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The transfer matrix of the U(1) lattice model is considered in the Fourier basis and in the weak
coupling limit. The issues of Gauss law constraint and gauge invariant states are addressed in the Fourier
basis. In particular, it is shown that in the strong coupling limit the gauge invariant Fourier states are
effectively the finite size closed loop currents. In the weak coupling limit, however, the link currents
along periodic or infinite spatial directions find comparable roles as gauge invariant states. The subtleties
related to the extreme weak coupling of the transfer matrix in the Fourier basis are discussed. A careful
analysis of the zero eigenvalues of the matrix in the quadratic action leads to a safe extraction of the
diverging group volume in the limit g → 0. By means of the very basic notions and tools of the lattice
model, the spectrum at the weak coupling limit for any dimension and size of lattice is obtained
analytically. The spectrum at the weak coupling limit corresponds to the expected one by the continuum
model in the large lattice limit.
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I. INTRODUCTION AND OUTLINE

In spite of the incomparable advantages of lattice gauge
models for theoretical and practical purposes in the strong
coupling regime, a full understanding of the weak coupling
limit is still an open issue. In particular, the lattice gauge
models are usually transferred to the extremeweak (arbitrary
small) coupling regime in an uncontrolled way, leaving
shortcomings and unresolved issues, specifically as follows:
(1) Although the distinguished role of the Wilson loops

is well appreciated in the strong coupling limit, it is
not quite understood which subset of these gauge
invariant quantities has the main role in the weak
coupling regime.

(2) In going to the extreme weak coupling limit, the
exact point at which the diverging contribution of the
unfixed gauge degrees comes into the calculation is
not well identified. Further, a way of safe and
controlled extraction of the diverging contribution,
the so-called group volume, is still lacking.

(3) Once the above two issues are fixed, as a matter of
necessity, the lattice model has to recover the
continuum part of the spectrum expected by the
classical model in any dimension.

It is the purpose of the present work to address the above
issues for the pure U(1) lattice gauge model in the temporal
gauge. In particular, the transfer matrix of the model is
studied in the field Fourier basis. The lattice gaugemodels in
Fourier basis have been studied since the early years of these
models. The plaquette degrees in Fourier basis, the so-called
dual variables [1], are used to present a qualitative descrip-
tion of the phases by the U(1) model in different dimensions
[2]. The numerical studies based on the dual formulation
show a clear advantage of using integer variables compared
to the original continuous ones [3]. The Fourier transform of
the links variables also is known as the electric flux basis.
The basis is used in a numerical setup of the Hamiltonian
formulation of the lattice models [4–6]. Following [7,8], the
present application of the Fourier transform is also for gauge
link variables appearing in the transfer matrix of the model.
The associated Fourier variables again appear to be integer
valued, and they are interpreted as quantized currents on the
lattice links [7]. In [7,8] it was shown that the transfer matrix
in the Fourier basis is block diagonal. In fact, as a
consequence of a lattice version of the local current con-
servation, the current-states differing in the loop-currents
circulating inside plaquettes belong to the same block [7].
The members of each block can be constructed by an
arbitrary member of the block as the representative [7]. A
diagrammatic representation was introduced in [7] for the
strong coupling expansion of the transfer-matrix elements in
the Fourier basis. With g as the gauge coupling, the
parameter of expansion is 1=g2, which is small in the strong
coupling limit. The expansion of the matrix-element
between two current-states of the same block is directly
interpreted as the occurrence of all possible virtual link and
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loop currents that transform the current states to the vacuum
(the state with no current). Based on the expansion of the
transfer-matrix elements in the Fourier basis, it was shown
that the low lying energy levels can be calculated by means
of the simple perturbative methods in the strong coupling
regime [7].
Based on notions and expressions developed in [7], as far

as the transfer matrix of the U(1) gauge model in the
Fourier basis is concerned, it is shown that the above-
mentioned issues can be addressed as the following:
(1) In the Fourier basis the Wilson loops are represented

by the current states with no boundary, which are
either current loops belonging to the vacuum block,
or states with equal links currents along a periodic
or an infinite spatial direction. While in the strong
coupling limit the closed currents of the vacuum
block have the main contribution to the transfer
matrix, in the weak coupling regime the link
currents along spatial directions also find compa-
rable roles.

(2) In the extreme weak coupling limit, the zero eigen-
values of the matrix in the quadratic action can be
identified as the origin of the diverging contributions
to the elements of the transfer matrix in the Fourier
basis. The states belonging to the subspace corre-
sponding to the zero eigenvalues are clearly inter-
preted as pure gauge configurations, on which the
matrix in the quadratic action vanishes. The dimen-
sion, as well as the diverging volume of the subspace
in the weak coupling limit, can be handled in a safe
and controlled way.

(3) By means of the very basic notions and tools of the
lattice model, the spectrum at weak coupling limit
for any dimension and size of lattice is obtained
analytically. The spectrum consists of the sum of
possible energies by static and standing wave field
configurations on the lattice. In the large lattice limit
the spectrum at the weak coupling limit corresponds
to the expected one by the continuum model.

One of the basic tools used in the formulation of the
transfer matrix in the Fourier basis is the plaquette-link
matrixM [7,8], by which the elements defined on the lattice
can be managed at any coupling. As a consequence, it is
seen that the matrix M provides the possibility to keep and
work with the fundamental lattice notions even in the
extreme weak coupling limit. On the other hand, using this
matrix enables to translate the tools in the continuum
model, such as spatial derivatives, into the lattice model.
These all make it possible to calculate the dimension of the
subspace by the mentioned zero eigenvalues and to control
the group volume.
The rest of the paper is organized as follows. In Sec. II, a

short review of the formulation of the transfer matrix in the
Fourier basis, together with a detailed description of
emerging notions, are presented. In Sec. III the condition

by which the gauge invariant states are identified, the so-
called Gauss law constraint, is discussed. Section IV
presents the weak coupling limit of the transfer-matrix
elements, together with the subtleties related to the
diverging group volume and its treatment. In Sec. V it is
shown how the continuum part of the spectrum can be
recovered in the small coupling limit of the lattice gauge
model. Section VI is devoted to concluding remarks.
A detailed comparison between the lattice model in the
weak coupling limit and the continuum model is presented
in Appendix A. The calculation of relevant eigenvalues is
presented in Appendix B.

II. REVIEW: CURRENT EXPANSION
IN FOURIER BASIS

In this section, the formulation of the transfer matrix in
the Fourier basis based on [7,8] is shortly reviewed. In
particular, the elements and notions emerged through the
Fourier transform, specially in connection with the current
interpretation of the Fourier modes, are emphasized.
Following [9,10], the temporal gauge A0 ≡ 0 is used in
the formulation. The link “l” at site r in spatial direction “i”
is represented by l ¼ ðr; iÞ. The gauge variables at adjacent
times nt and nt þ 1 are introduced to the model as follows:

nt∶ θl ¼ agAðr;iÞ; ð1Þ

nt þ 1∶ θ0l ¼ agA0ðr;iÞ ð2Þ

taking values in ½−π; π� [11,12]. Above, “g” and “a” are the
gauge coupling and the lattice spacing parameters, respec-
tively. For a spatial lattice with NL number of links and NP
number of plaquettes, it is helpful to define the plaquette-
link matrix M of dimension NP × NL, as following explic-
itly by its elements

Mp
l ¼

��1; link l¼ðr;�iÞbelongs to oriented plaquettep
0; otherwise

:

ð3Þ

In Fig. 1 a graphical representation of the definition is
given. Setting

-1

-1 +1

+1

p

+

+

FIG. 1. Graphical representation of definition (3).
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γ ¼ 1

g2
ð4Þ

the elements of the transfer matrix V̂ are defined in terms of
the Euclidean action between two adjacent times [7]

hθ0jV̂jθi ¼ A
Y
p

exp

�
−
γ

2
½2 − cosðMp

lθ
lÞ − cosðMp

lθ
0lÞ�

�

×
Y
l

exp f−γ½1 − cosðθl − θ0lÞ�g; ð5Þ

in which the summations over repeated indices are under-
stood. In the above A is inserted to fix the normalization
[13], an issue we will come back to it in Secs. III and IV.
The Fourier basis jkli is related to the compact θ basis by

hθl0 jkli ¼
δl

0
lffiffiffiffiffiffi
2π

p expði klθlÞ; kl ¼ 0;�1;�2; � � � ð6Þ

by which the transfer-matrix elements in the Fourier basis
can be found

hk0jV̂jki ¼ 1

ð2πÞNL

Z
π

−π

Y
l

dθ0ldθle
−ik0·θ0eik·θhθ0jV̂jθi ð7Þ

Accordingly, it is shown that V̂ is block diagonal in the
Fourier basis [7,8], and all elements of a block can be
presented by an arbitrary block’s member k� as the
representative, whose coblocks are all constructed as

k�q ¼ k� þ q ·M ð8Þ

in which q is a row vector with NP integers as components.
It will be seen later, as a manifestation of the current
conservation, two coblocks can differ at most in the
circulating currents inside plaquettes, allowing to have a
nonzero matrix element. Consequently, the matrix element
between two coblocks represented by k� is found to be [7]

hk0�q0 jV̂jk�qi ¼ Ae−γðNPþNLÞð2πÞNL

×
X
fn0pg

X
fnpg

Y
p

Iqp−np

�
γ

2

�
Iq0p−npþn0p

�
γ

2

�

×
Y
l

Ik�þ
P

p
npMp

l
ðγÞ; ð9Þ

in which k�q is given by (8), and

k0�q0 ¼ k� þ q0 ·M: ð10Þ

In (9), all summations are on integers, and Irs are modified
Bessel functions. Further, in a vector notation, n0ps satisfy
the following relation (including n0 ¼ 0) [7]:

n0 ·M ¼ 0: ð11Þ

Before proceeding to the strong coupling expansion, it is
quite insightful to discuss the physical meaning of the
objects that emerged in the Fourier basis. First is the Fourier
vector k itself, which can be directly understood by its
appearance, namely by (7), and its similar expression in the
continuum theory, by the coupling of the current J to the
gauge field A

ei
P

l
klθl ¼ ei a g

P
l
klAl

→ eig
R

J·Adx: ð12Þ

Above, kl is interpreted as the number of the current quanta
coupled to the gauge field Al associated to the link “l.”
Accordingly, the current vector k consists of the link
currents kls. The integer value of kl reflects the fact that,
thanks to the compact nature of gauge fields in the
lattice model, the quantization of charge is satisfied
automatically. By the above interpretation of kls, the
Fourier basis jki is representing the states of current quanta
on the lattice links. Now, by the definition of the transfer-
matrix V̂ ¼ expð−aĤÞ, with Ĥ as the Hamiltonian, the
matrix element hk0jV̂jki is the transition amplitude between
the states with k and k0 currents during the imaginary time
interval “a.”
To find the meaning of the integers qps, first we need to

realize the role of the matrix M, defined by its elements in
(3). In [7,8], an explicit representation of this matrix for the
2D spatial lattice is presented; see also the Appendices of
the present work. Accordingly, by the definition (3) each qp
turns on two þqps and two −qps units of currents in four
links of plaquette “p,” being added to already existing
currents of k� in (8) [7,8]. As an example, let us consider
the block represented by the vacuum state k� ¼ k0 ¼ 0, and
its coblock

k0;1 ¼ k0 þ q1 ·M; ð13Þ

with NP-component vector q1¼ð1;0;…;0Þ. Equation (13)
is pictorially presented in Fig. 2, showing that the resulting
vector current has only four links with a nonzero current,
namely two þ1s and two −1s, making a circulating unit
current in the first plaquette. As seen, qp is determining the

FIG. 2. The graphical representation of (13) to construct k0;1 as
a coblock of k0 ¼ 0.
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number of current quanta circulating in the plaquette “p.” It
is befitted to call the qp numbers as plaquette currents or
loop currents. As another example from the vacuum block,
consider the state constructed by all qps zero, except two of
nonadjacent plaquettes, as depicted in Fig. 3. By above
interpretation of qps, the transfer-matrix elements are
nonzero only between the current states that differ in
circulating currents inside plaquettes, as a consequence
of the current conservation [7].
Let us go beyond the vacuum block by considering the

state represented by the NL-component vector current
k1 ¼ ð1; 0;…; 0Þ, which has one unit of current on the
first link of the lattice, with all other link currents zero. It is
easy to see that there is no set of loop currents q ·M that
could yield this vector from any member of the vacuum
block. Two coblocks of this state are presented in Figs. 4
and 5 [7].
One of the most special blocks is the one represented by

the vacuum state k0 ¼ 0. In [8] it is shown that, provided
that the ground state is unique, it belongs to k0’s block. The
reason simply backs to the fact that in the extreme large
coupling limit g → ∞ (γ → 0), as all elements except V00

are approaching zero, using the fact the energy and V̂
eigenvalues are related as

Ei ¼ −
1

a
ln vi ð14Þ

the ground state belongs to the vacuum block. By unique-
ness of the ground state, upon lowering the coupling, no
crossing between ground state by other states occurs,
leaving the ground states in the vacuum block at any
coupling [8].
The presented interpretation of k and q as link and loop

currents leads to a diagrammatic strong coupling expansion
of the transfer matrix in the Fourier basis [7]. Specifically, it
is shown that the elements of the transfer matrix between
two states of a block can be represented as a sum over
occurrences of the virtual loop and link currents that
transform both states to the vacuum [7]. In other words,
the transition between two states, represented by the
element hk0jV̂jki, occurs as if the vacuum state is being
passed as an intermediate state [7]. The transformation to
the vacuum via occurrences of the virtual currents is to be
considered even for states that do not belong to the vacuum
block. This is because the coblocks of a state are deter-
mined by adding loop currents via q ·M as (8), but the
mentioned transform to the vacuum is due to both link and
loop currents, the former via “cosðθ − θ0Þ” term that is
irrelevant for making coblocks. It is due to these link
currents that transformation of any state, including those
from other blocks, into the vacuum is made possible [7].
The distinguished role of the vacuum state simply comes
back to the fact that the Fourier integrals over θ and θ0
related to both states are to be satisfied separately, namely
k → 0 and k0 → 0 [7].
To present the diagrammatic expansion, let us use the

normalized transfer matrix as

V̂ ¼ Ae−γðNLþNPÞð2πÞNLV̂; ð15Þ

by which h0jV̂j0i ¼ 1þ Oðγ2Þ. For two given states of jki
and jk0i in a block, consider the case that they transform to
the vacuum by m and m0 numbers of the virtual loop-
currents, respectively, accompanied by l numbers of the
virtual link currents for both states. Now, the numerical
factor associated with the matrix element of transition
through the mentioned transform is [7]

½hk0jV̂jki�m;m0;l ¼ Km;m0;l
1

22mþ2m0þl

1

m!m0!l!
γmþm0þl;

ð16Þ

in which Km;m0;l is the combinatorial factor representing
the number of ways that loop and link currents can be
combined, regarding the initial and final transformations to
the vacuum. As mentioned, the above matrix elements can
be represented by a set of graphs in which a proper
combination of virtual loop and link currents would make
the required pass through the vacuum. The ways that the

FIG. 3. Construction of a coblock of k0 with two nonadjacent
plaquette currents.

FIG. 4. k1;−1 ¼ k1 − q1 ·M as a coblock of k1 with three links
having unit current.

FIG. 5. A coblock of k1 with five links having unit current.
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initial and final states transform to the vacuum, accom-
panied by the associated numerical and combinatorial
factors of each transition, simply fix the terms in the strong
coupling expansion [7]. In this respect, these graphical
representations can serve as the Feynman diagrams in the
perturbative quantum field theory. The elements being used
in graphs are simply the currents, loop or link ones, being
characterized by their real or virtual natures. Accordingly,
the initial and final states, being determined only by the link
currents, are interpreted as real and presented by a
combination of solid lines as

ð17Þ

and their rotated versions. Instead, the loop and link
currents occurred during the transforms are interpreted
as virtual, being drawn in dashed form as below for the loop
currents

ð18Þ

and the following for link currents

ð19Þ

To emphasize the pass through the vacuum, we use the

notation k0 →
0
k for the matrix element hk0jV̂jki [7]. As

examples of the diagrammatic representation of the terms in
the strong coupling expansion, the diagrams contributing to
the vacuum to vacuum transition at order γ2 are

ð20Þ

in which, as before, NP and NL are number of plaquettes
and link in the lattice, respectively. At order γ4, denoting

Cm
n ¼

�
n

m

�
¼ n!

m!ðn −mÞ! ; ð21Þ

we have the following

ð22Þ

All together we have [7]

h0jV̂j0i0 ¼ 1þ
�
NP

8
þ NL

4

�
γ2 þ

�
−
NL

64
þ N2

L

32
−

NP

512
þ NPNL

32
þ N2

P

128

�
γ4 þ Oðγ6Þ: ð23Þ

Similarly, denoting k0;1 as j1i, for the transition 1→
0
1 we have

ð24Þ

and
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ð25Þ

leading to

h1jV̂j1i0 ¼
γ2

16
þ
�
15

256
þ NL

64
þ NP

128

�
γ4 þ � � � : ð26Þ

As final sample of the strong coupling expansion we find for the 1→
0
0 transition

h1jV̂j0i0 ¼
γ

4
þ
�
−1
128

þ NP

32
þ NL

16

�
γ3 þ

�
49

3072
−
3NL

512
þ N2

L

128
−

3NP

2048
þ NLNP

128
þ N2

P

512

�
γ5 þ � � � : ð27Þ

Many other examples of the diagrammatic expansion in the
strong coupling limit are presented in [7]. For a general
matrix element, it can be shown that two subsequent orders
of γ in the expansion of an element differ by 2. This simply
comes back to the fact that, any given order of an element
differs from a higher order one by adding an even number
of the virtual currents, as required by the transforms of
states to the vacuum [7]. So the expansion for an element in
k� block looks like

hk0�q0 jV̂jk�qik� ¼ γhðc0þc2γ2þc4γ4þc6γ6þ�� �Þ; ð28Þ

in which “h” is the lowest order at which the transforms of
both initial and final states to the vacuum are made
possible. As the consequence, the expansion is in powers
of 1=g4, which makes it fairly reliable for even not so large
“g.” The value of “h” can be determined as well, once k�, q,
and q0 are given. To make things systematically, we use the
convention that the representative vector would have the
minimum value of

jk�j ¼
XNL

l¼1

jk�lj: ð29Þ

The value of “h” is determined once q and q0 of (8) and (10)
are given, as follows [7]

h ¼ jk�j þ jqj þ jq0j ð30Þ

in which

jqj ¼
XNP

p¼1

jqpj; jq0j ¼
XNP

p¼1

jq0pj: ð31Þ

III. GAUSS LAW CONSTRAINT IN
FOURIER BASIS

It is known that in the procedure of quantization of lattice
gauge theories, due to the compact nature of gauge
fields, the gauge fixing condition is not needed in the path
integral [11,12]. However, it is still necessary to restrict the
available states to the gauge-invariant ones, represented by
the so-called Wilson loops in the field basis [11,12]. The
same is true in the temporal gauge used to derive the
transfer-matrix elements in the Fourier basis [7,8]. That is
so because, as the result of partial gauge fixing condition
A0 ≡ 0, the model still enjoys residual gauge symmetry,
acting as time-independent (spatial) gauge transformations
[14,15]. In the case of the temporal gauge, it is known that
the gauge invariance condition on the states is nothing but
the Gauss law constraint [14,15]. In other words, the
generator of the spatial gauge transformation, appearing
in the Gauss law, should leave the physical states unaffected
[14,15]. Accordingly, it is shown that in the temporal gauge
the set of physical states consists of the Wilson loops
entirely lying in the spatial directions [15]. In the field
basis, the wave function corresponding to the spatial
Wilson loop is represented by the path-ordered exponential
around the spatial closed loop “C” as [11,15]
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ψC½θ� ¼ exp

�
i
X
l∈C

Jlθl
�

ð32Þ

in which, depending on the direction of “C” on link l,
Jl ¼ �J [11]. It is obvious that by construction (32) is gauge
invariant. The most general gauge-invariant wave functions
are simply constructed by multiplications of those like (32)
for a single loop. It is the purpose of this section to map the
above physical states in the field basis to the Fourier basis.
The transform to the Fourier basis is simply

ψ̃C½k� ¼
1

ð2πÞNL=2

Z
π

−π

Y
l

dθl exp

�
i

�X
l∈C

Jlθl − k · θ

��
;

ð33Þ

leading to the following as the product of Kronecker δs of
integer values:

ψ̃C½k� ¼ ð2πÞNL=2
Y
l∈C

δðkl − JlÞ
Y
l0∉C

δðkl0 Þ; ð34Þ

by which the gauge invariant state in the Fourier basis has
only nonzero currents jJlj ¼ J along the closed spatial loop
“C” of ψC½θ�. The identification of the above states is
particularly simple by the notions presented in the previous
section. For the case of the 1D periodic spatial lattice, the
only closed loop is the one around the entire the periodic
spatial direction. As in this case, the transfer matrix is
diagonal [16,17], and the element for a periodic lattice with
NL links finds the following form:

hkjV̂jki ¼ Aðe−γIkðγÞÞNL ; k ¼ 0;�1;�2;…; ð35Þ

where A is inserted to fix the normalization [13]. By the
elements of diagonal V̂, the exact spectrum of 1D model is
found [16,17]:

Ek ¼ −
1

a
lnhkjV̂jki: ð36Þ

Above, due to the property of the Bessel functions
I0 > I�1 > I�2 � � �, the ground state is given by k ¼ 0
[16,17]. In [13], the normalization A is fixed in a such
way that in the weak coupling limit γ ≫ 1, using the
asymptotic behavior of Bessel functions:

IkðγÞ≃
eγffiffiffiffiffiffiffiffi
2πγ

p e−ðk2−1=4Þ=ð2γÞ
�
1þO

�
1

γ2

��
; γ≫ k; ð37Þ

the continuum energy density (energy per link) expected by
the classical model is recovered

Ek

NL
≃
ðk2 − 1=4Þg2

2a
; g ≪ 1; k ∈ Z: ð38Þ

For the case of an infinite 1D lattice, one still can define
ψ̃C½k� along the spatial direction, by which the above finite
continuum energy density is valid in the limit NL → ∞.
For the case of more than one dimension, it is still

possible to consider the current-loops around the entire
periodic directions, such as in Figs. 6 and 7. As will be seen
in the next section, the blocks owners of these periodic
large current loops are again responsible for the continuum
spectrum expected in the weak coupling limit. However, in
the strong coupling limit γ ≪ 1, these periodic loop
currents and their blocks contribute only to the extremely
excited energies [7]. This can be understood easily by the
strong coupling expansion of [7], reviewed in the previous
section. Accordingly, the matrix element associated with
the mentioned states behaves as γNL or with higher powers
in the limit γ ≪ 1, leading to extremely high energies in the
large size limit NL ≫ 1 by E ¼ −NL ln γ.
Apart from above-mentioned loops along periodic direc-

tions, there are other loops with less number of links in more
than one dimension as well. Examples of such closed
currents in the 2D spatial lattice are given in Fig. 8.
Further examples in a 3D lattice, such as currents at edges
are given in Fig. 9, and in general form in Fig. 10.All of these
closed currents can be constructed by superposition of equal
plaquette currents of the previous section, as shown in each
case. As a consequence, all of these gauge invariant finite

FIG. 6. Left: the periodic loop current a and two of its coblocks
b and c. Right: d as a two spaced equal periodic loop currents,
and e as a two spaced opposite periodic loop currents. In fact, e
belongs to the vacuum block.

FIG. 7. A gauge invariant Fourier state that consists of two
periodic loop-currents along two spatial directions. The two
currents are not necessarily equal.
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size closed currents belong to the vacuum block. In the
previous section, it is seen how the above closed currents are
generated by adding the plaquette currents to the vacuum.
By the strong coupling expansion of the previous section, a
closed current generated by nc number of the plaquette
currents leads to the matrix element hncjV̂jnci ≃ γ2nc in the
limit γ ≪ 1. This leads to the fact that, in the strong coupling
regime, the spectrum of the model comes effectively from
the vacuum block; as mentioned before, the other blocks of
the periodic loop currents generate only extremely excited
energies. As shown in [7], by means of simple perturbative
methods, the eigenvalues of the vacuum block can be
evaluated in the strong coupling regime [7].

IV. TRANSFER-MATRIX IN WEAK
COUPLING LIMIT

The quantum theory of pure U(1) gauge model in the
presence of source Jμ may be defined by means of the path
integral

Z½J�¼
Z

DAexp

�
i
Z

dx

�
−
1

2
Aμðημν□−∂μ∂νÞAνþJμAμ

��
ð39Þ

leading to

Z½J� ∝ j detðημν□ − ∂μ∂νÞj−1=2: ð40Þ

However, the above expression is infinite due to the zero
modes of the operator, corresponding to the pure gauge
configurations Aμ ¼ ∂μfðxÞ:

ðημν□ − ∂μ∂νÞ∂νfðxÞ ¼ □∂μf − ∂μ□f ¼ 0: ð41Þ

The above-mentioned infinity, in other words, is due
to the infinite group volume, resulting from integration
over ½−∞;∞� of redundant gauge degrees. Accordingly,
the common recipe to avoid the divergent behavior is to fix
the gauge. Among many possibilities, one may impose the
temporal gauge used in the present work A0 ¼ 0, which is
known as an incomplete gauge due to the residual gauge
freedom. To make the gauge fixing complete, the so-called
Coulomb gauge condition by ∇ · A ¼ 0 may be added.
It is commonly expressed that in the lattice formulation

of gauge theories, the above mentioned gauge fixing is not
necessary. This simply is due to the compact nature of
gauge fields −π=g ≤ aA ≤ π=g, by which the integration
over unfixed gauge degrees would not lead to infinity. In
going from the lattice theory to continuum, however, one
has to care about the diverging integrals. The main purpose
of the present section is to show in detail how the infinities
emerge in going to the extreme weak coupling limit g → 0
of the lattice model. In particular, it is seen how the group
volume emerges through integration over the zero modes of
the operator by the quadratic action in g → 0 limit. The
number of mentioned zero modes is equal to the number of
“fixing” spots on lattice by the condition ∇ · A ¼ 0, and
also the number of pure gauge field configurations, both
equal to the number of the lattice sites.
In the weak coupling limit g ≪ 1 the configurations with

θ ≪ 1 find the dominant contribution. So the cosines in the
action can be expanded, leading to the quadratic form
similar to the continuum model of gauge theory. Back from
the angle variable θ ¼ agA to the original variables “A,”
inserted in the following vector with 2NL components

η ¼
�

A

A0

�
; ð42Þ

the elements of the transfer matrix are given by means of
the following quadratic action

hθ0jV̂jθi ¼ A exp

�
−
a2

2
ηTCηþ Oðg2Þ

�
ð43Þ

FIG. 8. Examples of 2D gauge invariant closed currents from
the vacuum block.

FIG. 9. Examples of 3D closed edge currents from the vacuum
block.

FIG. 10. General 3D closed currents from the vacuum block.
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in which matrix C has 2NL × 2NL dimensions, given
explicitly by

C ¼
�

1 −1
−1 1

�
⊗ 1L þ

1

2
12 ⊗ MTM; ð44Þ

¼
� 1L þ 1

2
MTM −1L

−1L 1L þ 1
2
MTM

�
; ð45Þ

with 12 and 1L as two- and NL-dimensional identity
matrices, respectively. From now on we set a ¼ 1, which
can be recovered easily by dimensional considerations. To
transfer to the Fourier basis, we define the vector

κ ¼
�

k

−k0

�
ð46Þ

by which, using (6) with original “A” variables, we have

hk0jV̂jki ≃A
g2NL

ð2πÞNL

Z
π=g

−π=g
dη exp

�
−
1

2
ηTCηþ igηTκ

�
:

ð47Þ

In the limit g → 0 the above integral is practically the
Gaussian one. However, at first the zero eigenvalues of
matrix C should be treated. The origin of these zero
eigenvalues simply goes back to the fact that, in the present
temporal gauge A0 ≡ 0, there are still unfixed gauge
freedoms. These unfixed degrees contribute infinitely
due to the volume of the group in the uncompact limit
g → 0. The matrix C is symmetric, so there is a basis in
which it is diagonal. In fact, by the eigenvectors of C one
can construct the matrix P, by which

C̃ ¼ P−1CP; ð48Þ
η̃ ¼ P−1η; ð49Þ

η̃T ¼ ηTP; ð50Þ

κ̃ ¼ P−1κ; ð51Þ

with C̃ being diagonal. By the expectations from the
continuum model, we expect that the matrix C has zero
eigenvalues. These eigenvalues corresponds to the pure
gauge field configurations as (41), by which E ¼ B ¼ 0.
Accordingly, the diagonal matrix may be represented in the
following way

C̃ ¼
�
C̃u 0

0 C̃d

�
; ð52Þ

where C̃u is diagonal and C̃d ¼ 0. The dimension of the
subspace by the zero modes determines the size of block

C̃d ¼ 0. As zero modes are being represented by the pure
gauge configurations as AðxÞ ¼ ∇fðxÞ, the size is expected
to be the number of possible configurations in the coor-
dinate x space, being effectively the number of sites in the
lattice version of the model. For the periodic spatial lattices
with Ns sites in each direction, by the explicit representa-
tion of the matrix M, one can check that it is in fact the
case, as summarized in Table I. In Appendix A a detailed
comparison between the lattice model in the weak coupling
limit and the continuum model is presented. In particular,
using the explicit representations of matrices C and M for
2D and 3D models, it is shown how the models on the
lattice and continuum act similarly in the above-mentioned
respects.
The projection of κ̃ on the subspace by C̃d, denoted

by κ̃d, do not appear in the quadratic part ηTCη. Back to the
angle variables θ ¼ gA for these zero modes, upon inte-
gration over θ ∈ ½−π; π�, the Kronecker δs are developed,
leading to

hk0jV̂jki ¼ A
g2NL−Nd

ð2πÞNL−Nd
δðκ̃dÞ

Z
π=g

−π=g
dη̃u

× exp

�
−
1

2
η̃Tu C̃uη̃u þ igη̃Tu κ̃u

�
; ð53Þ

in which only integrals on nonzero modes are left. By the
explicit representation of M, it is an easy task to see that
δðκ̃dÞ is automatically satisfied for members of a block of
the transfer matrix, constructed by the relations (8) and
(10). So the only remaining job is the integration over the
nonzero modes, which is well approximated by Gaussian
integrals in the limit g → 0, using the following relation
[18,19]:

erfðzÞ ¼ 2ffiffiffi
π

p
Z

z

0

e−x
2

dx;

¼ 1 −
e−z

2ffiffiffi
π

p
X∞
n¼0

ð−1Þnð2n − 1Þ!!
2nz2nþ1

z ≫ 1: ð54Þ

Accordingly, one has the following for Λ ≫ 1 [18]:

Z
Λ

−Λ
e−

1
2
x⃗TFx⃗þiB⃗·x⃗dnx ¼

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn
detF

r
e−

1
2
B⃗TF−1B⃗ þ O

�
e−Λ

2=2

Λ

�
:

ð55Þ

TABLE I. For periodic lattices in two and three dimensions the
size of block C̃d is given by explicit representations of M.

No. of sites No. of links dim. of C̃d

2D lattice N2
s NL ¼ 2N2

s Nd ¼ N2
s þ 1

3D lattice N3
s NL ¼ 3N3

s Nd ¼ N3
s þ 2
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As mentioned earlier, to satisfy δðκ̃dÞ two states must
belong to the same block of the transfer matrix. For the
states (8) and (10) in the block represented by k�, we find
the following explicit form

hk0�q0 jV̂jk�qi¼A
g2NL−Nd

ð2πÞNL−Nd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2NL−Nd

det C̃u

s

×

�
exp

�
−
g2

2
κ̃Tu C̃

−1
u κ̃u

�
þOðge−π2=g2Þ

�
; g≪1:

ð56Þ

The resulted expression presents the exact dependence of
matrix elements on the lattice size parameters NL and Nd,
related to the number of sites Ns as given in Table I. This is
due to the specific parametrization, by which the deriva-
tions and different limits are made possible for any lattice
size. In the next section an example of large lattice limit for
the spectrum is presented.

V. SPECTRUM AT WEAK COUPLING LIMIT

In Sec. III, it is shown how the continuum spectrum of
1D model is recovered in the weak coupling limit. The
spectrum by Eq. (38) is essentially g2k2, in which “k”
represents the quanta of electric field in “g” units along the
spatial direction. Recalling that in the present temporal
gauge the momentum of the gauge field is related to the
electric field by E ¼ _A, and in absence of the magnetic field
in the 1D model, the spectrum consists of only the kinetic
term. As we will see, the continuum spectrum expected by
the classical model, like that of the 1D model in Sec. III,
can be recovered for higher dimensions as well. The main
difference between 1D model and higher-dimensional ones
is that the transfer matrix of the 1Dmodel is diagonal and in
the others it is block diagonal [7,8]. The matrix elements by
the previous section show clearly that we are faced with
almost equal values in each block, and finding the
eigenvalues of the transfer matrix seems challenging. As
the consequence, it is needed to go back to the field basis
and manipulate the matrix elements to make a practically
useful form to find the eigenvalues. Back to (43), we see
that by

P ¼ 1ffiffiffi
2

p
� 1L 1L
−1L 1L

�
ð57Þ

the matrix C comes to the form

C0 ¼ P−1CP ¼
�
21L þ 1

2
MTM 0

0 1
2
MTM

�
: ð58Þ

By the explicit representations given in Appendix A, it
can be easily seen that the eigenvalues of MTM are

non-negative. Accordingly, the zero eigenvalues of matrix
C can only happen in the lower right block. The number of
these eigenvalues is presented in Table I. By the above
representation, the matrix element (43) takes the form
(setting again a ¼ 1)

hA0jV̂jAi ¼ A exp

�
−
1

2
A−

�
1L þ

1

4
MTM

�
A−

−
1

2
Aþ

�
1

4
MTM

�
Aþ

�
ð59Þ

in which

A� ¼ A� A0: ð60Þ

The above representation finds very simple form by going
to the basis in which MTM is diagonal. As MTM is
symmetric, there are orthonormal eigenvectors such that

MTMjξi ¼ 4ξ2jξi ð61Þ

for which hξjξ0i ¼ δξξ0 . The form of 4ξ2 for eigenvalues is
chosen for later convenience. In this basis, obviously the
zero eigenvalues only find contribution in the A− part, and
the matrix element (59) finds the form

hA0jV̂jAi¼A exp

�
−
1

2

X
fξ¼0g

ðAξ−A0
ξÞ2

−
1

2

X
ξ≠0

ðð1þξ2ÞðAξ−A0
ξÞ2þξ2ðAξþA0

ξÞ2Þ
�
;

ð62Þ

in which fξ ¼ 0g is used to emphasize that the zero
eigenvalue has degeneracy (see Table I). As will be seen,
the zero and nonzero modes correspond to the static and
standing wave configurations, respectively. The absence of
Aþ
ξ¼0 in the above expression, upon doing the Fourier

transform, would result in the group volume ð2π=gÞNd , as
seen in the previous section. The first term in the above is
simply the free kinetic term for A−

ξ¼0 modes. Both the group
volume and the contribution by the free part to the spectrum
can be recovered by the Fourier transform. In the ξ basis,
the Fourier term in (47) takes the form

igηTκ ¼ igðA · k − A0 · k0Þ; ð63Þ

¼ i
2
g

�X
fξ¼0g

ðAþ
ξ k

−
ξ þA−

ξ k
þ
ξ Þþ

X
ξ≠0

ðAþ
ξ k

−
ξ þA−

ξ k
þ
ξ Þ
�
;

ð64Þ

in which k� ¼ k� k0. As mentioned, the integration on
Aþ
ξ¼0 would develop the group volume, together with
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δðk−ξ Þ ¼ δðkξ − k0ξÞ for ξ ¼ 0 s, which corresponds to δðκ̃dÞ
of the previous section. The deltas are satisfied by the
general requirement that k and k0 belong to the same block,
represented by (8) and (10), k ¼ k� þ q ·M and
k0 ¼ k� þ q0 ·M. The energy by the free modes can be
calculated upon integration on A−

ξ¼0 s through the Fourier
transform. As the consequence, the contribution of these
modes to the energy, using kξ ¼ k0ξ by the delta for the zero
modes, is simply found to be

Efree ¼
X
fξ¼0g

1

2

�
gkþξ
2

�2

¼
X
fξ¼0g

g2k2ξ
2

; ð65Þ

which is the free kinetic term on a circle of radius 1=g. The
allowed values for k by the Gauss law are discussed in
Sec. III. In the 1D case by Eq. (38), the free kinetic part
represents the energy of the constant electric flux in the
spatial direction. In the higher-dimensional case the
allowed electric fluxes may be a nonuniform one. As an
example is the straight flux k� in Fig. 6(a), which represents
a nonuniform flux as it is not repeated along the
perpendicular direction, say y. Also, due to the term q ·
M in k ¼ k� þ q ·M, the original straight flux k� may
transform to a nonstraight one, or may find an accompanied
closed flux loop. Examples of both nonstraight flux and a
loop added one are presented in Figs. 6(a) and 6(b),
respectively. However, due to the projection to the subspace
by the zero modes in (65), it is only the uniform part of the
mentioned allowed states that contribute to the free part
(65). The projection to the zero modes is simply done by
the projection operator

P0 ¼
X
fξ¼0g

jξihξj; ð66Þ

which satisfies P2
0 ¼ P0. By the explicit form of the matrix

M, it is a simple task to check that the result of the
projection of the mentioned allowed states to the subspace
by zero modes is a uniform electric flux, an example of
which is presented in Fig. 11. The state in Fig. 11, by the
convection introduced for labeling the links of a 2D lattice,
is given by

k ¼ ð1; 1;…; 1;|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N2

s

0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}
N2

s

ÞT; ð67Þ

in which “T” is inserted to make it a column vector.
Physically, the zero modes by the kinetic term _A2 are
representing the pure electric field configurations, the
stability of which forces them to be uniform. We later
see that, how the continuum limit of the operator MTM
only admits the uniform electric fields for the free kinetic
part. The irrelevance of q ·M to the zero mode sector
can be understood easily by the action of the projection

operator (66). By the fact that the zero modes satisfy
hξjMTMjξi ¼ jMjξij2 ¼ 0, we have

P0ðq ·MÞT ¼
X
fξ¼0g

jξihξjM|{z}
0

T · qT ¼ 0; ð68Þ

in which “T” again is inserted to make a column vector.
The nonzero modes in the exponential of (62) represent a

harmonic oscillator dynamics, written in the symmetric
form in the potential term of the transfer-matrix element

hx0jV̂jxi¼
ffiffiffiffiffiffi
M
2π

r
exp

�
−
1

2
Mðx−x0Þ2−1

2
Mω2

�
xþx0

2

�
2
�
;

ð69Þ

with the spectrum Er ¼ ðrþ 1
2
Þω by r ¼ 0; 1; 2;…. By the

matrix element (62) the frequencies are read as

ω2
ξ ¼

4ξ2

1þ ξ2
: ð70Þ

The harmonic oscillator nature of this part corresponds to
the electromagnetic standing modes inside a resonance
cavity. In particular, the electric and magnetic fields of the
nonzero modes act as the kinetic and potential terms of an
oscillator in the energy density 1

2
ðE2 þ B2Þ. In the present

model the term A ·MTM · A is representing the magnetic
part, and the kinetic term ðA − A0Þ2 is for the electric part.
By the explicit expression for the frequencies, we will see
that they in fact correspond to those in a resonance cavity.
By (70), it is mentioned that the frequency has an upper
limit (ultraviolet cutoff) ω2

max ¼ 4. The existence of the
cutoff is simply a consequence of a lower limit of wave-
length for a model on the lattice. All together, by adding up
the contributions of zero and nonzero modes, after restoring
the lattice parameter “a,” the spectrum by the model is
obtained

FIG. 11. The thick lines represent k as uniform electric fluxes
on links of a 2D lattice.
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Etot ¼
X
fξ¼0g

g2k2ξ
2a

þ 1

a

X
ξ≠0

�
rξ þ

1

2

�
ωξ: ð71Þ

Due to the g2k2 part, in the limit g ≪ 1, the above spectrum
is a continuous one. This is equivalent to the case of a
particle on a circle with radius R, with momenta and energy
as p ¼ n=R and E ¼ n2=ð2mR2Þ, both being treated as
continuous variables in the large R limit. In the present
model, the role of the radius is played in the field basis
by 1=g.
It is instructive to have more explicit expression for the

frequency of standing modes. By the explicit expression
presented in Appendix A, for a 2D periodic lattice with Ns
sites in each direction, we have the following for the
eigenvalues of MTM (see Appendix B)

4ξ2m;n ¼ 4

�
sin2

πm
Ns

þ sin2
πn
Ns

�
; ð72Þ

with m; n ¼ 0; 1;…; Ns − 1. As mentioned earlier, the
present derivations are valid for any lattice size. In particular,
the above eigenvalue and related frequency (70) can be
applied for arbitrary lattice size. This is an example of the
announced feature that the formulation provides the pos-
sibility that different limits can be approached. In particular,
in the large size limit Ns ≫ 1, the frequencies can be
approximated as

ω2
m;n ≃ 4ξ2m;n ¼

4a2π2

L2
ðm2 þ n2Þ; m; n ≪ Ns ð73Þ

in which aNs ¼ L represents the size of the 2D square
cavity. The above frequencies are easily recognized as the
allowed ones for standing waves in a box with periodic
boundary conditions. By the representation given in
Appendix A for MTM in the continuum limit, the standing
waves in a square of size L satisfy

� −∂2y ∂x∂y

∂x∂y −∂2x

��
Aðx⃗; tÞ
A0ðx⃗; tÞ

�
¼ ∂

2
t

�
Aðx⃗; tÞ
A0ðx⃗; tÞ

�
ð74Þ

in which

Aðx⃗; tÞ ¼ A0e
2π
L iðmxþnyÞ−iωt; ð75Þ

A0ðx⃗; tÞ ¼ A0
0e

2π
L iðmxþnyÞ−iωt: ð76Þ

The condition that for any amplitude A0 and A0
0 there would

be a solution as above leads to the frequency (73). The other
possibility, relevant to the zero mode sector with ω ¼ 0, is
the space independent solution

Aðx⃗; tÞ ¼ A1tþ A0; ð77Þ

A0ðx⃗; tÞ ¼ A0
1tþ A0

0; ð78Þ

which corresponds to the uniform electric field, as
announced earlier. So in the large box limit the spectrum
reads

Etot ¼
X
fξ¼0g

g2k2ξ
2a

þ 2π

L

X
m;n

�
rm;n þ

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
: ð79Þ

The contribution by nonzero modes correspond to the
radiation in a cavity. In the large L limit, the discrete nature
of the energy levels is relevant only for high fre-
quency modes.

VI. CONCLUSION AND SUMMARY

The weak coupling limit of a lattice gauge model is
commonly an obstacle to a full reconciliation between the
lattice model and its counterpart on the continuum. In
particular, the lattice gauge models are usually transferred
to the extreme weak coupling regime in an uncontrolled
way, leaving unresolved issues such as an unsought
diverging group volume, as well as the unclear fate of
main observable quantities in the lattice side, like the
Wilson loops.
In the previous sections, it was attempted to improve the

procedure of taking the weak coupling limit of a lattice
gauge model. Based on the formulation of the transfer
matrix in the field Fourier basis, some issues raised by the
weak coupling limit of the pure U(1) lattice gauge model in
the temporal gauge were addressed. In [7,8], it was shown
that the transfer matrix in the Fourier basis is block
diagonal. The members of each block can be constructed
by a member of the block as the representative [7]. The
matrix element between two current states of the same
block is directly interpreted as the occurrence of all possible
virtual link and loop currents that transform the current
states to the vacuum.
One of the basic tools used in the formulation of the

transfer matrix in the Fourier basis is the plaquette-link
matrix M [7], by which the fields and currents defined on
the lattice can be managed in a completely controlled way
at any coupling. As a consequence, it is seen that the matrix
M provides the possibility to keep and work with the
fundamental lattice notions, such as links and sites, even in
the extreme weak coupling limit. On the other hand, by
Sec. IV and Appendix A, using this matrix enables us to
translate the tools on the continuum into the lattice side;
examples are the correspondence (A8) between operations
M ↔ ð−∂y∂xÞ, and relations (A11) and (A12). Similar
correspondences are presented for 3D lattice as well. These
all make it possible to calculate the dimension of the
subspace by zero eigenvalues of the operator and to handle
the group volume in a safe way, as seen previously. Based
on notions and expressions developed in [7], as far as the
transfer matrix of the U(1) gauge model in the Fourier basis
is concerned, the following clarifications were made:
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(1) In the Fourier basis the gauge invariant states iden-
tified by the Gauss law constraint consist of Fourier
states with equal link current and without boundary.
These states, which are known asWilson loops in the
field basis, are either current loops belonging to the
vacuum block or states with equal links currents
along periodic or infinite spatial directions. In the
strong coupling limit, the current loops of the vacuum
block have the main contribution to the transfer
matrix as well as the spectrum, and link currents
along the spatial directions cost an infinite energy. In
the weak coupling regime, however, the link currents
along spatial directions also find comparable roles.

(2) In the extreme weak coupling limit, the matrix in the
quadratic action is identified as the origin of the
diverging contributions to the elements of the trans-
fer matrix in the Fourier basis. The states belonging
to the subspace corresponding to the zero eigenval-
ues are clearly interpreted as pure gauge configura-
tions, on which the matrix in the quadratic action
vanishes. The dimension of the subspace as well as
the diverging volume of the subspace in the weak
coupling limit can be handled and extracted in a safe
and controlled way.

(3) The spectrum by the lattice model is obtained
analytically at the weak coupling limit. The calcu-
lation is by means of the very basic notions and tools
of the lattice model for any dimension and size of
lattice. The obtained spectrum consists of the con-
tribution by the static and standing wave field
configurations on the lattice. The spectrum at the
weak coupling limit corresponds to the expected one
by the continuum model in the large lattice limit.
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APPENDIX A: MATRICES M AND C FOR 2D
AND 3D MODELS

In this Appendix the considerations about the dimension
of the subspace by pure gauge configurations, leading to
zero eigenvalues of the matrix C, is presented. Also, the
related notions and elements in both lattice and the
continuum models are derived and compared. The follow-
ing is done for 2D model first, and the very same
construction for 3D case is presented shortly. In the
temporal gauge A0 ≡ 0, in which

E ¼ _A; B ¼ ∇ × A ðA1Þ

the Hamiltonian density

H ¼ 1

2
ð _A2 þ ð∇ × AÞ2Þ ðA2Þ

in 2D takes the form

H ¼ 1

2
ð _A2

x þ _A2
y þ ð∂xAy − ∂yAxÞ2Þ: ðA3Þ

By the two-adjacent times interpretation of (5) for the
definition of the transfer matrix, the Hamiltonian sym-
metrized between the variables A and A0 at two times, after
integration by parts, is

H ¼ 1

2

�
ðA0

x − AxÞ2 þ ðA0
y − AyÞ2

þ 1

2
½ðAx∂y − Ay∂xÞð∂xAy − ∂yAxÞ þ A → A0�

�
: ðA4Þ

By the definition for the vector η as (42), the Hamiltonian
density recasts to

H ¼ 1

2
ηTC2D η; ðA5Þ

in which

C2D ¼
�

1 −1
−1 1

�
⊗ 1x⃗þ

1

2
12 ⊗

�−∂2y ∂x∂y

∂x∂y −∂2x
�
: ðA6Þ

Comparing the above operator with (45) of the lattice
formulation, we see that the combination MTM is in fact
acting as the derivative ∂i in the last 2 × 2 matrix:

MTM ↔

� −∂2y ∂x∂y

∂x∂y −∂2x
�

¼
�

∂y

−∂x

�
ð −∂y ∂x Þ; ðA7Þ

which, recalling that ∂i is an antisymmetric operator
(∂Ti ¼ −∂i), leads to the following correspondence

M↔ ð−∂y ∂x Þ: ðA8Þ

The matrix M can be defined by using the Ns × Ns
translation matrix T, defined by its elements [8]

Tab ¼ δab − δaþ1;b − δa;Ns
δb1; a; b ¼ 1;…; Ns: ðA9Þ

Then, the general form of the matrixM for the 2D lattice is
given in [7,8]

M¼


−My Mx

�
; ðA10Þ
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by which, using (A8), we have

Mx ¼ −T ⊗ 1Ns
⟷ ∂x; ðA11Þ

My ¼ −1Ns
⊗ T ⟷ ∂y: ðA12Þ

By construction, the matrixM is N2
s × 2N2

s dimensional, as
it should be for the 2D lattice. The similarity between the
lattice formulation in the weak coupling limit and the
continuum model in fact goes further, as both operators
vanish acting on a gradient. For the above operator the
gradient of function is

∇f ¼
�
∂xf

∂yf

�
ðA13Þ

and obviously satisfies

ð −∂y ∂x Þ
�
∂xf

∂yf

�
¼ 0: ðA14Þ

In the lattice side, the gradient of a function is simply given
by (A11) and (A12). Let us use the notation that the
function “f” at site “i” is denoted as fi. Then the column
vector is defined as

f⃗ ¼ ðf1; f2;…; fN2
s
ÞT; ðA15Þ

in which “T” is inserted to make it a column vector. Using
(A11) and (A12), the gradient on lattice is then defined as

Δf ¼
�Δxf

Δyf

�
¼

�
Mxf⃗

Myf⃗

�
; ðA16Þ

which, usingMxMy ¼ MyMx by the given representations,
satisfies

M ·

�Δxf

Δyf

�
¼

�
−My Mx

��
Mxf⃗

Myf⃗

�
¼ 0: ðA17Þ

It is useful to have an explicit representation for the
plaquette-link matrix M. For the site, plaquette and link
numberings of the 3 × 3 periodic lattice given in Fig. 12,
using the definition (3), one finds the following form for the
(9 × 18)-dimensional matrix M [8]

M ¼

0
BBBBBBBBBBBBBBB@

þ − 0 0 0 0 0 0 0

0 þ − 0 0 0 0 0 0

− 0 þ 0 0 0 0 0 0

0 0 0 þ − 0 0 0 0

0 0 0 0 þ − 0 0 0

0 0 0 − 0 þ 0 0 0

0 0 0 0 0 0 þ − 0

0 0 0 0 0 0 0 þ −
0 0 0 0 0 0 − 0 þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

−My

− 0 0 þ 0 0 0 0 0

0 − 0 0 þ 0 0 0 0

0 0 − 0 0 þ 0 0 0

0 0 0 − 0 0 þ 0 0

0 0 0 0 − 0 0 þ 0

0 0 0 0 0 − 0 0 þ
þ 0 0 0 0 0 − 0 0

0 þ 0 0 0 0 0 − 0

0 0 þ 0 0 0 0 0 −|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mx

1
CCCCCCCCCCCCCCCA

: ðA18Þ

By the representation, the gradient based on the given

ordering of sites and links for the 3 × 3 periodic lattice,

denoting fij ¼ fj − fi, is the following:

Δf ¼
�
Mxf⃗

Myf⃗

�
¼ ðf41; f52; f63; f74; f85; f96; f17; f28; f39;

f21; f32; f13; f54; f65; f46; f87; f98; f79ÞT: ðA19Þ

FIG. 12. The numbering of links and plaquettes for the 3 × 3
2D periodic lattice used in (19) as the representation of matrix
M [8].
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We notice that, for example, f63 is sitting in place of the
variable on link “3,” consistent by the numbering given
in Fig. 12.
In the language of gauge theories, the expressions (A13)

and (A16) are referred as pure gauge configurations. In fact,
in the present temporal gauge A0 ≡ 0, starting with zero
field configurations in two adjacent times given by
A ¼ A0 ¼ 0, the remaining spatial gauge transformations
leads to A ¼ A0 ¼ ∇f in the continuum theory, and A ¼
A0 ¼ Δf in the lattice one. As expected, by the pure gauge
configurations (A13) and (A16), the Hamiltonian vanishes,
leading to vanishing of the strength fields: E ¼ B ¼ 0.
It is instructive to see that the construction for the 2D

model can be directly generalized to the 3D one. By the
two-adjacent times interpretation in the definition of the
transfer matrix, the Hamiltonian symmetrized between
the variables A and A0 at two times, after integration by
parts, takes the following form in 3D

H ¼ 1

2

�
ðA0

x − AxÞ2 þ ðA0
y − AyÞ2 þ ðA0

z − AzÞ2

þ 1

2
½ðAx∂y − Ay∂xÞð∂xAy − ∂yAxÞ þ A → A0

þ ðAy∂z − Az∂yÞð∂yAz − ∂zAyÞ þ A → A0

þ ðAz∂x − Ax∂zÞð∂zAx − ∂xAzÞ þ A → A0�
�

ðA20Þ

written in matrix form

H ¼ 1

2
ηTC3D η; ðA21Þ

in which

C3D¼
�

1 −1
−1 1

�
⊗ 1x⃗

þ1

2
12⊗

0
B@
−∂2y−∂

2
z ∂x∂y ∂x∂z

∂x∂y −∂2x−∂
2
z ∂z∂y

∂x∂z ∂z∂y −∂2x−∂
2
y

1
CA: ðA22Þ

Comparing with (44),

MTM ↔

0
B@

−∂2y − ∂
2
z ∂x∂y ∂x∂z

∂x∂y −∂2x − ∂
2
z ∂z∂y

∂x∂z ∂z∂y −∂2x − ∂
2
y

1
CA ðA23Þ

¼

0
B@ ∂y ∂z 0

−∂x 0 ∂z

0 −∂x −∂y

1
CA
0
B@−∂y ∂x 0

−∂z 0 ∂x

0 −∂z ∂y

1
CA: ðA24Þ

For a periodic 3D lattice with Ns sites in each direction we
have for the number of links and plaquettes

NL ¼ NP ¼ 3N3
s ; ðA25Þ

suggesting

M¼

0
B@
−My Mx 0

−Mz 0 Mx

0 −Mz My

1
CA↔

0
B@−∂y ∂x 0

−∂z 0 ∂x

0 −∂z ∂y

1
CA ðA26Þ

with

Mx ¼ −T ⊗ 1Ns
⊗ 1Ns

↔ ∂x; ðA27Þ

My ¼ −1Ns
⊗ T ⊗ 1Ns

↔ ∂y; ðA28Þ

Mz ¼ −1Ns
⊗ 1Ns

⊗ T ↔ ∂z; ðA29Þ

by which as it is required that MiMj ¼ MjMi for i; j ¼ x,
y, z.

APPENDIX B: EIGENVALUES OF MTM

The eigenvalues of MTM for periodic 2D lattice are
calculated in this part. The 3D case can be calculated
straightforwardly. By the given representation, MTM for
2D lattice comes to the form

MTM ¼
� 1 ⊗ T†T −T ⊗ T†

−T† ⊗ T T†T ⊗ 1

�
; ðB1Þ

in which both 1 and T are Ns × Ns dimensional (as in
Appendix A). So MTM is 2N2

s × 2N2
s , as it should. For a

block matrix

M ¼
� A B

C D

�
; ðB2Þ

if C and D commute, then detM ¼ detðAD − BCÞ. The
calculation is done on the basis that T is diagonal, in
which all blocks commute. The secular equation
detðMTM − λÞ ¼ 0 then finds the form

detðλðλ1 ⊗ 1 − 1 ⊗ T†T − T†T ⊗ 1ÞÞ ¼ 0: ðB3Þ

The outer λ leads to N2
s number of zeros as eigenvalues.

Other eigenvalues, denoting eigenvalues of T†T as βm, are
simply

λm;n ¼ βm þ βn; m; n ¼ 0; 1;…; Ns − 1: ðB4Þ

The only remaining part is to find the eigenvalues of T†T.
By the explicit representation given in Appendix A, the
secular equation for T is
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ð1 − αÞNs ¼ 1; ðB5Þ

with the following as a solution:

αm ¼ 1 − exp
2πim
Ns

: ðB6Þ

So the eigenvalues of T†T are

βm ¼ αmα
�
m ¼ 4 sin2

πm
Ns

ðB7Þ

resulting in

λm;n ¼ 4

�
sin2

πm
Ns

þ sin2
πn
Ns

�
; m; n ¼ 0; 1;…; Ns − 1:

ðB8Þ
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