

H3

1
CCA ¼ R0

0
BB@

ϕ1

ϕ2

ϕ3

1
CCA; ð3:36Þ

with R0 parametrized as

R0 ≡

0
BB@

1 0 0

0 cos θ3 sin θ3
0 − sin θ3 cos θ3

1
CCA
0
BB@

cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

1
CCA

×

0
BB@

cos θ1 sin θ1 0

− sin θ1 cos θ1 0

0 0 1

1
CCA; ð3:37Þ

where we impose on the three neutral scalar states Hi the
convention mHi

≤ mHiþ1
.

With λ’s as input, one could proceed to perform diagonal-
ization ofM2

ϕ. In order to havemore control over the physical
aspects one would start with one or two masses as input,
together with several angles of the mixing matrix, and then
determine λ’s. Such approach is discussed in Appendix A 2.

4. Mass eigenstates

The SU(2) doublets in terms of the mass eigenstates are

h1 ¼ eiγ
�

hþ

ðφ1 þ iφ2Þ=
ffiffiffi
2

p
�
; ð3:38aÞ

h2 ¼ eiσ
 

sin βGþ − cos βHþ�
sin β vþ i sin βG0 þP3

i¼1 ½sin βR0
i1 − cos βðR0

i2 þ iR0
i3Þ�Hi

�
=
ffiffiffi
2

p
!

¼ eiσ
 

sin βGþ − cos βHþ�
sin β vþ i sin βG0 þP3

i¼1 A2iHi

�
=
ffiffiffi
2

p
!
; ð3:38bÞ

hS ¼
�

cos βGþ þ sin βHþ

ðcos β vþ i cos βG0 þP3
i¼1 ½cos βR0

i1 þ sin β ðR0
i2 þ iR0

i3Þ�HiÞ=
ffiffiffi
2

p
�

¼
�

cos βGþ þ sin βHþ

ðcos β vþ i cos βG0 þP3
i¼1 ASiHiÞ=

ffiffiffi
2

p
�
; ð3:38cÞ

where Aij is a complex quantity, implicitly defined by these equations. For simplicity, we extracted the γ phase from h1. This
lets φ1 and φ2 be interpreted as mass eigenstates.

C. The C-III-a couplings

Below, we quote the gauge and Yukawa couplings of the C-III-a model. The scalar-sector couplings are collected in
Appendix B.

1. Gauge couplings

The gauge-scalar interactions of the C-III-a model are

LVVH ¼
�

g
2cw

mZZμZμ þ gmWWþ
μ Wμ−

�X3
i¼1

R0
i1Hi; ð3:39aÞ
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LVHH ¼ −
g
2cw

Zμ

�X3
i<j¼2

ðR0
i2R

0
j3 −R0

i3R
0
j2ÞHi∂μ

↔
Hj þ φ1∂μ

↔
φ2

�

−
g
2

	
iWþ

μ

�X3
i¼1

ðR0
i2 þ iR0

i3ÞH−
∂
μ

↔
Hi þ h−∂μ

↔ðφ1 þ iφ2Þ
�
þ H:c:




þ
�
ieAμ þ ig

2

c2w
cw

Zμ

�
ðHþ

∂μ

↔
H− þ hþ∂μ

↔
h−Þ; ð3:39bÞ

LVVHH ¼
�
g2

8c2w
ZμZμ þ g2

4
Wþ

μ Wμ−
�
ðH2

1 þH2
2 þH2

3 þ φ2
1 þ φ2

2Þ

þ
	�

eg
2
AμWþ

μ −
g2

2

s2w
cw

ZμWþ
μ

��X3
i¼1

ðR0
i2 þ iR0

i3ÞHiH− þ ðφ1 þ iφ2Þh−
�
þ H:c:




þ
�
e2AμAμ þ eg

c2w
cw

AμZμ þ g2

4

c22w
c2w

ZμZμ þ g2

2
W−

μWμþ
�
ðH−Hþ þ h−hþÞ: ð3:39cÞ

In terms of the mass eigenstates (3.36), the SM-like
Higgs boson could be identified with one of the Hi fields if
Hi happens to be the only field that couples to the gauge
bosons in Eq. (3.39a). Therefore, for a given Hi to be the
SM-like Higgs field, this would require

R0
i1 → 1; ð3:40Þ

where the rotation matrix R0 is orthogonal, and hence
ðR0

i1Þ2 þ ðR0
i2Þ2 þ ðR0

i3Þ2 ¼ 1. This means that all other
entries of the row i and column 1 of the matrix R0 in
Eq. (3.37) would have to be zero.
From Eq. (3.33) we may conclude that ϕ1 can be

identified with the SM-like Higgs boson provided that it
is already a mass eigenstate. The rotation given by
Eq. (3.33) guarantees that it is ϕ1 together with G0 that
appear in the new basis as the neutral fields of the only
doublet that acquires a vev. The field ϕ1 would be a
physical field when ðM2

ϕÞ12 of Eq. (3.35b) is zero and, as a
result, its mass is then given by ðM2

ϕÞ11 in Eq. (3.35a).
Imposing R0

i1 ¼ 1 for any i always leads to Hi ≡ ϕ1.

2. Yukawa couplings

There are two possibilities to construct the Yukawa
Lagrangian:

LY ∼ ð2 ⊕ 1Þf ⊗ ð2 ⊕ 1Þh; and

LY ∼ 1f ⊗ 1h:

Although the first option can give realistic fermion masses,
the CKM matrix splits into a block-diagonal form. We
consider the trivial representation for fermions2:

−LY ¼ Q0
iLy

d
ijhSd

0
jR þQ0

iLy
u
ijh̃Su

0
jR

þ ðleptonic sectorÞ þ H:c:; ð3:41Þ

where h̃S is the charge conjugated of hS, i.e., h̃S ¼ iσ2h�S.
The superscript “0” on the fermion fields indicates weak-
basis fields.
For the trivial Yukawa sector, the CKM matrix,

VCKM ¼ V†
uVd, can be easily fixed to match the exper-

imental value. Moreover, there is natural flavor conserva-
tion since the symmetry, whenever the fermions are singlets
of S3, only allows for the fermions to couple to one of the
scalar doublets. There are no tree-level flavor changing
neutral currents. The scalar-fermion couplings can be
extracted from Eq. (3.41) by transforming into the fermion
mass-eigenstate basis and multiplying the appropriate
coefficients by −i:

gðHiūuÞ ¼
mu

v
½−iðR0

i1 þR0
i2 tan βÞ − γ5R0

i3 tan β�;
ð3:42aÞ

gðHid̄dÞ ¼
md

v
½−iðR0

i1 þR0
i2 tan βÞ þ γ5R0

i3 tan β�:
ð3:42bÞ

The leptonic Dirac mass terms lead to similar relations.
Due to the CP-indefinite nature ofHi, the scalar-fermion

decay rate is given by

ΓðHi→ f̄fÞ¼NcmHi
m2

f

8πv2

��
1−4

m2
f

m2
Hi

�3=2

jR0
i1þR0

i2 tan βj2

þ
�
1−4

m2
f

m2
Hi

�1=2

jR0
i3 tan βj2

�
; ð3:43Þ

2In our study neutrino masses are of no particular interest.
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with Nc the number of colors (Nc ¼ 3 for quarks and Nc ¼
1 for leptons). We approximate the decay rate ratio of the
SM-like Higgs boson to that of the SM as

κ2ff ≈ jR0
11 þR0

12 tan βj2 þ
�
1 − 4

m2
f

m2
hSM

�−1

jR0
13 tan βj2:

ð3:44Þ

This equation will be used as a measure of the SM-like limit
for the fermion couplings.
Finally, the charged scalar-fermion couplings are

gðHþūidjÞ¼ i

ffiffiffi
2

p

v
tan β½PLmu−PRmd�ðVCKMÞij; ð3:45aÞ

gðH−d̄iujÞ¼ i

ffiffiffi
2

p

v
tan β½PRmu−PLmd�ðV†

CKMÞji; ð3:45bÞ

gðHþν̄lÞ ¼ −i
ffiffiffi
2

p
ml

v
tan βPR; ð3:45cÞ

gðH−l̄νÞ ¼ −i
ffiffiffi
2

p
ml

v
tan βPL: ð3:45dÞ

The structure of the charged scalar couplings resembles
the 2HDM Type-I model, except that in our definition
tan β is the inverse in the sense that the vev of the doublet
that couples to the fermions appears in the denominator.

IV. RELATIONS AMONG S3-BASED MODELS

Some of the S3-based models share certain properties, in
particular C-III-a and R-II-1a, as will be discussed below.

A. Relation of the C-III-a model
to other S3-based 3HDMs

The C-III-a model can be related to several other
S3-based models [26], by considering special limits leading
to models neither with w1 proportional to w2 nor with
vanishing vevs w2 or wS. However, such relations cannot
always be established. Further insights can be obtained by
consulting Ref. [26].
For cos σ ¼ 0, the mass splitting between the neutral

states of the C-III-a inert sector, Eq. (3.24), becomes

Δ ¼ jðλ2 þ λ3Þŵ2
2 − λ7ŵ2

Sj; ð4:1Þ

and one of the states of that sector becomes massless due
to the O(2) symmetry originating from putting λ4 ¼ 0 [31],
and definite CP parities. This case is equivalent to C-III-f
ð�iŵ1; iŵ2; ŵSÞ or C-III-g ð�iŵ1;−iŵ2; ŵSÞ, depending on
the quadrant of the phase σ, with ŵ1 ≪ v. Then, for Δ ¼ 0,
and λ7 ¼ ðλ2 þ λ3Þ tan2 β, both states become massless,

irrespective of the value of λ7. Due to an additional
constraint in terms of λ7, this configuration becomes
equivalent to C-IV-b ðŵ1;�iŵ2; ŵSÞ with ŵ1 ≪ v.
However, in the C-IV-b model only one massless state
arises due to the O(2) symmetry [31]. It should be noticed
that one of the mass eigenvalues of C-IV-b explicitly
depends on ŵ2

1.
Some other vacua [26] of the form ð0; x; yÞ can be

reached. The R-II-1a is a special case and is discussed in the
following subsection. The only other real model with an
equivalent vacuum is R-III ðw1; w2; wSÞ. It is impossible to
reach this model as R-III would simultaneously require
both σ ¼ 0 and λ4 ¼ 0. However, for this to be satisfied, the
only possibility is to set λ7 ¼ 0, which is not required by
R-III. Moving to the complex vacua, there are some other
possible cases. The C-III-d ð�iŵ1; ŵ2; ŵSÞ and C-III-e
ð�iŵ1;−ŵ2; ŵSÞ cases are not reachable as one of the
minimization constraints depends on the λ2 þ λ3 term,
whereas C-III-a does not. Next, it is possible to reach
C-IV-d ðŵ1eiσ1 ;�ŵ2eiσ1 ; ŵSÞ, which is real, by setting
λ7 ¼ 0. In this case an additional Oð2Þ ⊗ Uð1ÞhS symmetry
arises, see Ref. [31], which is spontaneously broken,
yielding two massless states. Finally, when both λ2 þ λ3 ¼
0 and λ7 ¼ 0 are satisfied, C-III-a becomes a special case of
C-V ðŵ1eiσ1 ; ŵ2eiσ2 ; ŵSÞ, which is, actually, real. In this
case there is an additional Oð2Þ ⊗ Uð1Þh1 ⊗ Uð1Þh2 ⊗
Uð1ÞhS symmetry.
An overview of the above relations is summarized in

Table I.

B. R-II-1a vs C-III-a

Both R-II-1a and C-III-a have vevs of the form ð0; x; yÞ:

R-II-1a∶ ð0; w2; wSÞ; C-III-a∶ ð0; ŵ2eiσ; ŵSÞ:

In R-II-1a there is no mixing between η1 and χ1, which
are the neutral components of the h1 doublet, and in
addition the neutral mass squared matrix in the fh2; hSg
sector is 2 × 2 block diagonal in such a way that the
CP-odd states do not mix with the CP even states. All
physical neutral states in R-II-1a have definite CP parity.
In the C-III-a vacuum there is no such separation and the
physical neutral scalars are not CP eigenstates.
One might expect to recover all the R-II-1a masses and

mixing from those of C-III-a by simply taking the limit
σ ¼ 0, but as can be seen from the results presented in the
previous sections, this is not the case. One may wonder
why the R-II-1a case is not trivially recovered from
the C-III-a case by simply taking σ equal to zero. The
explanation is simple, one just has to look at the
minimization condition coming from the variation of σ
which requires:

ŵ2
2ŵS sin σðλ4ŵ2 − 4λ7ŵS cos σÞ ¼ 0: ð4:2Þ
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We have two factors and the minimization conditions
are satisfied either for σ ¼ 0 leading to the real solution
R-II-1a, or for λ4 related to λ7 by Eq. (3.2c). There is no
need to impose both conditions at the same time. R-II-Ia
does not require this additional condition relating λ4 to λ7.
Imposing both σ ¼ 0 and the condition given by

Eq. (3.2c) at the same time would lead to physical states
with definite CP parities. Furthermore, the CP-odd sector
ðχ2; χSÞ would become massless, i.e., an additional mass-
less state would arise. The neutral sector of h1 would also
be diagonal.

V. MODEL ANALYSIS

The model is analyzed using the following input:
(i) The lightest Hi state is the SM-like Higgs with

mH1
¼ 125.25 GeV [32];

(ii) The Higgs basis rotation angle β ∈ ½0; π=2� and the
phase σ ∈ ½−π; π�;

(iii) The diagonalization angles γ ∈ ½0; π�, θ2 ∈ ½−π=2;
π=2�, and θ3 ∈ ½−π=2; π=2�;

(iv) The charged scalar masses mφ�
i
⊃ fmhþ ; mHþg ∈

½0.07; 1� TeV;
(v) The dark matter candidate mφ1

∈ ½0; 1� TeV;
We are not using all the mass parameters as input. The
values of fmH2

; mH3
; mφ2

; θ1g are calculated based on
the input angles. By convention, the masses preserve the
hierarchy based on indices.

For the numerical parameter scan, both theoretical and
experimental constraints are imposed. Based on the con-
straints, several cuts are defined and applied, in analogy
with our companion paper [10]:

(i) Cut 1: perturbativity, stability, unitarity checks, LEP
constraints;

(ii) Cut 2: SM-like gauge and Yukawa sector, electro-
weak precision observables and B physics;

(iii) Cut 3: H1 → finvisible; γγg decays, DM relic den-
sity, direct searches;

with each of the subsequent constraint being superimposed
over the previous ones.

A. Cut 1 constraints

We start by putting constraints on the input masses.
The mass of the SM-like Higgs particle is fixed at
mH1

¼ 125.25 GeV [32]. In the extended Higgs sector
studies a conservative lower bound for the charged masses
is usually adopted as mφ�

i
≥ 80 GeV [33,34]. We shall

assume a more generous value of mφ�
i
≥ 70 GeV.

Moreover, measurements of the W� and Z widths at
LEP [35] forbid decays of the gauge bosons into a pair
of scalars. The lower limits on the scalar masses is set to be
mφi

þmh� > mW� , and mφ1
þmφ2

> mZ.
The theory constraints consist of several checks:
(i) Unitarity

The tree-level unitarity conditions for the S3-
symmetric 3HDM were presented in Ref. [30].

TABLE I. Relations of the C-III-a model to other S3-based models [26]. Most of the presented models, in the general form, do not
require w1 ¼ 0, while C-III-a does. In light of this, models are treated in the special limit of ŵ1 → 0, along with the explicit (general)
minimization conditions. The O(2) symmetry arises when λ4 ¼ 0, in which case there is no spontaneous CP violation. Other continuous
symmetries, if present, are specified. Massless states, in terms of a single scalar field (2.2), mXi

, or in terms of the mixing of fields,
mXi−Xj

, are presented.

Model Conditions Comments

R-II-1a
ð0; w2; wSÞ

σ ¼ 0 Special point in R-II-1a, λ4 ¼ 4λ7wS=w2.

R-III
ðw1; w2; wSÞ

Not reachable, λ7 ≠ 0 in R-III.

C-III-d; e
ð�iŵ1;ŵ2;ŵSÞ;
ð�iŵ1;−ŵ2;ŵSÞ

Not reachable. There are no vanishing couplings in C-III-d,e.

C-III-f; g
ð�iŵ1;iŵ2;ŵSÞ;
ð�iŵ1;−iŵ2;ŵSÞ

σ ¼ �π=2;
λ4 ¼ 0

Additional O(2) symmetry; mχ1 ¼ 0.

C-IV-b
ðŵ1;�iŵ2; ŵSÞ

σ ¼ �π=2;
λ4 ¼ 0;

λ7 ¼ ðλ2 þ λ3Þŵ2
2=ŵ

2
S

Exact C-IV-b: additional O(2) symmetry. C-III-a limit: another massless state;
mη1 ¼ mχ1 ¼ 0.

C-IV-d
ðŵ1eiσ1 ;�ŵ2eiσ1 ; ŵSÞ

λ4 ¼ λ7 ¼ 0 Additional Oð2Þ ⊗ Uð1ÞhS symmetry; mη1−χ1 ¼ mχ2−χS ¼ 0.

C-V
ðŵ1eiσ1 ; ŵ2eiσ2 ; ŵSÞ

λ2 þ λ3 ¼ λ4 ¼ λ7 ¼ 0
Additional Oð2Þ ⊗ Uð1Þh1 ⊗ Uð1Þh2 ⊗ Uð1ÞhS
symmetry; mη1 ¼ mχ1 ¼ mχ2−χS ¼ 0.
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The unitarity limit is evaluated enforcing the abso-
lute values of the eigenvalues Λi of the scattering
matrix to be within a specific limit. In our scan we
assume jΛij ≤ 16π [36]. Some authors prefer a more
severe bound jΛij ≤ 8π [37,38]. We compare the
impact of both in Fig. 5.

(ii) Perturbativity
The perturbativity check is split into two parts:

couplings are assumed to be within the limit
jλij ≤ 4π and the overall strength of the quartic
scalar interactions is limited by jgφiφjφkφl

j ≤ 4π.
The list of quartic scalar interactions gφiφjφkφl

can
be found in Appendix B. From the quartic interaction
h�h�h∓h∓ (B10a), it follows that 0 < λ1 þ λ3 ≤ π.
Evaluation of other couplings is more involved. An
interesting observation, based on data satisfying Cut
1, is that λ7 in (A1d) must be positive.

(iii) Stability
Necessary, but not sufficient, conditions for the

stability of an S3-symmetric 3HDM were provided
in Ref. [30]. We parametrize the SU(2) doublets in
terms of the spinor components,

hi ¼ jjhijjĥi; i ¼ f1; 2; Sg; ð5:1Þ
following the guideline presented in Refs. [6,39]. The
complex product between two different unit spinors
relies on six degrees of freedom. However, it was
pointed out that those six variables are not indepen-
dent, see Sec. III-C of Ref. [40]. As a result, positivity
conditionswould yield anoverconstrained λ parameter
space. In other words, the value of the potential would
be lower than the true minimum due to additional
parameters. To sum up, the norms of the spinors jjhijj
are parametrized in terms of the spherical coordinates

jjh1jj ¼ r cos γ sin θ; jjh2jj ¼ r sin γ sin θ;

jjhSjj ¼ r cos θ; ð5:2Þ
and the unit spinors are given by

ĥ1 ¼
�
0

1

�
; ĥ2 ¼

�
sinα2

cos α2eiβ2

�
;

ĥS ¼ eiδ
�

sin α3
cos α3eiβ3 :

�
; ð5:3Þ

FIG. 5. Scatter plots of masses that satisfy the theory constraints, Cut 1. Top: the charged sector, h� and H�. Bottom left: the inert
neutral sector, φ1 and φ2. Bottom right: the active heavy neutral sector, H2 and H3. The light-blue region accommodates the 16π
unitarity constraint, whereas the darker region satisfies the 8π constraint.
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Due to the freedom of the λ4 coupling the stability
conditions are rather involved. Our approach involves
checking the necessary stability constraints [30], and if
those are satisfied, with the help of the Mathematica
function NMinimize, using different algorithms, a
further numerical minimization of the potential is
performed.

By imposing the theory constraints we exclude regions
of the parameter space, as illustrated in Fig. 5. Some
masses, mHþ , mφ1

, and mH2
, are cut off at high values by

the perturbativity constraint, whereas mhþ , mφ2
, and mH3

are cut off by the unitarity constraint. As seen in the
bottom-left panel of Fig. 5, a gap develops between the
masses of the two neutral states of the inert sector, as
discussed in Sec. III B 2. Experimental constraints will
further reduce regions of the parameter space.

B. Cut 2 constraints

Cut 2 constraints are superimposed over those parameter
points which pass the Cut 1 constraints. For a point to pass
Cut 2, it needs to satisfy:

(i) SM-like limit
The SM-like limit for the gauge interactions was

presented in Eq. (3.40), and the scalar-fermion decay
rates were presented in Eq. (3.43). We recall that in
the C-III-a model the active neutral scalars are CP-
indefinite. In light of this, Eq. (3.44) is evaluated as a
probe of the SM-like limit for Higgs-fermion cou-
plings. We shall adopt the following 3-σ bounds
from the PDG [32]:

κ2VV ≡ ðR0
11Þ2

∈ f1.19� 3σg;which comes from hSM WþW−;

ð5:4aÞ

κ2ff ∈ f1.04� 3σg; which comes from hSMbb̄;

ð5:4bÞ

where R0
11 ¼ cos θ1 cos θ2. The gauge coupling

depends only on two variables, which are θ1 and θ2.
Nevertheless, there are other non-SM-like scalar
gauge couplings present, which do not vanish,
namely the trilinear ZH1Hi and W�H∓H1, and
quartic ðAW� þ ZW�ÞH∓H1. However, due to
kinematics those do not contribute to the width of
H1. On the other hand, κ2ff depends on fθ1; θ2; βg.

The 3-σ allowed regions in θ1, θ2 and β are given
in Fig. 6. The angles θ1 and θ2 surviving Cut 2 tend
to be small, whereas β populates regions around
0.2π and 0.4π. In our analysis values of θ1 are
calculated while angles β and θ2 are used as input.

(ii) Electroweak precision observables
The electroweak oblique parameters are specified

by the S, T, andU functions [41,42]. Sufficient mass
splittings of the extended electroweak sector can
lead to a non-negligible contribution. The S and T
parameters get the most sizeable contributions.
Results are compared against the experimental con-
straints provided by the PDG [32], assuming that
U ¼ 0. The model-dependent rotation matrices,
needed to evaluate the set of S and T, are presented
in Appendix C 1.

(iii) B physics constraints
The importance of a charged scalar exchange for

the B̄ → XðsÞγ rate has been known since the late
1980s [43–45]. Although three-Higgs-doublet mod-
els have two charged Higgs bosons, in the S3-based
models we are considering, only one of them
couples to fermions, the other one is in the inert
sector. This implies that we may follow the approach
of Misiak and Steinhauser [46], used for the 2HDM
with relative Yukawa couplings of the active charged
scalar, Eq. (3.45), which in the notation of Ref. [46]
corresponds to

Au ¼ Ad ¼ tan β; ð5:5Þ

FIG. 6. Constraints on θ1, θ2 and β from the gauge and Yukawa couplings. Red: values satisfying simultaneously κ2VV and κ2ff at 3-σ.
Green: values satisfying Cut 2, plotted over the red-colored background. Values of β for which ŵ2 or ŵS vanish are identified by blue
lines. The range of θ2 has been reduced due to the symmetry under θ2 → −θ2.
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since, as pointed out before, the tan β here is the
inverse of their tan β. According to Eq. (5.5) the
relevant couplings are the same as those of the 2HDM
type I model, with the exception that here we are
interested in small values of tan β. The B̄ → XðsÞγ
constraint excludes values of j tan βj larger than four.
After applying Cut 3 the allowed range is shrunk to
j tan βj < 1.
We adopt techniques presented in the companion

paper [10]. The experimental value is taken to be
BrðB̄ → XðsÞγÞ × 104 ¼ 3.32� 0.15 [32]. We im-
pose an ðn ¼ 3Þ-σ tolerance, together with an addi-
tional ten percent computational uncertainty,

BrðB̄ → XðsÞγÞ × 104

¼ 3.32�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3.32 × 0.1Þ2 þ ð0.15nÞ2

q
: ð5:6Þ

The acceptable region, corresponding to the 3-σ
bound, is [2.76; 3.88].

After applying Cut 2 the mass ranges of Fig. 5 are
reduced. The mass scatter plots satisfying Cut 1 and Cut 2
are presented in Fig. 7. The most obvious reduction of
the allowed parameters is in the charged sector. The
B̄ → XðsÞγ constraint introduces cuts in two regions of
the charged-Higgs masses, i.e., to the left and to the right
of the allowed 3-σ yellow, region. However, for relatively
light charged scalars H� with mH� ≲ 300 GeV, heavier
h� states with mh� > 600 GeV, are allowed by the
B̄ → XðsÞγ constraint. However, this region, for heavy
h� states, is excluded by the SM-like constraints and
electroweak precision observables. On the other hand,
heavy H� scalars are disfavored by the electroweak
precision observables. The upper-right corner of the
mφ1

-mφ2
Cut 1 plane (see Fig. 7) is excluded due to

the B̄ → XðsÞγ constraint. This is rather unexpected, since
the constraint on the charged scalars would normally
(in the IDM) not limit the parameter space of the neutral
scalar sector. It arises due to the fact that the model
parameters are highly constrained. Other regions of the

FIG. 7. Scatter plots of masses that satisfy Cut 1 and Cut 2 constraints. Top: the charged sector, h� and H�. Bottom left: the inert
neutral sector, φ1 and φ2. Bottom right: the active heavy neutral sector, H2 and H3. The light-blue region satisfies Cut 1 and
accommodates the 16π unitarity constraint. The yellow region accommodates a 3-σ tolerance with respect to Cut 2, whereas in the green
regions, the model is within the 2-σ bound of these values.
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Cut 1 mass scatter plot are excluded due to a combination
of several Cut 2 constraints. Concerning the heavy active
neutral sector, we note that the Cut 2 puts bounds on the
upper value of the mass of H3.

C. Cut 3 constraints

This subsection includes constraints coming from the
LHC and astrophysical observables. In the future,Higgs self-
interactions may become a crucial test, those are also
discussed.

1. LHC Higgs constraints

First of all, we require that the full width of the
SM-like Higgs particle be within ΓH1

¼ 3.2þ2.8
−2.2 MeV, an

experimental bound taken from the PDG [32]. In the SM
the total width of the Higgs boson is around 4 MeV. The
upper value, i.e.,ΓH1

¼ 6 MeV is used in preliminary checks
within the spectrum generator. Apart from that, several
channels are checked against the experimental results:

(i) Decay H1 → gg
In the SM case, the dominant Higgs production

mechanism is through gluon fusion. However, due to
experimental limitations we do not explicitly consider
constraints on this channel. For DM mass below
mH1

=2 the gluon branching ratio can become low due
to the opening of the invisible channel, H1 → φiφi.
However, such cases are partially excluded by other
LHC Higgs-particle constraints of Cut 3. After
applying all of the constraints we found that
BrðH1 → ggÞ ∈ ½6.5; 8.4� × 10−2, while the SM case
predicts the value of BrðhSM → ggÞ ≈ 7.9 × 10−2.

(ii) Decay H1 → γγ
The diphoton partial decaywidth ismodified by the

contributions of the charged-scalar loops which are
not present in the SM. In light of the above discussion
regarding gluons, we do not aim to account for the
correct H1 two-gluon production factor, instead we
approximate the diphoton channel strength by

μγγ ≈
ΓðH1 → γγÞ
Γexpðh → γγÞ

ΓexpðhÞ
ΓðH1Þ

; ð5:7Þ

with μγγ ¼ 1.11� 0.10 [32]. We evaluate this con-
straint allowing for an additional ten percent computa-
tional uncertainty, and impose an ðn ¼ 3Þ-σ tolerance,

μγγ ¼ 1.11�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1.11 × 0.1Þ2 þ ð0.1nÞ2

q
; ð5:8Þ

which corresponds to the 3-σ range of ½0.79; 1.43�.
The diphoton branching ratio is higher for light h�.

As the mass of the inert sector charged scalar
increases, the branching ratio also decreases. On
the other hand, the diphoton branching ratio increases
for heavier H� scalars.

(iii) Invisible decays, H1 → invisible
The SM-like Higgs boson can decay to lighter

scalars,H1 → φiφj. If such decays are kinematically
allowed, these processes can enhance the total width
of the SM-like Higgs state sizeably. In total, due to
CP non-conservation, and if kinematically acces-
sible, there are three possible decay channels
H1 → fφ1φ1;φ2φ2;φ1φ2g. After applying all of
the cuts we found that mφ2

≥ 150 GeV. This lower
mass limit significantly simplifies the study of
invisible decay channels, since the only accessible
channel will be H1 → φ1φ1. Furthermore, after
applying all constraints, including Cut 3, the
mφ1

< mH1
=2 inequality always holds. Hence, the

invisible decays channel is always open in the C-III-
a model. In our calculations we adopt the PDG [32]
constraint, which is BrexpðH1 → invisibleÞ < 0.19.

We note that there are more severe constraints
on the invisible channel than those appearing
in the PDG, set by ATLAS [47,48], BrðH1 →
invisibleÞ≲ 0.13. However, those are preliminary
results. Even after applying a more strict bound we
found a very limited impact on the parameter space.

Analytic expressions for the decay rates presented in this
section can be found in Appendix C 2.

2. The H1 scalar self interactions

Let us next consider the trilinear and quadrilinear self-
interactions of the SM-like Higgs particle. In the future, the
trilinear interactions may become a crucial test for new
physics [49]. In the SM the Higgs self-interactions are [50]:

gðh3SMÞ ¼
3m2

hSM

v
; gðh4SMÞ ¼

1

v
gðh3SMÞ: ð5:9Þ

In the C-III-a model the corresponding couplings are given
by Eqs. (B6a) and (B8f). Invoking the expressions for the
λ’s given in Appendix A, as well as Eq. (3.2c), we find that
the trilinear coupling can be expanded as

gðH3
1Þ ¼

1

v
½m2

H1
AH1

þm2
H2
AH2

þm2
H3
AH3

þm2
φ1
Aφ1

�;
ð5:10Þ

having expressed m2
φ2

in terms of m2
φ1

according to
Eq. (3.26). Here, Ai are coefficients expressed in terms
of angles. For example,

AH1
¼3

8
cos3θ2

	
2cosθ1½cosð2θ2Þþ5�

−
2cos2θ2 sinð2β−3θ1Þ−cosð2βÞsinθ1½cosð2θ2Þ−7�

sinβcosβ



:

ð5:11Þ
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The trilinear coupling is shown in Fig. 8. Within the C-III-a
model, either sign is possible, there is no simple correlation
between the sign of the coupling and the parameters of
the model. The SM-like limit, in terms of the gauge and
Yukawa couplings, requires R0

11 ¼ 1 and R0
1k ¼ R0

k1 ¼ 0

(k ¼ 2, 3). Indeed, expression (5.11) reduces to AH1
¼ 3

for θ1 ¼ θ2 ¼ 0 and any β.
The form of the quartic self-interactions is similar to the

trilinear one, but with different Ai coefficients.

3. Astrophysical observables

We consider a standard cosmological model with a freeze-
out scenario. The cold dark matter relic density along with
the decay widths discussed above and other astrophysical
observables are evaluated using micrOMEGAs 5.2.7 [51–53].
The ’t Hooft-Feynman gauge is adopted, and switches are
set to default values VZdecay ¼ VWdecay ¼ 1, specify-
ing that 3-body final states will be computed for annihilation
processes only. The fast ¼ −1 switch specifies that very
accurate calculation is used.
We adopt the cold dark matter relic density value of

0.1200� 0.0012 taken from the PDG [32]. The relic
density parameter will be evaluated using a 3-σ tolerance
and assuming an additional ten percent computational
uncertainty,

Ωh2¼0.1200�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0.1200×0.1Þ2þð0.0012nÞ2

q
; ð5:12Þ

corresponding to the [0.1075; 0.1325] region. Results are
presented in Fig. 9. The relic density is found to fall quickly
at DM masses beyond 50 GeV.
The portal couplings φ1φ1Hi and φ1φ1HiHi play an

important role for the early Universe phenomenology. In
the R-II-1a model we saw that the portal couplings increase
very fast with high DM mass. Such high portal couplings

imply a fast annihilation of DM, thus ruling out the
possibility of obtaining the experimentally observed DM
relic density for high dark matter masses. The absolute
value of the trilinear portal couplings for C-III-a (B6b) are
illustrated in Fig. 10. The couplings can have either sign,
but there is no simple correlation with the input parameters.
For a φ1 scalar with mass above 300 GeV (Cut 1 allows

for mmax
φ1

≈ 500 GeV while Cut 2 shrinks the region to
mmax

φ1
≈ 400 GeV) we get Ωh2 ≲Oð10−6Þ. In this mass

range the primary annihilation mechanisms are through
the φ1φ1 → HiHj channels. In the IDM the correct relic
density, for high DM masses, is achieved due to a small
portal coupling and near mass-degeneracy of the inert
scalar sector. In Sec. III B 2 we noted that it is not possible
to have mass-degeneracy, mφ1

≈mφ2
. There is always a

FIG. 9. Dark matter relic density for the C-III-a model. The
region compatible with the observed DM relic density (red line)
does not allow for masses above around mH1

=2.

FIG. 8. Maximum values of the normalized trilinear coupling of the SM-like state H1 as a function of mH2
and σ (left) or β (right),

maximized over parameters not shown.
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mass gap. For heavy states,mφ1
≥ 300 GeV, after applying

the Cut 1 constraint a mass gap develops of around mφ2
≈

mφ1
þ 70 GeV. The relevant processes for models with

small, or vanishing, portal couplings would be diagrams
with quartic vertices of the SSVV type (3.39c). In the high-
mass region, the Ωh2 parameter receives a contribution
which grows as the difference of the squared inert-sector
masses. Only for sufficiently low mass splittings between
the inert-sector scalars can the correct relic density be
reached.
After separately applying each of the Cut 3 constraints

to the parameter points satisfying Cut 1 and Cut 2, we
found that the most severe constraint is the one due to
the relic density. Less than one per cent of the Cut 1 and Cut
2-compatible points is satisfied after imposing the Ωh2
values. This is understandable after inspecting Fig. 9. In
fact, Ωh2 is not high enough in the region beyond mH1

=2.
However, in other models, as seen in Fig. 1, the surviving
DM region (this is not an effect of only the relic density
constraint) starts at values ofmDM ≈ 60 GeV. In this region
one would expect to see the most significant contribution
from channels DMDM → fbb̄;WþW−; ZZg. In contrast,
in the C-III-a model the Ωh2 parameter drops below the
experimental value for masses beyond about mH1

=2. The
most significant contribution, and the only adjustable
(not fixed by the gauge coupling), comes from the portal
couplings φ1φ1Hi. It turns out that the portal coupling to
H2 plays an important role in reducing the relic density for
DM masses above some 50 GeV.
A less severe constraint comes from the direct detection

analysis. An interesting aspect of the model is that the
direct detection criteria are satisfied throughout the region
mφ1

∈ ½6; 360� GeV and also at mφ1
≈ 1 GeV. Two effects

are responsible:
(i) Interference between different portal φ1φ1Hi cou-

plings;
(ii) The Hiff̄ couplings entering with both CP-even

and CP-odd components;

The significance of these effects depends on the input
parameters. We present cross sections relevant for direct
detection in Fig. 11, comparing to the “neutrino floor.” In
practically the whole mass range there are parameter points
at lower cross sections. A future improvement on the direct
detection constraint is not obviously going to reduce the
range of masses allowed by the model. Moreover, the cross
section can be as low as σSI ≈ 10−22 pb, which is way
below the neutrino floor.

D. Cut 3 discussion

The LHC-related checks of Cut 3 are the least severe,
satisfied by more than half of the parameter points surviv-
ing Cut 1 and Cut 2. When the DM candidate is sufficiently
light, mφ1

≤ mH1
=2, decays of the SM-like Higgs particle

into the dark sector, specifically the H1 → φ1φ1 channel,
play the most significant role. The high branching ratio of

FIG. 10. Absolute values of the C-III-a portal couplings gðφ1φ1HiÞ as functions of the mass of the DM candidate mφ1
.

FIG. 11. The spin-independent DM-nucleon cross section
compatible with XENON1T [54] data at 90% C.L. The points
represent Cut 3 satisfied cases. The red line corresponds to an
approximate neutrino floor.

DARK MATTER IN A CP-VIOLATING … PHYS. REV. D 106, 075002 (2022)

075002-17



H1 → φ1φ1 significantly impacts the total width of the SM-
like Higgs particle, which is also constrained by Cut 3. One
might expect that in the sub-ðmH1

=2Þ region the decay of
the SM-like Higgs particle into the invisible channel should
be the most constraining one due to the need to tune the
coupling. However, this is not the case, in this region both
the relic density and direct detection constraints are even
more demanding.
The model is described in terms of eight input param-

eters: three masses and five angles. For the purpose of
discussion it is instructive to consider input in terms of just
six masses, as was done for Cut 1 and Cut 2. First we apply
each Cut 3 constraint separately, either the relic density
constraint, or direct detection limits, or LHC related checks,
over parameter points satisfying Cut 1 and Cut 2.
There are no significant restrictions introduced on the

charged masses. However, there are some restrictions
introduced on the neutral inert sector masses. There is an
upper limit mφ1

<55GeV and a lower limit mφ1
>6GeV,

both coming from the relic density constraint. The relic
density checks allows also for mφ1

≈ 1 GeV. The LHC

checks restrict states lighter than mφ2
≈ 110 GeV. These

checks are very sensitive to the total width of the Higgs
boson. Solutions withmφ2

<110GeV require Γh >0.2GeV.
There is a mass gapmφ2

≈mφ1
þ110GeV, formφ1

<mH1
=2.

The allowed masses of the neutral active sector are pushed
away from the degenerate limit by both the relic density and
the LHC constraints, so that mH3

> mH2
þ 20 GeV.

Let us discuss cases when the Cut 3 constraints are
introduced in pairs. When we assume mφ1

≲ 60 GeV, as
required by the relic density constraint, we find that there
is a small difference between choosing different pairs of
the Cut 3 constraints. A significant fraction of the Cut 1
and Cut 2-compatible parameter points is excluded in the
charged sector whenΩh2 together with the LHC constraints
are satisfied. This means that the full region of parameter
space allowed by each of these two constraints separately
only overlaps in a small region. The allowed region in the
charged sector is practically reduced to what is shown in
Fig. 12 (for all Cut 3 constraints). In the inert neutral sector a
limitmφ2

> 100 GeVarises for any pair of constraints.Apart
from that, any pair of constraints involving Ωh2 results in a

FIG. 12. Scatter plots of masses that satisfy different cuts. Top: the charged sector, h� andH�. Bottom left: the inert neutral sector, φ1

and φ2. Bottom right: the active heavy neutral sector, H2 and H3. The light-blue region satisfies Cut 1 and accommodates the 16π
unitarity constraint. The yellow region accommodates a 3-σ tolerance with respect to Cut 2, whereas in the green regions, the model is
within the 2-σ bound of these values. The gray region is compatible with Cut 3.
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bound mφ1
< 50 GeV. Concerning the heavy active neutral

sector, when bothΩh2 and LHC constraints are satisfied, an
upper bound is introduced, mH3

< 300 GeV.
In Table II we present some benchmarks. The more

massive members of the inert doublet, h� and φ2, are seen
to predominantly decay to dark matter, φ1, and a real gauge
boson,W� or Z. Due to constraints coming from Cut 3, see
Fig. 12, we note that there are lower bounds introduced on
the masses of both h� and φ2. Therefore, there are no co-
annihilations into gauge bosons, nor can off-shell gauge
bosons be produced. The heavier non-inert neutral states,
H2 and H3, decay almost exclusively to dark matter. This
phenomenon is more pronounced for the H2 scalar, for
which BrðH2 → φ1φ1Þ > 0.99. Also, the noninert charged
state has a significant branching ratio into members of the
inert doublet, Hþ → hþφ1, in addition to those familiar
from the 2HDM: Hþ → ftb̄; νl̄g.

To sum up, the dominant decay channel for all of the
scalars, except H1, is into states with at least one dark
matter candidate. Such processes would be accompanied
by large missing transverse momentum in the detector.
Depending on the parameters, this is only partially true for
the active charged scalar, H�. It would be interesting to
further restrict the available parameter space of the charged
state, specifically the mH� − β plane based on decays into
fermions [34,55–58]. The acceptable parameter space of
the C-III-a model could be reduced after applying addi-
tional constraints.

VI. CONCLUDING REMARKS

We have extended our study of dark matter in 3HDMs
based on S3 symmetry from the model studied in Ref. [10].
There, we studied a model denoted R-II-1a with a zero vev
for h1 and the two other vevs real. In the present paper
we study a model denoted C-III-a with the same vacuum

TABLE II. Benchmark points and dominant decay modes. The “q” notation refers to a sum over the light quarks, d, u, s, and c, “l”
refers to all charged leptons, and “ν” to all neutrinos.

Parameter BP 1 BP 2 BP 3 BP 4 BP 5 BP 6 BP 7 BP 8 BP 9

DM (φ1) mass [GeV] 6.85 11.55 16.24 20.82 25.50 30.36 35.13 39.73 44.24
φ2 mass [GeV] 192.43 247.91 294.06 224.63 223.13 171.54 153.74 268.90 265.78
hþ mass [GeV] 183.55 273.87 314.66 150.90 238.64 196.77 143.47 200.65 193.85
Hþ mass [GeV] 290.50 152.52 202.09 317.17 145.92 124.49 180.35 259.35 285.91
H2 mass [GeV] 126.49 142.01 156.26 164.17 143.09 128.72 128.29 138.87 149.83
H3 mass [GeV] 244.54 216.75 244.67 259.36 205.77 178.37 182.78 195.88 222.07
σ=π 0.365 0.633 −0.370 −0.622 −0.615 −0.590 0.564 −0.538 −0.541
β=π 0.167 0.146 0.160 0.191 0.139 0.128 0.138 0.152 0.150
σSI ½10−11 pb� 9.23 1.55 1.45 0.01 0.10 1.65 1.23 0.67 3.09
φ2 → φ1H1 [%] 0.88 0.15 1.28 3.26 0.80 0.07 3.77 2.71
φ2 → φ1H2 [%] 7.49 0.44 2.88 0.07 64.02 60.25
φ2 → φ1H3 [%] 24.80 21.13
φ2 → φ1Z [%] 91.63 74.61 74.70 96.73 99.20 99.85 100 32.21 37.04

hþ → φ1Hþ [%] 63.84 44.92 60.98 65.40
hþ → φ1Wþ [%] 100 36.16 55.08 100 39.02 34.60 100 100 100

Hþ → hþφ1 [%] 33.91 45.61 72.07 16.74 33.83
Hþ → H1Wþ [%] 2.26 3.10 2.25 2.50
Hþ → H2Wþ [%] 15.19 9.34 10.73 10.55
Hþ → tb̄ [%] 48.56 99.78 41.88 27.68 70.15 53.03
Hþ → qq̄ [%] 0.08 29.32 0.17 0.06 29.49 30.14 0.10 0.08
Hþ → νl̄ [%] 0.08 70.68 0.05 70.51 69.86 0.15

H2 → φ1φ1 [%] 99.96 99.99 99.99 99.36 99.99 99.99 99.96 99.94 99.95
H2 → WþW− [%] 0.60
H2 → qq̄ [%] 0.03 0.03 0.01 0.04 0.06 0.04

H3 → φ1φ1 [%] 81.99 96.04 79.32 83.49 98.17 99.93 99.90 98.08 96.95
H3 → φ1φ2 [%] 9.10 7.57
H3 → H1H1 [%] 0.08
H3 → H1Z [%] 1.20 15.82 2.57 0.01
H3 → H2Z [%] 7.67 0.40
H3 → WþW− [%] 2.64 3.18 4.10 1.26 0.04 0.08 1.44 2.17
H3 → ZZ [%] 1.05 1.34 1.76 0.47 0.48 0.87
H3 → bb̄ [%] 0.03 0.27 0.34 0.08 0.02 0.01
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structure as in R-II-1a, i.e., the vev of h1 is still zero, but
where now another vev is assumed to be complex. In both
cases we assume the coefficients of the potential to be real.
The R-II-1a and C-III-a correspond to different regions of
the parameter space of the S3-symmetric potential [26]. The
C-III-a model has the attractive feature of allowing for
spontaneous CP violation and at the same time providing a
dark-matter candidate.
The dark matter candidate, here referred to as φ1, must

have a mass below 50 GeV, which is lighter than the
corresponding state in the familiar IDM. The reasons for
this are mainly due to the possibility of suppressing the DM-
DM-active neutral scalar couplings in C-III-a. We found that
the acceptable DM mass range is mφ1

∈ ½6.5; 44.5� GeV.
Compared to the familiar IDM, this model is very

constrained. First of all, it is not possible to get correct
relic density in the high-mass regime due to two effects:
non-negligible portal couplings, which is the dominant
effect, and a high mass splitting among the inert neutral
states, of around 70 GeV. Moreover, heavy states with mass
mφ1

≳ 500 GeV for the DM candidate are excluded after
applying theoretical constraints (Cut 1). In the conventional
lower-mass IDM region the relic density value is not
satisfied due to portal couplings in the C-III-a model.
The sub-50 GeV region is accessible due to relatively low
portal and scalar-fermion couplings. In the accompanying
paper on the R-II-1a model [10], the parameter space with a
DM candidate with masses below 50 GeV was ruled out
due to the lack of solutions satisfying simultaneously the
relic density and direct detection constraints.
In the C-III-a model, the dark matter particle resides in an

SU(2) doublet together with a heavier neutral scalar, φ2,
and a charged pair, h�. These are unstable, and decay
predominantly via the emission of an on-shell gauge
boson, φ2 → φ1Z or h� → φ1W�. The noninert states
have features similar to those of a type-I CP-violating
2HDM. However, due to the constraints coming from the
underlying S3 symmetry, the scalar states are typically
lighter than the corresponding 2HDM states. The charged
states H� decay into a pair of fermions, either tb or νl, or
else to h�φ1. The neutral states, H2 and H3, predominantly
decay to DM.
If the C-III-a model is realized in nature, it would be

rather hard to detect it with current experiments. For the
majority of the scalars the dominant decay channel is into
states with at least one dark matter candidate. These decays
would be accompanied by large missing transverse
momentum in the detector. Moreover, there seems to be
little hope of observing a signal based on DM direct
detection. The spin-independent DM-nucleon cross section
could be several orders of magnitudes lower than what
would be probed by future dark matter direct detection
experiments. In this work we applied a selected set of
constraints on the C-III-a model, which are far from being

exhaustive. It is beyond the scope of this paper to try to do a
more comprehensive analysis. Our motivation is to show
that the C-III-a model can in principle provide an interest-
ing dark matter candidate. A more comprehensive study
would definitely be justified in the future if there were
experimental data pointing toward physics beyond the
standard model of the kind we are outlining here.
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APPENDIX A: DETERMINING C-III-A
POTENTIAL COEFFICIENTS

The model has eight λ’s of which λ4 is fixed due to the
minimization condition (3.2c), in terms of λ7, σ and β. We
are thus left with seven free λ’s, which can be written in
terms of seven mass-squared parameters. We note that
masses of the h�, H�, φ1, φ2 states are expressed in terms
of only four couplings: λ2, λ3, λ6 and λ7. We first discuss
this sector. The remaining couplings can be written in terms
of the masses involving also the Hi states.

1. The couplings fλ2; λ3; λ6; λ7g
vs masses of fh�;H�;φ1;φ2g

With these four masses as input, together with ŵ2, ŵS,
and σ, one can determine the rotation angle γ of Eq. (3.20).
This procedure leads to a quadratic equation, thus two sets
of couplings for one and the same set of masses, and σ. In
order to have more control on the input we shall rather
sacrifice one mass,mφ2

, replacing it by the rotation angle γ.
This permits input of the basic masses, while leading to
linear equations for the λ’s, thus unambiguous couplings.
Equations (3.14) and (3.22) can be solved in terms of λ’s,
yielding:
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λ2 ¼
m2

hþ

2ŵ2
2

−
m2

Hþŵ2
S

2v2ŵ2
2

−
ðm2

φ1
þm2

φ2
Þ½2þ cosð2σÞ� þ ðm2

φ2
−m2

φ1
Þ½2 cosð2γÞ þ cosð2γ − 2σÞ�

12cos2σŵ2
2

; ðA1aÞ

λ3 ¼ −
m2

hþ

2ŵ2
2

þm2
Hþŵ2

S

2v2ŵ2
2

þ ðm2
φ1
þm2

φ2
Þ sin σ − ðm2

φ2
−m2

φ1
Þ sinð2γ − σÞ

6ŵ2
2 sin σ

; ðA1bÞ

λ6 ¼ −
2m2

Hþ

v2
þ ðm2

φ1
þm2

φ2
Þ sin σ − ðm2

φ2
−m2

φ1
Þ sinð2γ − σÞ

12ŵ2
S cos

2 σ sin σ
; ðA1cÞ

λ7 ¼
ðm2

φ1
þm2

φ2
Þ sin σ − ðm2

φ2
−m2

φ1
Þ sinð2γ − σÞ

24ŵ2
S cos

2 σ sin σ
: ðA1dÞ

Note that any expression αðγ; σÞm2
φ1
þ βðγ; σÞm2

φ2
can be expressed as Aðγ; σÞm2

φ1
þ Bðγ; σÞm2

φ2
as long as

αþ βg ¼ Aþ Bg, with g the ratio of the two coefficients in Eq. (3.26). Thus, we can write contributions to λ’s that
involve m2

φ1
and m2

φ2
in many ways.

2. The couplings fλ1; λ5; λ8g vs masses of fH1;H2;H3g
Equations (3.33), (3.36) connect the remaining λ’s with the masses of the neutral noninert sector. We find

λ1 ¼
m2

hþ

2ŵ2
2

−
m2

Hþŵ2
S

2v2ŵ2
2

−
ðm2

φ1
þm2

φ2
Þ sin σ − ðm2

φ2
−m2

φ1
Þ sinð2γ − σÞ

24ŵ2
2 sin σ

þ 1

2v2ŵ2
2

X3
i¼1

ðR0
i1ŵ2 −R0

i2ŵSÞ2m2
Hi
; ðA2aÞ

λ5 ¼
2m2

Hþ

v2
þ ðm2

φ1
þm2

φ2
Þ sinσ − ðm2

φ2
−m2

φ1
Þ sinð2γ − σÞ

12ŵ2
S sinσ

þ 1

v2ŵ2ŵS

X3
i¼1

ðR0
i2ŵ2 þR0

i1ŵSÞðR0
i1ŵ2 −R0

i2ŵSÞm2
Hi
; ðA2bÞ

λ8 ¼ −
½ðm2

φ1
þm2

φ2
Þ sin σ − ðm2

φ2
−m2

φ1
Þ sinð2γ − σÞ�ŵ2

2

24ŵ4
S sin σ

þ 1

2v2ŵ2
S

X
i

ðR0
i2ŵ2 þR0

i1ŵSÞ2m2
Hi
: ðA2cÞ

In addition, the diagonalization matrix R0 should satisfy

X
i

R0
i1R

0
i3m

2
Hi

¼ 0; ðA3aÞ

X
i

R0
i2R

0
i3m

2
Hi

¼ v2 sinð2σÞλ7; ðA3bÞ

X
i

ðR0
i3Þ2m2

Hi
¼ 2v2sin2σλ7: ðA3cÞ

We note that the two last constraints, Eqs. (A3b) and (A3c),
relate the mass scale of the noninert neutral sectorm2

Hi
with

that of the inert-sector neutral states mφi
via λ7 given by

Eq. (A1d). This way the squares of masses m2
Hi

can be
expressed as:

m2
H1

¼ Φðsin θ1 cot θ2 þ tan σÞ; ðA4aÞ

m2
H2

¼ Φ
�
− sin θ1 tan θ2 þ

cos θ1 cot θ3
cos θ2

þ tan σ

�
; ðA4bÞ

m2
H3

¼ Φ
�
− sin θ1 tan θ2 −

cos θ1 tan θ3
cos θ2

þ tan σ

�
; ðA4cÞ

with

Φ ¼ m2
φ1
v2 sin ð2γ − 2σÞ sin σ

3ŵ2
S½sin ð2γ − 3σÞ þ 2 sin ð2γ − σÞ − sin σ� ; ðA5Þ

where Φ can be both negative and positive.
With the mass-squared parameters some of the condi-

tions (A3) can be rewritten:

ðA.3bÞ∶ Φ ¼ v2 sinð2σÞλ7; ðA6aÞ

ðA.3cÞ∶ Φ tan σ ¼ 2v2sin2σλ7: ðA6bÞ

In a scan over parameters, it is obviously desirable to
keep mH1

fixed at the experimental value. This can be
achieved within this framework. The constraints (A3)
allow for taking one mass and two angles, or two masses
and one angle, or three masses as input, in addition to
those discussed in Appendix A 1. From Eq. (A4a),
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m2
H1

¼ fðθ1; θ2Þ, it follows that it is not possible to use an
arbitrary combination of masses and angles as input. In our
scan we use θ2 and θ3 as input along with the mH1

state
corresponding to the SM-like Higgs boson.

APPENDIX B: SCALAR-SCALAR COUPLINGS
OF C-III-A

The scalar-scalar couplings are presented with the sym-
metry factor, but without the overall coefficient “−i“. We
denote the “correct” couplings as g… ¼ −igð…Þ. We shall
abbreviate cθ ≡ cos θ, and sθ ≡ sin θ, and tθ ≡ tan θ for any
argument θ.

For simplicity, we introduce a permutation function,
which for trilinear couplings takes the form

Pm̄noði; j; kÞ ¼
X

tα∈fi;j;kg
A�
mt1Ant2Aot3 ; ðB1Þ

where the A’s are coefficients of the field expansions,
defined in Eq. (3.38). Furthermore, the indices fi; j; kg are
carried by the fields HiHjHk, and the barred index m̄
indicates which of the A’s are conjugated. As an example,
the permutation function P2̄2Sði; j; kÞ which enters the
HiHjHk vertex is

P2̄2Sði; j; kÞ ¼ A�
2iðA2jASk þ A2kASjÞ þ A�

2jðA2iASk þ A2kASiÞ þ A�
2kðA2iASj þ A2jASiÞ. ðB2Þ

Based on the number of the involvedHi scalars in a vertex, the permutation function P can also be of length two, Pm̄nði; jÞ,
and four, Pm̄ n̄ opði; j; k;lÞ. For example,

P2Sði; jÞ ¼ A2iASj þ ASiA2j. ðB3Þ

Note that the order of m, n, and o is arbitrary,

Pm̄noði; j; kÞ ¼ Pnm̄oði; j; kÞ ¼ Pnom̄ði; j; kÞ; and interchange of n ↔ o; ðB4Þ

and that

ðPm̄noði; j; kÞÞ� ¼ Pmn̄ ōði; j; kÞ: ðB5Þ

Furthermore, in the interest of obtaining more compact expressions, we here suppress the fact that λ4 is proportional to
λ7 (3.2c).
The trilinear couplings involving the neutral fields are

gðHiHjHkÞ ¼ v

	
1

2
ðλ1 þ λ3ÞsβP2̄22ði; j; kÞ −

1

4
λ4eiσfcβP2̄22ði; j; kÞ þ sβ½PS̄22ði; j; kÞ þ 2PS22ði; j; kÞ�g

þ 1

4
ðλ5 þ λ6ÞðcβP2̄2Sði; j; kÞ þ sβP2SS̄ði; j; kÞÞ þ

1

2
λ7e2iσ½cβPS̄22ði; j; kÞ þ sβP2SSði; j; kÞ�

þ 1

2
λ8cβPSSSði; j; kÞ þ H:c:



; ðB6aÞ

gðφ1φ1HiÞ ¼ v

	
λ1sβA2i − λ2ð1 − e−2iðγ−σÞÞsβA2i þ λ3e2iðσ−γÞsβA2i þ

1

2
λ4½eiσð2þ e−2iγÞcβA2i þ e−iσð2þ e−2iðγ−σÞÞsβASi�

þ 1

2
ðλ5 þ λ6ÞcβASi þ λ7e−2iγcβASi þ H:c:



; ðB6bÞ

gðφ1φ2HiÞ ¼ v

	
−ie−2iγ½ðλ2 þ λ3Þe2iσsβA2i þ

1

2
λ4eiσðcβA2i þ sβASiÞ þ λ7cβASi� þ H:c:



; ðB6cÞ

gðφ2φ2HiÞ ¼ v

	
λ1sβA2i − λ2ð1þ e−2iðγ−σÞÞsβA2i − λ3e2iðσ−γÞsβA2i þ

1

2
λ4½eiσð2 − e−2iγÞcβA2i þ e−iσð2 − e−2iðγ−σÞÞsβASi�

þ 1

2
ðλ5 þ λ6ÞcβASi − λ7e−2iγcβASi þ H:c:



: ðB6dÞ
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The trilinear couplings involving the charged fields are

gðφ1hþH−Þ ¼ v

	
1

2
λ2ð1 − e2iðγ−σÞÞs2β −

1

2
λ3ð1þ e2iðγ−σÞÞs2β þ λ4

�
−
1

2
e−iσð1þ e2iγÞc2β þ eiγcγ−σs2β

�

þ 1

4
λ6s2β þ

1

2
λ7e2iγs2β



; ðB7aÞ

gðφ2hþH−Þ ¼ v

	
−i

1

2
λ2ð1þ e2iðγ−σÞÞs2β þ i

1

2
λ3ð1 − e2iðγ−σÞÞs2β þ λ4ðeiðγ−σÞsγc2β − eiγsγ−σs2βÞ − i

1

4
λ6s2β þ i

1

2
λ7e2iγs2β



;

ðB7bÞ

gðHih�h∓Þ ¼ v

	
ðλ1 − λ3ÞsβA2i þ

1

2
λ4eiσðcβA2i þ sβA�

SiÞ þ
1

2
λ5cβASi þ H:c:



; ðB7cÞ

gðHiH�H∓Þ ¼ v

	
ðλ1 þ λ3Þc2βsβA2i −

1

2
λ4eiσcβ

�
c2βA2i þ

1

2
s2βA�

Si − s2βA
�
2i

�
þ 1

2
λ5ðc3βASi þ s3βA2iÞ−

1

4
λ6s2βðcβA2i þ sβASiÞ

−
1

2
λ7e2iσs2βðcβA2i þ sβA�

SiÞ þ λ8cβs2βASi þH:c:



: ðB7dÞ

Note that couplings involving charged fields of different sectors, gðφ1hþH−Þ and gðφ2hþH−Þ, are complex. For opposite
charges, the couplings are obtained by complex conjugation.
The quartic couplings involving only the neutral fields are

gðφ1φ1φ1φ1Þ ¼ gðφ2φ2φ2φ2Þ ¼ 6ðλ1 þ λ3Þ; ðB8aÞ

gðφ1φ1φ2φ2Þ ¼ 2ðλ1 þ λ3Þ; ðB8bÞ

gðφ1φ1HiHjÞ ¼
1

2
λ1P22̄ði; jÞ þ

1

2
λ2½e2iðσ−γÞP22ði; jÞ − P22̄ði; jÞ� þ

1

2
λ3e2iðσ−γÞP22ði; jÞ

þ λ4

�
1

2
eiðσ−2γÞP2Sði; jÞ þ eiσP2S̄ði; jÞ

�
þ 1

4
ðλ5 þ λ6ÞPSS̄ði; jÞ þ

1

2
λ7e2iγPSSði; jÞ þ H:c:; ðB8cÞ

gðφ1φ2HiHjÞ ¼ −
i
2
ðλ2 þ λ3Þe2iðσ−γÞP22ði; jÞ −

i
2
λ4eiðσ−2γÞP2Sði; jÞ þ

i
2
λ7e2iγPSSði; jÞ þ H:c:; ðB8dÞ

gðφ2φ2HiHjÞ ¼
1

2
λ1P22̄ði; jÞ −

1

2
λ2½e2iðσ−γÞP22ði; jÞ þ P22̄ði; jÞ� −

1

2
λ3e2iðσ−γÞP22ði; jÞ

− λ4

�
1

2
eiðσ−2γÞP2Sði; jÞ − eiσP2S̄ði; jÞ

�
þ 1

4
ðλ5 þ λ6ÞPSS̄ði; jÞ −

1

2
λ7e2iγPSSði; jÞ þ H:c:; ðB8eÞ

gðHiHjHkHlÞ ¼
1

8
ðλ1 þ λ3ÞP2222ði; j; k; lÞ −

1

4
λ4eiσP222Sði; j; k; lÞ þ

1

8
ðλ5 þ λ6ÞP22̄SS̄ði; j; k; lÞ þ

1

4
λ7e2iσP22SSði; j; k; lÞ

þ 1

8
λ8PSSSSði; j; k; lÞ þ H:c: ðB8fÞ

The last quartic coupling has been expressed compactly in terms of four indices, at least two of which have to be identical.
For example, theH1H1H2H2 coupling is obtained with i ¼ j ¼ 1 and k ¼ l ¼ 2, without any further combinatorial factors.
The quartic couplings involving both neutral and charged fields are

gðφ1φ1h�h∓Þ ¼ gðφ2φ2h�h∓Þ ¼ 2ðλ1 þ λ3Þ; ðB9aÞ

gðφ1φ1H�H∓Þ ¼ gðφ2φ2H�H∓Þ ¼ 2ðλ1 − λ3Þc2β − λ4cσs2β þ λ5s2β; ðB9bÞ
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gðφ1HihþH−Þ ¼ λ2cβðA2i − e2iðγ−σÞA�
2iÞ − λ3cβðA2i þ e2iðγ−σÞA�

2iÞ

−
1

2
λ4½cβðe−iσASi þ eið2γ−σÞA�

SiÞ − sβðeiσA2i þ eið2γ−σÞA�
2iÞ� þ

1

2
λ6sβASi þ λ7e2iγsβA�

Si; ðB9cÞ

gðφ2HihþH−Þ ¼ −iλ2cβðA2i þ e2iðγ−σÞA�
2iÞ þ iλ3cβðA2i − e2iðγ−σÞA�

2iÞ

þ i
2
λ4½cβðe−iσASi − eið2γ−σÞA�

SiÞ − sβðeiσA2i − eið2γ−σÞA�
2iÞ� −

i
2
λ6sβASi þ iλ7e2iγsβA�

Si; ðB9dÞ

gðHiHjh�h∓Þ ¼
1

2
ðλ1 − λ3ÞP22̄ði; jÞ þ

1

2
λ4eiσP2S̄ði; jÞ þ

1

4
λ5PSS̄ði; jÞ þ H:c:; ðB9eÞ

gðHiHjH�H∓Þ ¼ 1

2
ðλ1 þ λ3Þc2βP22̄ði; jÞ −

1

2
λ4eiσcβ½cβP2S̄ði; jÞ − sβP22̄ði; jÞ� þ

1

4
λ5½c2βPSS̄ði; jÞ þ s2βP22̄ði; jÞ�

−
1

4
λ6s2βP2̄Sði; jÞ −

1

2
λ7e2iσs2βP2S̄ði; jÞ þ

1

2
λ8s2βPSS̄ði; jÞ þ H:c: ðB9fÞ

The quartic couplings involving only the charged fields are

gðh�h�h∓h∓Þ ¼ 4ðλ1 þ λ3Þ; ðB10aÞ

gðH�H�H∓H∓Þ ¼ 4

�
ðλ1 þ λ3Þc4β þ 2λ4cσc3βsβ þ

1

4
ðλa − 4λ7s2σÞs22β þ λ8s4β

�
; ðB10bÞ

gðhþhþH−H−Þ ¼ 4e2iðγ−σÞ
�
ðλ2 þ λ3Þc2β −

1

2
eiσλ4s2β þ e2iσλ7s2β

�
; ðB10cÞ

gðh�h∓H�H∓Þ ¼ ½2ðλ1 − λ2Þc2β − 2λ4cσs2β þ ðλ5 þ λ6Þs2β�: ðB10dÞ

APPENDIX C: SUPPLEMENTARY EQUATIONS

1. V and U matrices

From Refs. [59,60] we determine the V and U matrices3 for C-III-a:

0
B@

eiσðiG0 þP3
i¼1 R

0
i1HiÞP

3
i¼1 ðR0

i2 þ iR0
i3ÞHi

eiγðφ1 þ iφ2Þ

1
CA ¼ V

0
BBBBBBBBB@

G0

H1

H2

H3

φ1

φ2

1
CCCCCCCCCA
; ðC1aÞ

with

V ¼

0
B@

ieiσ R0
11e

iσ R0
21e

iσ R0
31e

iσ 0 0

0 ðR0
12 þ iR0

13Þ ðR0
22 þ iR0

23Þ ðR0
32 þ iR0

33Þ 0 0

0 0 0 0 eiγ ieiγ

1
CA; ðC1bÞ

and

3Note that “U” here should not be confused with the electroweak precision observable “U”.
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0
B@

Gþ

Hþ

hþ

1
CA ¼ U

0
B@

Gþ

Hþ

hþ

1
CA; with U ¼ diagðeiσ; 1; eiγÞ: ðC1cÞ

2. Higgs decays

We assume that the normalized Lagrangian for H1 is given by:

L0
int ¼ −

mf

v
CS
f̄fH1

f̄fH1 − i
md

v
CP
d̄dH1

d̄γ5dH1 þ i
mu

v
CP
ūuH1

ūγ5uH1 þ gmWCWþW−H1
Wþ

μ Wμ−H1 −
2m2

φ�
i

v
Cφþ

i φ
−
i h
φþ
i φ

−
i H1;

ðC2Þ
where C’s are the couplings normalized to those of the SM,
The rate for the two-gluon decay at the leading order is [61–64]

ΓðH1 → ggÞ ¼ α2Sm
3
H1

128π3v2

����X
f

CS
f̄fH1

F S
1=2ðτfÞ

���2 þ ���X
f

CP
f̄fH1

FP
1=2ðτfÞ

���2�; ðC3Þ

where αS is the strong coupling constant. The decay width of this process can be enhanced or diminished with respect to
the SM case. Such behavior is caused by an additional factor for the amplitude and the fact that there is an additional
contribution from the CP-odd part.
The diphoton decay one-loop width is known [24,65,66]:

ΓðH1 → γγÞ ¼ α2m3
H1

256π3v2

����X
f

Q2
fNcCS

f̄fH1
F S
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X
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i
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i φ

−
i H1

F 0ðτφ�Þ
���2

þ
���X

f

Q2
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FP

1=2ðτfÞ
���2�; ðC4Þ

where α is the fine-structure constant, Qf is the electric charge of the fermion, Nc ¼ 3ð1Þ for quarks (leptons).

The one-loop spin-dependent functions are

F 1 ¼ 2þ 3τ þ 3τð2 − τÞfðτÞ; ðC5aÞ

F i
1=2 ¼

	−2τ½1þ ð1 − τÞfðτÞ�; i ¼ S;

−2τfðτÞ; i ¼ P;
ðC5bÞ

F 0 ¼ τ½1 − τfðτÞ�; ðC5cÞ

where
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4m2

i
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− 1
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2
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The decay width of H1 into a pair of scalars φi is
given by

ΓðH1 → φiφjÞ ¼
2 − δij
32πm3

H1

jgH1φiφj
j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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with a symmetry factor ð2 − δijÞ, where δij is the Kronecker delta. After applying the cuts it was found thatmφ2
> mH1

, and
hence the invisible decay rate simplifies to

ΓðH1 → φ1φ1Þ ¼
1

32πm2
H1

jgH1φ1φ1
j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
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− 4m2
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q
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