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We consider relativistic fermionic systems in lattice regularization out of equilibrium. The chiral magnetic
conductivity σCME is calculated in a spatially infinite system for the case when the chiral chemical potential
depends on time, while the system initially was in thermal equilibrium at a small but nonzero temperature.
We find that the frequency-dependent σCMEðωÞ for any nonzero ω both in the limits ω ≪ T and ω ≫ T is
equal to its conventional value 1 when the lattice model approaches the continuum limit. Notice that
σCME ¼ 0 for the case when the chiral chemical potential does not depend on time at all. We therefore
confirm that the limit of vanishing ω is not regular for the spatially infinite systems of massless fermions.
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I. INTRODUCTION

It is widely believed that the chiral magnetic effect
(CME) [1–5] appears out of equilibrium in the presence
of an external magnetic field and a chiral imbalance. The
latter may be driven by chiral anomaly due to the parallel
magnetic and electric fields [6] or introduced directly by a
(time-dependent) chiral chemical potential. Experimental
observation of the CME in the first mentioned above case
has been reported via measurements of magnetoresistance
of Dirac and Weyl semimetals [7]. In the present paper, we
discuss the second possibility, i.e., the appearance of electric
current in the presence of an external magnetic field driven
by the time-dependent chiral chemical potential.
It is worth mentioning that the CME belongs to a class

of nondissipative transport effects, which attracted recent
attention of many theoreticians and experimentalists
both in condensed matter physics and in high energy
physics [8–15]. Several effects of this type were observed
in topological Dirac and Weyl semimetals [16–22].
Indications of CME have been reported in the study of
relativistic heavy-ion collisions [3,23,24]. Lattice simu-
lations suggest the appearance of the CME inside vacuum
fluctuations [25].
Although the calculation of CME conductivity [6,7]

obviously requires the use of kinetic theory, the majority
of related publications typically refer to other methods.
Relatively recently the analysis within the framework of the
Keldysh technique has been undertaken in [26]. This

technique has been used for continuum fermion systems
in Pauli-Villars regularization. It was argued that in the
presence of a time-dependent chiral chemical potential the
CME effect acquires its conventional expression originally
proposed for the equilibrium theory.
It is known presently that this latter equilibrium version

of the CME is actually absent.1 Therefore, the supposition
that it reappears for a time-dependent chiral chemical
potential is intriguing. More specifically, [26] reports that
the electric current along a constant external magnetic field
is equal to the standard coefficient 1

2π2
multiplied by the

magnetic field and chiral chemical potential. The latter
depends on frequency, and the frequency is supposed to
tend to zero. At the same time, it is assumed that the spatial
inhomogeneity is taken off before the limit of vanishing
frequency is calculated. In the present paper, we analyze
this intriguing possibility using the same Keldysh tech-
nique as [26] but for the fermion systems defined in lattice
regularization.
Technically, we rely on the version of Wigner-Weyl

formalism developed for the quantum field theory (QFT)
in [32–34] and its unification with Keldysh formalism of
quantum kinetic theory. The latter is taken in its path
integral form based on [35]. The final version of the
formalism to be used in the present paper is close to the
one of [36–40].
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1In [12,13,13–15], a proof has been given using lattice
simulations. In [10], the question was considered using analytical
methods for the specific boundary conditions. In [27], Weyl
semimetals were considered, where the absence of equilibrium
CME has been reported. In [28], it was argued that equilibrium
CME contradicts the Bloch theorem. In [29], the proof was given
based on the representation of the CME conductivity through the
momentum space topological invariant. These results were
extended to finite temperatures in [30] and to the spatially
nonhomogeneous interacting systems in [31].
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More specifically, we use Wigner-transformed Green
functions for the calculation of the response of the electric
current to the chiral chemical potential and to the external
magnetic field. It can be shown using this technique that in
equilibrium the response of the electric current (integrated
over the system volume) to the magnetic field and the chiral
chemical potential is a topological invariant, including the
case of the nonhomogeneous systems at finite temperature
and in the presence of interactions [31]. This topological
invariant actually equals to zero identically. Out of equi-
librium, the mentioned above response loses its topological
nature, and therefore, the CME is back.
Historically, the development of Wigner-Weyl calculus

was initiated with the purpose of reformulation of quantum
mechanics in the language of functions defined in phase
space instead of the language of operators defined in Hilbert
space [41]. The new chapter of mathematics called now
“deformation quantization” appeared based on the Wigner-
Weyl calculus (for a review, see Refs. [42,43] and references
therein). The initial form of the Wigner-Weyl formalism
refers to the so-called Wigner function Wðq; pÞ, which is a
generalization of quantum mechanical probability distribu-
tion [44]. Although the Wigner function cannot be treated
directly as a probability distribution [45], it appears to be
possible to formulate the fluid analog of quantum entropy
flux with the aid of the Weyl-Wigner formalism [46].
Certain quantities of quantum information theory (like
von Neumann entropy) have been defined within
Wigner-Weyl calculus [46–49]. Practical applications of
the Wigner-Weyl formalism to quantum mechanics were
developed [46,50–52]. Besides, Wigner-Weyl calculus has
been applied to the anomalous transport, already within
quantum field theory [53–58].
The Keldysh formalism [59] has been proposed as the

way to construct perturbation theory (similar to that of
equilibrium QFT) in the framework of quantum kinetic
theory. It has been applied widely both in condensed matter
physics and in high energy physics [60–65]. In the limit of
thermal equilibrium, the Keldysh formalism is naturally
reduced to conventional formalism of equilibrium statistical
physics [66–69]. The path integral approach to the Keldysh
technique [35] has been developed as an alternative to a
more widely used operator formalism [70–76]. The differ-
ence between the Keldysh formalism and the conventional
QFT is the appearance of the so-called Keldysh contour.
This is a closed contour in the complex plane of time. In the
real time equilibrium QFT, the integration occurs only along
the real axis of this plane, while in the Matsubara formalism
the integration is along the imaginary axis. Except for this,
the formalisms are similar. However, certain silent features
are present on the Keldysh side related to the turning points
of the Keldysh contour. The naive approach to path integral
formulation fails to reproduce the correct expressions for the
Green functions even for the simplest noninteracting mod-
els. The rigorous lattice regularization is to be used to

restore the correct answers [35,77]. At the same time, the
operator approach to the nonequilibrium diagram technique
[78,79] gives the correct answers immediately without
lattice regularization (for the noninteracting stationary
systems).
Perturbation expansion of quantum kinetic theory has

been applied successfully to investigation of various physi-
cal systems [60–62]. The Schwinger-Dyson equations [80–
82] are used within the Keldysh technique widely [64] and
allow one to reproduce the Bogoliubov-Born-Green-
Kirkwood-Yvons sequence of equations [83]. Being trun-
cated, this sequence gives kinetic equations to be used for
the investigation of transport phenomena [84], including
superconductivity [60–62,70–76,85,86]. On the high energy
physics side, the Keldysh formalism was applied to high
energy scattering in QCD [87] and relativistic hydrody-
namics [88], as well as to various problems in cosmol-
ogy [89].
From the very first days of the Keldysh technique, the

notion of a Wigner distribution has been used widely in its
framework [70–76,90]. In the present paper, we use a
specific version of the Wigner-Weyl formalism developed
for quantum field theory (see, for example, Ref. [91] and
references therein). Using this formalism, the Hall con-
ductivity has been represented as the topological quantity
composed of Wigner-transformed Green functions [92].
Besides, it appears to be possible using this formalism to
prove that the QHE conductivity is robust to interaction
corrections [93,94]. Within the Keldysh technique, a
similar approach has been developed earlier in [36–40].
In [95,96], the essentially nonhomogeneous systems were
discussed in this framework.

II. BASICS OF KELDYSH TECHNIQUE

Let us discuss the quantum field system in the presence
of an external magnetic field. The field Hamiltonian is
denoted by Ĥ. The average value of a physical quantity
represented by an operator O½ψ ; ψ̄ � (depending on fer-
mionic fields ψ̂ ; ˆ̄ψ taken at time t) is given by

hOi ¼ trðR̂ðtiÞe−i
R

t

ti
Ĥdt

O½ψ̂ ; ˆ̄ψ �e−i
R

tf
t

Ĥdte
i
R

tf
ti

ĤdtÞ:

Here, R̂ðtiÞ is the density matrix at the initial time moment
ti < t. We also fix the final time moment tf > t. In the
functional integral Keldysh formalism, we have (see text-
book [35])

hOi ¼
Z

Dψ̄DψO½ψ ; ψ̄ �

× exp

�
i
Z
C
dt

Z
dDxψ̄ðt; xÞQ̂ψðt; xÞ

�
:

By D, we denote dimension of space, and ψ and ψ̄ are the
independent Grassmann variables. For the noninteracting
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system, Q̂ is given by Q̂ ¼ i∂t − Ĥ with the single particle
Hamiltonian Ĥ. Time integration goes along the Keldysh
contour C. It begins at ti, goes until t ¼ tf, turns back, and
returns to ti. Dynamical variables defined on the forward
part of the contour ψ̄−ðt; xÞ and ψ−ðt; xÞ differ from those
of the backward part ψ̄þðt; xÞ and ψþðt; xÞ.
Boundary conditions relate fields defined on the opposite

parts of the Keldysh contour: ψ̄−ðtf; xÞ ¼ ψ̄þðtf; xÞ and
ψ−ðtf; xÞ ¼ ψþðtf; xÞ. The integration measure Dψ̄Dψ
includes ψ̄þðti; xÞ, ψþðti; xÞ, and ψ̄−ðti; xÞ, ψ−ðti; xÞ and
contains the initial distribution represented by R̂,

hOi ¼
Z

Dψ̄�Dψ�
Detð1þ ρÞO½ψþ; ψ̄þ�

× exp

�
i
Z

tf

ti

dt
Z

dDx½ψ̄−ðt; xÞQ̂ψ−ðt; xÞ

− ψ̄þðt; xÞQ̂ψþðt; xÞ�−
Z

dDxψ̄−ðti; xÞρψþðti; xÞ
�
:

ð1Þ

Here, ρ is the density operator defined on one particle
Hilbert space. Probability that the one-particle state jλii is
occupied is given by hλijρjλii

1þhλijρjλii. Let us introduce the Keldysh
spinor,

Ψ ¼
�
ψ−

ψþ

�
; ð2Þ

and we represent the average of O as follows:

hOi ¼ 1

Detð1þ ρÞ
Z

DΨ̄DΨO½Ψ; Ψ̄�

× exp

�
i
Z

tf

ti

dt
Z

dDxΨ̄ðt; xÞQ̂Ψðt; xÞ
�
: ð3Þ

Here,

Q̂ ¼
�
Q−− Q−þ
Qþ− Qþþ

�
: ð4Þ

The correct expressions for the components of this matrix
may be obtained either as the continuum limit of the lattice-
regularized expressions or using operator formalism. The
result is

Qþþ ¼ −
�
i∂t − Ĥ − iϵ

1 − ρ

1þ ρ

�
;

Q−− ¼ i∂t − Ĥ þ iϵ
1 − ρ

1þ ρ
;

Qþ− ¼ −2iϵ
1

1þ ρ
; Q−þ ¼ 2iϵ

ρ

1þ ρ
: ð5Þ

Here, ρ is a matrix that gives rise to the initial one-particle
distribution f ¼ ρð1þ ρÞ−1. In the case of the distribution
depending only on energy (and, in particular, for thermal
distribution of noninteracting particles), ρ ¼ ρðĤÞ is a
function of the one-particle Hamiltonian. The infinitely
small contributions proportional to parameter ϵ → 0 sym-
bolize the way those functions are understood as the so-
called generalized functions (tempered distributions). For
details, see Sec. 5.1 of [77].
The Keldysh Green function Ĝ is defined as

Gα1α2ðt; xjt0; x0Þ

¼
Z

DΨ̄DΨ
iDetð1þ ρÞΨα1ðt; xÞΨ̄α2ðt0; x0Þ

× exp

�
i
Z

tf

ti

dt
Z

dDxΨ̄ðt; xÞQ̂Ψðt; xÞ
�
: ð6Þ

Here, the index α corresponds to components of the
Keldysh spinor (2). The Green function obeys Q̂ Ĝ ¼ 1.
Sometimes a new representation of Keldysh spinors is used
that is related to the spinors defined above as follows:

�
ψ1

ψ2

�
¼ 1ffiffiffi

2
p

�
1 1

1 −1

��
ψ−

ψþ

�
;

�
ψ̄1 ψ̄2

�
¼ 1ffiffiffi

2
p

�
ψ̄− ψ̄þ

��
1 1

−1 1

�
:

The Green function in the new representation acquires the
triangle form,

ĜðKÞ ¼ −i
��

ψ1

ψ2

�
⊗

�
ψ̄1 ψ̄2

��
¼
�
GR GK

0 GA

�
: ð7Þ

In our paper, we use yet another representation,

Ĝð<Þ ¼
�
1 1

0 1

��
GR GK

0 GA

��
1 −1
0 1

�
¼
�
GR 2G<

0 GA

�
: ð8Þ

It is related to the Green function defined by Eq. (6) as
follows Ĝð<Þ ¼ UĜV, where U ¼ 1ffiffi

2
p ð1

0
1
1
Þð1

1
1
−1Þ ¼ 1ffiffi

2
p ð2

1
0
−1Þ

and V ¼ 1ffiffi
2

p ð 1
−1

1
1
Þð1

0
−1
1
Þ ¼ 1ffiffi

2
p ð 1

−1
0
2
Þ. In addition, we have

Q̂ð<Þ ¼ V−1Q̂U−1 ¼
�
QR 2Q<

0 QA

�
: ð9Þ

Here, we denote QR ¼ Q−− þQ−þ, QA ¼ −Q−þ −Qþþ,
Q< ¼ −Q−þ. As a result, GA ¼ ðQAÞ−1, GR ¼ ðQRÞ−1,
and G< ¼ −GRQ<GA with
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GR ¼ ði∂t − Ĥeþϵ∂tÞ−1 ¼ ði∂t − Ĥ þ iϵÞ−1;
GA ¼ ði∂t − Ĥe−ϵ∂tÞ−1 ¼ ði∂t − Ĥ − iϵÞ−1;
G< ¼ ðGA −GRÞ ρ

ρþ 1
: ð10Þ

The elements of Q̂< (which is inverse to Ĝ<) are

Q< ¼ ðQA −QRÞ ρ

ρþ 1
¼ −2iϵ

ρ

ρþ 1
;

QR ¼ i∂t − Ĥ þ iϵ;

QA ¼ i∂t − Ĥ − iϵ: ð11Þ

For more details on the basics of the Keldysh technique
briefly reviewed above, the reader is advised to con-
sult [35,77].

III. BASICS OF WIGNER-WEYL CALCULUS
IN KELDYSH TECHNIQUE

Here, we recall basic notions of Wigner-Weyl calculus
[37,92]. In the following, the Dþ 1 dimensional vectors
(with space and time components) are denoted by large
latin letters. For an operator Â, we denote its matrix
elements by AðX1; X2Þ ¼ hX1jÂjX2i. The Weyl symbol
of an operator Â is then defined as

AWðXjPÞ ¼
Z

dDþ1YeiY
μPμAðX þ Y=2; X − Y=2Þ; ð12Þ

with μ ¼ 0; 1;…; D.Dþ 1momentum is denoted by Pμ ¼
ðP0; pÞ and Pμ ¼ ðP0;−pÞ. Here, p is the spatial momen-
tum with D components. Below, the Weyl symbol of the
Keldysh Green function Ĝ is denoted by Ĝ, while the Weyl
symbol of the Keldysh Q̂ is Q̂. We omit the subscriptW for
brevity. Weyl symbols Ĝ and Q̂ obey the Groenewold
equation,

Q̂ � Ĝ ¼ 1: ð13Þ

Here, the Moyal product � is defined as

ðA � BÞðXjPÞ ¼ AðXjPÞe−ið∂⃖Xμ ∂⃗Pμ−∂⃖Pμ ∂⃗Xμ Þ=2BðXjPÞ: ð14Þ

In the present paper, we consider the situation when
electromagnetic potential A corresponds to a constant
magnetic field and constant spatial components of field
strength F μν. Expansion in powers of F μν will be used up
to the leading order proportional to the magnetic field.
Introduction of the external gauge potential results in
Peierls substitution P → π ¼ P − A. Here, πμ is Dþ 1, a
dimensional vector similar to Pμ. When the index is
lowered, its spatial components change sign. The Moyal
product may be decomposed as

� ¼ ⋆e−iF μν
∂⃖πμ ∂⃗πν=2; ð15Þ

with

ðA⋆BÞðXjπÞ ¼ AðXjπÞe−ið∂⃖Xμ ∂⃗πμ−∂⃖πμ ∂⃗Xμ Þ=2BðXjπÞ: ð16Þ

Next, we use expansion of Q̂ and Ĝ in powers of F μν and
keep the terms up to the linear one,

Q̂ ¼ Q̂ð0Þ þ 1

2
F μνQ̂ð1Þ

μν ; Ĝ ¼ Ĝð0Þ þ 1

2
F μνĜð1Þ

μν : ð17Þ

In the following, we omit for simplicity the superscript (0)
of the zeroth order contribution to both G and Q. For the
noninteracting particles with static Hamiltonian and initial
distribution fðπ0Þ, we have

GR ¼ ðπ0 − Ĥðπ⃗; xÞ þ iϵÞ−1;
GA ¼ ðπ0 − Ĥðπ⃗; xÞ − iϵÞ−1;
G< ¼ ðGA − GRÞfðπ0Þ ¼ 2πiδðπ0 − Ĥðπ⃗ÞÞfðπ0Þ: ð18Þ

The elements of Q̂< (which is ⋆ inverse to Ĝ<) are

Q< ¼ ðQA −QRÞfðπ0Þ ¼ −2iϵfðπ0Þ;
QR ¼ π0 − Ĥðπ⃗; xÞ þ iϵ;

QA ¼ π0 − Ĥðπ⃗; xÞ − iϵ: ð19Þ

The Groenewold equation acquires the form

�
Q̂þ 1

2
F μνQ̂ð1Þ

μν

�
⋆e−iF μν

∂⃖πμ ∂⃗πν=2

�
Ĝþ 1

2
F μνĜð1Þ

μν

�
¼ 1:

ð20Þ

In the zeroth order in F , we have Q̂⋆Ĝ ¼ 1, and Q̂⋆Ĝð1Þ þ
Q̂ð1Þ⋆Ĝ − iQ̂⋆∂⃖πμ ∂⃗πνĜ ¼ 0 in the first order. We obtain

Ĝð1Þ
μν ¼−Ĝ⋆Q̂ð1Þ

μν ⋆Ĝ− iðĜ⋆∂πμQ̂⋆Ĝ⋆∂πνQ̂⋆Ĝ−ðμ↔ νÞÞ=2:
ð21Þ

Below, we follow closely the derivation of [37]. In the
noninteracting theory, the operator of the electric current

density is given by ĵi ¼ −ψ̂ ∂Q̂
∂pi

ψ̂ ; i ¼ 1; 2;…D. Spatial

components of momentum are pi ¼ pi ¼ Pi ¼ −Pi. The
averaged current density as a function of time is given by

hjiðt; xÞi ¼ −
i
2
tr½Ĝv̂i�: ð22Þ

The velocity operator is given by v̂i ¼ ∂pi
ð−Q−−

0
0

QþþÞ. Let us
express the velocity operator and current density through
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the Keldysh Green function written in the triangle repre-
sentation of Eq. (8),

v̂ð<Þi ¼ ∂pi

1

2

�
2 0

1 1

��−Q−− 0

0 Qþþ

��
1 0

1 −2

�

¼ ∂pi

� −Q−− 0

−Q−−þQþþ
2

−Qþþ

�
: ð23Þ

We use that Q−− ¼ QR þQ<, Q−þ ¼ −Q<,
Qþ− ¼ −QR þQA −Q<, and Qþþ ¼ Q< −QA, and we
represent the current density as

hjii ¼ −
i
2
tr½Ĝv̂i� ¼ i

2
trðGR

∂pi
QR −GA

∂pi
QAÞ

þ i
2
trðGR

∂pi
Q< þ G<

∂pi
QAÞ

þ i
2
trðGA

∂pi
Q< þ G<

∂pi
QRÞ:

The second term in this expression is given by
i
2
trðG∂pi

QÞ<. At the same time, the third term is its
complex conjugate. We obtain

hjii ¼ i
2
trðĜ∂pi

Q̂ÞR þ i
2
trðĜ∂pi

Q̂Þ< þ c:c: ð24Þ

Using Wigner-Weyl calculus, we represent the electric
current as

JiðXÞ≡ hjiðt; xÞi

¼ −
i
2

Z
dDþ1π

ð2πÞDþ1
trðĜð∂πi Q̂ÞÞR

−
i
2

Z
dDþ1π

ð2πÞDþ1
trðĜð∂πi Q̂ÞÞA

−
i
2

Z
dDþ1π

ð2πÞDþ1
trðĜð∂πi Q̂ÞÞ<

−
i
2

Z
dDþ1π

ð2πÞDþ1
trðð∂πi Q̂ÞĜÞ<:

The small imaginary contribution �iϵ in (18) means that
the poles of GR (GA) are moved from the real axis of ω
slightly down (up). The integration line may always be
closed at infinity. For that, we need to use lattice regulari-
zation, which adds to our expression factors that suppress
expressions standing inside the integral over (complex-
valued) ω at jωj → ∞. As a result, the first two terms in the
above expression vanish. We obtain

JiðXÞ ¼ −
i
2

Z
dDþ1π

ð2πÞDþ1
trðð∂πi Q̂ÞĜÞ<

−
i
2

Z
dDþ1π

ð2πÞDþ1
trðĜð∂πi Q̂ÞÞ<: ð25Þ

Applying Eqs. (17)–(21), we calculate the contribution to
the electric current proportional to the external field
strength F μν,

Ji ¼ −
1

4

Z
dDþ1π

ð2πÞDþ1
trðĜ⋆∂πμQ̂⋆Ĝ⋆∂πνQ̂⋆Ĝ∂πi Q̂Þ<F μν

−
1

4

Z
dDþ1π

ð2πÞDþ1
trð∂πi Q̂ Ĝ⋆∂πμQ̂⋆Ĝ⋆∂πνQ̂⋆ĜÞ<F μν:

The field strength F gives rise to a constant external
magnetic field: F ij ¼ −ϵijkBk. We express the electric
current as

Ji ¼ ΣijkF jk ¼ −ΣijkϵjklBl ¼ Σi
l;CMEB

l:

By Σi
l;CME we denote here

ϵjkl
4

Z
dDþ1π

ð2πÞDþ1
trð∂πi Q̂½Ĝ⋆∂πj Q̂⋆∂πk Ĝ�Þ< þ c:c: ð26Þ

The component of electric current along the magnetic field
is given by Ji ¼ ΣCMEBi with ΣCME given by

ϵijk
3!2

Z
dDþ1π

ð2πÞDþ1
trð∂πi Q̂½Ĝ⋆∂πj Q̂⋆∂πk Ĝ�Þ< þ c:c: ð27Þ

Now, let us discuss briefly the limiting case of an
equilibrium system at zero temperature. In this case, the
one particle Hamiltonian Ĥ does not depend on time. Let us
denote by G the following expression: Gðx1; x2;ωÞ≡
hx1jðω − ĤÞ−1jx2i. It has true singularities when ω
tends to one of the energy levels. The time-ordered
Green receives the form GTðx; x0;ωÞ ¼ limη→0

Gðx; x0;ωþ iηsignωÞ. The retarded Green function is given
by GRðx; x0;ωÞ ¼ limη→0Gðx; x0;ωþ iηÞ, and advanced
Green function is GAðx; x0;ωÞ ¼ limη→0 Gðx; x0;ω − iηÞ.
The Matsubara Green’s function GM is defined as
GMðx; x0;ωnÞ ¼ Gðx; x0; iωÞ or in terms of imaginary time
τ: GMðx; x0; τÞ ¼ 1

β

P∞
n¼−∞ e−iωnτGðx; x0; iωÞ. Here, the

Matsubara frequency ω is continuous since we discuss
the zero temperature limit. These relations between
the retarded (advanced) and Matsubara Green functions
may be extended easily also to their Weyl symbols. Then,
for example, GM

Wðx;p; T;ωÞ ¼
R
dDye−iypGðxþ y=2;

x− y=2; iωÞ. One can rewrite ΣCME defined above in terms
of GM as

CHIRAL MAGNETIC EFFECT OUT OF EQUILIBRIUM PHYS. REV. D 106, 074508 (2022)

074508-5



−i
ϵijk
3!

Z
dDþ1π

ð2πÞDþ1
trð∂πiQM

W ½GM
W⋆∂πjQM

W⋆∂πkGM
W �Þ: ð28Þ

Here, QM is inverse to GM: QM
W⋆GM

W ¼ 1 and QM
W ¼

iω −HW . In our previous paper [31], we have shown,
using the Wigner-Weyl calculus, that in equilibrium the
response of ΣCME to the chiral chemical potential vanishes
for a wide range of physical models. Below, we consider
corrections due to a time-dependent chiral chemical poten-
tial for the particular lattice regularization.

IV. LATTICE MODEL WITH TIME-DEPENDENT
CHIRAL CHEMICAL POTENTIAL

Here and below, we consider the system regularized
using a rectangular lattice. More specifically, we consider
discretization of spatial coordinates while time remains
continuous. However, we see that the Euclidean version of
our model has the structure of lattice regularization with
Wilson fermions, in which both imaginary time and spatial
coordinates are regularized. It is supposed that external
fields do not vary strongly at the distance of the order of
lattice spacing. We define our model in such a way that in
thermal equilibrium it is reduced to the system with a
matrix inverse to the Matsubara Green function equal to

QM
WðπÞ ¼

X3
μ¼1

γμgμðπÞ − imðπÞ þ γ4g4ðπ4Þ;

with πi ¼ Pi − AiðxÞ, i ¼ 1, 2, 3, and π4 ¼ ωþ iA0ðxÞ.
Here, γμ ≡ γμE ¼ −iγμM (μ ¼ 1, 2, 3) are Euclidean gamma
matrices expressed through the Minkowski gamma matri-
ces γμM (γ4E ¼ −γ0M):

γ1 ¼

0
BBB@

0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

1
CCCA; γ2 ¼

0
BBB@

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1
CCCA;

γ3 ¼

0
BBB@

0 0 −i 0

0 0 i

i 0 0 0

0 −i 0 0

1
CCCA; γ4 ¼

0
BBB@

0 0 −1 0

0 0 0 −1
−1 0 0 0

0 −1 0 0

1
CCCA:

gi ¼ sinðπiÞ with i ¼ 1, 2, 3, 4 and mðπÞ ¼ mð0ÞþP
4
i¼1 ð1 − cosðπiÞÞ. In the massless case, we have explic-

itly mð0Þ ¼ 0. Let us denote also Qðπ0; π⃗Þ by

QM
WðπÞjπ4¼−iπ0 ¼

X3
μ¼1

γμgμðπÞ − i

�X3
i¼1

ð1 − cosðπiÞÞ

þ ð1 − chðπ0ÞÞ
�
− iγ4shðπ0Þ: ð29Þ

In the presence of time-dependent fields, we cannot use the
Matsubara formalism. Instead, we use the Keldysh formal-
ism with expressions for Q̂ ¼ ðQ−−

Q−þ
Qþ−
Qþþ

Þ that in the static

case with an initial distribution fðπ0Þ ¼ ρðπ0Þ=ð1þ ρðπ0ÞÞ
depending only on energy is given by

Qþþ ¼ −Qðπ0; π⃗Þ þ iϵ∂π0Qðπ0; π⃗Þ
1 − ρðπ0Þ
1þ ρðπ0Þ

;

Q−− ¼ Qðπ0; π⃗Þ þ þiϵ∂π0Qðπ0; π⃗Þ
1 − ρðπ0Þ
1þ ρðπ0Þ

;

Qþ− ¼ −2iϵ∂π0Qðπ0; π⃗Þ
1

1þ ρðπ0Þ
;

Q−þ ¼ 2iϵ∂π0Qðπ0; π⃗Þ
ρðπ0Þ

1þ ρðπ0Þ
: ð30Þ

Here, π ¼ P − AðXÞ. The infinitely small terms propor-
tional to ϵ are chosen in such a way that in the static case the
advanced and retarded Green functions are given by the
conventional expressions, while the lesser Green function is

equal to G< ¼ ðGA − GRÞ ρðπ0Þ
ρðπ0Þþ1

. In the limit of small π0,

the above expressions give rise to the ones that follow from
Eq. (5) after substitution ψ̄� → iψ̄γ4. Namely, at ϵ → 0, we
obtain

iγ4Qþþ ¼ −
�
i∂t − Ĥ − iϵ

1 − ρ

1þ ρ

�
;

iγ4Q−− ¼ i∂t − Ĥ þ iϵ
1 − ρ

1þ ρ
;

iγ4Qþ− ¼ −2iϵ
1

1þ ρ
;

iγ4Q−þ ¼ 2iϵ
ρ

1þ ρ
; ð31Þ

with

Ĥ ¼ −iγ4
X3
μ¼1

γμgμðπÞ þ γ4mðπÞ:

Thus, we chose the lattice model in such a way that in its
continuum limit the standard expressions for the compo-
nents of the Keldysh Green function are reproduced.
In order to introduce the time-dependent chiral chemical

potential, we shift π0 by μ5ðtÞγ5 in the terms that do not
contain ϵ. Recall that the latter terms are introduced instead
of boundary conditions and, therefore, are not affected by
modification of the one-particle Hamiltonian localized in
the finite region of time. This gives
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Qþþ ¼ −
�X3

μ¼1

γμgμðπÞ − imðπ⃗;−iπ0 − iμ5ðtÞγ5Þ þ γ4g4ð−iπ0 − iμ5ðtÞγ5Þ − γ4ϵe−π0γ
4 1 − ρðπ0Þ
1þ ρðπ0Þ

�
;

Q−− ¼
X3
μ¼1

γμgμðπÞ − imðπ⃗;−iπ0 − iμ5ðtÞγ5Þ þ γ4g4ð−iπ0 − iμ5ðtÞγ5Þ þ γ4ϵe−π0γ
4 1 − ρðπ0Þ
1þ ρðπ0Þ

;

Qþ− ¼ −2γ4ϵe−π0γ4
1

1þ ρðπ0Þ
;

Q−þ ¼ 2γ4ϵe−π0γ
4 ρðπ0Þ
1þ ρðπ0Þ

; ð32Þ

with mðπ⃗;−iπ0− iμ5ðtÞγ5Þ¼mð0Þ þP
3
i¼1 ð1−cosðπiÞÞþ

ð1−cosð−iπ0− iμ5ðtÞγ5ÞÞ. Notice that we do not modify
the initial distribution fðπ0Þ ¼ ρðπ0Þð1þ ρðπ0ÞÞ−1 intro-
ducing nonzero μ5. In the absence of the external magnetic
field and chiral chemical potential, the given system has
one Dirac point. Close to it, the dependence of energy on
momenta has the form of a Dirac cone. This is the region of
the Brillouin zone, where we approach the continuum limit.
The remaining part of the Brillouin zone is irrelevant at low
energies.
Here, we consider the linear response to the time-

dependent chiral chemical potential and constant magnetic
field. Because of the time dependence of the system, we use
the Keldysh formulation of matrix Green’s functions. In the
lesser representation, we have Q̂ ¼ Q̂ð0Þ þ δQ̂, where

Q̂ð0Þ ¼
�
Qð0ÞR 2Qð0Þ<

0 Qð0ÞA

�
; ð33Þ

and Qð0ÞR¼Qðπ0þ iϵ; π⃗Þ;Qð0ÞA¼Qðπ0− iϵ; π⃗Þ;Qð0Þ<¼
ðQð0ÞA−Qð0ÞRÞfðπ0Þ, while δQ̂ ¼ δμ5ðtÞ

	 ∂Q
∂π0
0

0
∂Q
∂π0



γ5. In the

above, we assume the sinusoidal time dependence of

δμ5ðtÞ ¼ δμð0Þ5 cosω0t. In a general case, we have the
expression for the conductivity tensor Σijk, given by

Σijk ¼ −
1

4

Z
dDþ1π

ð2πÞDþ1
trð∂πi Q̂½Ĝ⋆∂π½j Q̂⋆Ĝ⋆∂πk�Q̂⋆Ĝ�Þ<

−
1

4

Z
dDþ1π

ð2πÞDþ1
trð½Ĝ⋆∂π½j Q̂⋆Ĝ⋆∂πk�Q̂⋆Ĝ�∂πi Q̂Þ<:

Since cos is an even function, we can write

Σijk ¼ −
1

8

Z
dDþ1π

ð2πÞDþ1
trð∂πi Q̂½Ĝ⋆∂π½j Q̂⋆Ĝ⋆∂πk�Q̂⋆Ĝ�Þ<

−
1

8

Z
dDþ1π

ð2πÞDþ1
trð½Ĝ⋆∂π½j Q̂⋆Ĝ⋆∂πk�Q̂⋆Ĝ�∂πi Q̂Þ<

þ ðω0 ↔ −ω0Þ:

We can write Σijk ¼ Iþ IIþ ðω0 ↔ −ω0Þ where

I ¼ −
1

8

Z
dDþ1π

ð2πÞDþ1
trð∂πi Q̂½Ĝ⋆∂π½j Q̂⋆Ĝ⋆∂πk�Q̂⋆Ĝ�Þ<

and

II ¼ −
1

8

Z
dDþ1π

ð2πÞDþ1
trð½Ĝ⋆∂π½j Q̂⋆Ĝ⋆∂πk�Q̂⋆Ĝ�∂πi Q̂Þ<;

while inside up to the terms linear in δμð0Þ5 we can write

QR → Q̃R ¼ Qðπ0 þ iϵ; π⃗Þ þ δμð0Þ5 eiω0t
∂Q
∂π0

γ5;

QA → Q̃A ¼ Qðπ0 − iϵ; π⃗Þ þ δμð0Þ5 eiω0t
∂Q
∂π0

γ5: ð34Þ

The “lesser” component is the same,

Q< ¼ −2γ4ϵfðπ0̂Þ; ð35Þ

and Q⋆G ¼ 1. For the variation of conductivity,

ΔΣ ¼ Σðδμð0Þ5 Þ − Σð0Þ, we have the following contribution
to I denoted by ΔIΣijk:

−
1

8

Z
dDπ
ð2πÞD trð∂πi Q̂0½ΔĜ⋆∂π½j Q̂0⋆Ĝ0⋆∂πk�Q̂0⋆Ĝ0�Þ<

−
1

8

Z
dDπ
ð2πÞD trð∂πi Q̂0½Ĝ0⋆∂π½j Q̂0⋆ΔĜ⋆∂πk�Q̂0⋆Ĝ0�Þ<

−
1

8

Z
dDπ
ð2πÞD trð∂πi Q̂0½Ĝ0⋆∂π½j Q̂0⋆Ĝ0⋆∂πk�Q̂0⋆ΔĜ�Þ<;

where ΔĜ ¼ −Ĝ0⋆ΔQ̂⋆Ĝ0, Ĝ0 is the Green function with
μ5 ¼ 0, and

ΔQ̂ ¼ 1

2
δμð0Þ5 eiω0t

0
@ ∂Q

∂π0
0

0 ∂Q
∂π0

1
Aγ5:

We also denote by Q̂0 the matrix Q̂ with μ5 ¼ 0 inserted.
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V. CALCULATION IN SPATIALLY
HOMOGENEOUS CASE

Let us restrict ourselves to the case with spatial
homogeneity. First, we derive a useful identity for the
star product containing eiω0t: expðiω0tÞ⋆hðωÞ ¼ exp

ðiω0tÞe−i∂⃖t∂ω=2hðωÞ ¼ expðiω0tÞeω0∂ω=2hðωÞ ¼ expðiω0tÞh
ðω þ ω0=2Þ. Therefore,

ΔĜ¼−Ĝ0⋆δμð0Þ5 eiω0t

� ∂Q
∂π0

0

0 ∂Q
∂π0

�
γ5⋆Ĝ0

¼−δμð0Þ5 eiω0tĜ0

�
ω−

ω0

2

�� ∂Q
∂π0

0

0 ∂Q
∂π0

�
γ5Ĝ0

�
ωþω0

2

�
:

ð36Þ

Here,ω ¼ π0, and we omit for simplicity the dependence of
Ĝ on π⃗. Let us define K½�� ≡ Kðω� ω0=2Þ; K½0� ≡ KðωÞ.
This gives the following expression for ΔIΣijk:

ΔIΣijk ¼ δμð0Þ5 eiω0t

8

Z
dDþ1π

ð2πÞDþ1
tr

�
∂πi Q̂

½0�
0

�
Ĝ½−�

0

∂Q½0�
diag

∂π0

× γ5Ĝ½þ�
0 ∂π½j Q̂

½þ�
0 Ĝ½þ�

0 ∂πk�Q̂
½þ�
0 Ĝ½þ�

0

��
<

ð37Þ

þ δμð0Þ5 eiω0t

8

Z
dDþ1π

ð2πÞDþ1
tr

�
∂πi Q̂

½0�
0

�
Ĝ½−�

0

× ∂π½j Q̂
½−�
0 Ĝ½−�

0

∂Q½0�
diag

∂π0
γ5Ĝ½þ�

0 ∂πk�Q̂
½þ�
0 Ĝ½þ�

0

��
<
ð38Þ

þ δμð0Þ5 eiω0t

8

Z
dDþ1π

ð2πÞDþ1
tr

�
∂πi Q̂

½0�
0

�
Ĝ½−�

0 ∂π½j Q̂
½−�
0 Ĝ½−�

0

× ∂πk�Q̂
½−�
0 Ĝ½−�

0

∂Q½0�
diag

∂π0
γ5Ĝ½þ�

0

��
<
: ð39Þ

Here, Q½0�
diag is the diagonal part of the Keldysh matrix. The

off-diagonal component is absent here because the intro-
duction of μ5 does not affect the initial distribution. As a
result, function fðπ0Þ entering G< in the above expression
appears without a derivative. In the above expression, the
second row vanishes identically because it contains the
complete derivative over πi. The third row may be
considered in a way similar to that of the second one.
Therefore, let us consider the first row of the last
expression. We insert into it the rows containing

∂π0ðQ̂½0;��A
0 − Q̂½0;��R

0 Þ ¼ 0, which are equal to zero iden-
tically. If there would be the nondiagonal element in

∂Q½0�
diag, the terms proportional to dfðπ0Þ=dπ0 would

appear. As it was mentioned above, these terms are absent
because introduction of the chiral chemical potential in
our model does not affect the initial distribution according
to our conventions. Physically, this corresponds to the
time-dependent μ5ðtÞ that is vanishing at t → ti, and we
consider here the response to the harmonics of this signal
with frequency ω0. One can see that in the resulting
expression most of the terms cancel each other and we are
left with

ΔIΣijk
1 ¼ δμð0Þ5 eiω0t

8

Z
dDþ1π

ð2πÞDþ1
tr

�
∂πi Q̂

½0�
0

�
Ĝ½−�

0

∂Q½0�
diag

∂π0
γ5Ĝ½þ�

0 ∂π½j Q̂
½þ�
0 Ĝ½þ�

0 ∂πk�Q̂
½þ�
0 Ĝ½þ�

0

��
<

¼ −
δμð0Þ5 eiω0t

8

Z
∞þi0

−∞þi0
dπ0

Z
dDπ⃗

ð2πÞDþ1
fðπ0 þ ω0=2Þtrð∂πiQ½0�

0 ½G½−�
0 ∂π0Q

½0�
0 γ5G½þ�

0 ∂π½jQ
½þ�
0 G½þ�

0 ∂πk�Q
½þ�
0 G½þ�

0 �Þ

þ δμð0Þ5 eiω0t

8

Z
∞−i0

−∞−i0
dπ0

Z
dDπ⃗

ð2πÞDþ1
fðπ0 þ ω0=2Þtrð∂πiQ½0�

0 ½G½−�
0 ∂π0Q

½0�
0 γ5G½þ�

0 ∂π½jQ
½þ�
0 G½þ�

0 ∂πk�Q
½þ�
0 G½0�

0 �Þ

þ δμð0Þ5 eiω0t

8

Z
dDþ1π

ð2πÞDþ1
ðfðπ0 − ω0=2Þ − fðπ0 þ ω0=2ÞÞ

× trð∂πi Q̂½0�R
0 ½ðĜ½−�A

0 − Ĝ½−�R
0 Þ∂π0Q½0�Aγ5Ĝ½þ�A

0 ∂π½j Q̂
½þ�A
0 Ĝ½þ�A

0 ∂πk�Q̂
½þ�A
0 Ĝ½þ�A

0 �Þ:

Here, by G, we denote the Green function that has true
singularities at the values of π0 coinciding with the energy
levels [the analogue of Eq. (III)]. Advanced and retarded
Green functions are expressed through G according to
Eq. (34), while the Matsubara Green function is given by

Ĝ0, in which we substitute π0 by iπ4. Besides, Q ¼ G−1.
We can add to the above integrals over π0 the integrals
over π0 ¼ �iπ, which cancel each other identically due to
the periodicity of the Green function Gðπ0; π⃗Þ ¼
Gðπ0 þ 2πi; π⃗Þ. At this point, we also require that the initial
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distribution is a Fermi distribution with temperature equal to T ¼ 1=N in lattice units (N is an integer). As a result,
fðπ0 þ 2πiÞ ¼ fðπ0Þ. In addition, we add the integrals over

R∞þiπ
∞−iπ and

R −∞−iπ
−∞þiπ . Both of them vanish because of the function

of π0 in denominator of G that grows exponentially with Reπ0. Now, in the integration over π0 in the last row, the integration
contour may be closed in the upper half of the complex plane, while in the previous row the integration contour may be closed
in the lower half of the complex plane. Fermi distribution has poles at the values π0 ¼ iωn, where ωn is the Matsubara
frequency. We come to

ΔIΣijk
1 ¼ δμð0Þ5 eiω0t

8

Z
dDþ1π

ð2πÞDþ1
tr

�
∂πi Q̂

½0�
0

�
Ĝ½−�

0

∂Q½0�
diag

∂π0
γ5Ĝ½þ�

0 ∂π½j Q̂
½þ�
0 Ĝ½þ�

0 ∂πk�Q̂
½þ�
0 Ĝ½þ�

0

��
<

¼ 2πTδμð0Þ5 eiω0t

8

X
π4¼ωn

Z
dDπ⃗

ð2πÞDþ1
trð∂πi Q̂½−�M

0 ½Ĝ½−−�M
0 ∂π4Q

½−�Mγ5Ĝ½0�M
0 ∂π½j Q̂

½0�M
0 Ĝ½0�M

0 ∂πk�Q̂
½0�M
0 Ĝ½0�M

0 �Þ

þ δμð0Þ5 eiω0t

8

Z
dDþ1π

ð2πÞDþ1
ðfðπ0 − ω0=2Þ − fðπ0 þ ω0=2ÞÞtrð∂πi Q̂½0�R

0 ½ðĜ½−�A
0 − Ĝ½−�R

0 Þ∂π0Q½0�A

× γ5Ĝ½þ�A
0 ∂π½j Q̂

½þ�A
0 Ĝ½þ�A

0 ∂πk�Q̂
½þ�A
0 Ĝ½þ�A

0 �Þ: ð40Þ

Here, we use notations K½−−� ≡ Kðω − ω0Þ, K½þþ�≡
Kðωþ ω0Þ. The sum is over the Matsubara frequencies
ωn ¼ 2πTðnþ 1=2Þ with n ∈ Z and ωn ∈ ð−π;þπ�. Due
to periodicity, we can also calculate this sum for n ¼
0; 1;…; N − 1 (here, inverse temperature in lattice units is
equal to 1=T ¼ N). The similar expressions are valid for the
other two rows of Eq. (37). One can see that for the model
with Wilson fermions, we have

Q½þ� ¼ −γ5½Q½−��†γ5; G½þ� ¼ −γ5½G½−��†γ5:

Now, we can drop the square parenthesis in the above
expression of ΔIΣijk. In order to calculate the electric
current along the magnetic field, we perform antisymmet-
rization with respect to indexes i, j,and k. We also calculate
the termΔIΣijk

3 [corresponding to the third term in Eq. (38)]
in the way similar to the above calculation of ΔIΣijk

1 .
Besides,

ΔIIΣijk þ ðω0 ↔ −ω0Þ ¼ ½ΔIΣijk þ ðω0 ↔ −ω0Þ��:

We are left with

ΔΣCME ¼ 1

4π2
σCMEðω0Þδμð0Þ5 e−iω0t þ ðω0 ↔ −ω0Þ:

We introduce here complex-valued frequency-dependent
chiral magnetic conductivity σCMEðω0Þ. Notice that the
total value of ΣCME should remain real. Therefore,
σCMEð−ω0Þ ¼ σ̄CMEðω0Þ, and we have

ΔΣCME ¼ 1

4π2
σCMEðω0Þδμð0Þ5 eiω0t þ ðc:c:Þ

¼ δμð0Þ5

2π2
ReσCMEðω0Þeiω0t:

Let us represent the CME conductivity as the sum of the
two terms,

σCMEðω0Þ ¼ σðIÞCMEðω0Þ þ σðIIÞCMEðω0Þ; ð41Þ

where

σðIÞCMEðω0Þ ¼
1

2
ðσ̃ðIÞCMEðω0Þ þ ½σ̃ðIÞCMEð−ω0Þ��Þ;

σðIIÞCMEðω0Þ ¼
1

2
ðσ̃ðIIÞCMEðω0Þ þ ½σ̃ðIIÞCMEð−ω0Þ��Þ: ð42Þ

Here, in the limit of zero temperature, the first term may
be calculated within Euclidean space-time using the
Matsubara Green function,

σ̃ðIÞCMEðω0Þ ¼ −
ϵijk

3!2

Z
dDþ1π

ð2πÞD−1 tr

�
γ5Ĝ½0�

0 ∂πj Q̂
½0�
0 Ĝ½0�

0 ∂πk Q̂
½0�
0

× Ĝ½0�
0 ∂πi Q̂

½−�
0 Ĝ½−−�

0

∂Q½−�

∂π4

�
M

−
ϵijk

3!2

Z
dDþ1π

ð2πÞD−1 tr

�
γ5Ĝ½þþ�

0 ∂πi Q̂
½þ�
0 Ĝ½0�

0

× ∂πj Q̂
½0�
0 Ĝ½0�

0 ∂πk Q̂
½0�
0 Ĝ½0�

0

∂Q½þ�

∂π4

�
M
; ð43Þ

while the second term is to be calculated using the original
advanced and retarded Green functions,

σ̃ðIIÞCMEðω0Þ ¼ −
ϵijk

3!2

Z
ω0=2

−ω0=2
dπ0

Z
dDπ⃗

ð2πÞD−1

× trð∂πi Q̂½0�R
0 ½ðĜ½−�A

0 − Ĝ½−�R
0 Þ∂π0Q½0�Aγ5Ĝ½þ�A

0

× ∂πj Q̂
½þ�A
0 Ĝ½þ�A

0 ∂πk Q̂
½þ�A
0 Ĝ½þ�A

0 �Þ ð44Þ
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þϵijk

3!2

Z
ω0=2

−ω0=2
dπ0

Z
dDπ⃗

ð2πÞD−1trð∂πi Q̂
½0�R
0 ½Ĝ½−�R

0 ∂πj Q̂
½−�R
0 Ĝ½−�R

0

× ∂πk Q̂
½−�R
0 Ĝ½−�R

0 ∂π0Q
½0�Rγ5ðĜ½þ�A

0 − Ĝ½þ�R
0 Þ�Þ: ð45Þ

Notice that the expression for σ̃ðIÞCMEðω0Þ at ω0 ¼ 0

is formally divergent. It may be regularized, for
example, introducing finite temperature. Then, the limit

limω0→0 σ̃
ðIÞ
CMEðω0Þ becomes regular. One can see that the

above expression standing inside the integral becomes a
total derivative with respect to momentum. As a result, the
integral vanishes at ω0 ¼ 0. For this reason, we refer to

σðIÞCME as to the topological contribution to CME conduc-

tivity. The details of the calculation of σðIÞCMEðω0Þ at finite
temperature are represented in Appendix A. We notice
here two opposite limits. In the limit T ≫ ω0 at ω0 → 0,

the value of σðIÞCMEðω0Þ tends to zero according to the
above-mentioned analytical results. However, in the

opposite limit T ≪ ω0, the value of σ
ðIÞ
CMEðω0Þ approaches

−1=3 when the lattice spacing tends to zero.
Contrary to σðIÞCMEðω0Þ, the expression for σðIIÞCMEðω0Þ

remains regular at ω0 → 0, and we do not need here the
regularization by finite temperature. The expression for

σðIIÞCMEðω0Þ at any ω0 and T → 0 may be calculated directly.

We calculate the integral in expression for σðIIÞCMEðω0Þ using
Wolfram Mathematica. In order to calculate σðIIÞCMEðω0Þ, we
consider the case ω0 ≪ 2π=a, in which in the integral over
momenta we can substitute the lattice Green function by its
continuum limit. The corresponding calculations are
described in more details in Appendix B. We obtain that
for ω0 ≫ T the second contribution to the CME conduc-

tivity σðIIÞCMEðω0Þ is equal to 4=3. At the same time, in the

opposite limit ω0 ≪ T, we obtain σðIIÞCME ≈ 1.
To summarize, both in the limit T ≪ ω0 and in the

opposite limit T ≪ ω0, the value of σCMEðω0Þ approaches
conventional value 1 when the lattice spacing tends to zero.

VI. CONCLUSIONS

In the present paper, we consider the system of massless
Dirac fermions in the presence of a constant external
magnetic field and time-dependent chiral chemical poten-
tial. Lattice regularization is used, and the responses of an
electric current both to the magnetic field and chiral
chemical potential are calculated. For the direct calculation,
we use the Keldysh technique unified with lattice Wigner-
Weyl calculus. The latter is applicable to the lattice systems
provided that the inhomogeneity is sufficiently weak; i.e.,
variations of external fields at the distance of the order of
lattice spacing are negligible. This condition is satisfied
always as long as we deal with the lattice regularization of
continuum theory.

We consider the case when the system originally was in
thermal equilibrium. In the absence of the dependence of
the chiral chemical potential on time, the Keldysh formal-
ism is reduced to the Matsubara technique. The latter is
defined in Euclidean space-time with imaginary time as a
fourth coordinate. For practical calculations, we use the
lattice fermion action, which becomes equal to the standard
Wilson fermion action after Wick rotation (in the case when
the time dependence of the chiral chemical potential is off).
We consider the chiral chemical potential depending on

time as μ5 ¼ μð0Þ5 cosω0t and calculate the CME conduc-
tivity σCME (i.e., the coefficient in relation j ¼ σCME

2π2
μ5B) as

a function of frequency ω0. We separate the obtained
expression for σCME into two contributions. In the first

one, σðIÞCME may be calculated using the Matsubara Green
functions. This contribution is not well defined at a strictly
vanishing temperature for ω0 ¼ 0. Therefore, we need
regularization by finite temperature in order to investigate
its behavior at ω0 → 0. We observe that it tends to zero
when ω0 approaches zero for any finite value of temper-
ature T ≫ ω0. However, in the opposite limit T ≪ ω0, this
value approaches −1=3 when the system approaches the
continuum limit, while the ratio x ¼ ω0=T is increased. The

second contribution σðIIÞCME is essentially nonequilibrium. It
is expressed through the Advanced/Retarded Green func-
tions. When the lattice system approaches its continuum
limit, only the small region in momentum space around
zero contributes the corresponding expression. In this
region of momentum space, the continuum limit of the
Advanced/Retarded Green functions may be used. We

observe that σðIIÞCME does not depend on ω0 and is equal
to 4=3 for T ¼ 0. At the same time in the limit T ≪ ω0, the

first contribution σðIÞCME → −1=3. Therefore, we arrive at the
conventional value 1 of the CME conductivity in this limit.

In the opposite limit T ≫ ω0, we obtain σðIIÞCME ≈ 1, and
thus, the CME conductivity also approaches the conven-
tional value.
We illustrate the above-mentioned results in Figs. 1 and

2. In Fig. 1, the dependence of the total CME conductivity
on ω0 is represented for three different values of temper-
ature. One can see that for these values of temperature the
conductivity approaches its conventional value when ω0 is
decreased. Moreover, there is almost no dependence on
temperature for the considered values of T. In Fig. 2, we
represent the dependence of the CME conductivity on
lattice spacing for different values of the ratio x ¼ ω0=T
ranging from x ¼ 0.5 to x ¼ 80. We also obtain the data on
x ¼ 0.1, the corresponding points on the given plot
coincide with those of x ¼ 0.5. One can see that irrespec-
tive of the considered values of x the CME conductivity
approaches its conventional value in continuum limit.
We interpret these numerical results as the presence of

the CME at any finite value of ω0 > 0 and finite temper-
ature T. In agreement with the results of [26] obtained in
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Pauli-Villars regularization, we obtain the conventional
value 1 of the CME conductivity in the continuum limit
both for T ≪ ω0 and for T ≫ ω0. Besides, we obtain
indications that in continuum limit the same value of the
CME conductivity is approached irrespective of the values
of the ratio ω0=T (see Fig. 2).
Recall that in [26] a similar result was obtained for a

strictly vanishing temperature in the limit when the spatial
nonhomogeneity is taken off before the dependence in time
of μ5. In our consideration, the system is spatially infinite,
which means the limit, when the spatial nonhomogeneity is
taken off from the very beginning. In the opposite limit
(when spatial inhomogeneity in the chiral chemical poten-
tial is taken off first, and the zero frequency limit is taken
after this), [26] predicts vanishing σCME at zero temperature.

This is in agreement with our previous result obtained in
true equilibrium at finite temperature [31]. The important
difference of our setup from that of [26] is that in order to
calculate the limit of small ω0 for the spatially infinite
systems we need to consider finite temperature.
Here, an analogy to the physics of graphene is worth

mentioning. In particular, the value of ordinary electric
conductivity in graphene depends strongly on the order of
limits used for its calculation. The standard value is
obtained using a rather unorthodox procedure when the
dc limit ω → 0 of the dc conductivity is made before the
zero disorder strength limit is taken. If the order of limits is
reversed, one obtains a different value [97].
To conclude, we observe that, although the CME effect

does not exist in true thermal equilibrium, it is back at
any nonzero frequency ω0, even extremely small, at any
nonzero temperature T. Provided that 0 < T ≪ ω0 or
0 < ω0 ≪ T, the conventional value 1 of the CME con-
ductivity is reproduced in the continuum limit. Besides, we
obtain indications that the same value of CME conductivity
appears in the continuum limit for any ratio ω0=T.
However, to make the definite conclusion on the CME
conductivity for an arbitrary ratio ω0=T, a more detailed
numerical analysis is needed, which is out of the scope of
the present paper.
Our consideration was limited by the noninteracting

systems. It would be important to extend it to the interact-
ing ones. We do not exclude at the moment that the
interactions will give corrections to the CME conductivity
at finite ω0. It would be also interesting to extend the
present study to another kind of out of equilibrium CME,
i.e., to the appearance of electric current caused by parallel
electric and magnetic fields. We expect certain difficulties
in the direct application of Keldysh/Wigner-Weyl tech-
niques to this case. In particular, electron-hole annihilation
and dissipation are to be taken into account. The corre-
sponding study is postponed to future publications.

APPENDIX A: CALCULATION OF σðIÞCMEðω0Þ
AT FINITE TEMPERATURE

Explicitly, we have at finite temperature the following
expression for σ̃ðIÞCMEðω0Þ:

σ̃ðIÞCME ¼−
2πTϵijk

48π2
X

π4¼2πTðnþ1=2Þ

Z
d3πtr

�
γ5Ĝ½0�

0

× ∂πj Q̂
½0�
0 Ĝ½0�

0 ∂πk Q̂
½0�
0 Ĝ½0�

0 ∂πi Q̂
½−�
0 Ĝ½−−�

0

∂Q½−�

∂π4

�
M

−
2πTϵijk

48π2
X

π4¼2πTðnþ1=2Þ

Z
d3πtr

�
γ5Ĝ½þþ�

0 ∂πi Q̂
½þ�
0 Ĝ½0�

0

× ∂πj Q̂
½0�
0 Ĝ½0�

0 ∂πk Q̂
½0�
0 Ĝ½0�

0

∂Q½þ�

∂π4

�
M
: ðA1Þ
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FIG. 2. We represent here the dependence of σCMEðω0; TÞ on
temperature expressed in lattice units, i.e., on Ta for the fixed
ratio x ¼ 0.5 (dotted line), x ¼ ω0=T ¼ 30 (dashed-dotted line),
x ¼ 60 (dashed line), x ¼ 80 (solid line). The imaginary part of
σCME vanishes. Here, a is the lattice spacing. One can see that in
the continuum limit a → 0 the value of σCMEðω0; TÞ approaches 1
for all considered values of x.
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FIG. 1. We represent here the dependence of σCMEðω0Þ on ω0

for the case of the model with Wilson fermions (the imaginary
part vanishes). Values of ω0 are represented in lattice units, i.e., in
units of 1=a, where a is the lattice spacing. The system is
considered in the initial equilibrium state with temperatures T ¼
1

10a (solid line), 1
20a (dashed line), 1

50a (dashed-dotted line). Error
bars are of the order of the line widths.
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Here, T ¼ 1
Na, where a is the lattice spacing (in lattice units,

it is equal to 1), while N is the number of lattice points in
the imaginary time direction. The sum over n is for
n ¼ 0; 1;…; N − 1.
This expression does not contain singularities at finite T.

One can see that for ω0 ¼ 0 it vanishes identically because
the integral contains the complete derivative with respect to
momentum. We calculate numerically the dependence of

σCME on ω0. In Fig. 3, we represent the dependence of σ
ðIÞ
CME

on ω0 for the model, which was initially in thermal
equilibrium with temperatures T ¼ 1

10a ;
1

20a ;
1

50a, where a
is the lattice spacing (we adopt equal lattice spacings in
spatial and imaginary time directions). ω0 is represented in
the units of 1=a.
For ω0 ≫ 1=a and T ≫ 1=a, the system should “forget”

about discretization, and we would deal effectively with the
continuum theory. In this theory, there are two dimensional
parameters T and ω0. Any dimensionless quantity is a

function of their ratio. In particular, we have σðIÞCME ¼
fðω=TÞ. To observe this dependence we should take the
case of small Ta. First of all, one can see from Fig. 3 that

for T ≫ ω0 the value of σðIÞCME remains close to zero. It
grows when ω0 is increased.
We observe that for the fixed value of the ratio

ω0=T ¼ x the value of σðIÞCME depends on T lattice ¼ 1=N ¼
Tphysicalaphysical, i.e., depends on the lattice spacing aphysical
expressed in physical units (when we fix the value of T in
physical units). Extrapolation to aphysical → 0 gives values

of σðIÞCME that depend on the ratio ω0=T ¼ x. In Fig. 4, we
represent the data for x ¼ 30, 60, 80. Our numerical results

demonstrate that limN→∞;x¼ω0=T σ
ðIÞ
CMEðxÞ approaches −1=3

when x grows.

APPENDIX B: CALCULATION OF σðIIÞCMEðω0Þ
Let us represent σðIIÞCMEðω0Þ ¼ I1 þ I2 with

I1¼−
ϵijk

3!2

Z
dπ0ðfðπ0−ω0=2Þ−fðπ0þω0=2ÞÞ

Z
dDπ⃗

ð2πÞD−1

×trð∂πi Q̂½0�R
0 ½ðĜ½−�A

0 −Ĝ½−�R
0 Þ∂π0Q½0�Aγ5Ĝ½þ�A

0

×∂πj Q̂
½þ�A
0 Ĝ½þ�A

0 ∂πk Q̂
½þ�A
0 Ĝ½þ�A

0 �Þ ðB1Þ
and

I2 ¼ þ ϵijk

3!2

Z
dπ0ðfðπ0 − ω0=2Þ − fðπ0 þ ω0=2ÞÞ

×
Z

dDπ⃗
ð2πÞD−1 trð∂πi Q̂

½0�R
0 ½Ĝ½−�R

0 ∂πj Q̂
½−�R
0 Ĝ½−�R

0 ∂πk

× Q̂½−�R
0 Ĝ½−�R

0 ∂π0Q
½0�Rγ5ðĜ½þ�A

0 − Ĝ½þ�R
0 Þ�Þ: ðB2Þ

Here,

G½−�A
0 − G½−�R

0 ¼ 2πið∂π0Q0Þ−1δðQ0ð∂π0Q0Þ−1Þ: ðB3Þ

After the transformation Q ¼ iγ4Q̃ and G ¼ −G̃iγ4, we
have ð∂π0Q̃0Þ−1 ¼ 1 (in the limit of π0 → 0 and ω0 → 0),

and consequently, we have G̃½−�A
0 − G̃½−�R

0 ¼ 2πiδðQ̃½−�
0 Þ,

Q½−� ¼
X3
μ¼1

γμgμðπ⃗Þ− imðπ0 −ω0=2; π⃗Þ− iγ4g0ðπ0 −ω0=2Þ

¼
X4
μ¼1

γμg̃μ ¼ −iγ4
�X4
μ¼1

γ4γμig̃μ þ γ4m̃

�
¼ −iγ4Q̃½−�;

ðB4Þ
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FIG. 4. We represent here the dependence of −σðIÞCMEðω0; TÞ on
temperature expressed in lattice units, i.e., on Ta, for the fixed
ratio x ¼ ω0=T ¼ 30 (solid line), x ¼ 60 (dashed line), x ¼ 80

(dashed-dotted line). The imaginary part of σðIÞCME vanishes. Here,
a is the lattice spacing. One can see that in the continuum limit

a → 0 the value of σðIÞCMEðω0; TÞ approaches −1=3 when the value
of x is increased.
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FIG. 3. We represent here the dependence of −σðIÞCMEðω0Þ on ω0

for the case of the model with Wilson fermions (the imaginary
part vanishes). Values of ω0 are represented in lattice units, i.e., in
units of 1=a, where a is the lattice spacing. The system is
considered in the initial equilibrium state with temperatures T ¼
1

10a (circles), 1
20a (triangles), 1

50a (squares). Error bars are of the
order of the sizes of these symbols.
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where −ig0ðπ0Þ ¼ g4ð−iπ0Þ, g̃0 ¼ −ig0ðπ0 − ω0=2Þ, g̃k ¼
gk, and m̃ ¼ mðπ0 − ω0=2; π⃗Þ. We have

Q̃½−� ¼ −
X3
k¼1

γ0γkMgkðπ⃗Þ − γ0mðπ0 − ω0=2; π⃗Þ

þ g0ðπ0 − ω0=2Þ:

Here, −iγμ ¼ −γμM for μ ¼ 1, 2, 3 and γ0 ¼ −γ4. We write
I1 as

I1 ¼ −2πi
ϵijk

3!2

Z
dπ0ðfðπ0 − ω0=2Þ − fðπ0 þ ω0=2ÞÞ

×
Z

dDπ⃗
ð2πÞD−1 trðδðQ̃

½−�
0 Þ∂π0Q̃½0�A

0 γ5G̃½þ�A
0 ∂πj Q̃

½þ�A
0

× G̃½þ�A
0 ∂πkQ̃

½þ�A
0 G̃½þ�A

0 ∂πi Q̃
½0�R
0 Þ: ðB5Þ

We represent the eigenbasis for Q̃½−�
0 as Q̃½−�

0 jπ⃗; π0;−; ni ¼
qð−Þn ðπ⃗; π0Þjπ⃗; π0;−; ni, with hπ⃗; π0;−; njπ⃗; π0;−; ni ¼ 1
for n ¼ 1, 2, 3, 4,

I1¼−2πi
ϵijk

3!2

Z
dπ0ðfðπ0−ω0=2Þ−fðπ0þω0=2ÞÞ

×
Z

dDπ⃗
ð2πÞD−1

X
n

δðqð−Þn ðπ⃗;π0ÞÞhπ⃗;π0;−;nj∂π0Q̃½0�A
0 γ5

× G̃½þ�A
0 ∂πj Q̃

½þ�A
0 G̃½þ�A

0 ∂πk Q̃
½þ�A
0 G̃½þ�A

0 ∂πi Q̃
½0�R
0 jπ⃗;π0;−;ni;

where qð−Þn ðπ⃗;π0Þ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

3
k¼1 g̃

2
kþm2

q
þg4ðπ0−ω0=2Þ and

ð−P
3
k¼1 γ

0γkMg̃kðπ⃗Þ − γ0mðπ0 − ω0=2; π⃗ÞÞjπ⃗; π0;−; ni ¼
�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
3
k¼1 g̃

2
k þ m2

q
Þjπ⃗; π0;−; ni. We then write the last

expression as

I1 ¼−2πi
ϵijk

3!2

X
n

1

∂π0q
ð−Þ
n ðπ⃗;π0Þ

Z
d3π̃
ð2πÞ2 ðfðπ0−ω0=2Þ

−fðπ0þω0=2ÞÞhπ⃗;π0;−;nj∂π0Q̃½0�A
0 γ5G̃½þ�A

0 ∂πj

× Q̃½þ�A
0 G̃½þ�A

0 ∂πkQ̃
½þ�A
0 G̃½þ�A

0 ∂πi Q̃
½0�R
0 jπ⃗;π0;−;nijπ0¼Enðπ⃗Þ;

ðB6Þ

where Enðπ⃗Þ is given by solution of equation

qð−Þn ðπ⃗; Enðπ⃗ÞÞ ¼ 0. We approach the continuum limit when
T in lattice units approaches zero. In this limit, we
substitute the Green function by its continuum limit.

Then, expression qð−Þn ðπ⃗; π0Þ ¼ �jπ⃗j þ ðπ0 − ω0=2Þ gives

∂π0q
ð−Þ
n ðπ⃗; π0Þ ¼ 1. Now, ∂π0Q̃

½0�A
0 ≈ 1, ∂πi Q̃

½þ�A
0 ≈ −γ0γ̃iM,

∂πj Q̃
½þ�A
0 ≈ −γ0γ̃jM, and ∂πkQ̃

½þ�A
0 ≈ −γ0γ̃kM. We then have

I1 ¼ þ iϵijk

24π

X
n

Z
d3π⃗ðfðπ0 − ω0=2Þ − fðπ0 þ ω0=2ÞÞ

× hπ⃗; π0;−; njγ5G̃½þ�A
0 γ0γ̃jMG̃

½þ�A
0 γ0γ̃kM

× G̃½þ�A
0 γ0γ̃iMjπ⃗; π0;−; ni

and

I2 ¼ −
iϵijk

24π

X
n

Z
d3π⃗ðfðπ0 − ω0=2Þ − fðπ0 þ ω0=2ÞÞ

× hπ⃗; π0;þ; njγ0γ̃iMG̃½−�R
0 γ0γ̃jMG̃

½−�R
0 γ0γ̃kM

× G̃½−�R
0 γ5jπ⃗; π0;þ; ni:

Here, Q̃ ¼ −γ0π⃗γ⃗M þ π0. This gives Q̃½þ� ¼ −γ0π⃗γ⃗Mþ
ðπ0 þω0=2Þ, Q̃½−� ¼ −γ0π⃗γ⃗M þ ðπ0 −ω0=2Þ, and

Q̃½0� ¼ −γ0π⃗γ⃗M þ π0, while G̃½0� ¼−γ0π⃗γ⃗Mþπ0
π⃗2−π2

0

, G̃½þ� ¼
− γ0π⃗γ⃗Mþðπ0þω0=2Þ

π⃗2−ðπ0þω0=2Þ2 , G̃½−� ¼ − γ0π⃗γ⃗Mþðπ0−ω0=2Þ
π⃗2−ðπ0−ω0=2Þ2 .

Direct calculation gives

I1 ¼ I2 ¼
2

3

Z þ∞

−∞
p2dp

ð4p − 3ω0Þ
ω2
0ð−2pþ ω0 − i0Þ2

×

�
1

e−pβ þ 1
−

1

eð−pþω0Þβ þ 1

�
: ðB7Þ

We calculate this expression in two opposite cases: when
T ≪ ω0 and T ≫ ω0. In the former case, we set T ¼ 0, and
then, Eq. (B7) is invariant under rescaling ω0 → λω0,
π⃗ → λπ⃗. As a result, both these integrals do not depend

on ω0 for T ¼ 0. The direct integration gives σðIIÞCME ¼
I1 þ I2 ¼ 4=3 for T ≪ ω0.
In the opposite limit T ≫ ω0, we define p=T ¼ z and

obtain

I1 ¼ I2 ≈
1

6

Z þ∞

0

dz
1þ cosh zþ 2z sinh z

ð1þ cosh zÞ2 ¼ 1=2:

As a result, σðIIÞCME ¼ ReðI1 þ I2Þ ≈ 1 at T ≫ ω0. Besides,

we illustrate the behavior of σðIIÞCME in Figs. 5 and 6.
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